1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 72 73 static bool hw_memory_failure __read_mostly = false; 74 75 static DEFINE_MUTEX(mf_mutex); 76 77 void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 static struct ctl_table memory_failure_table[] = { 126 { 127 .procname = "memory_failure_early_kill", 128 .data = &sysctl_memory_failure_early_kill, 129 .maxlen = sizeof(sysctl_memory_failure_early_kill), 130 .mode = 0644, 131 .proc_handler = proc_dointvec_minmax, 132 .extra1 = SYSCTL_ZERO, 133 .extra2 = SYSCTL_ONE, 134 }, 135 { 136 .procname = "memory_failure_recovery", 137 .data = &sysctl_memory_failure_recovery, 138 .maxlen = sizeof(sysctl_memory_failure_recovery), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ZERO, 142 .extra2 = SYSCTL_ONE, 143 }, 144 { } 145 }; 146 147 /* 148 * Return values: 149 * 1: the page is dissolved (if needed) and taken off from buddy, 150 * 0: the page is dissolved (if needed) and not taken off from buddy, 151 * < 0: failed to dissolve. 152 */ 153 static int __page_handle_poison(struct page *page) 154 { 155 int ret; 156 157 /* 158 * zone_pcp_disable() can't be used here. It will 159 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold 160 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 161 * optimization is enabled. This will break current lock dependency 162 * chain and leads to deadlock. 163 * Disabling pcp before dissolving the page was a deterministic 164 * approach because we made sure that those pages cannot end up in any 165 * PCP list. Draining PCP lists expels those pages to the buddy system, 166 * but nothing guarantees that those pages do not get back to a PCP 167 * queue if we need to refill those. 168 */ 169 ret = dissolve_free_huge_page(page); 170 if (!ret) { 171 drain_all_pages(page_zone(page)); 172 ret = take_page_off_buddy(page); 173 } 174 175 return ret; 176 } 177 178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 179 { 180 if (hugepage_or_freepage) { 181 /* 182 * Doing this check for free pages is also fine since dissolve_free_huge_page 183 * returns 0 for non-hugetlb pages as well. 184 */ 185 if (__page_handle_poison(page) <= 0) 186 /* 187 * We could fail to take off the target page from buddy 188 * for example due to racy page allocation, but that's 189 * acceptable because soft-offlined page is not broken 190 * and if someone really want to use it, they should 191 * take it. 192 */ 193 return false; 194 } 195 196 SetPageHWPoison(page); 197 if (release) 198 put_page(page); 199 page_ref_inc(page); 200 num_poisoned_pages_inc(page_to_pfn(page)); 201 202 return true; 203 } 204 205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 206 207 u32 hwpoison_filter_enable = 0; 208 u32 hwpoison_filter_dev_major = ~0U; 209 u32 hwpoison_filter_dev_minor = ~0U; 210 u64 hwpoison_filter_flags_mask; 211 u64 hwpoison_filter_flags_value; 212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 217 218 static int hwpoison_filter_dev(struct page *p) 219 { 220 struct address_space *mapping; 221 dev_t dev; 222 223 if (hwpoison_filter_dev_major == ~0U && 224 hwpoison_filter_dev_minor == ~0U) 225 return 0; 226 227 mapping = page_mapping(p); 228 if (mapping == NULL || mapping->host == NULL) 229 return -EINVAL; 230 231 dev = mapping->host->i_sb->s_dev; 232 if (hwpoison_filter_dev_major != ~0U && 233 hwpoison_filter_dev_major != MAJOR(dev)) 234 return -EINVAL; 235 if (hwpoison_filter_dev_minor != ~0U && 236 hwpoison_filter_dev_minor != MINOR(dev)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 static int hwpoison_filter_flags(struct page *p) 243 { 244 if (!hwpoison_filter_flags_mask) 245 return 0; 246 247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 248 hwpoison_filter_flags_value) 249 return 0; 250 else 251 return -EINVAL; 252 } 253 254 /* 255 * This allows stress tests to limit test scope to a collection of tasks 256 * by putting them under some memcg. This prevents killing unrelated/important 257 * processes such as /sbin/init. Note that the target task may share clean 258 * pages with init (eg. libc text), which is harmless. If the target task 259 * share _dirty_ pages with another task B, the test scheme must make sure B 260 * is also included in the memcg. At last, due to race conditions this filter 261 * can only guarantee that the page either belongs to the memcg tasks, or is 262 * a freed page. 263 */ 264 #ifdef CONFIG_MEMCG 265 u64 hwpoison_filter_memcg; 266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 267 static int hwpoison_filter_task(struct page *p) 268 { 269 if (!hwpoison_filter_memcg) 270 return 0; 271 272 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 273 return -EINVAL; 274 275 return 0; 276 } 277 #else 278 static int hwpoison_filter_task(struct page *p) { return 0; } 279 #endif 280 281 int hwpoison_filter(struct page *p) 282 { 283 if (!hwpoison_filter_enable) 284 return 0; 285 286 if (hwpoison_filter_dev(p)) 287 return -EINVAL; 288 289 if (hwpoison_filter_flags(p)) 290 return -EINVAL; 291 292 if (hwpoison_filter_task(p)) 293 return -EINVAL; 294 295 return 0; 296 } 297 #else 298 int hwpoison_filter(struct page *p) 299 { 300 return 0; 301 } 302 #endif 303 304 EXPORT_SYMBOL_GPL(hwpoison_filter); 305 306 /* 307 * Kill all processes that have a poisoned page mapped and then isolate 308 * the page. 309 * 310 * General strategy: 311 * Find all processes having the page mapped and kill them. 312 * But we keep a page reference around so that the page is not 313 * actually freed yet. 314 * Then stash the page away 315 * 316 * There's no convenient way to get back to mapped processes 317 * from the VMAs. So do a brute-force search over all 318 * running processes. 319 * 320 * Remember that machine checks are not common (or rather 321 * if they are common you have other problems), so this shouldn't 322 * be a performance issue. 323 * 324 * Also there are some races possible while we get from the 325 * error detection to actually handle it. 326 */ 327 328 struct to_kill { 329 struct list_head nd; 330 struct task_struct *tsk; 331 unsigned long addr; 332 short size_shift; 333 }; 334 335 /* 336 * Send all the processes who have the page mapped a signal. 337 * ``action optional'' if they are not immediately affected by the error 338 * ``action required'' if error happened in current execution context 339 */ 340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 341 { 342 struct task_struct *t = tk->tsk; 343 short addr_lsb = tk->size_shift; 344 int ret = 0; 345 346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 347 pfn, t->comm, t->pid); 348 349 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 350 ret = force_sig_mceerr(BUS_MCEERR_AR, 351 (void __user *)tk->addr, addr_lsb); 352 else 353 /* 354 * Signal other processes sharing the page if they have 355 * PF_MCE_EARLY set. 356 * Don't use force here, it's convenient if the signal 357 * can be temporarily blocked. 358 * This could cause a loop when the user sets SIGBUS 359 * to SIG_IGN, but hopefully no one will do that? 360 */ 361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 362 addr_lsb, t); 363 if (ret < 0) 364 pr_info("Error sending signal to %s:%d: %d\n", 365 t->comm, t->pid, ret); 366 return ret; 367 } 368 369 /* 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by 371 * lru_add_drain_all. 372 */ 373 void shake_page(struct page *p) 374 { 375 if (PageHuge(p)) 376 return; 377 /* 378 * TODO: Could shrink slab caches here if a lightweight range-based 379 * shrinker will be available. 380 */ 381 if (PageSlab(p)) 382 return; 383 384 lru_add_drain_all(); 385 } 386 EXPORT_SYMBOL_GPL(shake_page); 387 388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 389 unsigned long address) 390 { 391 unsigned long ret = 0; 392 pgd_t *pgd; 393 p4d_t *p4d; 394 pud_t *pud; 395 pmd_t *pmd; 396 pte_t *pte; 397 pte_t ptent; 398 399 VM_BUG_ON_VMA(address == -EFAULT, vma); 400 pgd = pgd_offset(vma->vm_mm, address); 401 if (!pgd_present(*pgd)) 402 return 0; 403 p4d = p4d_offset(pgd, address); 404 if (!p4d_present(*p4d)) 405 return 0; 406 pud = pud_offset(p4d, address); 407 if (!pud_present(*pud)) 408 return 0; 409 if (pud_devmap(*pud)) 410 return PUD_SHIFT; 411 pmd = pmd_offset(pud, address); 412 if (!pmd_present(*pmd)) 413 return 0; 414 if (pmd_devmap(*pmd)) 415 return PMD_SHIFT; 416 pte = pte_offset_map(pmd, address); 417 if (!pte) 418 return 0; 419 ptent = ptep_get(pte); 420 if (pte_present(ptent) && pte_devmap(ptent)) 421 ret = PAGE_SHIFT; 422 pte_unmap(pte); 423 return ret; 424 } 425 426 /* 427 * Failure handling: if we can't find or can't kill a process there's 428 * not much we can do. We just print a message and ignore otherwise. 429 */ 430 431 #define FSDAX_INVALID_PGOFF ULONG_MAX 432 433 /* 434 * Schedule a process for later kill. 435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 436 * 437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 438 * filesystem with a memory failure handler has claimed the 439 * memory_failure event. In all other cases, page->index and 440 * page->mapping are sufficient for mapping the page back to its 441 * corresponding user virtual address. 442 */ 443 static void __add_to_kill(struct task_struct *tsk, struct page *p, 444 struct vm_area_struct *vma, struct list_head *to_kill, 445 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 446 { 447 struct to_kill *tk; 448 449 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 450 if (!tk) { 451 pr_err("Out of memory while machine check handling\n"); 452 return; 453 } 454 455 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 456 if (is_zone_device_page(p)) { 457 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 458 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 459 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 460 } else 461 tk->size_shift = page_shift(compound_head(p)); 462 463 /* 464 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 465 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 466 * so "tk->size_shift == 0" effectively checks no mapping on 467 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 468 * to a process' address space, it's possible not all N VMAs 469 * contain mappings for the page, but at least one VMA does. 470 * Only deliver SIGBUS with payload derived from the VMA that 471 * has a mapping for the page. 472 */ 473 if (tk->addr == -EFAULT) { 474 pr_info("Unable to find user space address %lx in %s\n", 475 page_to_pfn(p), tsk->comm); 476 } else if (tk->size_shift == 0) { 477 kfree(tk); 478 return; 479 } 480 481 get_task_struct(tsk); 482 tk->tsk = tsk; 483 list_add_tail(&tk->nd, to_kill); 484 } 485 486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 487 struct vm_area_struct *vma, 488 struct list_head *to_kill) 489 { 490 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 491 } 492 493 #ifdef CONFIG_KSM 494 static bool task_in_to_kill_list(struct list_head *to_kill, 495 struct task_struct *tsk) 496 { 497 struct to_kill *tk, *next; 498 499 list_for_each_entry_safe(tk, next, to_kill, nd) { 500 if (tk->tsk == tsk) 501 return true; 502 } 503 504 return false; 505 } 506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 507 struct vm_area_struct *vma, struct list_head *to_kill, 508 unsigned long ksm_addr) 509 { 510 if (!task_in_to_kill_list(to_kill, tsk)) 511 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 512 } 513 #endif 514 /* 515 * Kill the processes that have been collected earlier. 516 * 517 * Only do anything when FORCEKILL is set, otherwise just free the 518 * list (this is used for clean pages which do not need killing) 519 * Also when FAIL is set do a force kill because something went 520 * wrong earlier. 521 */ 522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 523 unsigned long pfn, int flags) 524 { 525 struct to_kill *tk, *next; 526 527 list_for_each_entry_safe(tk, next, to_kill, nd) { 528 if (forcekill) { 529 /* 530 * In case something went wrong with munmapping 531 * make sure the process doesn't catch the 532 * signal and then access the memory. Just kill it. 533 */ 534 if (fail || tk->addr == -EFAULT) { 535 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 536 pfn, tk->tsk->comm, tk->tsk->pid); 537 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 538 tk->tsk, PIDTYPE_PID); 539 } 540 541 /* 542 * In theory the process could have mapped 543 * something else on the address in-between. We could 544 * check for that, but we need to tell the 545 * process anyways. 546 */ 547 else if (kill_proc(tk, pfn, flags) < 0) 548 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 549 pfn, tk->tsk->comm, tk->tsk->pid); 550 } 551 list_del(&tk->nd); 552 put_task_struct(tk->tsk); 553 kfree(tk); 554 } 555 } 556 557 /* 558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 559 * on behalf of the thread group. Return task_struct of the (first found) 560 * dedicated thread if found, and return NULL otherwise. 561 * 562 * We already hold rcu lock in the caller, so we don't have to call 563 * rcu_read_lock/unlock() in this function. 564 */ 565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 566 { 567 struct task_struct *t; 568 569 for_each_thread(tsk, t) { 570 if (t->flags & PF_MCE_PROCESS) { 571 if (t->flags & PF_MCE_EARLY) 572 return t; 573 } else { 574 if (sysctl_memory_failure_early_kill) 575 return t; 576 } 577 } 578 return NULL; 579 } 580 581 /* 582 * Determine whether a given process is "early kill" process which expects 583 * to be signaled when some page under the process is hwpoisoned. 584 * Return task_struct of the dedicated thread (main thread unless explicitly 585 * specified) if the process is "early kill" and otherwise returns NULL. 586 * 587 * Note that the above is true for Action Optional case. For Action Required 588 * case, it's only meaningful to the current thread which need to be signaled 589 * with SIGBUS, this error is Action Optional for other non current 590 * processes sharing the same error page,if the process is "early kill", the 591 * task_struct of the dedicated thread will also be returned. 592 */ 593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 594 { 595 if (!tsk->mm) 596 return NULL; 597 /* 598 * Comparing ->mm here because current task might represent 599 * a subthread, while tsk always points to the main thread. 600 */ 601 if (force_early && tsk->mm == current->mm) 602 return current; 603 604 return find_early_kill_thread(tsk); 605 } 606 607 /* 608 * Collect processes when the error hit an anonymous page. 609 */ 610 static void collect_procs_anon(struct folio *folio, struct page *page, 611 struct list_head *to_kill, int force_early) 612 { 613 struct vm_area_struct *vma; 614 struct task_struct *tsk; 615 struct anon_vma *av; 616 pgoff_t pgoff; 617 618 av = folio_lock_anon_vma_read(folio, NULL); 619 if (av == NULL) /* Not actually mapped anymore */ 620 return; 621 622 pgoff = page_to_pgoff(page); 623 rcu_read_lock(); 624 for_each_process(tsk) { 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 628 if (!t) 629 continue; 630 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 631 pgoff, pgoff) { 632 vma = vmac->vma; 633 if (vma->vm_mm != t->mm) 634 continue; 635 if (!page_mapped_in_vma(page, vma)) 636 continue; 637 add_to_kill_anon_file(t, page, vma, to_kill); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(struct folio *folio, struct page *page, 648 struct list_head *to_kill, int force_early) 649 { 650 struct vm_area_struct *vma; 651 struct task_struct *tsk; 652 struct address_space *mapping = folio->mapping; 653 pgoff_t pgoff; 654 655 i_mmap_lock_read(mapping); 656 rcu_read_lock(); 657 pgoff = page_to_pgoff(page); 658 for_each_process(tsk) { 659 struct task_struct *t = task_early_kill(tsk, force_early); 660 661 if (!t) 662 continue; 663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 664 pgoff) { 665 /* 666 * Send early kill signal to tasks where a vma covers 667 * the page but the corrupted page is not necessarily 668 * mapped in its pte. 669 * Assume applications who requested early kill want 670 * to be informed of all such data corruptions. 671 */ 672 if (vma->vm_mm == t->mm) 673 add_to_kill_anon_file(t, page, vma, to_kill); 674 } 675 } 676 rcu_read_unlock(); 677 i_mmap_unlock_read(mapping); 678 } 679 680 #ifdef CONFIG_FS_DAX 681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 682 struct vm_area_struct *vma, 683 struct list_head *to_kill, pgoff_t pgoff) 684 { 685 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 686 } 687 688 /* 689 * Collect processes when the error hit a fsdax page. 690 */ 691 static void collect_procs_fsdax(struct page *page, 692 struct address_space *mapping, pgoff_t pgoff, 693 struct list_head *to_kill) 694 { 695 struct vm_area_struct *vma; 696 struct task_struct *tsk; 697 698 i_mmap_lock_read(mapping); 699 rcu_read_lock(); 700 for_each_process(tsk) { 701 struct task_struct *t = task_early_kill(tsk, true); 702 703 if (!t) 704 continue; 705 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 706 if (vma->vm_mm == t->mm) 707 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 708 } 709 } 710 rcu_read_unlock(); 711 i_mmap_unlock_read(mapping); 712 } 713 #endif /* CONFIG_FS_DAX */ 714 715 /* 716 * Collect the processes who have the corrupted page mapped to kill. 717 */ 718 static void collect_procs(struct folio *folio, struct page *page, 719 struct list_head *tokill, int force_early) 720 { 721 if (!folio->mapping) 722 return; 723 if (unlikely(PageKsm(page))) 724 collect_procs_ksm(page, tokill, force_early); 725 else if (PageAnon(page)) 726 collect_procs_anon(folio, page, tokill, force_early); 727 else 728 collect_procs_file(folio, page, tokill, force_early); 729 } 730 731 struct hwpoison_walk { 732 struct to_kill tk; 733 unsigned long pfn; 734 int flags; 735 }; 736 737 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 738 { 739 tk->addr = addr; 740 tk->size_shift = shift; 741 } 742 743 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 744 unsigned long poisoned_pfn, struct to_kill *tk) 745 { 746 unsigned long pfn = 0; 747 748 if (pte_present(pte)) { 749 pfn = pte_pfn(pte); 750 } else { 751 swp_entry_t swp = pte_to_swp_entry(pte); 752 753 if (is_hwpoison_entry(swp)) 754 pfn = swp_offset_pfn(swp); 755 } 756 757 if (!pfn || pfn != poisoned_pfn) 758 return 0; 759 760 set_to_kill(tk, addr, shift); 761 return 1; 762 } 763 764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 765 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 766 struct hwpoison_walk *hwp) 767 { 768 pmd_t pmd = *pmdp; 769 unsigned long pfn; 770 unsigned long hwpoison_vaddr; 771 772 if (!pmd_present(pmd)) 773 return 0; 774 pfn = pmd_pfn(pmd); 775 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 776 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 777 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 778 return 1; 779 } 780 return 0; 781 } 782 #else 783 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 784 struct hwpoison_walk *hwp) 785 { 786 return 0; 787 } 788 #endif 789 790 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 791 unsigned long end, struct mm_walk *walk) 792 { 793 struct hwpoison_walk *hwp = walk->private; 794 int ret = 0; 795 pte_t *ptep, *mapped_pte; 796 spinlock_t *ptl; 797 798 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 799 if (ptl) { 800 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 801 spin_unlock(ptl); 802 goto out; 803 } 804 805 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 806 addr, &ptl); 807 if (!ptep) 808 goto out; 809 810 for (; addr != end; ptep++, addr += PAGE_SIZE) { 811 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 812 hwp->pfn, &hwp->tk); 813 if (ret == 1) 814 break; 815 } 816 pte_unmap_unlock(mapped_pte, ptl); 817 out: 818 cond_resched(); 819 return ret; 820 } 821 822 #ifdef CONFIG_HUGETLB_PAGE 823 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 824 unsigned long addr, unsigned long end, 825 struct mm_walk *walk) 826 { 827 struct hwpoison_walk *hwp = walk->private; 828 pte_t pte = huge_ptep_get(ptep); 829 struct hstate *h = hstate_vma(walk->vma); 830 831 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 832 hwp->pfn, &hwp->tk); 833 } 834 #else 835 #define hwpoison_hugetlb_range NULL 836 #endif 837 838 static const struct mm_walk_ops hwpoison_walk_ops = { 839 .pmd_entry = hwpoison_pte_range, 840 .hugetlb_entry = hwpoison_hugetlb_range, 841 .walk_lock = PGWALK_RDLOCK, 842 }; 843 844 /* 845 * Sends SIGBUS to the current process with error info. 846 * 847 * This function is intended to handle "Action Required" MCEs on already 848 * hardware poisoned pages. They could happen, for example, when 849 * memory_failure() failed to unmap the error page at the first call, or 850 * when multiple local machine checks happened on different CPUs. 851 * 852 * MCE handler currently has no easy access to the error virtual address, 853 * so this function walks page table to find it. The returned virtual address 854 * is proper in most cases, but it could be wrong when the application 855 * process has multiple entries mapping the error page. 856 */ 857 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 858 int flags) 859 { 860 int ret; 861 struct hwpoison_walk priv = { 862 .pfn = pfn, 863 }; 864 priv.tk.tsk = p; 865 866 if (!p->mm) 867 return -EFAULT; 868 869 mmap_read_lock(p->mm); 870 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 871 (void *)&priv); 872 if (ret == 1 && priv.tk.addr) 873 kill_proc(&priv.tk, pfn, flags); 874 else 875 ret = 0; 876 mmap_read_unlock(p->mm); 877 return ret > 0 ? -EHWPOISON : -EFAULT; 878 } 879 880 static const char *action_name[] = { 881 [MF_IGNORED] = "Ignored", 882 [MF_FAILED] = "Failed", 883 [MF_DELAYED] = "Delayed", 884 [MF_RECOVERED] = "Recovered", 885 }; 886 887 static const char * const action_page_types[] = { 888 [MF_MSG_KERNEL] = "reserved kernel page", 889 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 890 [MF_MSG_SLAB] = "kernel slab page", 891 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 892 [MF_MSG_HUGE] = "huge page", 893 [MF_MSG_FREE_HUGE] = "free huge page", 894 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 895 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 896 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 897 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 898 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 899 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 900 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 901 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 902 [MF_MSG_CLEAN_LRU] = "clean LRU page", 903 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 904 [MF_MSG_BUDDY] = "free buddy page", 905 [MF_MSG_DAX] = "dax page", 906 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 907 [MF_MSG_UNKNOWN] = "unknown page", 908 }; 909 910 /* 911 * XXX: It is possible that a page is isolated from LRU cache, 912 * and then kept in swap cache or failed to remove from page cache. 913 * The page count will stop it from being freed by unpoison. 914 * Stress tests should be aware of this memory leak problem. 915 */ 916 static int delete_from_lru_cache(struct page *p) 917 { 918 if (isolate_lru_page(p)) { 919 /* 920 * Clear sensible page flags, so that the buddy system won't 921 * complain when the page is unpoison-and-freed. 922 */ 923 ClearPageActive(p); 924 ClearPageUnevictable(p); 925 926 /* 927 * Poisoned page might never drop its ref count to 0 so we have 928 * to uncharge it manually from its memcg. 929 */ 930 mem_cgroup_uncharge(page_folio(p)); 931 932 /* 933 * drop the page count elevated by isolate_lru_page() 934 */ 935 put_page(p); 936 return 0; 937 } 938 return -EIO; 939 } 940 941 static int truncate_error_page(struct page *p, unsigned long pfn, 942 struct address_space *mapping) 943 { 944 int ret = MF_FAILED; 945 946 if (mapping->a_ops->error_remove_page) { 947 struct folio *folio = page_folio(p); 948 int err = mapping->a_ops->error_remove_page(mapping, p); 949 950 if (err != 0) 951 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 952 else if (!filemap_release_folio(folio, GFP_NOIO)) 953 pr_info("%#lx: failed to release buffers\n", pfn); 954 else 955 ret = MF_RECOVERED; 956 } else { 957 /* 958 * If the file system doesn't support it just invalidate 959 * This fails on dirty or anything with private pages 960 */ 961 if (invalidate_inode_page(p)) 962 ret = MF_RECOVERED; 963 else 964 pr_info("%#lx: Failed to invalidate\n", pfn); 965 } 966 967 return ret; 968 } 969 970 struct page_state { 971 unsigned long mask; 972 unsigned long res; 973 enum mf_action_page_type type; 974 975 /* Callback ->action() has to unlock the relevant page inside it. */ 976 int (*action)(struct page_state *ps, struct page *p); 977 }; 978 979 /* 980 * Return true if page is still referenced by others, otherwise return 981 * false. 982 * 983 * The extra_pins is true when one extra refcount is expected. 984 */ 985 static bool has_extra_refcount(struct page_state *ps, struct page *p, 986 bool extra_pins) 987 { 988 int count = page_count(p) - 1; 989 990 if (extra_pins) 991 count -= 1; 992 993 if (count > 0) { 994 pr_err("%#lx: %s still referenced by %d users\n", 995 page_to_pfn(p), action_page_types[ps->type], count); 996 return true; 997 } 998 999 return false; 1000 } 1001 1002 /* 1003 * Error hit kernel page. 1004 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1005 * could be more sophisticated. 1006 */ 1007 static int me_kernel(struct page_state *ps, struct page *p) 1008 { 1009 unlock_page(p); 1010 return MF_IGNORED; 1011 } 1012 1013 /* 1014 * Page in unknown state. Do nothing. 1015 */ 1016 static int me_unknown(struct page_state *ps, struct page *p) 1017 { 1018 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1019 unlock_page(p); 1020 return MF_FAILED; 1021 } 1022 1023 /* 1024 * Clean (or cleaned) page cache page. 1025 */ 1026 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1027 { 1028 int ret; 1029 struct address_space *mapping; 1030 bool extra_pins; 1031 1032 delete_from_lru_cache(p); 1033 1034 /* 1035 * For anonymous pages we're done the only reference left 1036 * should be the one m_f() holds. 1037 */ 1038 if (PageAnon(p)) { 1039 ret = MF_RECOVERED; 1040 goto out; 1041 } 1042 1043 /* 1044 * Now truncate the page in the page cache. This is really 1045 * more like a "temporary hole punch" 1046 * Don't do this for block devices when someone else 1047 * has a reference, because it could be file system metadata 1048 * and that's not safe to truncate. 1049 */ 1050 mapping = page_mapping(p); 1051 if (!mapping) { 1052 /* 1053 * Page has been teared down in the meanwhile 1054 */ 1055 ret = MF_FAILED; 1056 goto out; 1057 } 1058 1059 /* 1060 * The shmem page is kept in page cache instead of truncating 1061 * so is expected to have an extra refcount after error-handling. 1062 */ 1063 extra_pins = shmem_mapping(mapping); 1064 1065 /* 1066 * Truncation is a bit tricky. Enable it per file system for now. 1067 * 1068 * Open: to take i_rwsem or not for this? Right now we don't. 1069 */ 1070 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1071 if (has_extra_refcount(ps, p, extra_pins)) 1072 ret = MF_FAILED; 1073 1074 out: 1075 unlock_page(p); 1076 1077 return ret; 1078 } 1079 1080 /* 1081 * Dirty pagecache page 1082 * Issues: when the error hit a hole page the error is not properly 1083 * propagated. 1084 */ 1085 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1086 { 1087 struct address_space *mapping = page_mapping(p); 1088 1089 SetPageError(p); 1090 /* TBD: print more information about the file. */ 1091 if (mapping) { 1092 /* 1093 * IO error will be reported by write(), fsync(), etc. 1094 * who check the mapping. 1095 * This way the application knows that something went 1096 * wrong with its dirty file data. 1097 * 1098 * There's one open issue: 1099 * 1100 * The EIO will be only reported on the next IO 1101 * operation and then cleared through the IO map. 1102 * Normally Linux has two mechanisms to pass IO error 1103 * first through the AS_EIO flag in the address space 1104 * and then through the PageError flag in the page. 1105 * Since we drop pages on memory failure handling the 1106 * only mechanism open to use is through AS_AIO. 1107 * 1108 * This has the disadvantage that it gets cleared on 1109 * the first operation that returns an error, while 1110 * the PageError bit is more sticky and only cleared 1111 * when the page is reread or dropped. If an 1112 * application assumes it will always get error on 1113 * fsync, but does other operations on the fd before 1114 * and the page is dropped between then the error 1115 * will not be properly reported. 1116 * 1117 * This can already happen even without hwpoisoned 1118 * pages: first on metadata IO errors (which only 1119 * report through AS_EIO) or when the page is dropped 1120 * at the wrong time. 1121 * 1122 * So right now we assume that the application DTRT on 1123 * the first EIO, but we're not worse than other parts 1124 * of the kernel. 1125 */ 1126 mapping_set_error(mapping, -EIO); 1127 } 1128 1129 return me_pagecache_clean(ps, p); 1130 } 1131 1132 /* 1133 * Clean and dirty swap cache. 1134 * 1135 * Dirty swap cache page is tricky to handle. The page could live both in page 1136 * cache and swap cache(ie. page is freshly swapped in). So it could be 1137 * referenced concurrently by 2 types of PTEs: 1138 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1139 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1140 * and then 1141 * - clear dirty bit to prevent IO 1142 * - remove from LRU 1143 * - but keep in the swap cache, so that when we return to it on 1144 * a later page fault, we know the application is accessing 1145 * corrupted data and shall be killed (we installed simple 1146 * interception code in do_swap_page to catch it). 1147 * 1148 * Clean swap cache pages can be directly isolated. A later page fault will 1149 * bring in the known good data from disk. 1150 */ 1151 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1152 { 1153 int ret; 1154 bool extra_pins = false; 1155 1156 ClearPageDirty(p); 1157 /* Trigger EIO in shmem: */ 1158 ClearPageUptodate(p); 1159 1160 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1161 unlock_page(p); 1162 1163 if (ret == MF_DELAYED) 1164 extra_pins = true; 1165 1166 if (has_extra_refcount(ps, p, extra_pins)) 1167 ret = MF_FAILED; 1168 1169 return ret; 1170 } 1171 1172 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1173 { 1174 struct folio *folio = page_folio(p); 1175 int ret; 1176 1177 delete_from_swap_cache(folio); 1178 1179 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1180 folio_unlock(folio); 1181 1182 if (has_extra_refcount(ps, p, false)) 1183 ret = MF_FAILED; 1184 1185 return ret; 1186 } 1187 1188 /* 1189 * Huge pages. Needs work. 1190 * Issues: 1191 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1192 * To narrow down kill region to one page, we need to break up pmd. 1193 */ 1194 static int me_huge_page(struct page_state *ps, struct page *p) 1195 { 1196 struct folio *folio = page_folio(p); 1197 int res; 1198 struct address_space *mapping; 1199 bool extra_pins = false; 1200 1201 mapping = folio_mapping(folio); 1202 if (mapping) { 1203 res = truncate_error_page(&folio->page, page_to_pfn(p), mapping); 1204 /* The page is kept in page cache. */ 1205 extra_pins = true; 1206 folio_unlock(folio); 1207 } else { 1208 folio_unlock(folio); 1209 /* 1210 * migration entry prevents later access on error hugepage, 1211 * so we can free and dissolve it into buddy to save healthy 1212 * subpages. 1213 */ 1214 folio_put(folio); 1215 if (__page_handle_poison(p) > 0) { 1216 page_ref_inc(p); 1217 res = MF_RECOVERED; 1218 } else { 1219 res = MF_FAILED; 1220 } 1221 } 1222 1223 if (has_extra_refcount(ps, p, extra_pins)) 1224 res = MF_FAILED; 1225 1226 return res; 1227 } 1228 1229 /* 1230 * Various page states we can handle. 1231 * 1232 * A page state is defined by its current page->flags bits. 1233 * The table matches them in order and calls the right handler. 1234 * 1235 * This is quite tricky because we can access page at any time 1236 * in its live cycle, so all accesses have to be extremely careful. 1237 * 1238 * This is not complete. More states could be added. 1239 * For any missing state don't attempt recovery. 1240 */ 1241 1242 #define dirty (1UL << PG_dirty) 1243 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1244 #define unevict (1UL << PG_unevictable) 1245 #define mlock (1UL << PG_mlocked) 1246 #define lru (1UL << PG_lru) 1247 #define head (1UL << PG_head) 1248 #define slab (1UL << PG_slab) 1249 #define reserved (1UL << PG_reserved) 1250 1251 static struct page_state error_states[] = { 1252 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1253 /* 1254 * free pages are specially detected outside this table: 1255 * PG_buddy pages only make a small fraction of all free pages. 1256 */ 1257 1258 /* 1259 * Could in theory check if slab page is free or if we can drop 1260 * currently unused objects without touching them. But just 1261 * treat it as standard kernel for now. 1262 */ 1263 { slab, slab, MF_MSG_SLAB, me_kernel }, 1264 1265 { head, head, MF_MSG_HUGE, me_huge_page }, 1266 1267 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1268 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1269 1270 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1271 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1272 1273 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1274 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1275 1276 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1277 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1278 1279 /* 1280 * Catchall entry: must be at end. 1281 */ 1282 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1283 }; 1284 1285 #undef dirty 1286 #undef sc 1287 #undef unevict 1288 #undef mlock 1289 #undef lru 1290 #undef head 1291 #undef slab 1292 #undef reserved 1293 1294 static void update_per_node_mf_stats(unsigned long pfn, 1295 enum mf_result result) 1296 { 1297 int nid = MAX_NUMNODES; 1298 struct memory_failure_stats *mf_stats = NULL; 1299 1300 nid = pfn_to_nid(pfn); 1301 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1302 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1303 return; 1304 } 1305 1306 mf_stats = &NODE_DATA(nid)->mf_stats; 1307 switch (result) { 1308 case MF_IGNORED: 1309 ++mf_stats->ignored; 1310 break; 1311 case MF_FAILED: 1312 ++mf_stats->failed; 1313 break; 1314 case MF_DELAYED: 1315 ++mf_stats->delayed; 1316 break; 1317 case MF_RECOVERED: 1318 ++mf_stats->recovered; 1319 break; 1320 default: 1321 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1322 break; 1323 } 1324 ++mf_stats->total; 1325 } 1326 1327 /* 1328 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1329 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1330 */ 1331 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1332 enum mf_result result) 1333 { 1334 trace_memory_failure_event(pfn, type, result); 1335 1336 num_poisoned_pages_inc(pfn); 1337 1338 update_per_node_mf_stats(pfn, result); 1339 1340 pr_err("%#lx: recovery action for %s: %s\n", 1341 pfn, action_page_types[type], action_name[result]); 1342 1343 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1344 } 1345 1346 static int page_action(struct page_state *ps, struct page *p, 1347 unsigned long pfn) 1348 { 1349 int result; 1350 1351 /* page p should be unlocked after returning from ps->action(). */ 1352 result = ps->action(ps, p); 1353 1354 /* Could do more checks here if page looks ok */ 1355 /* 1356 * Could adjust zone counters here to correct for the missing page. 1357 */ 1358 1359 return action_result(pfn, ps->type, result); 1360 } 1361 1362 static inline bool PageHWPoisonTakenOff(struct page *page) 1363 { 1364 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1365 } 1366 1367 void SetPageHWPoisonTakenOff(struct page *page) 1368 { 1369 set_page_private(page, MAGIC_HWPOISON); 1370 } 1371 1372 void ClearPageHWPoisonTakenOff(struct page *page) 1373 { 1374 if (PageHWPoison(page)) 1375 set_page_private(page, 0); 1376 } 1377 1378 /* 1379 * Return true if a page type of a given page is supported by hwpoison 1380 * mechanism (while handling could fail), otherwise false. This function 1381 * does not return true for hugetlb or device memory pages, so it's assumed 1382 * to be called only in the context where we never have such pages. 1383 */ 1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1385 { 1386 /* Soft offline could migrate non-LRU movable pages */ 1387 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1388 return true; 1389 1390 return PageLRU(page) || is_free_buddy_page(page); 1391 } 1392 1393 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1394 { 1395 struct folio *folio = page_folio(page); 1396 int ret = 0; 1397 bool hugetlb = false; 1398 1399 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1400 if (hugetlb) { 1401 /* Make sure hugetlb demotion did not happen from under us. */ 1402 if (folio == page_folio(page)) 1403 return ret; 1404 if (ret > 0) { 1405 folio_put(folio); 1406 folio = page_folio(page); 1407 } 1408 } 1409 1410 /* 1411 * This check prevents from calling folio_try_get() for any 1412 * unsupported type of folio in order to reduce the risk of unexpected 1413 * races caused by taking a folio refcount. 1414 */ 1415 if (!HWPoisonHandlable(&folio->page, flags)) 1416 return -EBUSY; 1417 1418 if (folio_try_get(folio)) { 1419 if (folio == page_folio(page)) 1420 return 1; 1421 1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1423 folio_put(folio); 1424 } 1425 1426 return 0; 1427 } 1428 1429 static int get_any_page(struct page *p, unsigned long flags) 1430 { 1431 int ret = 0, pass = 0; 1432 bool count_increased = false; 1433 1434 if (flags & MF_COUNT_INCREASED) 1435 count_increased = true; 1436 1437 try_again: 1438 if (!count_increased) { 1439 ret = __get_hwpoison_page(p, flags); 1440 if (!ret) { 1441 if (page_count(p)) { 1442 /* We raced with an allocation, retry. */ 1443 if (pass++ < 3) 1444 goto try_again; 1445 ret = -EBUSY; 1446 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1447 /* We raced with put_page, retry. */ 1448 if (pass++ < 3) 1449 goto try_again; 1450 ret = -EIO; 1451 } 1452 goto out; 1453 } else if (ret == -EBUSY) { 1454 /* 1455 * We raced with (possibly temporary) unhandlable 1456 * page, retry. 1457 */ 1458 if (pass++ < 3) { 1459 shake_page(p); 1460 goto try_again; 1461 } 1462 ret = -EIO; 1463 goto out; 1464 } 1465 } 1466 1467 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1468 ret = 1; 1469 } else { 1470 /* 1471 * A page we cannot handle. Check whether we can turn 1472 * it into something we can handle. 1473 */ 1474 if (pass++ < 3) { 1475 put_page(p); 1476 shake_page(p); 1477 count_increased = false; 1478 goto try_again; 1479 } 1480 put_page(p); 1481 ret = -EIO; 1482 } 1483 out: 1484 if (ret == -EIO) 1485 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1486 1487 return ret; 1488 } 1489 1490 static int __get_unpoison_page(struct page *page) 1491 { 1492 struct folio *folio = page_folio(page); 1493 int ret = 0; 1494 bool hugetlb = false; 1495 1496 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1497 if (hugetlb) { 1498 /* Make sure hugetlb demotion did not happen from under us. */ 1499 if (folio == page_folio(page)) 1500 return ret; 1501 if (ret > 0) 1502 folio_put(folio); 1503 } 1504 1505 /* 1506 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1507 * but also isolated from buddy freelist, so need to identify the 1508 * state and have to cancel both operations to unpoison. 1509 */ 1510 if (PageHWPoisonTakenOff(page)) 1511 return -EHWPOISON; 1512 1513 return get_page_unless_zero(page) ? 1 : 0; 1514 } 1515 1516 /** 1517 * get_hwpoison_page() - Get refcount for memory error handling 1518 * @p: Raw error page (hit by memory error) 1519 * @flags: Flags controlling behavior of error handling 1520 * 1521 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1522 * error on it, after checking that the error page is in a well-defined state 1523 * (defined as a page-type we can successfully handle the memory error on it, 1524 * such as LRU page and hugetlb page). 1525 * 1526 * Memory error handling could be triggered at any time on any type of page, 1527 * so it's prone to race with typical memory management lifecycle (like 1528 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1529 * extra care for the error page's state (as done in __get_hwpoison_page()), 1530 * and has some retry logic in get_any_page(). 1531 * 1532 * When called from unpoison_memory(), the caller should already ensure that 1533 * the given page has PG_hwpoison. So it's never reused for other page 1534 * allocations, and __get_unpoison_page() never races with them. 1535 * 1536 * Return: 0 on failure, 1537 * 1 on success for in-use pages in a well-defined state, 1538 * -EIO for pages on which we can not handle memory errors, 1539 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1540 * operations like allocation and free, 1541 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1542 */ 1543 static int get_hwpoison_page(struct page *p, unsigned long flags) 1544 { 1545 int ret; 1546 1547 zone_pcp_disable(page_zone(p)); 1548 if (flags & MF_UNPOISON) 1549 ret = __get_unpoison_page(p); 1550 else 1551 ret = get_any_page(p, flags); 1552 zone_pcp_enable(page_zone(p)); 1553 1554 return ret; 1555 } 1556 1557 /* 1558 * Do all that is necessary to remove user space mappings. Unmap 1559 * the pages and send SIGBUS to the processes if the data was dirty. 1560 */ 1561 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1562 int flags, struct page *hpage) 1563 { 1564 struct folio *folio = page_folio(hpage); 1565 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1566 struct address_space *mapping; 1567 LIST_HEAD(tokill); 1568 bool unmap_success; 1569 int forcekill; 1570 bool mlocked = PageMlocked(hpage); 1571 1572 /* 1573 * Here we are interested only in user-mapped pages, so skip any 1574 * other types of pages. 1575 */ 1576 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p)) 1577 return true; 1578 if (!(PageLRU(hpage) || PageHuge(p))) 1579 return true; 1580 1581 /* 1582 * This check implies we don't kill processes if their pages 1583 * are in the swap cache early. Those are always late kills. 1584 */ 1585 if (!page_mapped(p)) 1586 return true; 1587 1588 if (PageSwapCache(p)) { 1589 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1590 ttu &= ~TTU_HWPOISON; 1591 } 1592 1593 /* 1594 * Propagate the dirty bit from PTEs to struct page first, because we 1595 * need this to decide if we should kill or just drop the page. 1596 * XXX: the dirty test could be racy: set_page_dirty() may not always 1597 * be called inside page lock (it's recommended but not enforced). 1598 */ 1599 mapping = page_mapping(hpage); 1600 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1601 mapping_can_writeback(mapping)) { 1602 if (page_mkclean(hpage)) { 1603 SetPageDirty(hpage); 1604 } else { 1605 ttu &= ~TTU_HWPOISON; 1606 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1607 pfn); 1608 } 1609 } 1610 1611 /* 1612 * First collect all the processes that have the page 1613 * mapped in dirty form. This has to be done before try_to_unmap, 1614 * because ttu takes the rmap data structures down. 1615 */ 1616 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1617 1618 if (PageHuge(hpage) && !PageAnon(hpage)) { 1619 /* 1620 * For hugetlb pages in shared mappings, try_to_unmap 1621 * could potentially call huge_pmd_unshare. Because of 1622 * this, take semaphore in write mode here and set 1623 * TTU_RMAP_LOCKED to indicate we have taken the lock 1624 * at this higher level. 1625 */ 1626 mapping = hugetlb_page_mapping_lock_write(hpage); 1627 if (mapping) { 1628 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1629 i_mmap_unlock_write(mapping); 1630 } else 1631 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1632 } else { 1633 try_to_unmap(folio, ttu); 1634 } 1635 1636 unmap_success = !page_mapped(p); 1637 if (!unmap_success) 1638 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1639 pfn, page_mapcount(p)); 1640 1641 /* 1642 * try_to_unmap() might put mlocked page in lru cache, so call 1643 * shake_page() again to ensure that it's flushed. 1644 */ 1645 if (mlocked) 1646 shake_page(hpage); 1647 1648 /* 1649 * Now that the dirty bit has been propagated to the 1650 * struct page and all unmaps done we can decide if 1651 * killing is needed or not. Only kill when the page 1652 * was dirty or the process is not restartable, 1653 * otherwise the tokill list is merely 1654 * freed. When there was a problem unmapping earlier 1655 * use a more force-full uncatchable kill to prevent 1656 * any accesses to the poisoned memory. 1657 */ 1658 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1659 !unmap_success; 1660 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1661 1662 return unmap_success; 1663 } 1664 1665 static int identify_page_state(unsigned long pfn, struct page *p, 1666 unsigned long page_flags) 1667 { 1668 struct page_state *ps; 1669 1670 /* 1671 * The first check uses the current page flags which may not have any 1672 * relevant information. The second check with the saved page flags is 1673 * carried out only if the first check can't determine the page status. 1674 */ 1675 for (ps = error_states;; ps++) 1676 if ((p->flags & ps->mask) == ps->res) 1677 break; 1678 1679 page_flags |= (p->flags & (1UL << PG_dirty)); 1680 1681 if (!ps->mask) 1682 for (ps = error_states;; ps++) 1683 if ((page_flags & ps->mask) == ps->res) 1684 break; 1685 return page_action(ps, p, pfn); 1686 } 1687 1688 static int try_to_split_thp_page(struct page *page) 1689 { 1690 int ret; 1691 1692 lock_page(page); 1693 ret = split_huge_page(page); 1694 unlock_page(page); 1695 1696 if (unlikely(ret)) 1697 put_page(page); 1698 1699 return ret; 1700 } 1701 1702 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1703 struct address_space *mapping, pgoff_t index, int flags) 1704 { 1705 struct to_kill *tk; 1706 unsigned long size = 0; 1707 1708 list_for_each_entry(tk, to_kill, nd) 1709 if (tk->size_shift) 1710 size = max(size, 1UL << tk->size_shift); 1711 1712 if (size) { 1713 /* 1714 * Unmap the largest mapping to avoid breaking up device-dax 1715 * mappings which are constant size. The actual size of the 1716 * mapping being torn down is communicated in siginfo, see 1717 * kill_proc() 1718 */ 1719 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1720 1721 unmap_mapping_range(mapping, start, size, 0); 1722 } 1723 1724 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1725 } 1726 1727 /* 1728 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1729 * either do not claim or fails to claim a hwpoison event, or devdax. 1730 * The fsdax pages are initialized per base page, and the devdax pages 1731 * could be initialized either as base pages, or as compound pages with 1732 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1733 * hwpoison, such that, if a subpage of a compound page is poisoned, 1734 * simply mark the compound head page is by far sufficient. 1735 */ 1736 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1737 struct dev_pagemap *pgmap) 1738 { 1739 struct folio *folio = pfn_folio(pfn); 1740 LIST_HEAD(to_kill); 1741 dax_entry_t cookie; 1742 int rc = 0; 1743 1744 /* 1745 * Prevent the inode from being freed while we are interrogating 1746 * the address_space, typically this would be handled by 1747 * lock_page(), but dax pages do not use the page lock. This 1748 * also prevents changes to the mapping of this pfn until 1749 * poison signaling is complete. 1750 */ 1751 cookie = dax_lock_folio(folio); 1752 if (!cookie) 1753 return -EBUSY; 1754 1755 if (hwpoison_filter(&folio->page)) { 1756 rc = -EOPNOTSUPP; 1757 goto unlock; 1758 } 1759 1760 switch (pgmap->type) { 1761 case MEMORY_DEVICE_PRIVATE: 1762 case MEMORY_DEVICE_COHERENT: 1763 /* 1764 * TODO: Handle device pages which may need coordination 1765 * with device-side memory. 1766 */ 1767 rc = -ENXIO; 1768 goto unlock; 1769 default: 1770 break; 1771 } 1772 1773 /* 1774 * Use this flag as an indication that the dax page has been 1775 * remapped UC to prevent speculative consumption of poison. 1776 */ 1777 SetPageHWPoison(&folio->page); 1778 1779 /* 1780 * Unlike System-RAM there is no possibility to swap in a 1781 * different physical page at a given virtual address, so all 1782 * userspace consumption of ZONE_DEVICE memory necessitates 1783 * SIGBUS (i.e. MF_MUST_KILL) 1784 */ 1785 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1786 collect_procs(folio, &folio->page, &to_kill, true); 1787 1788 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1789 unlock: 1790 dax_unlock_folio(folio, cookie); 1791 return rc; 1792 } 1793 1794 #ifdef CONFIG_FS_DAX 1795 /** 1796 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1797 * @mapping: address_space of the file in use 1798 * @index: start pgoff of the range within the file 1799 * @count: length of the range, in unit of PAGE_SIZE 1800 * @mf_flags: memory failure flags 1801 */ 1802 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1803 unsigned long count, int mf_flags) 1804 { 1805 LIST_HEAD(to_kill); 1806 dax_entry_t cookie; 1807 struct page *page; 1808 size_t end = index + count; 1809 1810 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1811 1812 for (; index < end; index++) { 1813 page = NULL; 1814 cookie = dax_lock_mapping_entry(mapping, index, &page); 1815 if (!cookie) 1816 return -EBUSY; 1817 if (!page) 1818 goto unlock; 1819 1820 SetPageHWPoison(page); 1821 1822 collect_procs_fsdax(page, mapping, index, &to_kill); 1823 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1824 index, mf_flags); 1825 unlock: 1826 dax_unlock_mapping_entry(mapping, index, cookie); 1827 } 1828 return 0; 1829 } 1830 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1831 #endif /* CONFIG_FS_DAX */ 1832 1833 #ifdef CONFIG_HUGETLB_PAGE 1834 1835 /* 1836 * Struct raw_hwp_page represents information about "raw error page", 1837 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1838 */ 1839 struct raw_hwp_page { 1840 struct llist_node node; 1841 struct page *page; 1842 }; 1843 1844 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1845 { 1846 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1847 } 1848 1849 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1850 { 1851 struct llist_head *raw_hwp_head; 1852 struct raw_hwp_page *p; 1853 struct folio *folio = page_folio(page); 1854 bool ret = false; 1855 1856 if (!folio_test_hwpoison(folio)) 1857 return false; 1858 1859 if (!folio_test_hugetlb(folio)) 1860 return PageHWPoison(page); 1861 1862 /* 1863 * When RawHwpUnreliable is set, kernel lost track of which subpages 1864 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1865 */ 1866 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1867 return true; 1868 1869 mutex_lock(&mf_mutex); 1870 1871 raw_hwp_head = raw_hwp_list_head(folio); 1872 llist_for_each_entry(p, raw_hwp_head->first, node) { 1873 if (page == p->page) { 1874 ret = true; 1875 break; 1876 } 1877 } 1878 1879 mutex_unlock(&mf_mutex); 1880 1881 return ret; 1882 } 1883 1884 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1885 { 1886 struct llist_node *head; 1887 struct raw_hwp_page *p, *next; 1888 unsigned long count = 0; 1889 1890 head = llist_del_all(raw_hwp_list_head(folio)); 1891 llist_for_each_entry_safe(p, next, head, node) { 1892 if (move_flag) 1893 SetPageHWPoison(p->page); 1894 else 1895 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1896 kfree(p); 1897 count++; 1898 } 1899 return count; 1900 } 1901 1902 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1903 { 1904 struct llist_head *head; 1905 struct raw_hwp_page *raw_hwp; 1906 struct raw_hwp_page *p, *next; 1907 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1908 1909 /* 1910 * Once the hwpoison hugepage has lost reliable raw error info, 1911 * there is little meaning to keep additional error info precisely, 1912 * so skip to add additional raw error info. 1913 */ 1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1915 return -EHWPOISON; 1916 head = raw_hwp_list_head(folio); 1917 llist_for_each_entry_safe(p, next, head->first, node) { 1918 if (p->page == page) 1919 return -EHWPOISON; 1920 } 1921 1922 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1923 if (raw_hwp) { 1924 raw_hwp->page = page; 1925 llist_add(&raw_hwp->node, head); 1926 /* the first error event will be counted in action_result(). */ 1927 if (ret) 1928 num_poisoned_pages_inc(page_to_pfn(page)); 1929 } else { 1930 /* 1931 * Failed to save raw error info. We no longer trace all 1932 * hwpoisoned subpages, and we need refuse to free/dissolve 1933 * this hwpoisoned hugepage. 1934 */ 1935 folio_set_hugetlb_raw_hwp_unreliable(folio); 1936 /* 1937 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1938 * used any more, so free it. 1939 */ 1940 __folio_free_raw_hwp(folio, false); 1941 } 1942 return ret; 1943 } 1944 1945 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1946 { 1947 /* 1948 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1949 * pages for tail pages are required but they don't exist. 1950 */ 1951 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1952 return 0; 1953 1954 /* 1955 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1956 * definition. 1957 */ 1958 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1959 return 0; 1960 1961 return __folio_free_raw_hwp(folio, move_flag); 1962 } 1963 1964 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1965 { 1966 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1967 return; 1968 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1969 return; 1970 folio_clear_hwpoison(folio); 1971 folio_free_raw_hwp(folio, true); 1972 } 1973 1974 /* 1975 * Called from hugetlb code with hugetlb_lock held. 1976 * 1977 * Return values: 1978 * 0 - free hugepage 1979 * 1 - in-use hugepage 1980 * 2 - not a hugepage 1981 * -EBUSY - the hugepage is busy (try to retry) 1982 * -EHWPOISON - the hugepage is already hwpoisoned 1983 */ 1984 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1985 bool *migratable_cleared) 1986 { 1987 struct page *page = pfn_to_page(pfn); 1988 struct folio *folio = page_folio(page); 1989 int ret = 2; /* fallback to normal page handling */ 1990 bool count_increased = false; 1991 1992 if (!folio_test_hugetlb(folio)) 1993 goto out; 1994 1995 if (flags & MF_COUNT_INCREASED) { 1996 ret = 1; 1997 count_increased = true; 1998 } else if (folio_test_hugetlb_freed(folio)) { 1999 ret = 0; 2000 } else if (folio_test_hugetlb_migratable(folio)) { 2001 ret = folio_try_get(folio); 2002 if (ret) 2003 count_increased = true; 2004 } else { 2005 ret = -EBUSY; 2006 if (!(flags & MF_NO_RETRY)) 2007 goto out; 2008 } 2009 2010 if (folio_set_hugetlb_hwpoison(folio, page)) { 2011 ret = -EHWPOISON; 2012 goto out; 2013 } 2014 2015 /* 2016 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2017 * from being migrated by memory hotremove. 2018 */ 2019 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2020 folio_clear_hugetlb_migratable(folio); 2021 *migratable_cleared = true; 2022 } 2023 2024 return ret; 2025 out: 2026 if (count_increased) 2027 folio_put(folio); 2028 return ret; 2029 } 2030 2031 /* 2032 * Taking refcount of hugetlb pages needs extra care about race conditions 2033 * with basic operations like hugepage allocation/free/demotion. 2034 * So some of prechecks for hwpoison (pinning, and testing/setting 2035 * PageHWPoison) should be done in single hugetlb_lock range. 2036 */ 2037 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2038 { 2039 int res; 2040 struct page *p = pfn_to_page(pfn); 2041 struct folio *folio; 2042 unsigned long page_flags; 2043 bool migratable_cleared = false; 2044 2045 *hugetlb = 1; 2046 retry: 2047 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2048 if (res == 2) { /* fallback to normal page handling */ 2049 *hugetlb = 0; 2050 return 0; 2051 } else if (res == -EHWPOISON) { 2052 pr_err("%#lx: already hardware poisoned\n", pfn); 2053 if (flags & MF_ACTION_REQUIRED) { 2054 folio = page_folio(p); 2055 res = kill_accessing_process(current, folio_pfn(folio), flags); 2056 } 2057 return res; 2058 } else if (res == -EBUSY) { 2059 if (!(flags & MF_NO_RETRY)) { 2060 flags |= MF_NO_RETRY; 2061 goto retry; 2062 } 2063 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2064 } 2065 2066 folio = page_folio(p); 2067 folio_lock(folio); 2068 2069 if (hwpoison_filter(p)) { 2070 folio_clear_hugetlb_hwpoison(folio); 2071 if (migratable_cleared) 2072 folio_set_hugetlb_migratable(folio); 2073 folio_unlock(folio); 2074 if (res == 1) 2075 folio_put(folio); 2076 return -EOPNOTSUPP; 2077 } 2078 2079 /* 2080 * Handling free hugepage. The possible race with hugepage allocation 2081 * or demotion can be prevented by PageHWPoison flag. 2082 */ 2083 if (res == 0) { 2084 folio_unlock(folio); 2085 if (__page_handle_poison(p) > 0) { 2086 page_ref_inc(p); 2087 res = MF_RECOVERED; 2088 } else { 2089 res = MF_FAILED; 2090 } 2091 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2092 } 2093 2094 page_flags = folio->flags; 2095 2096 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2097 folio_unlock(folio); 2098 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2099 } 2100 2101 return identify_page_state(pfn, p, page_flags); 2102 } 2103 2104 #else 2105 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2106 { 2107 return 0; 2108 } 2109 2110 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2111 { 2112 return 0; 2113 } 2114 #endif /* CONFIG_HUGETLB_PAGE */ 2115 2116 /* Drop the extra refcount in case we come from madvise() */ 2117 static void put_ref_page(unsigned long pfn, int flags) 2118 { 2119 struct page *page; 2120 2121 if (!(flags & MF_COUNT_INCREASED)) 2122 return; 2123 2124 page = pfn_to_page(pfn); 2125 if (page) 2126 put_page(page); 2127 } 2128 2129 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2130 struct dev_pagemap *pgmap) 2131 { 2132 int rc = -ENXIO; 2133 2134 /* device metadata space is not recoverable */ 2135 if (!pgmap_pfn_valid(pgmap, pfn)) 2136 goto out; 2137 2138 /* 2139 * Call driver's implementation to handle the memory failure, otherwise 2140 * fall back to generic handler. 2141 */ 2142 if (pgmap_has_memory_failure(pgmap)) { 2143 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2144 /* 2145 * Fall back to generic handler too if operation is not 2146 * supported inside the driver/device/filesystem. 2147 */ 2148 if (rc != -EOPNOTSUPP) 2149 goto out; 2150 } 2151 2152 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2153 out: 2154 /* drop pgmap ref acquired in caller */ 2155 put_dev_pagemap(pgmap); 2156 if (rc != -EOPNOTSUPP) 2157 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2158 return rc; 2159 } 2160 2161 /** 2162 * memory_failure - Handle memory failure of a page. 2163 * @pfn: Page Number of the corrupted page 2164 * @flags: fine tune action taken 2165 * 2166 * This function is called by the low level machine check code 2167 * of an architecture when it detects hardware memory corruption 2168 * of a page. It tries its best to recover, which includes 2169 * dropping pages, killing processes etc. 2170 * 2171 * The function is primarily of use for corruptions that 2172 * happen outside the current execution context (e.g. when 2173 * detected by a background scrubber) 2174 * 2175 * Must run in process context (e.g. a work queue) with interrupts 2176 * enabled and no spinlocks held. 2177 * 2178 * Return: 0 for successfully handled the memory error, 2179 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2180 * < 0(except -EOPNOTSUPP) on failure. 2181 */ 2182 int memory_failure(unsigned long pfn, int flags) 2183 { 2184 struct page *p; 2185 struct page *hpage; 2186 struct dev_pagemap *pgmap; 2187 int res = 0; 2188 unsigned long page_flags; 2189 bool retry = true; 2190 int hugetlb = 0; 2191 2192 if (!sysctl_memory_failure_recovery) 2193 panic("Memory failure on page %lx", pfn); 2194 2195 mutex_lock(&mf_mutex); 2196 2197 if (!(flags & MF_SW_SIMULATED)) 2198 hw_memory_failure = true; 2199 2200 p = pfn_to_online_page(pfn); 2201 if (!p) { 2202 res = arch_memory_failure(pfn, flags); 2203 if (res == 0) 2204 goto unlock_mutex; 2205 2206 if (pfn_valid(pfn)) { 2207 pgmap = get_dev_pagemap(pfn, NULL); 2208 put_ref_page(pfn, flags); 2209 if (pgmap) { 2210 res = memory_failure_dev_pagemap(pfn, flags, 2211 pgmap); 2212 goto unlock_mutex; 2213 } 2214 } 2215 pr_err("%#lx: memory outside kernel control\n", pfn); 2216 res = -ENXIO; 2217 goto unlock_mutex; 2218 } 2219 2220 try_again: 2221 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2222 if (hugetlb) 2223 goto unlock_mutex; 2224 2225 if (TestSetPageHWPoison(p)) { 2226 pr_err("%#lx: already hardware poisoned\n", pfn); 2227 res = -EHWPOISON; 2228 if (flags & MF_ACTION_REQUIRED) 2229 res = kill_accessing_process(current, pfn, flags); 2230 if (flags & MF_COUNT_INCREASED) 2231 put_page(p); 2232 goto unlock_mutex; 2233 } 2234 2235 /* 2236 * We need/can do nothing about count=0 pages. 2237 * 1) it's a free page, and therefore in safe hand: 2238 * check_new_page() will be the gate keeper. 2239 * 2) it's part of a non-compound high order page. 2240 * Implies some kernel user: cannot stop them from 2241 * R/W the page; let's pray that the page has been 2242 * used and will be freed some time later. 2243 * In fact it's dangerous to directly bump up page count from 0, 2244 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2245 */ 2246 if (!(flags & MF_COUNT_INCREASED)) { 2247 res = get_hwpoison_page(p, flags); 2248 if (!res) { 2249 if (is_free_buddy_page(p)) { 2250 if (take_page_off_buddy(p)) { 2251 page_ref_inc(p); 2252 res = MF_RECOVERED; 2253 } else { 2254 /* We lost the race, try again */ 2255 if (retry) { 2256 ClearPageHWPoison(p); 2257 retry = false; 2258 goto try_again; 2259 } 2260 res = MF_FAILED; 2261 } 2262 res = action_result(pfn, MF_MSG_BUDDY, res); 2263 } else { 2264 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2265 } 2266 goto unlock_mutex; 2267 } else if (res < 0) { 2268 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2269 goto unlock_mutex; 2270 } 2271 } 2272 2273 hpage = compound_head(p); 2274 if (PageTransHuge(hpage)) { 2275 /* 2276 * The flag must be set after the refcount is bumped 2277 * otherwise it may race with THP split. 2278 * And the flag can't be set in get_hwpoison_page() since 2279 * it is called by soft offline too and it is just called 2280 * for !MF_COUNT_INCREASED. So here seems to be the best 2281 * place. 2282 * 2283 * Don't need care about the above error handling paths for 2284 * get_hwpoison_page() since they handle either free page 2285 * or unhandlable page. The refcount is bumped iff the 2286 * page is a valid handlable page. 2287 */ 2288 SetPageHasHWPoisoned(hpage); 2289 if (try_to_split_thp_page(p) < 0) { 2290 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2291 goto unlock_mutex; 2292 } 2293 VM_BUG_ON_PAGE(!page_count(p), p); 2294 } 2295 2296 /* 2297 * We ignore non-LRU pages for good reasons. 2298 * - PG_locked is only well defined for LRU pages and a few others 2299 * - to avoid races with __SetPageLocked() 2300 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2301 * The check (unnecessarily) ignores LRU pages being isolated and 2302 * walked by the page reclaim code, however that's not a big loss. 2303 */ 2304 shake_page(p); 2305 2306 lock_page(p); 2307 2308 /* 2309 * We're only intended to deal with the non-Compound page here. 2310 * However, the page could have changed compound pages due to 2311 * race window. If this happens, we could try again to hopefully 2312 * handle the page next round. 2313 */ 2314 if (PageCompound(p)) { 2315 if (retry) { 2316 ClearPageHWPoison(p); 2317 unlock_page(p); 2318 put_page(p); 2319 flags &= ~MF_COUNT_INCREASED; 2320 retry = false; 2321 goto try_again; 2322 } 2323 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2324 goto unlock_page; 2325 } 2326 2327 /* 2328 * We use page flags to determine what action should be taken, but 2329 * the flags can be modified by the error containment action. One 2330 * example is an mlocked page, where PG_mlocked is cleared by 2331 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2332 * correctly, we save a copy of the page flags at this time. 2333 */ 2334 page_flags = p->flags; 2335 2336 if (hwpoison_filter(p)) { 2337 ClearPageHWPoison(p); 2338 unlock_page(p); 2339 put_page(p); 2340 res = -EOPNOTSUPP; 2341 goto unlock_mutex; 2342 } 2343 2344 /* 2345 * __munlock_folio() may clear a writeback page's LRU flag without 2346 * page_lock. We need wait writeback completion for this page or it 2347 * may trigger vfs BUG while evict inode. 2348 */ 2349 if (!PageLRU(p) && !PageWriteback(p)) 2350 goto identify_page_state; 2351 2352 /* 2353 * It's very difficult to mess with pages currently under IO 2354 * and in many cases impossible, so we just avoid it here. 2355 */ 2356 wait_on_page_writeback(p); 2357 2358 /* 2359 * Now take care of user space mappings. 2360 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2361 */ 2362 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2363 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2364 goto unlock_page; 2365 } 2366 2367 /* 2368 * Torn down by someone else? 2369 */ 2370 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2371 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2372 goto unlock_page; 2373 } 2374 2375 identify_page_state: 2376 res = identify_page_state(pfn, p, page_flags); 2377 mutex_unlock(&mf_mutex); 2378 return res; 2379 unlock_page: 2380 unlock_page(p); 2381 unlock_mutex: 2382 mutex_unlock(&mf_mutex); 2383 return res; 2384 } 2385 EXPORT_SYMBOL_GPL(memory_failure); 2386 2387 #define MEMORY_FAILURE_FIFO_ORDER 4 2388 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2389 2390 struct memory_failure_entry { 2391 unsigned long pfn; 2392 int flags; 2393 }; 2394 2395 struct memory_failure_cpu { 2396 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2397 MEMORY_FAILURE_FIFO_SIZE); 2398 spinlock_t lock; 2399 struct work_struct work; 2400 }; 2401 2402 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2403 2404 /** 2405 * memory_failure_queue - Schedule handling memory failure of a page. 2406 * @pfn: Page Number of the corrupted page 2407 * @flags: Flags for memory failure handling 2408 * 2409 * This function is called by the low level hardware error handler 2410 * when it detects hardware memory corruption of a page. It schedules 2411 * the recovering of error page, including dropping pages, killing 2412 * processes etc. 2413 * 2414 * The function is primarily of use for corruptions that 2415 * happen outside the current execution context (e.g. when 2416 * detected by a background scrubber) 2417 * 2418 * Can run in IRQ context. 2419 */ 2420 void memory_failure_queue(unsigned long pfn, int flags) 2421 { 2422 struct memory_failure_cpu *mf_cpu; 2423 unsigned long proc_flags; 2424 struct memory_failure_entry entry = { 2425 .pfn = pfn, 2426 .flags = flags, 2427 }; 2428 2429 mf_cpu = &get_cpu_var(memory_failure_cpu); 2430 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2431 if (kfifo_put(&mf_cpu->fifo, entry)) 2432 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2433 else 2434 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2435 pfn); 2436 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2437 put_cpu_var(memory_failure_cpu); 2438 } 2439 EXPORT_SYMBOL_GPL(memory_failure_queue); 2440 2441 static void memory_failure_work_func(struct work_struct *work) 2442 { 2443 struct memory_failure_cpu *mf_cpu; 2444 struct memory_failure_entry entry = { 0, }; 2445 unsigned long proc_flags; 2446 int gotten; 2447 2448 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2449 for (;;) { 2450 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2451 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2452 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2453 if (!gotten) 2454 break; 2455 if (entry.flags & MF_SOFT_OFFLINE) 2456 soft_offline_page(entry.pfn, entry.flags); 2457 else 2458 memory_failure(entry.pfn, entry.flags); 2459 } 2460 } 2461 2462 /* 2463 * Process memory_failure work queued on the specified CPU. 2464 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2465 */ 2466 void memory_failure_queue_kick(int cpu) 2467 { 2468 struct memory_failure_cpu *mf_cpu; 2469 2470 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2471 cancel_work_sync(&mf_cpu->work); 2472 memory_failure_work_func(&mf_cpu->work); 2473 } 2474 2475 static int __init memory_failure_init(void) 2476 { 2477 struct memory_failure_cpu *mf_cpu; 2478 int cpu; 2479 2480 for_each_possible_cpu(cpu) { 2481 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2482 spin_lock_init(&mf_cpu->lock); 2483 INIT_KFIFO(mf_cpu->fifo); 2484 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2485 } 2486 2487 register_sysctl_init("vm", memory_failure_table); 2488 2489 return 0; 2490 } 2491 core_initcall(memory_failure_init); 2492 2493 #undef pr_fmt 2494 #define pr_fmt(fmt) "" fmt 2495 #define unpoison_pr_info(fmt, pfn, rs) \ 2496 ({ \ 2497 if (__ratelimit(rs)) \ 2498 pr_info(fmt, pfn); \ 2499 }) 2500 2501 /** 2502 * unpoison_memory - Unpoison a previously poisoned page 2503 * @pfn: Page number of the to be unpoisoned page 2504 * 2505 * Software-unpoison a page that has been poisoned by 2506 * memory_failure() earlier. 2507 * 2508 * This is only done on the software-level, so it only works 2509 * for linux injected failures, not real hardware failures 2510 * 2511 * Returns 0 for success, otherwise -errno. 2512 */ 2513 int unpoison_memory(unsigned long pfn) 2514 { 2515 struct folio *folio; 2516 struct page *p; 2517 int ret = -EBUSY, ghp; 2518 unsigned long count = 1; 2519 bool huge = false; 2520 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2521 DEFAULT_RATELIMIT_BURST); 2522 2523 if (!pfn_valid(pfn)) 2524 return -ENXIO; 2525 2526 p = pfn_to_page(pfn); 2527 folio = page_folio(p); 2528 2529 mutex_lock(&mf_mutex); 2530 2531 if (hw_memory_failure) { 2532 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2533 pfn, &unpoison_rs); 2534 ret = -EOPNOTSUPP; 2535 goto unlock_mutex; 2536 } 2537 2538 if (!PageHWPoison(p)) { 2539 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2540 pfn, &unpoison_rs); 2541 goto unlock_mutex; 2542 } 2543 2544 if (folio_ref_count(folio) > 1) { 2545 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2546 pfn, &unpoison_rs); 2547 goto unlock_mutex; 2548 } 2549 2550 if (folio_test_slab(folio) || PageTable(&folio->page) || 2551 folio_test_reserved(folio) || PageOffline(&folio->page)) 2552 goto unlock_mutex; 2553 2554 /* 2555 * Note that folio->_mapcount is overloaded in SLAB, so the simple test 2556 * in folio_mapped() has to be done after folio_test_slab() is checked. 2557 */ 2558 if (folio_mapped(folio)) { 2559 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2560 pfn, &unpoison_rs); 2561 goto unlock_mutex; 2562 } 2563 2564 if (folio_mapping(folio)) { 2565 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2566 pfn, &unpoison_rs); 2567 goto unlock_mutex; 2568 } 2569 2570 ghp = get_hwpoison_page(p, MF_UNPOISON); 2571 if (!ghp) { 2572 if (PageHuge(p)) { 2573 huge = true; 2574 count = folio_free_raw_hwp(folio, false); 2575 if (count == 0) 2576 goto unlock_mutex; 2577 } 2578 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2579 } else if (ghp < 0) { 2580 if (ghp == -EHWPOISON) { 2581 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2582 } else { 2583 ret = ghp; 2584 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2585 pfn, &unpoison_rs); 2586 } 2587 } else { 2588 if (PageHuge(p)) { 2589 huge = true; 2590 count = folio_free_raw_hwp(folio, false); 2591 if (count == 0) { 2592 folio_put(folio); 2593 goto unlock_mutex; 2594 } 2595 } 2596 2597 folio_put(folio); 2598 if (TestClearPageHWPoison(p)) { 2599 folio_put(folio); 2600 ret = 0; 2601 } 2602 } 2603 2604 unlock_mutex: 2605 mutex_unlock(&mf_mutex); 2606 if (!ret) { 2607 if (!huge) 2608 num_poisoned_pages_sub(pfn, 1); 2609 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2610 page_to_pfn(p), &unpoison_rs); 2611 } 2612 return ret; 2613 } 2614 EXPORT_SYMBOL(unpoison_memory); 2615 2616 static bool isolate_page(struct page *page, struct list_head *pagelist) 2617 { 2618 bool isolated = false; 2619 2620 if (PageHuge(page)) { 2621 isolated = isolate_hugetlb(page_folio(page), pagelist); 2622 } else { 2623 bool lru = !__PageMovable(page); 2624 2625 if (lru) 2626 isolated = isolate_lru_page(page); 2627 else 2628 isolated = isolate_movable_page(page, 2629 ISOLATE_UNEVICTABLE); 2630 2631 if (isolated) { 2632 list_add(&page->lru, pagelist); 2633 if (lru) 2634 inc_node_page_state(page, NR_ISOLATED_ANON + 2635 page_is_file_lru(page)); 2636 } 2637 } 2638 2639 /* 2640 * If we succeed to isolate the page, we grabbed another refcount on 2641 * the page, so we can safely drop the one we got from get_any_page(). 2642 * If we failed to isolate the page, it means that we cannot go further 2643 * and we will return an error, so drop the reference we got from 2644 * get_any_page() as well. 2645 */ 2646 put_page(page); 2647 return isolated; 2648 } 2649 2650 /* 2651 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2652 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2653 * If the page is mapped, it migrates the contents over. 2654 */ 2655 static int soft_offline_in_use_page(struct page *page) 2656 { 2657 long ret = 0; 2658 unsigned long pfn = page_to_pfn(page); 2659 struct page *hpage = compound_head(page); 2660 char const *msg_page[] = {"page", "hugepage"}; 2661 bool huge = PageHuge(page); 2662 LIST_HEAD(pagelist); 2663 struct migration_target_control mtc = { 2664 .nid = NUMA_NO_NODE, 2665 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2666 }; 2667 2668 if (!huge && PageTransHuge(hpage)) { 2669 if (try_to_split_thp_page(page)) { 2670 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2671 return -EBUSY; 2672 } 2673 hpage = page; 2674 } 2675 2676 lock_page(page); 2677 if (!huge) 2678 wait_on_page_writeback(page); 2679 if (PageHWPoison(page)) { 2680 unlock_page(page); 2681 put_page(page); 2682 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2683 return 0; 2684 } 2685 2686 if (!huge && PageLRU(page) && !PageSwapCache(page)) 2687 /* 2688 * Try to invalidate first. This should work for 2689 * non dirty unmapped page cache pages. 2690 */ 2691 ret = invalidate_inode_page(page); 2692 unlock_page(page); 2693 2694 if (ret) { 2695 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2696 page_handle_poison(page, false, true); 2697 return 0; 2698 } 2699 2700 if (isolate_page(hpage, &pagelist)) { 2701 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2702 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2703 if (!ret) { 2704 bool release = !huge; 2705 2706 if (!page_handle_poison(page, huge, release)) 2707 ret = -EBUSY; 2708 } else { 2709 if (!list_empty(&pagelist)) 2710 putback_movable_pages(&pagelist); 2711 2712 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2713 pfn, msg_page[huge], ret, &page->flags); 2714 if (ret > 0) 2715 ret = -EBUSY; 2716 } 2717 } else { 2718 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2719 pfn, msg_page[huge], page_count(page), &page->flags); 2720 ret = -EBUSY; 2721 } 2722 return ret; 2723 } 2724 2725 /** 2726 * soft_offline_page - Soft offline a page. 2727 * @pfn: pfn to soft-offline 2728 * @flags: flags. Same as memory_failure(). 2729 * 2730 * Returns 0 on success 2731 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2732 * < 0 otherwise negated errno. 2733 * 2734 * Soft offline a page, by migration or invalidation, 2735 * without killing anything. This is for the case when 2736 * a page is not corrupted yet (so it's still valid to access), 2737 * but has had a number of corrected errors and is better taken 2738 * out. 2739 * 2740 * The actual policy on when to do that is maintained by 2741 * user space. 2742 * 2743 * This should never impact any application or cause data loss, 2744 * however it might take some time. 2745 * 2746 * This is not a 100% solution for all memory, but tries to be 2747 * ``good enough'' for the majority of memory. 2748 */ 2749 int soft_offline_page(unsigned long pfn, int flags) 2750 { 2751 int ret; 2752 bool try_again = true; 2753 struct page *page; 2754 2755 if (!pfn_valid(pfn)) { 2756 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2757 return -ENXIO; 2758 } 2759 2760 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2761 page = pfn_to_online_page(pfn); 2762 if (!page) { 2763 put_ref_page(pfn, flags); 2764 return -EIO; 2765 } 2766 2767 mutex_lock(&mf_mutex); 2768 2769 if (PageHWPoison(page)) { 2770 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2771 put_ref_page(pfn, flags); 2772 mutex_unlock(&mf_mutex); 2773 return 0; 2774 } 2775 2776 retry: 2777 get_online_mems(); 2778 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2779 put_online_mems(); 2780 2781 if (hwpoison_filter(page)) { 2782 if (ret > 0) 2783 put_page(page); 2784 2785 mutex_unlock(&mf_mutex); 2786 return -EOPNOTSUPP; 2787 } 2788 2789 if (ret > 0) { 2790 ret = soft_offline_in_use_page(page); 2791 } else if (ret == 0) { 2792 if (!page_handle_poison(page, true, false)) { 2793 if (try_again) { 2794 try_again = false; 2795 flags &= ~MF_COUNT_INCREASED; 2796 goto retry; 2797 } 2798 ret = -EBUSY; 2799 } 2800 } 2801 2802 mutex_unlock(&mf_mutex); 2803 2804 return ret; 2805 } 2806