xref: /openbmc/linux/mm/memory-failure.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 static bool __page_handle_poison(struct page *page)
72 {
73 	int ret;
74 
75 	zone_pcp_disable(page_zone(page));
76 	ret = dissolve_free_huge_page(page);
77 	if (!ret)
78 		ret = take_page_off_buddy(page);
79 	zone_pcp_enable(page_zone(page));
80 
81 	return ret > 0;
82 }
83 
84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85 {
86 	if (hugepage_or_freepage) {
87 		/*
88 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 		 * returns 0 for non-hugetlb pages as well.
90 		 */
91 		if (!__page_handle_poison(page))
92 			/*
93 			 * We could fail to take off the target page from buddy
94 			 * for example due to racy page allocation, but that's
95 			 * acceptable because soft-offlined page is not broken
96 			 * and if someone really want to use it, they should
97 			 * take it.
98 			 */
99 			return false;
100 	}
101 
102 	SetPageHWPoison(page);
103 	if (release)
104 		put_page(page);
105 	page_ref_inc(page);
106 	num_poisoned_pages_inc();
107 
108 	return true;
109 }
110 
111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112 
113 u32 hwpoison_filter_enable = 0;
114 u32 hwpoison_filter_dev_major = ~0U;
115 u32 hwpoison_filter_dev_minor = ~0U;
116 u64 hwpoison_filter_flags_mask;
117 u64 hwpoison_filter_flags_value;
118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
123 
124 static int hwpoison_filter_dev(struct page *p)
125 {
126 	struct address_space *mapping;
127 	dev_t dev;
128 
129 	if (hwpoison_filter_dev_major == ~0U &&
130 	    hwpoison_filter_dev_minor == ~0U)
131 		return 0;
132 
133 	mapping = page_mapping(p);
134 	if (mapping == NULL || mapping->host == NULL)
135 		return -EINVAL;
136 
137 	dev = mapping->host->i_sb->s_dev;
138 	if (hwpoison_filter_dev_major != ~0U &&
139 	    hwpoison_filter_dev_major != MAJOR(dev))
140 		return -EINVAL;
141 	if (hwpoison_filter_dev_minor != ~0U &&
142 	    hwpoison_filter_dev_minor != MINOR(dev))
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 
148 static int hwpoison_filter_flags(struct page *p)
149 {
150 	if (!hwpoison_filter_flags_mask)
151 		return 0;
152 
153 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
154 				    hwpoison_filter_flags_value)
155 		return 0;
156 	else
157 		return -EINVAL;
158 }
159 
160 /*
161  * This allows stress tests to limit test scope to a collection of tasks
162  * by putting them under some memcg. This prevents killing unrelated/important
163  * processes such as /sbin/init. Note that the target task may share clean
164  * pages with init (eg. libc text), which is harmless. If the target task
165  * share _dirty_ pages with another task B, the test scheme must make sure B
166  * is also included in the memcg. At last, due to race conditions this filter
167  * can only guarantee that the page either belongs to the memcg tasks, or is
168  * a freed page.
169  */
170 #ifdef CONFIG_MEMCG
171 u64 hwpoison_filter_memcg;
172 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
173 static int hwpoison_filter_task(struct page *p)
174 {
175 	if (!hwpoison_filter_memcg)
176 		return 0;
177 
178 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 #else
184 static int hwpoison_filter_task(struct page *p) { return 0; }
185 #endif
186 
187 int hwpoison_filter(struct page *p)
188 {
189 	if (!hwpoison_filter_enable)
190 		return 0;
191 
192 	if (hwpoison_filter_dev(p))
193 		return -EINVAL;
194 
195 	if (hwpoison_filter_flags(p))
196 		return -EINVAL;
197 
198 	if (hwpoison_filter_task(p))
199 		return -EINVAL;
200 
201 	return 0;
202 }
203 #else
204 int hwpoison_filter(struct page *p)
205 {
206 	return 0;
207 }
208 #endif
209 
210 EXPORT_SYMBOL_GPL(hwpoison_filter);
211 
212 /*
213  * Kill all processes that have a poisoned page mapped and then isolate
214  * the page.
215  *
216  * General strategy:
217  * Find all processes having the page mapped and kill them.
218  * But we keep a page reference around so that the page is not
219  * actually freed yet.
220  * Then stash the page away
221  *
222  * There's no convenient way to get back to mapped processes
223  * from the VMAs. So do a brute-force search over all
224  * running processes.
225  *
226  * Remember that machine checks are not common (or rather
227  * if they are common you have other problems), so this shouldn't
228  * be a performance issue.
229  *
230  * Also there are some races possible while we get from the
231  * error detection to actually handle it.
232  */
233 
234 struct to_kill {
235 	struct list_head nd;
236 	struct task_struct *tsk;
237 	unsigned long addr;
238 	short size_shift;
239 };
240 
241 /*
242  * Send all the processes who have the page mapped a signal.
243  * ``action optional'' if they are not immediately affected by the error
244  * ``action required'' if error happened in current execution context
245  */
246 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
247 {
248 	struct task_struct *t = tk->tsk;
249 	short addr_lsb = tk->size_shift;
250 	int ret = 0;
251 
252 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
253 			pfn, t->comm, t->pid);
254 
255 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
256 		ret = force_sig_mceerr(BUS_MCEERR_AR,
257 				 (void __user *)tk->addr, addr_lsb);
258 	else
259 		/*
260 		 * Signal other processes sharing the page if they have
261 		 * PF_MCE_EARLY set.
262 		 * Don't use force here, it's convenient if the signal
263 		 * can be temporarily blocked.
264 		 * This could cause a loop when the user sets SIGBUS
265 		 * to SIG_IGN, but hopefully no one will do that?
266 		 */
267 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 				      addr_lsb, t);  /* synchronous? */
269 	if (ret < 0)
270 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
271 			t->comm, t->pid, ret);
272 	return ret;
273 }
274 
275 /*
276  * Unknown page type encountered. Try to check whether it can turn PageLRU by
277  * lru_add_drain_all.
278  */
279 void shake_page(struct page *p)
280 {
281 	if (PageHuge(p))
282 		return;
283 
284 	if (!PageSlab(p)) {
285 		lru_add_drain_all();
286 		if (PageLRU(p) || is_free_buddy_page(p))
287 			return;
288 	}
289 
290 	/*
291 	 * TODO: Could shrink slab caches here if a lightweight range-based
292 	 * shrinker will be available.
293 	 */
294 }
295 EXPORT_SYMBOL_GPL(shake_page);
296 
297 static unsigned long dev_pagemap_mapping_shift(struct page *page,
298 		struct vm_area_struct *vma)
299 {
300 	unsigned long address = vma_address(page, vma);
301 	unsigned long ret = 0;
302 	pgd_t *pgd;
303 	p4d_t *p4d;
304 	pud_t *pud;
305 	pmd_t *pmd;
306 	pte_t *pte;
307 
308 	VM_BUG_ON_VMA(address == -EFAULT, vma);
309 	pgd = pgd_offset(vma->vm_mm, address);
310 	if (!pgd_present(*pgd))
311 		return 0;
312 	p4d = p4d_offset(pgd, address);
313 	if (!p4d_present(*p4d))
314 		return 0;
315 	pud = pud_offset(p4d, address);
316 	if (!pud_present(*pud))
317 		return 0;
318 	if (pud_devmap(*pud))
319 		return PUD_SHIFT;
320 	pmd = pmd_offset(pud, address);
321 	if (!pmd_present(*pmd))
322 		return 0;
323 	if (pmd_devmap(*pmd))
324 		return PMD_SHIFT;
325 	pte = pte_offset_map(pmd, address);
326 	if (pte_present(*pte) && pte_devmap(*pte))
327 		ret = PAGE_SHIFT;
328 	pte_unmap(pte);
329 	return ret;
330 }
331 
332 /*
333  * Failure handling: if we can't find or can't kill a process there's
334  * not much we can do.	We just print a message and ignore otherwise.
335  */
336 
337 /*
338  * Schedule a process for later kill.
339  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
340  */
341 static void add_to_kill(struct task_struct *tsk, struct page *p,
342 		       struct vm_area_struct *vma,
343 		       struct list_head *to_kill)
344 {
345 	struct to_kill *tk;
346 
347 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
348 	if (!tk) {
349 		pr_err("Memory failure: Out of memory while machine check handling\n");
350 		return;
351 	}
352 
353 	tk->addr = page_address_in_vma(p, vma);
354 	if (is_zone_device_page(p))
355 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
356 	else
357 		tk->size_shift = page_shift(compound_head(p));
358 
359 	/*
360 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
361 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
362 	 * so "tk->size_shift == 0" effectively checks no mapping on
363 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
364 	 * to a process' address space, it's possible not all N VMAs
365 	 * contain mappings for the page, but at least one VMA does.
366 	 * Only deliver SIGBUS with payload derived from the VMA that
367 	 * has a mapping for the page.
368 	 */
369 	if (tk->addr == -EFAULT) {
370 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
371 			page_to_pfn(p), tsk->comm);
372 	} else if (tk->size_shift == 0) {
373 		kfree(tk);
374 		return;
375 	}
376 
377 	get_task_struct(tsk);
378 	tk->tsk = tsk;
379 	list_add_tail(&tk->nd, to_kill);
380 }
381 
382 /*
383  * Kill the processes that have been collected earlier.
384  *
385  * Only do anything when FORCEKILL is set, otherwise just free the
386  * list (this is used for clean pages which do not need killing)
387  * Also when FAIL is set do a force kill because something went
388  * wrong earlier.
389  */
390 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
391 		unsigned long pfn, int flags)
392 {
393 	struct to_kill *tk, *next;
394 
395 	list_for_each_entry_safe (tk, next, to_kill, nd) {
396 		if (forcekill) {
397 			/*
398 			 * In case something went wrong with munmapping
399 			 * make sure the process doesn't catch the
400 			 * signal and then access the memory. Just kill it.
401 			 */
402 			if (fail || tk->addr == -EFAULT) {
403 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
404 				       pfn, tk->tsk->comm, tk->tsk->pid);
405 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
406 						 tk->tsk, PIDTYPE_PID);
407 			}
408 
409 			/*
410 			 * In theory the process could have mapped
411 			 * something else on the address in-between. We could
412 			 * check for that, but we need to tell the
413 			 * process anyways.
414 			 */
415 			else if (kill_proc(tk, pfn, flags) < 0)
416 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
417 				       pfn, tk->tsk->comm, tk->tsk->pid);
418 		}
419 		put_task_struct(tk->tsk);
420 		kfree(tk);
421 	}
422 }
423 
424 /*
425  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
426  * on behalf of the thread group. Return task_struct of the (first found)
427  * dedicated thread if found, and return NULL otherwise.
428  *
429  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
430  * have to call rcu_read_lock/unlock() in this function.
431  */
432 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
433 {
434 	struct task_struct *t;
435 
436 	for_each_thread(tsk, t) {
437 		if (t->flags & PF_MCE_PROCESS) {
438 			if (t->flags & PF_MCE_EARLY)
439 				return t;
440 		} else {
441 			if (sysctl_memory_failure_early_kill)
442 				return t;
443 		}
444 	}
445 	return NULL;
446 }
447 
448 /*
449  * Determine whether a given process is "early kill" process which expects
450  * to be signaled when some page under the process is hwpoisoned.
451  * Return task_struct of the dedicated thread (main thread unless explicitly
452  * specified) if the process is "early kill" and otherwise returns NULL.
453  *
454  * Note that the above is true for Action Optional case. For Action Required
455  * case, it's only meaningful to the current thread which need to be signaled
456  * with SIGBUS, this error is Action Optional for other non current
457  * processes sharing the same error page,if the process is "early kill", the
458  * task_struct of the dedicated thread will also be returned.
459  */
460 static struct task_struct *task_early_kill(struct task_struct *tsk,
461 					   int force_early)
462 {
463 	if (!tsk->mm)
464 		return NULL;
465 	/*
466 	 * Comparing ->mm here because current task might represent
467 	 * a subthread, while tsk always points to the main thread.
468 	 */
469 	if (force_early && tsk->mm == current->mm)
470 		return current;
471 
472 	return find_early_kill_thread(tsk);
473 }
474 
475 /*
476  * Collect processes when the error hit an anonymous page.
477  */
478 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
479 				int force_early)
480 {
481 	struct vm_area_struct *vma;
482 	struct task_struct *tsk;
483 	struct anon_vma *av;
484 	pgoff_t pgoff;
485 
486 	av = page_lock_anon_vma_read(page);
487 	if (av == NULL)	/* Not actually mapped anymore */
488 		return;
489 
490 	pgoff = page_to_pgoff(page);
491 	read_lock(&tasklist_lock);
492 	for_each_process (tsk) {
493 		struct anon_vma_chain *vmac;
494 		struct task_struct *t = task_early_kill(tsk, force_early);
495 
496 		if (!t)
497 			continue;
498 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
499 					       pgoff, pgoff) {
500 			vma = vmac->vma;
501 			if (!page_mapped_in_vma(page, vma))
502 				continue;
503 			if (vma->vm_mm == t->mm)
504 				add_to_kill(t, page, vma, to_kill);
505 		}
506 	}
507 	read_unlock(&tasklist_lock);
508 	page_unlock_anon_vma_read(av);
509 }
510 
511 /*
512  * Collect processes when the error hit a file mapped page.
513  */
514 static void collect_procs_file(struct page *page, struct list_head *to_kill,
515 				int force_early)
516 {
517 	struct vm_area_struct *vma;
518 	struct task_struct *tsk;
519 	struct address_space *mapping = page->mapping;
520 	pgoff_t pgoff;
521 
522 	i_mmap_lock_read(mapping);
523 	read_lock(&tasklist_lock);
524 	pgoff = page_to_pgoff(page);
525 	for_each_process(tsk) {
526 		struct task_struct *t = task_early_kill(tsk, force_early);
527 
528 		if (!t)
529 			continue;
530 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
531 				      pgoff) {
532 			/*
533 			 * Send early kill signal to tasks where a vma covers
534 			 * the page but the corrupted page is not necessarily
535 			 * mapped it in its pte.
536 			 * Assume applications who requested early kill want
537 			 * to be informed of all such data corruptions.
538 			 */
539 			if (vma->vm_mm == t->mm)
540 				add_to_kill(t, page, vma, to_kill);
541 		}
542 	}
543 	read_unlock(&tasklist_lock);
544 	i_mmap_unlock_read(mapping);
545 }
546 
547 /*
548  * Collect the processes who have the corrupted page mapped to kill.
549  */
550 static void collect_procs(struct page *page, struct list_head *tokill,
551 				int force_early)
552 {
553 	if (!page->mapping)
554 		return;
555 
556 	if (PageAnon(page))
557 		collect_procs_anon(page, tokill, force_early);
558 	else
559 		collect_procs_file(page, tokill, force_early);
560 }
561 
562 struct hwp_walk {
563 	struct to_kill tk;
564 	unsigned long pfn;
565 	int flags;
566 };
567 
568 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
569 {
570 	tk->addr = addr;
571 	tk->size_shift = shift;
572 }
573 
574 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
575 				unsigned long poisoned_pfn, struct to_kill *tk)
576 {
577 	unsigned long pfn = 0;
578 
579 	if (pte_present(pte)) {
580 		pfn = pte_pfn(pte);
581 	} else {
582 		swp_entry_t swp = pte_to_swp_entry(pte);
583 
584 		if (is_hwpoison_entry(swp))
585 			pfn = hwpoison_entry_to_pfn(swp);
586 	}
587 
588 	if (!pfn || pfn != poisoned_pfn)
589 		return 0;
590 
591 	set_to_kill(tk, addr, shift);
592 	return 1;
593 }
594 
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
597 				      struct hwp_walk *hwp)
598 {
599 	pmd_t pmd = *pmdp;
600 	unsigned long pfn;
601 	unsigned long hwpoison_vaddr;
602 
603 	if (!pmd_present(pmd))
604 		return 0;
605 	pfn = pmd_pfn(pmd);
606 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
607 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
608 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
609 		return 1;
610 	}
611 	return 0;
612 }
613 #else
614 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
615 				      struct hwp_walk *hwp)
616 {
617 	return 0;
618 }
619 #endif
620 
621 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
622 			      unsigned long end, struct mm_walk *walk)
623 {
624 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
625 	int ret = 0;
626 	pte_t *ptep, *mapped_pte;
627 	spinlock_t *ptl;
628 
629 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
630 	if (ptl) {
631 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
632 		spin_unlock(ptl);
633 		goto out;
634 	}
635 
636 	if (pmd_trans_unstable(pmdp))
637 		goto out;
638 
639 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
640 						addr, &ptl);
641 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
642 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
643 					     hwp->pfn, &hwp->tk);
644 		if (ret == 1)
645 			break;
646 	}
647 	pte_unmap_unlock(mapped_pte, ptl);
648 out:
649 	cond_resched();
650 	return ret;
651 }
652 
653 #ifdef CONFIG_HUGETLB_PAGE
654 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
655 			    unsigned long addr, unsigned long end,
656 			    struct mm_walk *walk)
657 {
658 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
659 	pte_t pte = huge_ptep_get(ptep);
660 	struct hstate *h = hstate_vma(walk->vma);
661 
662 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
663 				      hwp->pfn, &hwp->tk);
664 }
665 #else
666 #define hwpoison_hugetlb_range	NULL
667 #endif
668 
669 static const struct mm_walk_ops hwp_walk_ops = {
670 	.pmd_entry = hwpoison_pte_range,
671 	.hugetlb_entry = hwpoison_hugetlb_range,
672 };
673 
674 /*
675  * Sends SIGBUS to the current process with error info.
676  *
677  * This function is intended to handle "Action Required" MCEs on already
678  * hardware poisoned pages. They could happen, for example, when
679  * memory_failure() failed to unmap the error page at the first call, or
680  * when multiple local machine checks happened on different CPUs.
681  *
682  * MCE handler currently has no easy access to the error virtual address,
683  * so this function walks page table to find it. The returned virtual address
684  * is proper in most cases, but it could be wrong when the application
685  * process has multiple entries mapping the error page.
686  */
687 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
688 				  int flags)
689 {
690 	int ret;
691 	struct hwp_walk priv = {
692 		.pfn = pfn,
693 	};
694 	priv.tk.tsk = p;
695 
696 	mmap_read_lock(p->mm);
697 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
698 			      (void *)&priv);
699 	if (ret == 1 && priv.tk.addr)
700 		kill_proc(&priv.tk, pfn, flags);
701 	else
702 		ret = 0;
703 	mmap_read_unlock(p->mm);
704 	return ret > 0 ? -EHWPOISON : -EFAULT;
705 }
706 
707 static const char *action_name[] = {
708 	[MF_IGNORED] = "Ignored",
709 	[MF_FAILED] = "Failed",
710 	[MF_DELAYED] = "Delayed",
711 	[MF_RECOVERED] = "Recovered",
712 };
713 
714 static const char * const action_page_types[] = {
715 	[MF_MSG_KERNEL]			= "reserved kernel page",
716 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
717 	[MF_MSG_SLAB]			= "kernel slab page",
718 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
719 	[MF_MSG_HUGE]			= "huge page",
720 	[MF_MSG_FREE_HUGE]		= "free huge page",
721 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
722 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
723 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
724 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
725 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
726 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
727 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
728 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
729 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
730 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
731 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
732 	[MF_MSG_BUDDY]			= "free buddy page",
733 	[MF_MSG_DAX]			= "dax page",
734 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
735 	[MF_MSG_DIFFERENT_PAGE_SIZE]	= "different page size",
736 	[MF_MSG_UNKNOWN]		= "unknown page",
737 };
738 
739 /*
740  * XXX: It is possible that a page is isolated from LRU cache,
741  * and then kept in swap cache or failed to remove from page cache.
742  * The page count will stop it from being freed by unpoison.
743  * Stress tests should be aware of this memory leak problem.
744  */
745 static int delete_from_lru_cache(struct page *p)
746 {
747 	if (!isolate_lru_page(p)) {
748 		/*
749 		 * Clear sensible page flags, so that the buddy system won't
750 		 * complain when the page is unpoison-and-freed.
751 		 */
752 		ClearPageActive(p);
753 		ClearPageUnevictable(p);
754 
755 		/*
756 		 * Poisoned page might never drop its ref count to 0 so we have
757 		 * to uncharge it manually from its memcg.
758 		 */
759 		mem_cgroup_uncharge(page_folio(p));
760 
761 		/*
762 		 * drop the page count elevated by isolate_lru_page()
763 		 */
764 		put_page(p);
765 		return 0;
766 	}
767 	return -EIO;
768 }
769 
770 static int truncate_error_page(struct page *p, unsigned long pfn,
771 				struct address_space *mapping)
772 {
773 	int ret = MF_FAILED;
774 
775 	if (mapping->a_ops->error_remove_page) {
776 		int err = mapping->a_ops->error_remove_page(mapping, p);
777 
778 		if (err != 0) {
779 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
780 				pfn, err);
781 		} else if (page_has_private(p) &&
782 			   !try_to_release_page(p, GFP_NOIO)) {
783 			pr_info("Memory failure: %#lx: failed to release buffers\n",
784 				pfn);
785 		} else {
786 			ret = MF_RECOVERED;
787 		}
788 	} else {
789 		/*
790 		 * If the file system doesn't support it just invalidate
791 		 * This fails on dirty or anything with private pages
792 		 */
793 		if (invalidate_inode_page(p))
794 			ret = MF_RECOVERED;
795 		else
796 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
797 				pfn);
798 	}
799 
800 	return ret;
801 }
802 
803 struct page_state {
804 	unsigned long mask;
805 	unsigned long res;
806 	enum mf_action_page_type type;
807 
808 	/* Callback ->action() has to unlock the relevant page inside it. */
809 	int (*action)(struct page_state *ps, struct page *p);
810 };
811 
812 /*
813  * Return true if page is still referenced by others, otherwise return
814  * false.
815  *
816  * The extra_pins is true when one extra refcount is expected.
817  */
818 static bool has_extra_refcount(struct page_state *ps, struct page *p,
819 			       bool extra_pins)
820 {
821 	int count = page_count(p) - 1;
822 
823 	if (extra_pins)
824 		count -= 1;
825 
826 	if (count > 0) {
827 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
828 		       page_to_pfn(p), action_page_types[ps->type], count);
829 		return true;
830 	}
831 
832 	return false;
833 }
834 
835 /*
836  * Error hit kernel page.
837  * Do nothing, try to be lucky and not touch this instead. For a few cases we
838  * could be more sophisticated.
839  */
840 static int me_kernel(struct page_state *ps, struct page *p)
841 {
842 	unlock_page(p);
843 	return MF_IGNORED;
844 }
845 
846 /*
847  * Page in unknown state. Do nothing.
848  */
849 static int me_unknown(struct page_state *ps, struct page *p)
850 {
851 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
852 	unlock_page(p);
853 	return MF_FAILED;
854 }
855 
856 /*
857  * Clean (or cleaned) page cache page.
858  */
859 static int me_pagecache_clean(struct page_state *ps, struct page *p)
860 {
861 	int ret;
862 	struct address_space *mapping;
863 	bool extra_pins;
864 
865 	delete_from_lru_cache(p);
866 
867 	/*
868 	 * For anonymous pages we're done the only reference left
869 	 * should be the one m_f() holds.
870 	 */
871 	if (PageAnon(p)) {
872 		ret = MF_RECOVERED;
873 		goto out;
874 	}
875 
876 	/*
877 	 * Now truncate the page in the page cache. This is really
878 	 * more like a "temporary hole punch"
879 	 * Don't do this for block devices when someone else
880 	 * has a reference, because it could be file system metadata
881 	 * and that's not safe to truncate.
882 	 */
883 	mapping = page_mapping(p);
884 	if (!mapping) {
885 		/*
886 		 * Page has been teared down in the meanwhile
887 		 */
888 		ret = MF_FAILED;
889 		goto out;
890 	}
891 
892 	/*
893 	 * The shmem page is kept in page cache instead of truncating
894 	 * so is expected to have an extra refcount after error-handling.
895 	 */
896 	extra_pins = shmem_mapping(mapping);
897 
898 	/*
899 	 * Truncation is a bit tricky. Enable it per file system for now.
900 	 *
901 	 * Open: to take i_rwsem or not for this? Right now we don't.
902 	 */
903 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
904 	if (has_extra_refcount(ps, p, extra_pins))
905 		ret = MF_FAILED;
906 
907 out:
908 	unlock_page(p);
909 
910 	return ret;
911 }
912 
913 /*
914  * Dirty pagecache page
915  * Issues: when the error hit a hole page the error is not properly
916  * propagated.
917  */
918 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
919 {
920 	struct address_space *mapping = page_mapping(p);
921 
922 	SetPageError(p);
923 	/* TBD: print more information about the file. */
924 	if (mapping) {
925 		/*
926 		 * IO error will be reported by write(), fsync(), etc.
927 		 * who check the mapping.
928 		 * This way the application knows that something went
929 		 * wrong with its dirty file data.
930 		 *
931 		 * There's one open issue:
932 		 *
933 		 * The EIO will be only reported on the next IO
934 		 * operation and then cleared through the IO map.
935 		 * Normally Linux has two mechanisms to pass IO error
936 		 * first through the AS_EIO flag in the address space
937 		 * and then through the PageError flag in the page.
938 		 * Since we drop pages on memory failure handling the
939 		 * only mechanism open to use is through AS_AIO.
940 		 *
941 		 * This has the disadvantage that it gets cleared on
942 		 * the first operation that returns an error, while
943 		 * the PageError bit is more sticky and only cleared
944 		 * when the page is reread or dropped.  If an
945 		 * application assumes it will always get error on
946 		 * fsync, but does other operations on the fd before
947 		 * and the page is dropped between then the error
948 		 * will not be properly reported.
949 		 *
950 		 * This can already happen even without hwpoisoned
951 		 * pages: first on metadata IO errors (which only
952 		 * report through AS_EIO) or when the page is dropped
953 		 * at the wrong time.
954 		 *
955 		 * So right now we assume that the application DTRT on
956 		 * the first EIO, but we're not worse than other parts
957 		 * of the kernel.
958 		 */
959 		mapping_set_error(mapping, -EIO);
960 	}
961 
962 	return me_pagecache_clean(ps, p);
963 }
964 
965 /*
966  * Clean and dirty swap cache.
967  *
968  * Dirty swap cache page is tricky to handle. The page could live both in page
969  * cache and swap cache(ie. page is freshly swapped in). So it could be
970  * referenced concurrently by 2 types of PTEs:
971  * normal PTEs and swap PTEs. We try to handle them consistently by calling
972  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
973  * and then
974  *      - clear dirty bit to prevent IO
975  *      - remove from LRU
976  *      - but keep in the swap cache, so that when we return to it on
977  *        a later page fault, we know the application is accessing
978  *        corrupted data and shall be killed (we installed simple
979  *        interception code in do_swap_page to catch it).
980  *
981  * Clean swap cache pages can be directly isolated. A later page fault will
982  * bring in the known good data from disk.
983  */
984 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
985 {
986 	int ret;
987 	bool extra_pins = false;
988 
989 	ClearPageDirty(p);
990 	/* Trigger EIO in shmem: */
991 	ClearPageUptodate(p);
992 
993 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
994 	unlock_page(p);
995 
996 	if (ret == MF_DELAYED)
997 		extra_pins = true;
998 
999 	if (has_extra_refcount(ps, p, extra_pins))
1000 		ret = MF_FAILED;
1001 
1002 	return ret;
1003 }
1004 
1005 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1006 {
1007 	int ret;
1008 
1009 	delete_from_swap_cache(p);
1010 
1011 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1012 	unlock_page(p);
1013 
1014 	if (has_extra_refcount(ps, p, false))
1015 		ret = MF_FAILED;
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Huge pages. Needs work.
1022  * Issues:
1023  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1024  *   To narrow down kill region to one page, we need to break up pmd.
1025  */
1026 static int me_huge_page(struct page_state *ps, struct page *p)
1027 {
1028 	int res;
1029 	struct page *hpage = compound_head(p);
1030 	struct address_space *mapping;
1031 
1032 	if (!PageHuge(hpage))
1033 		return MF_DELAYED;
1034 
1035 	mapping = page_mapping(hpage);
1036 	if (mapping) {
1037 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1038 		unlock_page(hpage);
1039 	} else {
1040 		res = MF_FAILED;
1041 		unlock_page(hpage);
1042 		/*
1043 		 * migration entry prevents later access on error anonymous
1044 		 * hugepage, so we can free and dissolve it into buddy to
1045 		 * save healthy subpages.
1046 		 */
1047 		if (PageAnon(hpage))
1048 			put_page(hpage);
1049 		if (__page_handle_poison(p)) {
1050 			page_ref_inc(p);
1051 			res = MF_RECOVERED;
1052 		}
1053 	}
1054 
1055 	if (has_extra_refcount(ps, p, false))
1056 		res = MF_FAILED;
1057 
1058 	return res;
1059 }
1060 
1061 /*
1062  * Various page states we can handle.
1063  *
1064  * A page state is defined by its current page->flags bits.
1065  * The table matches them in order and calls the right handler.
1066  *
1067  * This is quite tricky because we can access page at any time
1068  * in its live cycle, so all accesses have to be extremely careful.
1069  *
1070  * This is not complete. More states could be added.
1071  * For any missing state don't attempt recovery.
1072  */
1073 
1074 #define dirty		(1UL << PG_dirty)
1075 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1076 #define unevict		(1UL << PG_unevictable)
1077 #define mlock		(1UL << PG_mlocked)
1078 #define lru		(1UL << PG_lru)
1079 #define head		(1UL << PG_head)
1080 #define slab		(1UL << PG_slab)
1081 #define reserved	(1UL << PG_reserved)
1082 
1083 static struct page_state error_states[] = {
1084 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1085 	/*
1086 	 * free pages are specially detected outside this table:
1087 	 * PG_buddy pages only make a small fraction of all free pages.
1088 	 */
1089 
1090 	/*
1091 	 * Could in theory check if slab page is free or if we can drop
1092 	 * currently unused objects without touching them. But just
1093 	 * treat it as standard kernel for now.
1094 	 */
1095 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1096 
1097 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1098 
1099 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1100 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1101 
1102 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1103 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1104 
1105 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1106 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1107 
1108 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1109 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1110 
1111 	/*
1112 	 * Catchall entry: must be at end.
1113 	 */
1114 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1115 };
1116 
1117 #undef dirty
1118 #undef sc
1119 #undef unevict
1120 #undef mlock
1121 #undef lru
1122 #undef head
1123 #undef slab
1124 #undef reserved
1125 
1126 /*
1127  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1128  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1129  */
1130 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1131 			  enum mf_result result)
1132 {
1133 	trace_memory_failure_event(pfn, type, result);
1134 
1135 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1136 		pfn, action_page_types[type], action_name[result]);
1137 }
1138 
1139 static int page_action(struct page_state *ps, struct page *p,
1140 			unsigned long pfn)
1141 {
1142 	int result;
1143 
1144 	/* page p should be unlocked after returning from ps->action().  */
1145 	result = ps->action(ps, p);
1146 
1147 	action_result(pfn, ps->type, result);
1148 
1149 	/* Could do more checks here if page looks ok */
1150 	/*
1151 	 * Could adjust zone counters here to correct for the missing page.
1152 	 */
1153 
1154 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1155 }
1156 
1157 static inline bool PageHWPoisonTakenOff(struct page *page)
1158 {
1159 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1160 }
1161 
1162 void SetPageHWPoisonTakenOff(struct page *page)
1163 {
1164 	set_page_private(page, MAGIC_HWPOISON);
1165 }
1166 
1167 void ClearPageHWPoisonTakenOff(struct page *page)
1168 {
1169 	if (PageHWPoison(page))
1170 		set_page_private(page, 0);
1171 }
1172 
1173 /*
1174  * Return true if a page type of a given page is supported by hwpoison
1175  * mechanism (while handling could fail), otherwise false.  This function
1176  * does not return true for hugetlb or device memory pages, so it's assumed
1177  * to be called only in the context where we never have such pages.
1178  */
1179 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1180 {
1181 	bool movable = false;
1182 
1183 	/* Soft offline could mirgate non-LRU movable pages */
1184 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1185 		movable = true;
1186 
1187 	return movable || PageLRU(page) || is_free_buddy_page(page);
1188 }
1189 
1190 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1191 {
1192 	struct page *head = compound_head(page);
1193 	int ret = 0;
1194 	bool hugetlb = false;
1195 
1196 	ret = get_hwpoison_huge_page(head, &hugetlb);
1197 	if (hugetlb)
1198 		return ret;
1199 
1200 	/*
1201 	 * This check prevents from calling get_hwpoison_unless_zero()
1202 	 * for any unsupported type of page in order to reduce the risk of
1203 	 * unexpected races caused by taking a page refcount.
1204 	 */
1205 	if (!HWPoisonHandlable(head, flags))
1206 		return -EBUSY;
1207 
1208 	if (get_page_unless_zero(head)) {
1209 		if (head == compound_head(page))
1210 			return 1;
1211 
1212 		pr_info("Memory failure: %#lx cannot catch tail\n",
1213 			page_to_pfn(page));
1214 		put_page(head);
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 static int get_any_page(struct page *p, unsigned long flags)
1221 {
1222 	int ret = 0, pass = 0;
1223 	bool count_increased = false;
1224 
1225 	if (flags & MF_COUNT_INCREASED)
1226 		count_increased = true;
1227 
1228 try_again:
1229 	if (!count_increased) {
1230 		ret = __get_hwpoison_page(p, flags);
1231 		if (!ret) {
1232 			if (page_count(p)) {
1233 				/* We raced with an allocation, retry. */
1234 				if (pass++ < 3)
1235 					goto try_again;
1236 				ret = -EBUSY;
1237 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1238 				/* We raced with put_page, retry. */
1239 				if (pass++ < 3)
1240 					goto try_again;
1241 				ret = -EIO;
1242 			}
1243 			goto out;
1244 		} else if (ret == -EBUSY) {
1245 			/*
1246 			 * We raced with (possibly temporary) unhandlable
1247 			 * page, retry.
1248 			 */
1249 			if (pass++ < 3) {
1250 				shake_page(p);
1251 				goto try_again;
1252 			}
1253 			ret = -EIO;
1254 			goto out;
1255 		}
1256 	}
1257 
1258 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1259 		ret = 1;
1260 	} else {
1261 		/*
1262 		 * A page we cannot handle. Check whether we can turn
1263 		 * it into something we can handle.
1264 		 */
1265 		if (pass++ < 3) {
1266 			put_page(p);
1267 			shake_page(p);
1268 			count_increased = false;
1269 			goto try_again;
1270 		}
1271 		put_page(p);
1272 		ret = -EIO;
1273 	}
1274 out:
1275 	if (ret == -EIO)
1276 		dump_page(p, "hwpoison: unhandlable page");
1277 
1278 	return ret;
1279 }
1280 
1281 static int __get_unpoison_page(struct page *page)
1282 {
1283 	struct page *head = compound_head(page);
1284 	int ret = 0;
1285 	bool hugetlb = false;
1286 
1287 	ret = get_hwpoison_huge_page(head, &hugetlb);
1288 	if (hugetlb)
1289 		return ret;
1290 
1291 	/*
1292 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1293 	 * but also isolated from buddy freelist, so need to identify the
1294 	 * state and have to cancel both operations to unpoison.
1295 	 */
1296 	if (PageHWPoisonTakenOff(page))
1297 		return -EHWPOISON;
1298 
1299 	return get_page_unless_zero(page) ? 1 : 0;
1300 }
1301 
1302 /**
1303  * get_hwpoison_page() - Get refcount for memory error handling
1304  * @p:		Raw error page (hit by memory error)
1305  * @flags:	Flags controlling behavior of error handling
1306  *
1307  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1308  * error on it, after checking that the error page is in a well-defined state
1309  * (defined as a page-type we can successfully handle the memory error on it,
1310  * such as LRU page and hugetlb page).
1311  *
1312  * Memory error handling could be triggered at any time on any type of page,
1313  * so it's prone to race with typical memory management lifecycle (like
1314  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1315  * extra care for the error page's state (as done in __get_hwpoison_page()),
1316  * and has some retry logic in get_any_page().
1317  *
1318  * When called from unpoison_memory(), the caller should already ensure that
1319  * the given page has PG_hwpoison. So it's never reused for other page
1320  * allocations, and __get_unpoison_page() never races with them.
1321  *
1322  * Return: 0 on failure,
1323  *         1 on success for in-use pages in a well-defined state,
1324  *         -EIO for pages on which we can not handle memory errors,
1325  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1326  *         operations like allocation and free,
1327  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1328  */
1329 static int get_hwpoison_page(struct page *p, unsigned long flags)
1330 {
1331 	int ret;
1332 
1333 	zone_pcp_disable(page_zone(p));
1334 	if (flags & MF_UNPOISON)
1335 		ret = __get_unpoison_page(p);
1336 	else
1337 		ret = get_any_page(p, flags);
1338 	zone_pcp_enable(page_zone(p));
1339 
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Do all that is necessary to remove user space mappings. Unmap
1345  * the pages and send SIGBUS to the processes if the data was dirty.
1346  */
1347 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1348 				  int flags, struct page *hpage)
1349 {
1350 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1351 	struct address_space *mapping;
1352 	LIST_HEAD(tokill);
1353 	bool unmap_success;
1354 	int kill = 1, forcekill;
1355 	bool mlocked = PageMlocked(hpage);
1356 
1357 	/*
1358 	 * Here we are interested only in user-mapped pages, so skip any
1359 	 * other types of pages.
1360 	 */
1361 	if (PageReserved(p) || PageSlab(p))
1362 		return true;
1363 	if (!(PageLRU(hpage) || PageHuge(p)))
1364 		return true;
1365 
1366 	/*
1367 	 * This check implies we don't kill processes if their pages
1368 	 * are in the swap cache early. Those are always late kills.
1369 	 */
1370 	if (!page_mapped(hpage))
1371 		return true;
1372 
1373 	if (PageKsm(p)) {
1374 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1375 		return false;
1376 	}
1377 
1378 	if (PageSwapCache(p)) {
1379 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1380 			pfn);
1381 		ttu |= TTU_IGNORE_HWPOISON;
1382 	}
1383 
1384 	/*
1385 	 * Propagate the dirty bit from PTEs to struct page first, because we
1386 	 * need this to decide if we should kill or just drop the page.
1387 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 	 * be called inside page lock (it's recommended but not enforced).
1389 	 */
1390 	mapping = page_mapping(hpage);
1391 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1392 	    mapping_can_writeback(mapping)) {
1393 		if (page_mkclean(hpage)) {
1394 			SetPageDirty(hpage);
1395 		} else {
1396 			kill = 0;
1397 			ttu |= TTU_IGNORE_HWPOISON;
1398 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1399 				pfn);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * First collect all the processes that have the page
1405 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1406 	 * because ttu takes the rmap data structures down.
1407 	 *
1408 	 * Error handling: We ignore errors here because
1409 	 * there's nothing that can be done.
1410 	 */
1411 	if (kill)
1412 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1413 
1414 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1415 		/*
1416 		 * For hugetlb pages in shared mappings, try_to_unmap
1417 		 * could potentially call huge_pmd_unshare.  Because of
1418 		 * this, take semaphore in write mode here and set
1419 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1420 		 * at this higher level.
1421 		 */
1422 		mapping = hugetlb_page_mapping_lock_write(hpage);
1423 		if (mapping) {
1424 			try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1425 			i_mmap_unlock_write(mapping);
1426 		} else
1427 			pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1428 	} else {
1429 		try_to_unmap(hpage, ttu);
1430 	}
1431 
1432 	unmap_success = !page_mapped(hpage);
1433 	if (!unmap_success)
1434 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1435 		       pfn, page_mapcount(hpage));
1436 
1437 	/*
1438 	 * try_to_unmap() might put mlocked page in lru cache, so call
1439 	 * shake_page() again to ensure that it's flushed.
1440 	 */
1441 	if (mlocked)
1442 		shake_page(hpage);
1443 
1444 	/*
1445 	 * Now that the dirty bit has been propagated to the
1446 	 * struct page and all unmaps done we can decide if
1447 	 * killing is needed or not.  Only kill when the page
1448 	 * was dirty or the process is not restartable,
1449 	 * otherwise the tokill list is merely
1450 	 * freed.  When there was a problem unmapping earlier
1451 	 * use a more force-full uncatchable kill to prevent
1452 	 * any accesses to the poisoned memory.
1453 	 */
1454 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1455 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1456 
1457 	return unmap_success;
1458 }
1459 
1460 static int identify_page_state(unsigned long pfn, struct page *p,
1461 				unsigned long page_flags)
1462 {
1463 	struct page_state *ps;
1464 
1465 	/*
1466 	 * The first check uses the current page flags which may not have any
1467 	 * relevant information. The second check with the saved page flags is
1468 	 * carried out only if the first check can't determine the page status.
1469 	 */
1470 	for (ps = error_states;; ps++)
1471 		if ((p->flags & ps->mask) == ps->res)
1472 			break;
1473 
1474 	page_flags |= (p->flags & (1UL << PG_dirty));
1475 
1476 	if (!ps->mask)
1477 		for (ps = error_states;; ps++)
1478 			if ((page_flags & ps->mask) == ps->res)
1479 				break;
1480 	return page_action(ps, p, pfn);
1481 }
1482 
1483 static int try_to_split_thp_page(struct page *page, const char *msg)
1484 {
1485 	lock_page(page);
1486 	if (unlikely(split_huge_page(page))) {
1487 		unsigned long pfn = page_to_pfn(page);
1488 
1489 		unlock_page(page);
1490 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1491 		put_page(page);
1492 		return -EBUSY;
1493 	}
1494 	unlock_page(page);
1495 
1496 	return 0;
1497 }
1498 
1499 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1500 {
1501 	struct page *p = pfn_to_page(pfn);
1502 	struct page *head = compound_head(p);
1503 	int res;
1504 	unsigned long page_flags;
1505 
1506 	if (TestSetPageHWPoison(head)) {
1507 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1508 		       pfn);
1509 		res = -EHWPOISON;
1510 		if (flags & MF_ACTION_REQUIRED)
1511 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1512 		return res;
1513 	}
1514 
1515 	num_poisoned_pages_inc();
1516 
1517 	if (!(flags & MF_COUNT_INCREASED)) {
1518 		res = get_hwpoison_page(p, flags);
1519 		if (!res) {
1520 			lock_page(head);
1521 			if (hwpoison_filter(p)) {
1522 				if (TestClearPageHWPoison(head))
1523 					num_poisoned_pages_dec();
1524 				unlock_page(head);
1525 				return -EOPNOTSUPP;
1526 			}
1527 			unlock_page(head);
1528 			res = MF_FAILED;
1529 			if (__page_handle_poison(p)) {
1530 				page_ref_inc(p);
1531 				res = MF_RECOVERED;
1532 			}
1533 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1534 			return res == MF_RECOVERED ? 0 : -EBUSY;
1535 		} else if (res < 0) {
1536 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1537 			return -EBUSY;
1538 		}
1539 	}
1540 
1541 	lock_page(head);
1542 
1543 	/*
1544 	 * The page could have changed compound pages due to race window.
1545 	 * If this happens just bail out.
1546 	 */
1547 	if (!PageHuge(p) || compound_head(p) != head) {
1548 		action_result(pfn, MF_MSG_DIFFERENT_PAGE_SIZE, MF_IGNORED);
1549 		res = -EBUSY;
1550 		goto out;
1551 	}
1552 
1553 	page_flags = head->flags;
1554 
1555 	if (hwpoison_filter(p)) {
1556 		if (TestClearPageHWPoison(head))
1557 			num_poisoned_pages_dec();
1558 		put_page(p);
1559 		res = -EOPNOTSUPP;
1560 		goto out;
1561 	}
1562 
1563 	/*
1564 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1565 	 * simply disable it. In order to make it work properly, we need
1566 	 * make sure that:
1567 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1568 	 *    entry properly works, and
1569 	 *  - other mm code walking over page table is aware of pud-aligned
1570 	 *    hwpoison entries.
1571 	 */
1572 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1573 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1574 		res = -EBUSY;
1575 		goto out;
1576 	}
1577 
1578 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1579 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1580 		res = -EBUSY;
1581 		goto out;
1582 	}
1583 
1584 	return identify_page_state(pfn, p, page_flags);
1585 out:
1586 	unlock_page(head);
1587 	return res;
1588 }
1589 
1590 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1591 		struct dev_pagemap *pgmap)
1592 {
1593 	struct page *page = pfn_to_page(pfn);
1594 	unsigned long size = 0;
1595 	struct to_kill *tk;
1596 	LIST_HEAD(tokill);
1597 	int rc = -EBUSY;
1598 	loff_t start;
1599 	dax_entry_t cookie;
1600 
1601 	if (flags & MF_COUNT_INCREASED)
1602 		/*
1603 		 * Drop the extra refcount in case we come from madvise().
1604 		 */
1605 		put_page(page);
1606 
1607 	/* device metadata space is not recoverable */
1608 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1609 		rc = -ENXIO;
1610 		goto out;
1611 	}
1612 
1613 	/*
1614 	 * Pages instantiated by device-dax (not filesystem-dax)
1615 	 * may be compound pages.
1616 	 */
1617 	page = compound_head(page);
1618 
1619 	/*
1620 	 * Prevent the inode from being freed while we are interrogating
1621 	 * the address_space, typically this would be handled by
1622 	 * lock_page(), but dax pages do not use the page lock. This
1623 	 * also prevents changes to the mapping of this pfn until
1624 	 * poison signaling is complete.
1625 	 */
1626 	cookie = dax_lock_page(page);
1627 	if (!cookie)
1628 		goto out;
1629 
1630 	if (hwpoison_filter(page)) {
1631 		rc = -EOPNOTSUPP;
1632 		goto unlock;
1633 	}
1634 
1635 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1636 		/*
1637 		 * TODO: Handle HMM pages which may need coordination
1638 		 * with device-side memory.
1639 		 */
1640 		goto unlock;
1641 	}
1642 
1643 	/*
1644 	 * Use this flag as an indication that the dax page has been
1645 	 * remapped UC to prevent speculative consumption of poison.
1646 	 */
1647 	SetPageHWPoison(page);
1648 
1649 	/*
1650 	 * Unlike System-RAM there is no possibility to swap in a
1651 	 * different physical page at a given virtual address, so all
1652 	 * userspace consumption of ZONE_DEVICE memory necessitates
1653 	 * SIGBUS (i.e. MF_MUST_KILL)
1654 	 */
1655 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1656 	collect_procs(page, &tokill, true);
1657 
1658 	list_for_each_entry(tk, &tokill, nd)
1659 		if (tk->size_shift)
1660 			size = max(size, 1UL << tk->size_shift);
1661 	if (size) {
1662 		/*
1663 		 * Unmap the largest mapping to avoid breaking up
1664 		 * device-dax mappings which are constant size. The
1665 		 * actual size of the mapping being torn down is
1666 		 * communicated in siginfo, see kill_proc()
1667 		 */
1668 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1669 		unmap_mapping_range(page->mapping, start, size, 0);
1670 	}
1671 	kill_procs(&tokill, true, false, pfn, flags);
1672 	rc = 0;
1673 unlock:
1674 	dax_unlock_page(page, cookie);
1675 out:
1676 	/* drop pgmap ref acquired in caller */
1677 	put_dev_pagemap(pgmap);
1678 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1679 	return rc;
1680 }
1681 
1682 static DEFINE_MUTEX(mf_mutex);
1683 
1684 /**
1685  * memory_failure - Handle memory failure of a page.
1686  * @pfn: Page Number of the corrupted page
1687  * @flags: fine tune action taken
1688  *
1689  * This function is called by the low level machine check code
1690  * of an architecture when it detects hardware memory corruption
1691  * of a page. It tries its best to recover, which includes
1692  * dropping pages, killing processes etc.
1693  *
1694  * The function is primarily of use for corruptions that
1695  * happen outside the current execution context (e.g. when
1696  * detected by a background scrubber)
1697  *
1698  * Must run in process context (e.g. a work queue) with interrupts
1699  * enabled and no spinlocks hold.
1700  *
1701  * Return: 0 for successfully handled the memory error,
1702  *         -EOPNOTSUPP for memory_filter() filtered the error event,
1703  *         < 0(except -EOPNOTSUPP) on failure.
1704  */
1705 int memory_failure(unsigned long pfn, int flags)
1706 {
1707 	struct page *p;
1708 	struct page *hpage;
1709 	struct dev_pagemap *pgmap;
1710 	int res = 0;
1711 	unsigned long page_flags;
1712 	bool retry = true;
1713 
1714 	if (!sysctl_memory_failure_recovery)
1715 		panic("Memory failure on page %lx", pfn);
1716 
1717 	mutex_lock(&mf_mutex);
1718 
1719 	p = pfn_to_online_page(pfn);
1720 	if (!p) {
1721 		res = arch_memory_failure(pfn, flags);
1722 		if (res == 0)
1723 			goto unlock_mutex;
1724 
1725 		if (pfn_valid(pfn)) {
1726 			pgmap = get_dev_pagemap(pfn, NULL);
1727 			if (pgmap) {
1728 				res = memory_failure_dev_pagemap(pfn, flags,
1729 								 pgmap);
1730 				goto unlock_mutex;
1731 			}
1732 		}
1733 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1734 			pfn);
1735 		res = -ENXIO;
1736 		goto unlock_mutex;
1737 	}
1738 
1739 try_again:
1740 	if (PageHuge(p)) {
1741 		res = memory_failure_hugetlb(pfn, flags);
1742 		goto unlock_mutex;
1743 	}
1744 
1745 	if (TestSetPageHWPoison(p)) {
1746 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1747 			pfn);
1748 		res = -EHWPOISON;
1749 		if (flags & MF_ACTION_REQUIRED)
1750 			res = kill_accessing_process(current, pfn, flags);
1751 		goto unlock_mutex;
1752 	}
1753 
1754 	hpage = compound_head(p);
1755 	num_poisoned_pages_inc();
1756 
1757 	/*
1758 	 * We need/can do nothing about count=0 pages.
1759 	 * 1) it's a free page, and therefore in safe hand:
1760 	 *    prep_new_page() will be the gate keeper.
1761 	 * 2) it's part of a non-compound high order page.
1762 	 *    Implies some kernel user: cannot stop them from
1763 	 *    R/W the page; let's pray that the page has been
1764 	 *    used and will be freed some time later.
1765 	 * In fact it's dangerous to directly bump up page count from 0,
1766 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1767 	 */
1768 	if (!(flags & MF_COUNT_INCREASED)) {
1769 		res = get_hwpoison_page(p, flags);
1770 		if (!res) {
1771 			if (is_free_buddy_page(p)) {
1772 				if (take_page_off_buddy(p)) {
1773 					page_ref_inc(p);
1774 					res = MF_RECOVERED;
1775 				} else {
1776 					/* We lost the race, try again */
1777 					if (retry) {
1778 						ClearPageHWPoison(p);
1779 						num_poisoned_pages_dec();
1780 						retry = false;
1781 						goto try_again;
1782 					}
1783 					res = MF_FAILED;
1784 				}
1785 				action_result(pfn, MF_MSG_BUDDY, res);
1786 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1787 			} else {
1788 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1789 				res = -EBUSY;
1790 			}
1791 			goto unlock_mutex;
1792 		} else if (res < 0) {
1793 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1794 			res = -EBUSY;
1795 			goto unlock_mutex;
1796 		}
1797 	}
1798 
1799 	if (PageTransHuge(hpage)) {
1800 		/*
1801 		 * The flag must be set after the refcount is bumped
1802 		 * otherwise it may race with THP split.
1803 		 * And the flag can't be set in get_hwpoison_page() since
1804 		 * it is called by soft offline too and it is just called
1805 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1806 		 * place.
1807 		 *
1808 		 * Don't need care about the above error handling paths for
1809 		 * get_hwpoison_page() since they handle either free page
1810 		 * or unhandlable page.  The refcount is bumped iff the
1811 		 * page is a valid handlable page.
1812 		 */
1813 		SetPageHasHWPoisoned(hpage);
1814 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1815 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1816 			res = -EBUSY;
1817 			goto unlock_mutex;
1818 		}
1819 		VM_BUG_ON_PAGE(!page_count(p), p);
1820 	}
1821 
1822 	/*
1823 	 * We ignore non-LRU pages for good reasons.
1824 	 * - PG_locked is only well defined for LRU pages and a few others
1825 	 * - to avoid races with __SetPageLocked()
1826 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1827 	 * The check (unnecessarily) ignores LRU pages being isolated and
1828 	 * walked by the page reclaim code, however that's not a big loss.
1829 	 */
1830 	shake_page(p);
1831 
1832 	lock_page(p);
1833 
1834 	/*
1835 	 * We're only intended to deal with the non-Compound page here.
1836 	 * However, the page could have changed compound pages due to
1837 	 * race window. If this happens, we could try again to hopefully
1838 	 * handle the page next round.
1839 	 */
1840 	if (PageCompound(p)) {
1841 		if (retry) {
1842 			if (TestClearPageHWPoison(p))
1843 				num_poisoned_pages_dec();
1844 			unlock_page(p);
1845 			put_page(p);
1846 			flags &= ~MF_COUNT_INCREASED;
1847 			retry = false;
1848 			goto try_again;
1849 		}
1850 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1851 		res = -EBUSY;
1852 		goto unlock_page;
1853 	}
1854 
1855 	/*
1856 	 * We use page flags to determine what action should be taken, but
1857 	 * the flags can be modified by the error containment action.  One
1858 	 * example is an mlocked page, where PG_mlocked is cleared by
1859 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1860 	 * correctly, we save a copy of the page flags at this time.
1861 	 */
1862 	page_flags = p->flags;
1863 
1864 	if (hwpoison_filter(p)) {
1865 		if (TestClearPageHWPoison(p))
1866 			num_poisoned_pages_dec();
1867 		unlock_page(p);
1868 		put_page(p);
1869 		res = -EOPNOTSUPP;
1870 		goto unlock_mutex;
1871 	}
1872 
1873 	/*
1874 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1875 	 * page_lock. We need wait writeback completion for this page or it
1876 	 * may trigger vfs BUG while evict inode.
1877 	 */
1878 	if (!PageLRU(p) && !PageWriteback(p))
1879 		goto identify_page_state;
1880 
1881 	/*
1882 	 * It's very difficult to mess with pages currently under IO
1883 	 * and in many cases impossible, so we just avoid it here.
1884 	 */
1885 	wait_on_page_writeback(p);
1886 
1887 	/*
1888 	 * Now take care of user space mappings.
1889 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1890 	 */
1891 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1892 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1893 		res = -EBUSY;
1894 		goto unlock_page;
1895 	}
1896 
1897 	/*
1898 	 * Torn down by someone else?
1899 	 */
1900 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1901 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1902 		res = -EBUSY;
1903 		goto unlock_page;
1904 	}
1905 
1906 identify_page_state:
1907 	res = identify_page_state(pfn, p, page_flags);
1908 	mutex_unlock(&mf_mutex);
1909 	return res;
1910 unlock_page:
1911 	unlock_page(p);
1912 unlock_mutex:
1913 	mutex_unlock(&mf_mutex);
1914 	return res;
1915 }
1916 EXPORT_SYMBOL_GPL(memory_failure);
1917 
1918 #define MEMORY_FAILURE_FIFO_ORDER	4
1919 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1920 
1921 struct memory_failure_entry {
1922 	unsigned long pfn;
1923 	int flags;
1924 };
1925 
1926 struct memory_failure_cpu {
1927 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1928 		      MEMORY_FAILURE_FIFO_SIZE);
1929 	spinlock_t lock;
1930 	struct work_struct work;
1931 };
1932 
1933 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1934 
1935 /**
1936  * memory_failure_queue - Schedule handling memory failure of a page.
1937  * @pfn: Page Number of the corrupted page
1938  * @flags: Flags for memory failure handling
1939  *
1940  * This function is called by the low level hardware error handler
1941  * when it detects hardware memory corruption of a page. It schedules
1942  * the recovering of error page, including dropping pages, killing
1943  * processes etc.
1944  *
1945  * The function is primarily of use for corruptions that
1946  * happen outside the current execution context (e.g. when
1947  * detected by a background scrubber)
1948  *
1949  * Can run in IRQ context.
1950  */
1951 void memory_failure_queue(unsigned long pfn, int flags)
1952 {
1953 	struct memory_failure_cpu *mf_cpu;
1954 	unsigned long proc_flags;
1955 	struct memory_failure_entry entry = {
1956 		.pfn =		pfn,
1957 		.flags =	flags,
1958 	};
1959 
1960 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1961 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1962 	if (kfifo_put(&mf_cpu->fifo, entry))
1963 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1964 	else
1965 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1966 		       pfn);
1967 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1968 	put_cpu_var(memory_failure_cpu);
1969 }
1970 EXPORT_SYMBOL_GPL(memory_failure_queue);
1971 
1972 static void memory_failure_work_func(struct work_struct *work)
1973 {
1974 	struct memory_failure_cpu *mf_cpu;
1975 	struct memory_failure_entry entry = { 0, };
1976 	unsigned long proc_flags;
1977 	int gotten;
1978 
1979 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1980 	for (;;) {
1981 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1982 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1983 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1984 		if (!gotten)
1985 			break;
1986 		if (entry.flags & MF_SOFT_OFFLINE)
1987 			soft_offline_page(entry.pfn, entry.flags);
1988 		else
1989 			memory_failure(entry.pfn, entry.flags);
1990 	}
1991 }
1992 
1993 /*
1994  * Process memory_failure work queued on the specified CPU.
1995  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1996  */
1997 void memory_failure_queue_kick(int cpu)
1998 {
1999 	struct memory_failure_cpu *mf_cpu;
2000 
2001 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2002 	cancel_work_sync(&mf_cpu->work);
2003 	memory_failure_work_func(&mf_cpu->work);
2004 }
2005 
2006 static int __init memory_failure_init(void)
2007 {
2008 	struct memory_failure_cpu *mf_cpu;
2009 	int cpu;
2010 
2011 	for_each_possible_cpu(cpu) {
2012 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2013 		spin_lock_init(&mf_cpu->lock);
2014 		INIT_KFIFO(mf_cpu->fifo);
2015 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2016 	}
2017 
2018 	return 0;
2019 }
2020 core_initcall(memory_failure_init);
2021 
2022 #define unpoison_pr_info(fmt, pfn, rs)			\
2023 ({							\
2024 	if (__ratelimit(rs))				\
2025 		pr_info(fmt, pfn);			\
2026 })
2027 
2028 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
2029 {
2030 	if (TestClearPageHWPoison(p)) {
2031 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2032 				 page_to_pfn(p), rs);
2033 		num_poisoned_pages_dec();
2034 		return 1;
2035 	}
2036 	return 0;
2037 }
2038 
2039 static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2040 					  struct page *p)
2041 {
2042 	if (put_page_back_buddy(p)) {
2043 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2044 				 page_to_pfn(p), rs);
2045 		return 0;
2046 	}
2047 	return -EBUSY;
2048 }
2049 
2050 /**
2051  * unpoison_memory - Unpoison a previously poisoned page
2052  * @pfn: Page number of the to be unpoisoned page
2053  *
2054  * Software-unpoison a page that has been poisoned by
2055  * memory_failure() earlier.
2056  *
2057  * This is only done on the software-level, so it only works
2058  * for linux injected failures, not real hardware failures
2059  *
2060  * Returns 0 for success, otherwise -errno.
2061  */
2062 int unpoison_memory(unsigned long pfn)
2063 {
2064 	struct page *page;
2065 	struct page *p;
2066 	int ret = -EBUSY;
2067 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2068 					DEFAULT_RATELIMIT_BURST);
2069 
2070 	if (!pfn_valid(pfn))
2071 		return -ENXIO;
2072 
2073 	p = pfn_to_page(pfn);
2074 	page = compound_head(p);
2075 
2076 	mutex_lock(&mf_mutex);
2077 
2078 	if (!PageHWPoison(p)) {
2079 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2080 				 pfn, &unpoison_rs);
2081 		goto unlock_mutex;
2082 	}
2083 
2084 	if (page_count(page) > 1) {
2085 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2086 				 pfn, &unpoison_rs);
2087 		goto unlock_mutex;
2088 	}
2089 
2090 	if (page_mapped(page)) {
2091 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2092 				 pfn, &unpoison_rs);
2093 		goto unlock_mutex;
2094 	}
2095 
2096 	if (page_mapping(page)) {
2097 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2098 				 pfn, &unpoison_rs);
2099 		goto unlock_mutex;
2100 	}
2101 
2102 	if (PageSlab(page) || PageTable(page))
2103 		goto unlock_mutex;
2104 
2105 	ret = get_hwpoison_page(p, MF_UNPOISON);
2106 	if (!ret) {
2107 		if (clear_page_hwpoison(&unpoison_rs, page))
2108 			ret = 0;
2109 		else
2110 			ret = -EBUSY;
2111 	} else if (ret < 0) {
2112 		if (ret == -EHWPOISON) {
2113 			ret = unpoison_taken_off_page(&unpoison_rs, p);
2114 		} else
2115 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2116 					 pfn, &unpoison_rs);
2117 	} else {
2118 		int freeit = clear_page_hwpoison(&unpoison_rs, p);
2119 
2120 		put_page(page);
2121 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2122 			put_page(page);
2123 			ret = 0;
2124 		}
2125 	}
2126 
2127 unlock_mutex:
2128 	mutex_unlock(&mf_mutex);
2129 	return ret;
2130 }
2131 EXPORT_SYMBOL(unpoison_memory);
2132 
2133 static bool isolate_page(struct page *page, struct list_head *pagelist)
2134 {
2135 	bool isolated = false;
2136 	bool lru = PageLRU(page);
2137 
2138 	if (PageHuge(page)) {
2139 		isolated = isolate_huge_page(page, pagelist);
2140 	} else {
2141 		if (lru)
2142 			isolated = !isolate_lru_page(page);
2143 		else
2144 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2145 
2146 		if (isolated)
2147 			list_add(&page->lru, pagelist);
2148 	}
2149 
2150 	if (isolated && lru)
2151 		inc_node_page_state(page, NR_ISOLATED_ANON +
2152 				    page_is_file_lru(page));
2153 
2154 	/*
2155 	 * If we succeed to isolate the page, we grabbed another refcount on
2156 	 * the page, so we can safely drop the one we got from get_any_pages().
2157 	 * If we failed to isolate the page, it means that we cannot go further
2158 	 * and we will return an error, so drop the reference we got from
2159 	 * get_any_pages() as well.
2160 	 */
2161 	put_page(page);
2162 	return isolated;
2163 }
2164 
2165 /*
2166  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2167  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2168  * If the page is mapped, it migrates the contents over.
2169  */
2170 static int __soft_offline_page(struct page *page)
2171 {
2172 	int ret = 0;
2173 	unsigned long pfn = page_to_pfn(page);
2174 	struct page *hpage = compound_head(page);
2175 	char const *msg_page[] = {"page", "hugepage"};
2176 	bool huge = PageHuge(page);
2177 	LIST_HEAD(pagelist);
2178 	struct migration_target_control mtc = {
2179 		.nid = NUMA_NO_NODE,
2180 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2181 	};
2182 
2183 	lock_page(page);
2184 	if (!PageHuge(page))
2185 		wait_on_page_writeback(page);
2186 	if (PageHWPoison(page)) {
2187 		unlock_page(page);
2188 		put_page(page);
2189 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2190 		return 0;
2191 	}
2192 
2193 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2194 		/*
2195 		 * Try to invalidate first. This should work for
2196 		 * non dirty unmapped page cache pages.
2197 		 */
2198 		ret = invalidate_inode_page(page);
2199 	unlock_page(page);
2200 
2201 	if (ret) {
2202 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2203 		page_handle_poison(page, false, true);
2204 		return 0;
2205 	}
2206 
2207 	if (isolate_page(hpage, &pagelist)) {
2208 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2209 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2210 		if (!ret) {
2211 			bool release = !huge;
2212 
2213 			if (!page_handle_poison(page, huge, release))
2214 				ret = -EBUSY;
2215 		} else {
2216 			if (!list_empty(&pagelist))
2217 				putback_movable_pages(&pagelist);
2218 
2219 			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
2220 				pfn, msg_page[huge], ret, &page->flags);
2221 			if (ret > 0)
2222 				ret = -EBUSY;
2223 		}
2224 	} else {
2225 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2226 			pfn, msg_page[huge], page_count(page), &page->flags);
2227 		ret = -EBUSY;
2228 	}
2229 	return ret;
2230 }
2231 
2232 static int soft_offline_in_use_page(struct page *page)
2233 {
2234 	struct page *hpage = compound_head(page);
2235 
2236 	if (!PageHuge(page) && PageTransHuge(hpage))
2237 		if (try_to_split_thp_page(page, "soft offline") < 0)
2238 			return -EBUSY;
2239 	return __soft_offline_page(page);
2240 }
2241 
2242 static int soft_offline_free_page(struct page *page)
2243 {
2244 	int rc = 0;
2245 
2246 	if (!page_handle_poison(page, true, false))
2247 		rc = -EBUSY;
2248 
2249 	return rc;
2250 }
2251 
2252 static void put_ref_page(struct page *page)
2253 {
2254 	if (page)
2255 		put_page(page);
2256 }
2257 
2258 /**
2259  * soft_offline_page - Soft offline a page.
2260  * @pfn: pfn to soft-offline
2261  * @flags: flags. Same as memory_failure().
2262  *
2263  * Returns 0 on success, otherwise negated errno.
2264  *
2265  * Soft offline a page, by migration or invalidation,
2266  * without killing anything. This is for the case when
2267  * a page is not corrupted yet (so it's still valid to access),
2268  * but has had a number of corrected errors and is better taken
2269  * out.
2270  *
2271  * The actual policy on when to do that is maintained by
2272  * user space.
2273  *
2274  * This should never impact any application or cause data loss,
2275  * however it might take some time.
2276  *
2277  * This is not a 100% solution for all memory, but tries to be
2278  * ``good enough'' for the majority of memory.
2279  */
2280 int soft_offline_page(unsigned long pfn, int flags)
2281 {
2282 	int ret;
2283 	bool try_again = true;
2284 	struct page *page, *ref_page = NULL;
2285 
2286 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2287 
2288 	if (!pfn_valid(pfn))
2289 		return -ENXIO;
2290 	if (flags & MF_COUNT_INCREASED)
2291 		ref_page = pfn_to_page(pfn);
2292 
2293 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2294 	page = pfn_to_online_page(pfn);
2295 	if (!page) {
2296 		put_ref_page(ref_page);
2297 		return -EIO;
2298 	}
2299 
2300 	mutex_lock(&mf_mutex);
2301 
2302 	if (PageHWPoison(page)) {
2303 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2304 		put_ref_page(ref_page);
2305 		mutex_unlock(&mf_mutex);
2306 		return 0;
2307 	}
2308 
2309 retry:
2310 	get_online_mems();
2311 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2312 	put_online_mems();
2313 
2314 	if (ret > 0) {
2315 		ret = soft_offline_in_use_page(page);
2316 	} else if (ret == 0) {
2317 		if (soft_offline_free_page(page) && try_again) {
2318 			try_again = false;
2319 			flags &= ~MF_COUNT_INCREASED;
2320 			goto retry;
2321 		}
2322 	}
2323 
2324 	mutex_unlock(&mf_mutex);
2325 
2326 	return ret;
2327 }
2328