xref: /openbmc/linux/mm/memory-failure.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63 
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67 
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 
70 static bool __page_handle_poison(struct page *page)
71 {
72 	int ret;
73 
74 	zone_pcp_disable(page_zone(page));
75 	ret = dissolve_free_huge_page(page);
76 	if (!ret)
77 		ret = take_page_off_buddy(page);
78 	zone_pcp_enable(page_zone(page));
79 
80 	return ret > 0;
81 }
82 
83 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
84 {
85 	if (hugepage_or_freepage) {
86 		/*
87 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
88 		 * returns 0 for non-hugetlb pages as well.
89 		 */
90 		if (!__page_handle_poison(page))
91 			/*
92 			 * We could fail to take off the target page from buddy
93 			 * for example due to racy page allocation, but that's
94 			 * acceptable because soft-offlined page is not broken
95 			 * and if someone really want to use it, they should
96 			 * take it.
97 			 */
98 			return false;
99 	}
100 
101 	SetPageHWPoison(page);
102 	if (release)
103 		put_page(page);
104 	page_ref_inc(page);
105 	num_poisoned_pages_inc();
106 
107 	return true;
108 }
109 
110 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
111 
112 u32 hwpoison_filter_enable = 0;
113 u32 hwpoison_filter_dev_major = ~0U;
114 u32 hwpoison_filter_dev_minor = ~0U;
115 u64 hwpoison_filter_flags_mask;
116 u64 hwpoison_filter_flags_value;
117 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
122 
123 static int hwpoison_filter_dev(struct page *p)
124 {
125 	struct address_space *mapping;
126 	dev_t dev;
127 
128 	if (hwpoison_filter_dev_major == ~0U &&
129 	    hwpoison_filter_dev_minor == ~0U)
130 		return 0;
131 
132 	/*
133 	 * page_mapping() does not accept slab pages.
134 	 */
135 	if (PageSlab(p))
136 		return -EINVAL;
137 
138 	mapping = page_mapping(p);
139 	if (mapping == NULL || mapping->host == NULL)
140 		return -EINVAL;
141 
142 	dev = mapping->host->i_sb->s_dev;
143 	if (hwpoison_filter_dev_major != ~0U &&
144 	    hwpoison_filter_dev_major != MAJOR(dev))
145 		return -EINVAL;
146 	if (hwpoison_filter_dev_minor != ~0U &&
147 	    hwpoison_filter_dev_minor != MINOR(dev))
148 		return -EINVAL;
149 
150 	return 0;
151 }
152 
153 static int hwpoison_filter_flags(struct page *p)
154 {
155 	if (!hwpoison_filter_flags_mask)
156 		return 0;
157 
158 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
159 				    hwpoison_filter_flags_value)
160 		return 0;
161 	else
162 		return -EINVAL;
163 }
164 
165 /*
166  * This allows stress tests to limit test scope to a collection of tasks
167  * by putting them under some memcg. This prevents killing unrelated/important
168  * processes such as /sbin/init. Note that the target task may share clean
169  * pages with init (eg. libc text), which is harmless. If the target task
170  * share _dirty_ pages with another task B, the test scheme must make sure B
171  * is also included in the memcg. At last, due to race conditions this filter
172  * can only guarantee that the page either belongs to the memcg tasks, or is
173  * a freed page.
174  */
175 #ifdef CONFIG_MEMCG
176 u64 hwpoison_filter_memcg;
177 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
178 static int hwpoison_filter_task(struct page *p)
179 {
180 	if (!hwpoison_filter_memcg)
181 		return 0;
182 
183 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
184 		return -EINVAL;
185 
186 	return 0;
187 }
188 #else
189 static int hwpoison_filter_task(struct page *p) { return 0; }
190 #endif
191 
192 int hwpoison_filter(struct page *p)
193 {
194 	if (!hwpoison_filter_enable)
195 		return 0;
196 
197 	if (hwpoison_filter_dev(p))
198 		return -EINVAL;
199 
200 	if (hwpoison_filter_flags(p))
201 		return -EINVAL;
202 
203 	if (hwpoison_filter_task(p))
204 		return -EINVAL;
205 
206 	return 0;
207 }
208 #else
209 int hwpoison_filter(struct page *p)
210 {
211 	return 0;
212 }
213 #endif
214 
215 EXPORT_SYMBOL_GPL(hwpoison_filter);
216 
217 /*
218  * Kill all processes that have a poisoned page mapped and then isolate
219  * the page.
220  *
221  * General strategy:
222  * Find all processes having the page mapped and kill them.
223  * But we keep a page reference around so that the page is not
224  * actually freed yet.
225  * Then stash the page away
226  *
227  * There's no convenient way to get back to mapped processes
228  * from the VMAs. So do a brute-force search over all
229  * running processes.
230  *
231  * Remember that machine checks are not common (or rather
232  * if they are common you have other problems), so this shouldn't
233  * be a performance issue.
234  *
235  * Also there are some races possible while we get from the
236  * error detection to actually handle it.
237  */
238 
239 struct to_kill {
240 	struct list_head nd;
241 	struct task_struct *tsk;
242 	unsigned long addr;
243 	short size_shift;
244 };
245 
246 /*
247  * Send all the processes who have the page mapped a signal.
248  * ``action optional'' if they are not immediately affected by the error
249  * ``action required'' if error happened in current execution context
250  */
251 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
252 {
253 	struct task_struct *t = tk->tsk;
254 	short addr_lsb = tk->size_shift;
255 	int ret = 0;
256 
257 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
258 			pfn, t->comm, t->pid);
259 
260 	if (flags & MF_ACTION_REQUIRED) {
261 		if (t == current)
262 			ret = force_sig_mceerr(BUS_MCEERR_AR,
263 					 (void __user *)tk->addr, addr_lsb);
264 		else
265 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
266 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
267 				addr_lsb, t);
268 	} else {
269 		/*
270 		 * Don't use force here, it's convenient if the signal
271 		 * can be temporarily blocked.
272 		 * This could cause a loop when the user sets SIGBUS
273 		 * to SIG_IGN, but hopefully no one will do that?
274 		 */
275 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
276 				      addr_lsb, t);  /* synchronous? */
277 	}
278 	if (ret < 0)
279 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
280 			t->comm, t->pid, ret);
281 	return ret;
282 }
283 
284 /*
285  * Unknown page type encountered. Try to check whether it can turn PageLRU by
286  * lru_add_drain_all.
287  */
288 void shake_page(struct page *p)
289 {
290 	if (PageHuge(p))
291 		return;
292 
293 	if (!PageSlab(p)) {
294 		lru_add_drain_all();
295 		if (PageLRU(p) || is_free_buddy_page(p))
296 			return;
297 	}
298 
299 	/*
300 	 * TODO: Could shrink slab caches here if a lightweight range-based
301 	 * shrinker will be available.
302 	 */
303 }
304 EXPORT_SYMBOL_GPL(shake_page);
305 
306 static unsigned long dev_pagemap_mapping_shift(struct page *page,
307 		struct vm_area_struct *vma)
308 {
309 	unsigned long address = vma_address(page, vma);
310 	unsigned long ret = 0;
311 	pgd_t *pgd;
312 	p4d_t *p4d;
313 	pud_t *pud;
314 	pmd_t *pmd;
315 	pte_t *pte;
316 
317 	pgd = pgd_offset(vma->vm_mm, address);
318 	if (!pgd_present(*pgd))
319 		return 0;
320 	p4d = p4d_offset(pgd, address);
321 	if (!p4d_present(*p4d))
322 		return 0;
323 	pud = pud_offset(p4d, address);
324 	if (!pud_present(*pud))
325 		return 0;
326 	if (pud_devmap(*pud))
327 		return PUD_SHIFT;
328 	pmd = pmd_offset(pud, address);
329 	if (!pmd_present(*pmd))
330 		return 0;
331 	if (pmd_devmap(*pmd))
332 		return PMD_SHIFT;
333 	pte = pte_offset_map(pmd, address);
334 	if (pte_present(*pte) && pte_devmap(*pte))
335 		ret = PAGE_SHIFT;
336 	pte_unmap(pte);
337 	return ret;
338 }
339 
340 /*
341  * Failure handling: if we can't find or can't kill a process there's
342  * not much we can do.	We just print a message and ignore otherwise.
343  */
344 
345 /*
346  * Schedule a process for later kill.
347  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
348  */
349 static void add_to_kill(struct task_struct *tsk, struct page *p,
350 		       struct vm_area_struct *vma,
351 		       struct list_head *to_kill)
352 {
353 	struct to_kill *tk;
354 
355 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
356 	if (!tk) {
357 		pr_err("Memory failure: Out of memory while machine check handling\n");
358 		return;
359 	}
360 
361 	tk->addr = page_address_in_vma(p, vma);
362 	if (is_zone_device_page(p))
363 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
364 	else
365 		tk->size_shift = page_shift(compound_head(p));
366 
367 	/*
368 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
369 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
370 	 * so "tk->size_shift == 0" effectively checks no mapping on
371 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
372 	 * to a process' address space, it's possible not all N VMAs
373 	 * contain mappings for the page, but at least one VMA does.
374 	 * Only deliver SIGBUS with payload derived from the VMA that
375 	 * has a mapping for the page.
376 	 */
377 	if (tk->addr == -EFAULT) {
378 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
379 			page_to_pfn(p), tsk->comm);
380 	} else if (tk->size_shift == 0) {
381 		kfree(tk);
382 		return;
383 	}
384 
385 	get_task_struct(tsk);
386 	tk->tsk = tsk;
387 	list_add_tail(&tk->nd, to_kill);
388 }
389 
390 /*
391  * Kill the processes that have been collected earlier.
392  *
393  * Only do anything when FORCEKILL is set, otherwise just free the
394  * list (this is used for clean pages which do not need killing)
395  * Also when FAIL is set do a force kill because something went
396  * wrong earlier.
397  */
398 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
399 		unsigned long pfn, int flags)
400 {
401 	struct to_kill *tk, *next;
402 
403 	list_for_each_entry_safe (tk, next, to_kill, nd) {
404 		if (forcekill) {
405 			/*
406 			 * In case something went wrong with munmapping
407 			 * make sure the process doesn't catch the
408 			 * signal and then access the memory. Just kill it.
409 			 */
410 			if (fail || tk->addr == -EFAULT) {
411 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
412 				       pfn, tk->tsk->comm, tk->tsk->pid);
413 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
414 						 tk->tsk, PIDTYPE_PID);
415 			}
416 
417 			/*
418 			 * In theory the process could have mapped
419 			 * something else on the address in-between. We could
420 			 * check for that, but we need to tell the
421 			 * process anyways.
422 			 */
423 			else if (kill_proc(tk, pfn, flags) < 0)
424 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
425 				       pfn, tk->tsk->comm, tk->tsk->pid);
426 		}
427 		put_task_struct(tk->tsk);
428 		kfree(tk);
429 	}
430 }
431 
432 /*
433  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
434  * on behalf of the thread group. Return task_struct of the (first found)
435  * dedicated thread if found, and return NULL otherwise.
436  *
437  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
438  * have to call rcu_read_lock/unlock() in this function.
439  */
440 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
441 {
442 	struct task_struct *t;
443 
444 	for_each_thread(tsk, t) {
445 		if (t->flags & PF_MCE_PROCESS) {
446 			if (t->flags & PF_MCE_EARLY)
447 				return t;
448 		} else {
449 			if (sysctl_memory_failure_early_kill)
450 				return t;
451 		}
452 	}
453 	return NULL;
454 }
455 
456 /*
457  * Determine whether a given process is "early kill" process which expects
458  * to be signaled when some page under the process is hwpoisoned.
459  * Return task_struct of the dedicated thread (main thread unless explicitly
460  * specified) if the process is "early kill" and otherwise returns NULL.
461  *
462  * Note that the above is true for Action Optional case. For Action Required
463  * case, it's only meaningful to the current thread which need to be signaled
464  * with SIGBUS, this error is Action Optional for other non current
465  * processes sharing the same error page,if the process is "early kill", the
466  * task_struct of the dedicated thread will also be returned.
467  */
468 static struct task_struct *task_early_kill(struct task_struct *tsk,
469 					   int force_early)
470 {
471 	if (!tsk->mm)
472 		return NULL;
473 	/*
474 	 * Comparing ->mm here because current task might represent
475 	 * a subthread, while tsk always points to the main thread.
476 	 */
477 	if (force_early && tsk->mm == current->mm)
478 		return current;
479 
480 	return find_early_kill_thread(tsk);
481 }
482 
483 /*
484  * Collect processes when the error hit an anonymous page.
485  */
486 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
487 				int force_early)
488 {
489 	struct vm_area_struct *vma;
490 	struct task_struct *tsk;
491 	struct anon_vma *av;
492 	pgoff_t pgoff;
493 
494 	av = page_lock_anon_vma_read(page);
495 	if (av == NULL)	/* Not actually mapped anymore */
496 		return;
497 
498 	pgoff = page_to_pgoff(page);
499 	read_lock(&tasklist_lock);
500 	for_each_process (tsk) {
501 		struct anon_vma_chain *vmac;
502 		struct task_struct *t = task_early_kill(tsk, force_early);
503 
504 		if (!t)
505 			continue;
506 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
507 					       pgoff, pgoff) {
508 			vma = vmac->vma;
509 			if (!page_mapped_in_vma(page, vma))
510 				continue;
511 			if (vma->vm_mm == t->mm)
512 				add_to_kill(t, page, vma, to_kill);
513 		}
514 	}
515 	read_unlock(&tasklist_lock);
516 	page_unlock_anon_vma_read(av);
517 }
518 
519 /*
520  * Collect processes when the error hit a file mapped page.
521  */
522 static void collect_procs_file(struct page *page, struct list_head *to_kill,
523 				int force_early)
524 {
525 	struct vm_area_struct *vma;
526 	struct task_struct *tsk;
527 	struct address_space *mapping = page->mapping;
528 	pgoff_t pgoff;
529 
530 	i_mmap_lock_read(mapping);
531 	read_lock(&tasklist_lock);
532 	pgoff = page_to_pgoff(page);
533 	for_each_process(tsk) {
534 		struct task_struct *t = task_early_kill(tsk, force_early);
535 
536 		if (!t)
537 			continue;
538 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
539 				      pgoff) {
540 			/*
541 			 * Send early kill signal to tasks where a vma covers
542 			 * the page but the corrupted page is not necessarily
543 			 * mapped it in its pte.
544 			 * Assume applications who requested early kill want
545 			 * to be informed of all such data corruptions.
546 			 */
547 			if (vma->vm_mm == t->mm)
548 				add_to_kill(t, page, vma, to_kill);
549 		}
550 	}
551 	read_unlock(&tasklist_lock);
552 	i_mmap_unlock_read(mapping);
553 }
554 
555 /*
556  * Collect the processes who have the corrupted page mapped to kill.
557  */
558 static void collect_procs(struct page *page, struct list_head *tokill,
559 				int force_early)
560 {
561 	if (!page->mapping)
562 		return;
563 
564 	if (PageAnon(page))
565 		collect_procs_anon(page, tokill, force_early);
566 	else
567 		collect_procs_file(page, tokill, force_early);
568 }
569 
570 struct hwp_walk {
571 	struct to_kill tk;
572 	unsigned long pfn;
573 	int flags;
574 };
575 
576 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
577 {
578 	tk->addr = addr;
579 	tk->size_shift = shift;
580 }
581 
582 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
583 				unsigned long poisoned_pfn, struct to_kill *tk)
584 {
585 	unsigned long pfn = 0;
586 
587 	if (pte_present(pte)) {
588 		pfn = pte_pfn(pte);
589 	} else {
590 		swp_entry_t swp = pte_to_swp_entry(pte);
591 
592 		if (is_hwpoison_entry(swp))
593 			pfn = hwpoison_entry_to_pfn(swp);
594 	}
595 
596 	if (!pfn || pfn != poisoned_pfn)
597 		return 0;
598 
599 	set_to_kill(tk, addr, shift);
600 	return 1;
601 }
602 
603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
604 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
605 				      struct hwp_walk *hwp)
606 {
607 	pmd_t pmd = *pmdp;
608 	unsigned long pfn;
609 	unsigned long hwpoison_vaddr;
610 
611 	if (!pmd_present(pmd))
612 		return 0;
613 	pfn = pmd_pfn(pmd);
614 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
615 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
616 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
617 		return 1;
618 	}
619 	return 0;
620 }
621 #else
622 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
623 				      struct hwp_walk *hwp)
624 {
625 	return 0;
626 }
627 #endif
628 
629 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
630 			      unsigned long end, struct mm_walk *walk)
631 {
632 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
633 	int ret = 0;
634 	pte_t *ptep, *mapped_pte;
635 	spinlock_t *ptl;
636 
637 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
638 	if (ptl) {
639 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
640 		spin_unlock(ptl);
641 		goto out;
642 	}
643 
644 	if (pmd_trans_unstable(pmdp))
645 		goto out;
646 
647 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
648 						addr, &ptl);
649 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 					     hwp->pfn, &hwp->tk);
652 		if (ret == 1)
653 			break;
654 	}
655 	pte_unmap_unlock(mapped_pte, ptl);
656 out:
657 	cond_resched();
658 	return ret;
659 }
660 
661 #ifdef CONFIG_HUGETLB_PAGE
662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 			    unsigned long addr, unsigned long end,
664 			    struct mm_walk *walk)
665 {
666 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 	pte_t pte = huge_ptep_get(ptep);
668 	struct hstate *h = hstate_vma(walk->vma);
669 
670 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 				      hwp->pfn, &hwp->tk);
672 }
673 #else
674 #define hwpoison_hugetlb_range	NULL
675 #endif
676 
677 static const struct mm_walk_ops hwp_walk_ops = {
678 	.pmd_entry = hwpoison_pte_range,
679 	.hugetlb_entry = hwpoison_hugetlb_range,
680 };
681 
682 /*
683  * Sends SIGBUS to the current process with error info.
684  *
685  * This function is intended to handle "Action Required" MCEs on already
686  * hardware poisoned pages. They could happen, for example, when
687  * memory_failure() failed to unmap the error page at the first call, or
688  * when multiple local machine checks happened on different CPUs.
689  *
690  * MCE handler currently has no easy access to the error virtual address,
691  * so this function walks page table to find it. The returned virtual address
692  * is proper in most cases, but it could be wrong when the application
693  * process has multiple entries mapping the error page.
694  */
695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 				  int flags)
697 {
698 	int ret;
699 	struct hwp_walk priv = {
700 		.pfn = pfn,
701 	};
702 	priv.tk.tsk = p;
703 
704 	mmap_read_lock(p->mm);
705 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 			      (void *)&priv);
707 	if (ret == 1 && priv.tk.addr)
708 		kill_proc(&priv.tk, pfn, flags);
709 	mmap_read_unlock(p->mm);
710 	return ret ? -EFAULT : -EHWPOISON;
711 }
712 
713 static const char *action_name[] = {
714 	[MF_IGNORED] = "Ignored",
715 	[MF_FAILED] = "Failed",
716 	[MF_DELAYED] = "Delayed",
717 	[MF_RECOVERED] = "Recovered",
718 };
719 
720 static const char * const action_page_types[] = {
721 	[MF_MSG_KERNEL]			= "reserved kernel page",
722 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
723 	[MF_MSG_SLAB]			= "kernel slab page",
724 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
725 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
726 	[MF_MSG_HUGE]			= "huge page",
727 	[MF_MSG_FREE_HUGE]		= "free huge page",
728 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
729 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
730 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
731 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
732 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
733 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
734 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
735 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
736 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
737 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
738 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
739 	[MF_MSG_BUDDY]			= "free buddy page",
740 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
741 	[MF_MSG_DAX]			= "dax page",
742 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
743 	[MF_MSG_UNKNOWN]		= "unknown page",
744 };
745 
746 /*
747  * XXX: It is possible that a page is isolated from LRU cache,
748  * and then kept in swap cache or failed to remove from page cache.
749  * The page count will stop it from being freed by unpoison.
750  * Stress tests should be aware of this memory leak problem.
751  */
752 static int delete_from_lru_cache(struct page *p)
753 {
754 	if (!isolate_lru_page(p)) {
755 		/*
756 		 * Clear sensible page flags, so that the buddy system won't
757 		 * complain when the page is unpoison-and-freed.
758 		 */
759 		ClearPageActive(p);
760 		ClearPageUnevictable(p);
761 
762 		/*
763 		 * Poisoned page might never drop its ref count to 0 so we have
764 		 * to uncharge it manually from its memcg.
765 		 */
766 		mem_cgroup_uncharge(page_folio(p));
767 
768 		/*
769 		 * drop the page count elevated by isolate_lru_page()
770 		 */
771 		put_page(p);
772 		return 0;
773 	}
774 	return -EIO;
775 }
776 
777 static int truncate_error_page(struct page *p, unsigned long pfn,
778 				struct address_space *mapping)
779 {
780 	int ret = MF_FAILED;
781 
782 	if (mapping->a_ops->error_remove_page) {
783 		int err = mapping->a_ops->error_remove_page(mapping, p);
784 
785 		if (err != 0) {
786 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 				pfn, err);
788 		} else if (page_has_private(p) &&
789 			   !try_to_release_page(p, GFP_NOIO)) {
790 			pr_info("Memory failure: %#lx: failed to release buffers\n",
791 				pfn);
792 		} else {
793 			ret = MF_RECOVERED;
794 		}
795 	} else {
796 		/*
797 		 * If the file system doesn't support it just invalidate
798 		 * This fails on dirty or anything with private pages
799 		 */
800 		if (invalidate_inode_page(p))
801 			ret = MF_RECOVERED;
802 		else
803 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 				pfn);
805 	}
806 
807 	return ret;
808 }
809 
810 struct page_state {
811 	unsigned long mask;
812 	unsigned long res;
813 	enum mf_action_page_type type;
814 
815 	/* Callback ->action() has to unlock the relevant page inside it. */
816 	int (*action)(struct page_state *ps, struct page *p);
817 };
818 
819 /*
820  * Return true if page is still referenced by others, otherwise return
821  * false.
822  *
823  * The extra_pins is true when one extra refcount is expected.
824  */
825 static bool has_extra_refcount(struct page_state *ps, struct page *p,
826 			       bool extra_pins)
827 {
828 	int count = page_count(p) - 1;
829 
830 	if (extra_pins)
831 		count -= 1;
832 
833 	if (count > 0) {
834 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
835 		       page_to_pfn(p), action_page_types[ps->type], count);
836 		return true;
837 	}
838 
839 	return false;
840 }
841 
842 /*
843  * Error hit kernel page.
844  * Do nothing, try to be lucky and not touch this instead. For a few cases we
845  * could be more sophisticated.
846  */
847 static int me_kernel(struct page_state *ps, struct page *p)
848 {
849 	unlock_page(p);
850 	return MF_IGNORED;
851 }
852 
853 /*
854  * Page in unknown state. Do nothing.
855  */
856 static int me_unknown(struct page_state *ps, struct page *p)
857 {
858 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
859 	unlock_page(p);
860 	return MF_FAILED;
861 }
862 
863 /*
864  * Clean (or cleaned) page cache page.
865  */
866 static int me_pagecache_clean(struct page_state *ps, struct page *p)
867 {
868 	int ret;
869 	struct address_space *mapping;
870 
871 	delete_from_lru_cache(p);
872 
873 	/*
874 	 * For anonymous pages we're done the only reference left
875 	 * should be the one m_f() holds.
876 	 */
877 	if (PageAnon(p)) {
878 		ret = MF_RECOVERED;
879 		goto out;
880 	}
881 
882 	/*
883 	 * Now truncate the page in the page cache. This is really
884 	 * more like a "temporary hole punch"
885 	 * Don't do this for block devices when someone else
886 	 * has a reference, because it could be file system metadata
887 	 * and that's not safe to truncate.
888 	 */
889 	mapping = page_mapping(p);
890 	if (!mapping) {
891 		/*
892 		 * Page has been teared down in the meanwhile
893 		 */
894 		ret = MF_FAILED;
895 		goto out;
896 	}
897 
898 	/*
899 	 * Truncation is a bit tricky. Enable it per file system for now.
900 	 *
901 	 * Open: to take i_rwsem or not for this? Right now we don't.
902 	 */
903 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
904 out:
905 	unlock_page(p);
906 
907 	if (has_extra_refcount(ps, p, false))
908 		ret = MF_FAILED;
909 
910 	return ret;
911 }
912 
913 /*
914  * Dirty pagecache page
915  * Issues: when the error hit a hole page the error is not properly
916  * propagated.
917  */
918 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
919 {
920 	struct address_space *mapping = page_mapping(p);
921 
922 	SetPageError(p);
923 	/* TBD: print more information about the file. */
924 	if (mapping) {
925 		/*
926 		 * IO error will be reported by write(), fsync(), etc.
927 		 * who check the mapping.
928 		 * This way the application knows that something went
929 		 * wrong with its dirty file data.
930 		 *
931 		 * There's one open issue:
932 		 *
933 		 * The EIO will be only reported on the next IO
934 		 * operation and then cleared through the IO map.
935 		 * Normally Linux has two mechanisms to pass IO error
936 		 * first through the AS_EIO flag in the address space
937 		 * and then through the PageError flag in the page.
938 		 * Since we drop pages on memory failure handling the
939 		 * only mechanism open to use is through AS_AIO.
940 		 *
941 		 * This has the disadvantage that it gets cleared on
942 		 * the first operation that returns an error, while
943 		 * the PageError bit is more sticky and only cleared
944 		 * when the page is reread or dropped.  If an
945 		 * application assumes it will always get error on
946 		 * fsync, but does other operations on the fd before
947 		 * and the page is dropped between then the error
948 		 * will not be properly reported.
949 		 *
950 		 * This can already happen even without hwpoisoned
951 		 * pages: first on metadata IO errors (which only
952 		 * report through AS_EIO) or when the page is dropped
953 		 * at the wrong time.
954 		 *
955 		 * So right now we assume that the application DTRT on
956 		 * the first EIO, but we're not worse than other parts
957 		 * of the kernel.
958 		 */
959 		mapping_set_error(mapping, -EIO);
960 	}
961 
962 	return me_pagecache_clean(ps, p);
963 }
964 
965 /*
966  * Clean and dirty swap cache.
967  *
968  * Dirty swap cache page is tricky to handle. The page could live both in page
969  * cache and swap cache(ie. page is freshly swapped in). So it could be
970  * referenced concurrently by 2 types of PTEs:
971  * normal PTEs and swap PTEs. We try to handle them consistently by calling
972  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
973  * and then
974  *      - clear dirty bit to prevent IO
975  *      - remove from LRU
976  *      - but keep in the swap cache, so that when we return to it on
977  *        a later page fault, we know the application is accessing
978  *        corrupted data and shall be killed (we installed simple
979  *        interception code in do_swap_page to catch it).
980  *
981  * Clean swap cache pages can be directly isolated. A later page fault will
982  * bring in the known good data from disk.
983  */
984 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
985 {
986 	int ret;
987 	bool extra_pins = false;
988 
989 	ClearPageDirty(p);
990 	/* Trigger EIO in shmem: */
991 	ClearPageUptodate(p);
992 
993 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
994 	unlock_page(p);
995 
996 	if (ret == MF_DELAYED)
997 		extra_pins = true;
998 
999 	if (has_extra_refcount(ps, p, extra_pins))
1000 		ret = MF_FAILED;
1001 
1002 	return ret;
1003 }
1004 
1005 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1006 {
1007 	int ret;
1008 
1009 	delete_from_swap_cache(p);
1010 
1011 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1012 	unlock_page(p);
1013 
1014 	if (has_extra_refcount(ps, p, false))
1015 		ret = MF_FAILED;
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Huge pages. Needs work.
1022  * Issues:
1023  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1024  *   To narrow down kill region to one page, we need to break up pmd.
1025  */
1026 static int me_huge_page(struct page_state *ps, struct page *p)
1027 {
1028 	int res;
1029 	struct page *hpage = compound_head(p);
1030 	struct address_space *mapping;
1031 
1032 	if (!PageHuge(hpage))
1033 		return MF_DELAYED;
1034 
1035 	mapping = page_mapping(hpage);
1036 	if (mapping) {
1037 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1038 		unlock_page(hpage);
1039 	} else {
1040 		res = MF_FAILED;
1041 		unlock_page(hpage);
1042 		/*
1043 		 * migration entry prevents later access on error anonymous
1044 		 * hugepage, so we can free and dissolve it into buddy to
1045 		 * save healthy subpages.
1046 		 */
1047 		if (PageAnon(hpage))
1048 			put_page(hpage);
1049 		if (__page_handle_poison(p)) {
1050 			page_ref_inc(p);
1051 			res = MF_RECOVERED;
1052 		}
1053 	}
1054 
1055 	if (has_extra_refcount(ps, p, false))
1056 		res = MF_FAILED;
1057 
1058 	return res;
1059 }
1060 
1061 /*
1062  * Various page states we can handle.
1063  *
1064  * A page state is defined by its current page->flags bits.
1065  * The table matches them in order and calls the right handler.
1066  *
1067  * This is quite tricky because we can access page at any time
1068  * in its live cycle, so all accesses have to be extremely careful.
1069  *
1070  * This is not complete. More states could be added.
1071  * For any missing state don't attempt recovery.
1072  */
1073 
1074 #define dirty		(1UL << PG_dirty)
1075 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1076 #define unevict		(1UL << PG_unevictable)
1077 #define mlock		(1UL << PG_mlocked)
1078 #define lru		(1UL << PG_lru)
1079 #define head		(1UL << PG_head)
1080 #define slab		(1UL << PG_slab)
1081 #define reserved	(1UL << PG_reserved)
1082 
1083 static struct page_state error_states[] = {
1084 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1085 	/*
1086 	 * free pages are specially detected outside this table:
1087 	 * PG_buddy pages only make a small fraction of all free pages.
1088 	 */
1089 
1090 	/*
1091 	 * Could in theory check if slab page is free or if we can drop
1092 	 * currently unused objects without touching them. But just
1093 	 * treat it as standard kernel for now.
1094 	 */
1095 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1096 
1097 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1098 
1099 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1100 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1101 
1102 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1103 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1104 
1105 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1106 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1107 
1108 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1109 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1110 
1111 	/*
1112 	 * Catchall entry: must be at end.
1113 	 */
1114 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1115 };
1116 
1117 #undef dirty
1118 #undef sc
1119 #undef unevict
1120 #undef mlock
1121 #undef lru
1122 #undef head
1123 #undef slab
1124 #undef reserved
1125 
1126 /*
1127  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1128  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1129  */
1130 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1131 			  enum mf_result result)
1132 {
1133 	trace_memory_failure_event(pfn, type, result);
1134 
1135 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1136 		pfn, action_page_types[type], action_name[result]);
1137 }
1138 
1139 static int page_action(struct page_state *ps, struct page *p,
1140 			unsigned long pfn)
1141 {
1142 	int result;
1143 
1144 	/* page p should be unlocked after returning from ps->action().  */
1145 	result = ps->action(ps, p);
1146 
1147 	action_result(pfn, ps->type, result);
1148 
1149 	/* Could do more checks here if page looks ok */
1150 	/*
1151 	 * Could adjust zone counters here to correct for the missing page.
1152 	 */
1153 
1154 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1155 }
1156 
1157 /*
1158  * Return true if a page type of a given page is supported by hwpoison
1159  * mechanism (while handling could fail), otherwise false.  This function
1160  * does not return true for hugetlb or device memory pages, so it's assumed
1161  * to be called only in the context where we never have such pages.
1162  */
1163 static inline bool HWPoisonHandlable(struct page *page)
1164 {
1165 	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1166 }
1167 
1168 static int __get_hwpoison_page(struct page *page)
1169 {
1170 	struct page *head = compound_head(page);
1171 	int ret = 0;
1172 	bool hugetlb = false;
1173 
1174 	ret = get_hwpoison_huge_page(head, &hugetlb);
1175 	if (hugetlb)
1176 		return ret;
1177 
1178 	/*
1179 	 * This check prevents from calling get_hwpoison_unless_zero()
1180 	 * for any unsupported type of page in order to reduce the risk of
1181 	 * unexpected races caused by taking a page refcount.
1182 	 */
1183 	if (!HWPoisonHandlable(head))
1184 		return -EBUSY;
1185 
1186 	if (get_page_unless_zero(head)) {
1187 		if (head == compound_head(page))
1188 			return 1;
1189 
1190 		pr_info("Memory failure: %#lx cannot catch tail\n",
1191 			page_to_pfn(page));
1192 		put_page(head);
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int get_any_page(struct page *p, unsigned long flags)
1199 {
1200 	int ret = 0, pass = 0;
1201 	bool count_increased = false;
1202 
1203 	if (flags & MF_COUNT_INCREASED)
1204 		count_increased = true;
1205 
1206 try_again:
1207 	if (!count_increased) {
1208 		ret = __get_hwpoison_page(p);
1209 		if (!ret) {
1210 			if (page_count(p)) {
1211 				/* We raced with an allocation, retry. */
1212 				if (pass++ < 3)
1213 					goto try_again;
1214 				ret = -EBUSY;
1215 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1216 				/* We raced with put_page, retry. */
1217 				if (pass++ < 3)
1218 					goto try_again;
1219 				ret = -EIO;
1220 			}
1221 			goto out;
1222 		} else if (ret == -EBUSY) {
1223 			/*
1224 			 * We raced with (possibly temporary) unhandlable
1225 			 * page, retry.
1226 			 */
1227 			if (pass++ < 3) {
1228 				shake_page(p);
1229 				goto try_again;
1230 			}
1231 			ret = -EIO;
1232 			goto out;
1233 		}
1234 	}
1235 
1236 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1237 		ret = 1;
1238 	} else {
1239 		/*
1240 		 * A page we cannot handle. Check whether we can turn
1241 		 * it into something we can handle.
1242 		 */
1243 		if (pass++ < 3) {
1244 			put_page(p);
1245 			shake_page(p);
1246 			count_increased = false;
1247 			goto try_again;
1248 		}
1249 		put_page(p);
1250 		ret = -EIO;
1251 	}
1252 out:
1253 	if (ret == -EIO)
1254 		dump_page(p, "hwpoison: unhandlable page");
1255 
1256 	return ret;
1257 }
1258 
1259 /**
1260  * get_hwpoison_page() - Get refcount for memory error handling
1261  * @p:		Raw error page (hit by memory error)
1262  * @flags:	Flags controlling behavior of error handling
1263  *
1264  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1265  * error on it, after checking that the error page is in a well-defined state
1266  * (defined as a page-type we can successfully handle the memor error on it,
1267  * such as LRU page and hugetlb page).
1268  *
1269  * Memory error handling could be triggered at any time on any type of page,
1270  * so it's prone to race with typical memory management lifecycle (like
1271  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1272  * extra care for the error page's state (as done in __get_hwpoison_page()),
1273  * and has some retry logic in get_any_page().
1274  *
1275  * Return: 0 on failure,
1276  *         1 on success for in-use pages in a well-defined state,
1277  *         -EIO for pages on which we can not handle memory errors,
1278  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1279  *         operations like allocation and free.
1280  */
1281 static int get_hwpoison_page(struct page *p, unsigned long flags)
1282 {
1283 	int ret;
1284 
1285 	zone_pcp_disable(page_zone(p));
1286 	ret = get_any_page(p, flags);
1287 	zone_pcp_enable(page_zone(p));
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Do all that is necessary to remove user space mappings. Unmap
1294  * the pages and send SIGBUS to the processes if the data was dirty.
1295  */
1296 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1297 				  int flags, struct page *hpage)
1298 {
1299 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1300 	struct address_space *mapping;
1301 	LIST_HEAD(tokill);
1302 	bool unmap_success;
1303 	int kill = 1, forcekill;
1304 	bool mlocked = PageMlocked(hpage);
1305 
1306 	/*
1307 	 * Here we are interested only in user-mapped pages, so skip any
1308 	 * other types of pages.
1309 	 */
1310 	if (PageReserved(p) || PageSlab(p))
1311 		return true;
1312 	if (!(PageLRU(hpage) || PageHuge(p)))
1313 		return true;
1314 
1315 	/*
1316 	 * This check implies we don't kill processes if their pages
1317 	 * are in the swap cache early. Those are always late kills.
1318 	 */
1319 	if (!page_mapped(hpage))
1320 		return true;
1321 
1322 	if (PageKsm(p)) {
1323 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1324 		return false;
1325 	}
1326 
1327 	if (PageSwapCache(p)) {
1328 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1329 			pfn);
1330 		ttu |= TTU_IGNORE_HWPOISON;
1331 	}
1332 
1333 	/*
1334 	 * Propagate the dirty bit from PTEs to struct page first, because we
1335 	 * need this to decide if we should kill or just drop the page.
1336 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1337 	 * be called inside page lock (it's recommended but not enforced).
1338 	 */
1339 	mapping = page_mapping(hpage);
1340 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1341 	    mapping_can_writeback(mapping)) {
1342 		if (page_mkclean(hpage)) {
1343 			SetPageDirty(hpage);
1344 		} else {
1345 			kill = 0;
1346 			ttu |= TTU_IGNORE_HWPOISON;
1347 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1348 				pfn);
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * First collect all the processes that have the page
1354 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1355 	 * because ttu takes the rmap data structures down.
1356 	 *
1357 	 * Error handling: We ignore errors here because
1358 	 * there's nothing that can be done.
1359 	 */
1360 	if (kill)
1361 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1362 
1363 	if (!PageHuge(hpage)) {
1364 		try_to_unmap(hpage, ttu);
1365 	} else {
1366 		if (!PageAnon(hpage)) {
1367 			/*
1368 			 * For hugetlb pages in shared mappings, try_to_unmap
1369 			 * could potentially call huge_pmd_unshare.  Because of
1370 			 * this, take semaphore in write mode here and set
1371 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1372 			 * at this higher level.
1373 			 */
1374 			mapping = hugetlb_page_mapping_lock_write(hpage);
1375 			if (mapping) {
1376 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1377 				i_mmap_unlock_write(mapping);
1378 			} else
1379 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1380 		} else {
1381 			try_to_unmap(hpage, ttu);
1382 		}
1383 	}
1384 
1385 	unmap_success = !page_mapped(hpage);
1386 	if (!unmap_success)
1387 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1388 		       pfn, page_mapcount(hpage));
1389 
1390 	/*
1391 	 * try_to_unmap() might put mlocked page in lru cache, so call
1392 	 * shake_page() again to ensure that it's flushed.
1393 	 */
1394 	if (mlocked)
1395 		shake_page(hpage);
1396 
1397 	/*
1398 	 * Now that the dirty bit has been propagated to the
1399 	 * struct page and all unmaps done we can decide if
1400 	 * killing is needed or not.  Only kill when the page
1401 	 * was dirty or the process is not restartable,
1402 	 * otherwise the tokill list is merely
1403 	 * freed.  When there was a problem unmapping earlier
1404 	 * use a more force-full uncatchable kill to prevent
1405 	 * any accesses to the poisoned memory.
1406 	 */
1407 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1408 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1409 
1410 	return unmap_success;
1411 }
1412 
1413 static int identify_page_state(unsigned long pfn, struct page *p,
1414 				unsigned long page_flags)
1415 {
1416 	struct page_state *ps;
1417 
1418 	/*
1419 	 * The first check uses the current page flags which may not have any
1420 	 * relevant information. The second check with the saved page flags is
1421 	 * carried out only if the first check can't determine the page status.
1422 	 */
1423 	for (ps = error_states;; ps++)
1424 		if ((p->flags & ps->mask) == ps->res)
1425 			break;
1426 
1427 	page_flags |= (p->flags & (1UL << PG_dirty));
1428 
1429 	if (!ps->mask)
1430 		for (ps = error_states;; ps++)
1431 			if ((page_flags & ps->mask) == ps->res)
1432 				break;
1433 	return page_action(ps, p, pfn);
1434 }
1435 
1436 static int try_to_split_thp_page(struct page *page, const char *msg)
1437 {
1438 	lock_page(page);
1439 	if (unlikely(split_huge_page(page))) {
1440 		unsigned long pfn = page_to_pfn(page);
1441 
1442 		unlock_page(page);
1443 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1444 		put_page(page);
1445 		return -EBUSY;
1446 	}
1447 	unlock_page(page);
1448 
1449 	return 0;
1450 }
1451 
1452 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1453 {
1454 	struct page *p = pfn_to_page(pfn);
1455 	struct page *head = compound_head(p);
1456 	int res;
1457 	unsigned long page_flags;
1458 
1459 	if (TestSetPageHWPoison(head)) {
1460 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1461 		       pfn);
1462 		res = -EHWPOISON;
1463 		if (flags & MF_ACTION_REQUIRED)
1464 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1465 		return res;
1466 	}
1467 
1468 	num_poisoned_pages_inc();
1469 
1470 	if (!(flags & MF_COUNT_INCREASED)) {
1471 		res = get_hwpoison_page(p, flags);
1472 		if (!res) {
1473 			/*
1474 			 * Check "filter hit" and "race with other subpage."
1475 			 */
1476 			lock_page(head);
1477 			if (PageHWPoison(head)) {
1478 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1479 				    || (p != head && TestSetPageHWPoison(head))) {
1480 					num_poisoned_pages_dec();
1481 					unlock_page(head);
1482 					return 0;
1483 				}
1484 			}
1485 			unlock_page(head);
1486 			res = MF_FAILED;
1487 			if (__page_handle_poison(p)) {
1488 				page_ref_inc(p);
1489 				res = MF_RECOVERED;
1490 			}
1491 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1492 			return res == MF_RECOVERED ? 0 : -EBUSY;
1493 		} else if (res < 0) {
1494 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1495 			return -EBUSY;
1496 		}
1497 	}
1498 
1499 	lock_page(head);
1500 	page_flags = head->flags;
1501 
1502 	if (!PageHWPoison(head)) {
1503 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1504 		num_poisoned_pages_dec();
1505 		unlock_page(head);
1506 		put_page(head);
1507 		return 0;
1508 	}
1509 
1510 	/*
1511 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1512 	 * simply disable it. In order to make it work properly, we need
1513 	 * make sure that:
1514 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1515 	 *    entry properly works, and
1516 	 *  - other mm code walking over page table is aware of pud-aligned
1517 	 *    hwpoison entries.
1518 	 */
1519 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1520 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1521 		res = -EBUSY;
1522 		goto out;
1523 	}
1524 
1525 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1526 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1527 		res = -EBUSY;
1528 		goto out;
1529 	}
1530 
1531 	return identify_page_state(pfn, p, page_flags);
1532 out:
1533 	unlock_page(head);
1534 	return res;
1535 }
1536 
1537 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1538 		struct dev_pagemap *pgmap)
1539 {
1540 	struct page *page = pfn_to_page(pfn);
1541 	unsigned long size = 0;
1542 	struct to_kill *tk;
1543 	LIST_HEAD(tokill);
1544 	int rc = -EBUSY;
1545 	loff_t start;
1546 	dax_entry_t cookie;
1547 
1548 	if (flags & MF_COUNT_INCREASED)
1549 		/*
1550 		 * Drop the extra refcount in case we come from madvise().
1551 		 */
1552 		put_page(page);
1553 
1554 	/* device metadata space is not recoverable */
1555 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1556 		rc = -ENXIO;
1557 		goto out;
1558 	}
1559 
1560 	/*
1561 	 * Prevent the inode from being freed while we are interrogating
1562 	 * the address_space, typically this would be handled by
1563 	 * lock_page(), but dax pages do not use the page lock. This
1564 	 * also prevents changes to the mapping of this pfn until
1565 	 * poison signaling is complete.
1566 	 */
1567 	cookie = dax_lock_page(page);
1568 	if (!cookie)
1569 		goto out;
1570 
1571 	if (hwpoison_filter(page)) {
1572 		rc = 0;
1573 		goto unlock;
1574 	}
1575 
1576 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1577 		/*
1578 		 * TODO: Handle HMM pages which may need coordination
1579 		 * with device-side memory.
1580 		 */
1581 		goto unlock;
1582 	}
1583 
1584 	/*
1585 	 * Use this flag as an indication that the dax page has been
1586 	 * remapped UC to prevent speculative consumption of poison.
1587 	 */
1588 	SetPageHWPoison(page);
1589 
1590 	/*
1591 	 * Unlike System-RAM there is no possibility to swap in a
1592 	 * different physical page at a given virtual address, so all
1593 	 * userspace consumption of ZONE_DEVICE memory necessitates
1594 	 * SIGBUS (i.e. MF_MUST_KILL)
1595 	 */
1596 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1597 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1598 
1599 	list_for_each_entry(tk, &tokill, nd)
1600 		if (tk->size_shift)
1601 			size = max(size, 1UL << tk->size_shift);
1602 	if (size) {
1603 		/*
1604 		 * Unmap the largest mapping to avoid breaking up
1605 		 * device-dax mappings which are constant size. The
1606 		 * actual size of the mapping being torn down is
1607 		 * communicated in siginfo, see kill_proc()
1608 		 */
1609 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1610 		unmap_mapping_range(page->mapping, start, size, 0);
1611 	}
1612 	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1613 	rc = 0;
1614 unlock:
1615 	dax_unlock_page(page, cookie);
1616 out:
1617 	/* drop pgmap ref acquired in caller */
1618 	put_dev_pagemap(pgmap);
1619 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1620 	return rc;
1621 }
1622 
1623 /**
1624  * memory_failure - Handle memory failure of a page.
1625  * @pfn: Page Number of the corrupted page
1626  * @flags: fine tune action taken
1627  *
1628  * This function is called by the low level machine check code
1629  * of an architecture when it detects hardware memory corruption
1630  * of a page. It tries its best to recover, which includes
1631  * dropping pages, killing processes etc.
1632  *
1633  * The function is primarily of use for corruptions that
1634  * happen outside the current execution context (e.g. when
1635  * detected by a background scrubber)
1636  *
1637  * Must run in process context (e.g. a work queue) with interrupts
1638  * enabled and no spinlocks hold.
1639  */
1640 int memory_failure(unsigned long pfn, int flags)
1641 {
1642 	struct page *p;
1643 	struct page *hpage;
1644 	struct page *orig_head;
1645 	struct dev_pagemap *pgmap;
1646 	int res = 0;
1647 	unsigned long page_flags;
1648 	bool retry = true;
1649 	static DEFINE_MUTEX(mf_mutex);
1650 
1651 	if (!sysctl_memory_failure_recovery)
1652 		panic("Memory failure on page %lx", pfn);
1653 
1654 	p = pfn_to_online_page(pfn);
1655 	if (!p) {
1656 		if (pfn_valid(pfn)) {
1657 			pgmap = get_dev_pagemap(pfn, NULL);
1658 			if (pgmap)
1659 				return memory_failure_dev_pagemap(pfn, flags,
1660 								  pgmap);
1661 		}
1662 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1663 			pfn);
1664 		return -ENXIO;
1665 	}
1666 
1667 	mutex_lock(&mf_mutex);
1668 
1669 try_again:
1670 	if (PageHuge(p)) {
1671 		res = memory_failure_hugetlb(pfn, flags);
1672 		goto unlock_mutex;
1673 	}
1674 
1675 	if (TestSetPageHWPoison(p)) {
1676 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1677 			pfn);
1678 		res = -EHWPOISON;
1679 		if (flags & MF_ACTION_REQUIRED)
1680 			res = kill_accessing_process(current, pfn, flags);
1681 		goto unlock_mutex;
1682 	}
1683 
1684 	orig_head = hpage = compound_head(p);
1685 	num_poisoned_pages_inc();
1686 
1687 	/*
1688 	 * We need/can do nothing about count=0 pages.
1689 	 * 1) it's a free page, and therefore in safe hand:
1690 	 *    prep_new_page() will be the gate keeper.
1691 	 * 2) it's part of a non-compound high order page.
1692 	 *    Implies some kernel user: cannot stop them from
1693 	 *    R/W the page; let's pray that the page has been
1694 	 *    used and will be freed some time later.
1695 	 * In fact it's dangerous to directly bump up page count from 0,
1696 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1697 	 */
1698 	if (!(flags & MF_COUNT_INCREASED)) {
1699 		res = get_hwpoison_page(p, flags);
1700 		if (!res) {
1701 			if (is_free_buddy_page(p)) {
1702 				if (take_page_off_buddy(p)) {
1703 					page_ref_inc(p);
1704 					res = MF_RECOVERED;
1705 				} else {
1706 					/* We lost the race, try again */
1707 					if (retry) {
1708 						ClearPageHWPoison(p);
1709 						num_poisoned_pages_dec();
1710 						retry = false;
1711 						goto try_again;
1712 					}
1713 					res = MF_FAILED;
1714 				}
1715 				action_result(pfn, MF_MSG_BUDDY, res);
1716 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1717 			} else {
1718 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1719 				res = -EBUSY;
1720 			}
1721 			goto unlock_mutex;
1722 		} else if (res < 0) {
1723 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1724 			res = -EBUSY;
1725 			goto unlock_mutex;
1726 		}
1727 	}
1728 
1729 	if (PageTransHuge(hpage)) {
1730 		/*
1731 		 * The flag must be set after the refcount is bumped
1732 		 * otherwise it may race with THP split.
1733 		 * And the flag can't be set in get_hwpoison_page() since
1734 		 * it is called by soft offline too and it is just called
1735 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1736 		 * place.
1737 		 *
1738 		 * Don't need care about the above error handling paths for
1739 		 * get_hwpoison_page() since they handle either free page
1740 		 * or unhandlable page.  The refcount is bumped iff the
1741 		 * page is a valid handlable page.
1742 		 */
1743 		SetPageHasHWPoisoned(hpage);
1744 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1745 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1746 			res = -EBUSY;
1747 			goto unlock_mutex;
1748 		}
1749 		VM_BUG_ON_PAGE(!page_count(p), p);
1750 	}
1751 
1752 	/*
1753 	 * We ignore non-LRU pages for good reasons.
1754 	 * - PG_locked is only well defined for LRU pages and a few others
1755 	 * - to avoid races with __SetPageLocked()
1756 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1757 	 * The check (unnecessarily) ignores LRU pages being isolated and
1758 	 * walked by the page reclaim code, however that's not a big loss.
1759 	 */
1760 	shake_page(p);
1761 
1762 	lock_page(p);
1763 
1764 	/*
1765 	 * The page could have changed compound pages during the locking.
1766 	 * If this happens just bail out.
1767 	 */
1768 	if (PageCompound(p) && compound_head(p) != orig_head) {
1769 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1770 		res = -EBUSY;
1771 		goto unlock_page;
1772 	}
1773 
1774 	/*
1775 	 * We use page flags to determine what action should be taken, but
1776 	 * the flags can be modified by the error containment action.  One
1777 	 * example is an mlocked page, where PG_mlocked is cleared by
1778 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1779 	 * correctly, we save a copy of the page flags at this time.
1780 	 */
1781 	page_flags = p->flags;
1782 
1783 	/*
1784 	 * unpoison always clear PG_hwpoison inside page lock
1785 	 */
1786 	if (!PageHWPoison(p)) {
1787 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1788 		num_poisoned_pages_dec();
1789 		unlock_page(p);
1790 		put_page(p);
1791 		goto unlock_mutex;
1792 	}
1793 	if (hwpoison_filter(p)) {
1794 		if (TestClearPageHWPoison(p))
1795 			num_poisoned_pages_dec();
1796 		unlock_page(p);
1797 		put_page(p);
1798 		goto unlock_mutex;
1799 	}
1800 
1801 	/*
1802 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1803 	 * page_lock. We need wait writeback completion for this page or it
1804 	 * may trigger vfs BUG while evict inode.
1805 	 */
1806 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1807 		goto identify_page_state;
1808 
1809 	/*
1810 	 * It's very difficult to mess with pages currently under IO
1811 	 * and in many cases impossible, so we just avoid it here.
1812 	 */
1813 	wait_on_page_writeback(p);
1814 
1815 	/*
1816 	 * Now take care of user space mappings.
1817 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1818 	 */
1819 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1820 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1821 		res = -EBUSY;
1822 		goto unlock_page;
1823 	}
1824 
1825 	/*
1826 	 * Torn down by someone else?
1827 	 */
1828 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1829 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1830 		res = -EBUSY;
1831 		goto unlock_page;
1832 	}
1833 
1834 identify_page_state:
1835 	res = identify_page_state(pfn, p, page_flags);
1836 	mutex_unlock(&mf_mutex);
1837 	return res;
1838 unlock_page:
1839 	unlock_page(p);
1840 unlock_mutex:
1841 	mutex_unlock(&mf_mutex);
1842 	return res;
1843 }
1844 EXPORT_SYMBOL_GPL(memory_failure);
1845 
1846 #define MEMORY_FAILURE_FIFO_ORDER	4
1847 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1848 
1849 struct memory_failure_entry {
1850 	unsigned long pfn;
1851 	int flags;
1852 };
1853 
1854 struct memory_failure_cpu {
1855 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1856 		      MEMORY_FAILURE_FIFO_SIZE);
1857 	spinlock_t lock;
1858 	struct work_struct work;
1859 };
1860 
1861 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1862 
1863 /**
1864  * memory_failure_queue - Schedule handling memory failure of a page.
1865  * @pfn: Page Number of the corrupted page
1866  * @flags: Flags for memory failure handling
1867  *
1868  * This function is called by the low level hardware error handler
1869  * when it detects hardware memory corruption of a page. It schedules
1870  * the recovering of error page, including dropping pages, killing
1871  * processes etc.
1872  *
1873  * The function is primarily of use for corruptions that
1874  * happen outside the current execution context (e.g. when
1875  * detected by a background scrubber)
1876  *
1877  * Can run in IRQ context.
1878  */
1879 void memory_failure_queue(unsigned long pfn, int flags)
1880 {
1881 	struct memory_failure_cpu *mf_cpu;
1882 	unsigned long proc_flags;
1883 	struct memory_failure_entry entry = {
1884 		.pfn =		pfn,
1885 		.flags =	flags,
1886 	};
1887 
1888 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1889 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1890 	if (kfifo_put(&mf_cpu->fifo, entry))
1891 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1892 	else
1893 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1894 		       pfn);
1895 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1896 	put_cpu_var(memory_failure_cpu);
1897 }
1898 EXPORT_SYMBOL_GPL(memory_failure_queue);
1899 
1900 static void memory_failure_work_func(struct work_struct *work)
1901 {
1902 	struct memory_failure_cpu *mf_cpu;
1903 	struct memory_failure_entry entry = { 0, };
1904 	unsigned long proc_flags;
1905 	int gotten;
1906 
1907 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1908 	for (;;) {
1909 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1910 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1911 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1912 		if (!gotten)
1913 			break;
1914 		if (entry.flags & MF_SOFT_OFFLINE)
1915 			soft_offline_page(entry.pfn, entry.flags);
1916 		else
1917 			memory_failure(entry.pfn, entry.flags);
1918 	}
1919 }
1920 
1921 /*
1922  * Process memory_failure work queued on the specified CPU.
1923  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1924  */
1925 void memory_failure_queue_kick(int cpu)
1926 {
1927 	struct memory_failure_cpu *mf_cpu;
1928 
1929 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1930 	cancel_work_sync(&mf_cpu->work);
1931 	memory_failure_work_func(&mf_cpu->work);
1932 }
1933 
1934 static int __init memory_failure_init(void)
1935 {
1936 	struct memory_failure_cpu *mf_cpu;
1937 	int cpu;
1938 
1939 	for_each_possible_cpu(cpu) {
1940 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1941 		spin_lock_init(&mf_cpu->lock);
1942 		INIT_KFIFO(mf_cpu->fifo);
1943 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1944 	}
1945 
1946 	return 0;
1947 }
1948 core_initcall(memory_failure_init);
1949 
1950 #define unpoison_pr_info(fmt, pfn, rs)			\
1951 ({							\
1952 	if (__ratelimit(rs))				\
1953 		pr_info(fmt, pfn);			\
1954 })
1955 
1956 /**
1957  * unpoison_memory - Unpoison a previously poisoned page
1958  * @pfn: Page number of the to be unpoisoned page
1959  *
1960  * Software-unpoison a page that has been poisoned by
1961  * memory_failure() earlier.
1962  *
1963  * This is only done on the software-level, so it only works
1964  * for linux injected failures, not real hardware failures
1965  *
1966  * Returns 0 for success, otherwise -errno.
1967  */
1968 int unpoison_memory(unsigned long pfn)
1969 {
1970 	struct page *page;
1971 	struct page *p;
1972 	int freeit = 0;
1973 	unsigned long flags = 0;
1974 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1975 					DEFAULT_RATELIMIT_BURST);
1976 
1977 	if (!pfn_valid(pfn))
1978 		return -ENXIO;
1979 
1980 	p = pfn_to_page(pfn);
1981 	page = compound_head(p);
1982 
1983 	if (!PageHWPoison(p)) {
1984 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1985 				 pfn, &unpoison_rs);
1986 		return 0;
1987 	}
1988 
1989 	if (page_count(page) > 1) {
1990 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1991 				 pfn, &unpoison_rs);
1992 		return 0;
1993 	}
1994 
1995 	if (page_mapped(page)) {
1996 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1997 				 pfn, &unpoison_rs);
1998 		return 0;
1999 	}
2000 
2001 	if (page_mapping(page)) {
2002 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2003 				 pfn, &unpoison_rs);
2004 		return 0;
2005 	}
2006 
2007 	/*
2008 	 * unpoison_memory() can encounter thp only when the thp is being
2009 	 * worked by memory_failure() and the page lock is not held yet.
2010 	 * In such case, we yield to memory_failure() and make unpoison fail.
2011 	 */
2012 	if (!PageHuge(page) && PageTransHuge(page)) {
2013 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
2014 				 pfn, &unpoison_rs);
2015 		return 0;
2016 	}
2017 
2018 	if (!get_hwpoison_page(p, flags)) {
2019 		if (TestClearPageHWPoison(p))
2020 			num_poisoned_pages_dec();
2021 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
2022 				 pfn, &unpoison_rs);
2023 		return 0;
2024 	}
2025 
2026 	lock_page(page);
2027 	/*
2028 	 * This test is racy because PG_hwpoison is set outside of page lock.
2029 	 * That's acceptable because that won't trigger kernel panic. Instead,
2030 	 * the PG_hwpoison page will be caught and isolated on the entrance to
2031 	 * the free buddy page pool.
2032 	 */
2033 	if (TestClearPageHWPoison(page)) {
2034 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2035 				 pfn, &unpoison_rs);
2036 		num_poisoned_pages_dec();
2037 		freeit = 1;
2038 	}
2039 	unlock_page(page);
2040 
2041 	put_page(page);
2042 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2043 		put_page(page);
2044 
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL(unpoison_memory);
2048 
2049 static bool isolate_page(struct page *page, struct list_head *pagelist)
2050 {
2051 	bool isolated = false;
2052 	bool lru = PageLRU(page);
2053 
2054 	if (PageHuge(page)) {
2055 		isolated = isolate_huge_page(page, pagelist);
2056 	} else {
2057 		if (lru)
2058 			isolated = !isolate_lru_page(page);
2059 		else
2060 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2061 
2062 		if (isolated)
2063 			list_add(&page->lru, pagelist);
2064 	}
2065 
2066 	if (isolated && lru)
2067 		inc_node_page_state(page, NR_ISOLATED_ANON +
2068 				    page_is_file_lru(page));
2069 
2070 	/*
2071 	 * If we succeed to isolate the page, we grabbed another refcount on
2072 	 * the page, so we can safely drop the one we got from get_any_pages().
2073 	 * If we failed to isolate the page, it means that we cannot go further
2074 	 * and we will return an error, so drop the reference we got from
2075 	 * get_any_pages() as well.
2076 	 */
2077 	put_page(page);
2078 	return isolated;
2079 }
2080 
2081 /*
2082  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2083  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2084  * If the page is mapped, it migrates the contents over.
2085  */
2086 static int __soft_offline_page(struct page *page)
2087 {
2088 	int ret = 0;
2089 	unsigned long pfn = page_to_pfn(page);
2090 	struct page *hpage = compound_head(page);
2091 	char const *msg_page[] = {"page", "hugepage"};
2092 	bool huge = PageHuge(page);
2093 	LIST_HEAD(pagelist);
2094 	struct migration_target_control mtc = {
2095 		.nid = NUMA_NO_NODE,
2096 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2097 	};
2098 
2099 	/*
2100 	 * Check PageHWPoison again inside page lock because PageHWPoison
2101 	 * is set by memory_failure() outside page lock. Note that
2102 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2103 	 * so there's no race between soft_offline_page() and memory_failure().
2104 	 */
2105 	lock_page(page);
2106 	if (!PageHuge(page))
2107 		wait_on_page_writeback(page);
2108 	if (PageHWPoison(page)) {
2109 		unlock_page(page);
2110 		put_page(page);
2111 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2112 		return 0;
2113 	}
2114 
2115 	if (!PageHuge(page))
2116 		/*
2117 		 * Try to invalidate first. This should work for
2118 		 * non dirty unmapped page cache pages.
2119 		 */
2120 		ret = invalidate_inode_page(page);
2121 	unlock_page(page);
2122 
2123 	/*
2124 	 * RED-PEN would be better to keep it isolated here, but we
2125 	 * would need to fix isolation locking first.
2126 	 */
2127 	if (ret) {
2128 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2129 		page_handle_poison(page, false, true);
2130 		return 0;
2131 	}
2132 
2133 	if (isolate_page(hpage, &pagelist)) {
2134 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2135 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2136 		if (!ret) {
2137 			bool release = !huge;
2138 
2139 			if (!page_handle_poison(page, huge, release))
2140 				ret = -EBUSY;
2141 		} else {
2142 			if (!list_empty(&pagelist))
2143 				putback_movable_pages(&pagelist);
2144 
2145 			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
2146 				pfn, msg_page[huge], ret, &page->flags);
2147 			if (ret > 0)
2148 				ret = -EBUSY;
2149 		}
2150 	} else {
2151 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2152 			pfn, msg_page[huge], page_count(page), &page->flags);
2153 		ret = -EBUSY;
2154 	}
2155 	return ret;
2156 }
2157 
2158 static int soft_offline_in_use_page(struct page *page)
2159 {
2160 	struct page *hpage = compound_head(page);
2161 
2162 	if (!PageHuge(page) && PageTransHuge(hpage))
2163 		if (try_to_split_thp_page(page, "soft offline") < 0)
2164 			return -EBUSY;
2165 	return __soft_offline_page(page);
2166 }
2167 
2168 static int soft_offline_free_page(struct page *page)
2169 {
2170 	int rc = 0;
2171 
2172 	if (!page_handle_poison(page, true, false))
2173 		rc = -EBUSY;
2174 
2175 	return rc;
2176 }
2177 
2178 static void put_ref_page(struct page *page)
2179 {
2180 	if (page)
2181 		put_page(page);
2182 }
2183 
2184 /**
2185  * soft_offline_page - Soft offline a page.
2186  * @pfn: pfn to soft-offline
2187  * @flags: flags. Same as memory_failure().
2188  *
2189  * Returns 0 on success, otherwise negated errno.
2190  *
2191  * Soft offline a page, by migration or invalidation,
2192  * without killing anything. This is for the case when
2193  * a page is not corrupted yet (so it's still valid to access),
2194  * but has had a number of corrected errors and is better taken
2195  * out.
2196  *
2197  * The actual policy on when to do that is maintained by
2198  * user space.
2199  *
2200  * This should never impact any application or cause data loss,
2201  * however it might take some time.
2202  *
2203  * This is not a 100% solution for all memory, but tries to be
2204  * ``good enough'' for the majority of memory.
2205  */
2206 int soft_offline_page(unsigned long pfn, int flags)
2207 {
2208 	int ret;
2209 	bool try_again = true;
2210 	struct page *page, *ref_page = NULL;
2211 
2212 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2213 
2214 	if (!pfn_valid(pfn))
2215 		return -ENXIO;
2216 	if (flags & MF_COUNT_INCREASED)
2217 		ref_page = pfn_to_page(pfn);
2218 
2219 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2220 	page = pfn_to_online_page(pfn);
2221 	if (!page) {
2222 		put_ref_page(ref_page);
2223 		return -EIO;
2224 	}
2225 
2226 	if (PageHWPoison(page)) {
2227 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2228 		put_ref_page(ref_page);
2229 		return 0;
2230 	}
2231 
2232 retry:
2233 	get_online_mems();
2234 	ret = get_hwpoison_page(page, flags);
2235 	put_online_mems();
2236 
2237 	if (ret > 0) {
2238 		ret = soft_offline_in_use_page(page);
2239 	} else if (ret == 0) {
2240 		if (soft_offline_free_page(page) && try_again) {
2241 			try_again = false;
2242 			goto retry;
2243 		}
2244 	}
2245 
2246 	return ret;
2247 }
2248