xref: /openbmc/linux/mm/memory-failure.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, current);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages(page_zone(p));
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_node_slabs here (which would also shrink
243 	 * other caches) if access is not potentially fatal.
244 	 */
245 	if (access) {
246 		int nr;
247 		int nid = page_to_nid(p);
248 		do {
249 			nr = shrink_node_slabs(GFP_KERNEL, nid, 1000, 1000);
250 			if (page_count(p) == 1)
251 				break;
252 		} while (nr > 10);
253 	}
254 }
255 EXPORT_SYMBOL_GPL(shake_page);
256 
257 /*
258  * Kill all processes that have a poisoned page mapped and then isolate
259  * the page.
260  *
261  * General strategy:
262  * Find all processes having the page mapped and kill them.
263  * But we keep a page reference around so that the page is not
264  * actually freed yet.
265  * Then stash the page away
266  *
267  * There's no convenient way to get back to mapped processes
268  * from the VMAs. So do a brute-force search over all
269  * running processes.
270  *
271  * Remember that machine checks are not common (or rather
272  * if they are common you have other problems), so this shouldn't
273  * be a performance issue.
274  *
275  * Also there are some races possible while we get from the
276  * error detection to actually handle it.
277  */
278 
279 struct to_kill {
280 	struct list_head nd;
281 	struct task_struct *tsk;
282 	unsigned long addr;
283 	char addr_valid;
284 };
285 
286 /*
287  * Failure handling: if we can't find or can't kill a process there's
288  * not much we can do.	We just print a message and ignore otherwise.
289  */
290 
291 /*
292  * Schedule a process for later kill.
293  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
294  * TBD would GFP_NOIO be enough?
295  */
296 static void add_to_kill(struct task_struct *tsk, struct page *p,
297 		       struct vm_area_struct *vma,
298 		       struct list_head *to_kill,
299 		       struct to_kill **tkc)
300 {
301 	struct to_kill *tk;
302 
303 	if (*tkc) {
304 		tk = *tkc;
305 		*tkc = NULL;
306 	} else {
307 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
308 		if (!tk) {
309 			printk(KERN_ERR
310 		"MCE: Out of memory while machine check handling\n");
311 			return;
312 		}
313 	}
314 	tk->addr = page_address_in_vma(p, vma);
315 	tk->addr_valid = 1;
316 
317 	/*
318 	 * In theory we don't have to kill when the page was
319 	 * munmaped. But it could be also a mremap. Since that's
320 	 * likely very rare kill anyways just out of paranoia, but use
321 	 * a SIGKILL because the error is not contained anymore.
322 	 */
323 	if (tk->addr == -EFAULT) {
324 		pr_info("MCE: Unable to find user space address %lx in %s\n",
325 			page_to_pfn(p), tsk->comm);
326 		tk->addr_valid = 0;
327 	}
328 	get_task_struct(tsk);
329 	tk->tsk = tsk;
330 	list_add_tail(&tk->nd, to_kill);
331 }
332 
333 /*
334  * Kill the processes that have been collected earlier.
335  *
336  * Only do anything when DOIT is set, otherwise just free the list
337  * (this is used for clean pages which do not need killing)
338  * Also when FAIL is set do a force kill because something went
339  * wrong earlier.
340  */
341 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
342 			  int fail, struct page *page, unsigned long pfn,
343 			  int flags)
344 {
345 	struct to_kill *tk, *next;
346 
347 	list_for_each_entry_safe (tk, next, to_kill, nd) {
348 		if (forcekill) {
349 			/*
350 			 * In case something went wrong with munmapping
351 			 * make sure the process doesn't catch the
352 			 * signal and then access the memory. Just kill it.
353 			 */
354 			if (fail || tk->addr_valid == 0) {
355 				printk(KERN_ERR
356 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
357 					pfn, tk->tsk->comm, tk->tsk->pid);
358 				force_sig(SIGKILL, tk->tsk);
359 			}
360 
361 			/*
362 			 * In theory the process could have mapped
363 			 * something else on the address in-between. We could
364 			 * check for that, but we need to tell the
365 			 * process anyways.
366 			 */
367 			else if (kill_proc(tk->tsk, tk->addr, trapno,
368 					      pfn, page, flags) < 0)
369 				printk(KERN_ERR
370 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
371 					pfn, tk->tsk->comm, tk->tsk->pid);
372 		}
373 		put_task_struct(tk->tsk);
374 		kfree(tk);
375 	}
376 }
377 
378 /*
379  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
380  * on behalf of the thread group. Return task_struct of the (first found)
381  * dedicated thread if found, and return NULL otherwise.
382  *
383  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
384  * have to call rcu_read_lock/unlock() in this function.
385  */
386 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
387 {
388 	struct task_struct *t;
389 
390 	for_each_thread(tsk, t)
391 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
392 			return t;
393 	return NULL;
394 }
395 
396 /*
397  * Determine whether a given process is "early kill" process which expects
398  * to be signaled when some page under the process is hwpoisoned.
399  * Return task_struct of the dedicated thread (main thread unless explicitly
400  * specified) if the process is "early kill," and otherwise returns NULL.
401  */
402 static struct task_struct *task_early_kill(struct task_struct *tsk,
403 					   int force_early)
404 {
405 	struct task_struct *t;
406 	if (!tsk->mm)
407 		return NULL;
408 	if (force_early)
409 		return tsk;
410 	t = find_early_kill_thread(tsk);
411 	if (t)
412 		return t;
413 	if (sysctl_memory_failure_early_kill)
414 		return tsk;
415 	return NULL;
416 }
417 
418 /*
419  * Collect processes when the error hit an anonymous page.
420  */
421 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
422 			      struct to_kill **tkc, int force_early)
423 {
424 	struct vm_area_struct *vma;
425 	struct task_struct *tsk;
426 	struct anon_vma *av;
427 	pgoff_t pgoff;
428 
429 	av = page_lock_anon_vma_read(page);
430 	if (av == NULL)	/* Not actually mapped anymore */
431 		return;
432 
433 	pgoff = page_to_pgoff(page);
434 	read_lock(&tasklist_lock);
435 	for_each_process (tsk) {
436 		struct anon_vma_chain *vmac;
437 		struct task_struct *t = task_early_kill(tsk, force_early);
438 
439 		if (!t)
440 			continue;
441 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
442 					       pgoff, pgoff) {
443 			vma = vmac->vma;
444 			if (!page_mapped_in_vma(page, vma))
445 				continue;
446 			if (vma->vm_mm == t->mm)
447 				add_to_kill(t, page, vma, to_kill, tkc);
448 		}
449 	}
450 	read_unlock(&tasklist_lock);
451 	page_unlock_anon_vma_read(av);
452 }
453 
454 /*
455  * Collect processes when the error hit a file mapped page.
456  */
457 static void collect_procs_file(struct page *page, struct list_head *to_kill,
458 			      struct to_kill **tkc, int force_early)
459 {
460 	struct vm_area_struct *vma;
461 	struct task_struct *tsk;
462 	struct address_space *mapping = page->mapping;
463 
464 	i_mmap_lock_read(mapping);
465 	read_lock(&tasklist_lock);
466 	for_each_process(tsk) {
467 		pgoff_t pgoff = page_to_pgoff(page);
468 		struct task_struct *t = task_early_kill(tsk, force_early);
469 
470 		if (!t)
471 			continue;
472 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
473 				      pgoff) {
474 			/*
475 			 * Send early kill signal to tasks where a vma covers
476 			 * the page but the corrupted page is not necessarily
477 			 * mapped it in its pte.
478 			 * Assume applications who requested early kill want
479 			 * to be informed of all such data corruptions.
480 			 */
481 			if (vma->vm_mm == t->mm)
482 				add_to_kill(t, page, vma, to_kill, tkc);
483 		}
484 	}
485 	read_unlock(&tasklist_lock);
486 	i_mmap_unlock_read(mapping);
487 }
488 
489 /*
490  * Collect the processes who have the corrupted page mapped to kill.
491  * This is done in two steps for locking reasons.
492  * First preallocate one tokill structure outside the spin locks,
493  * so that we can kill at least one process reasonably reliable.
494  */
495 static void collect_procs(struct page *page, struct list_head *tokill,
496 				int force_early)
497 {
498 	struct to_kill *tk;
499 
500 	if (!page->mapping)
501 		return;
502 
503 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
504 	if (!tk)
505 		return;
506 	if (PageAnon(page))
507 		collect_procs_anon(page, tokill, &tk, force_early);
508 	else
509 		collect_procs_file(page, tokill, &tk, force_early);
510 	kfree(tk);
511 }
512 
513 /*
514  * Error handlers for various types of pages.
515  */
516 
517 enum outcome {
518 	IGNORED,	/* Error: cannot be handled */
519 	FAILED,		/* Error: handling failed */
520 	DELAYED,	/* Will be handled later */
521 	RECOVERED,	/* Successfully recovered */
522 };
523 
524 static const char *action_name[] = {
525 	[IGNORED] = "Ignored",
526 	[FAILED] = "Failed",
527 	[DELAYED] = "Delayed",
528 	[RECOVERED] = "Recovered",
529 };
530 
531 /*
532  * XXX: It is possible that a page is isolated from LRU cache,
533  * and then kept in swap cache or failed to remove from page cache.
534  * The page count will stop it from being freed by unpoison.
535  * Stress tests should be aware of this memory leak problem.
536  */
537 static int delete_from_lru_cache(struct page *p)
538 {
539 	if (!isolate_lru_page(p)) {
540 		/*
541 		 * Clear sensible page flags, so that the buddy system won't
542 		 * complain when the page is unpoison-and-freed.
543 		 */
544 		ClearPageActive(p);
545 		ClearPageUnevictable(p);
546 		/*
547 		 * drop the page count elevated by isolate_lru_page()
548 		 */
549 		page_cache_release(p);
550 		return 0;
551 	}
552 	return -EIO;
553 }
554 
555 /*
556  * Error hit kernel page.
557  * Do nothing, try to be lucky and not touch this instead. For a few cases we
558  * could be more sophisticated.
559  */
560 static int me_kernel(struct page *p, unsigned long pfn)
561 {
562 	return IGNORED;
563 }
564 
565 /*
566  * Page in unknown state. Do nothing.
567  */
568 static int me_unknown(struct page *p, unsigned long pfn)
569 {
570 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
571 	return FAILED;
572 }
573 
574 /*
575  * Clean (or cleaned) page cache page.
576  */
577 static int me_pagecache_clean(struct page *p, unsigned long pfn)
578 {
579 	int err;
580 	int ret = FAILED;
581 	struct address_space *mapping;
582 
583 	delete_from_lru_cache(p);
584 
585 	/*
586 	 * For anonymous pages we're done the only reference left
587 	 * should be the one m_f() holds.
588 	 */
589 	if (PageAnon(p))
590 		return RECOVERED;
591 
592 	/*
593 	 * Now truncate the page in the page cache. This is really
594 	 * more like a "temporary hole punch"
595 	 * Don't do this for block devices when someone else
596 	 * has a reference, because it could be file system metadata
597 	 * and that's not safe to truncate.
598 	 */
599 	mapping = page_mapping(p);
600 	if (!mapping) {
601 		/*
602 		 * Page has been teared down in the meanwhile
603 		 */
604 		return FAILED;
605 	}
606 
607 	/*
608 	 * Truncation is a bit tricky. Enable it per file system for now.
609 	 *
610 	 * Open: to take i_mutex or not for this? Right now we don't.
611 	 */
612 	if (mapping->a_ops->error_remove_page) {
613 		err = mapping->a_ops->error_remove_page(mapping, p);
614 		if (err != 0) {
615 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
616 					pfn, err);
617 		} else if (page_has_private(p) &&
618 				!try_to_release_page(p, GFP_NOIO)) {
619 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
620 		} else {
621 			ret = RECOVERED;
622 		}
623 	} else {
624 		/*
625 		 * If the file system doesn't support it just invalidate
626 		 * This fails on dirty or anything with private pages
627 		 */
628 		if (invalidate_inode_page(p))
629 			ret = RECOVERED;
630 		else
631 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
632 				pfn);
633 	}
634 	return ret;
635 }
636 
637 /*
638  * Dirty pagecache page
639  * Issues: when the error hit a hole page the error is not properly
640  * propagated.
641  */
642 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
643 {
644 	struct address_space *mapping = page_mapping(p);
645 
646 	SetPageError(p);
647 	/* TBD: print more information about the file. */
648 	if (mapping) {
649 		/*
650 		 * IO error will be reported by write(), fsync(), etc.
651 		 * who check the mapping.
652 		 * This way the application knows that something went
653 		 * wrong with its dirty file data.
654 		 *
655 		 * There's one open issue:
656 		 *
657 		 * The EIO will be only reported on the next IO
658 		 * operation and then cleared through the IO map.
659 		 * Normally Linux has two mechanisms to pass IO error
660 		 * first through the AS_EIO flag in the address space
661 		 * and then through the PageError flag in the page.
662 		 * Since we drop pages on memory failure handling the
663 		 * only mechanism open to use is through AS_AIO.
664 		 *
665 		 * This has the disadvantage that it gets cleared on
666 		 * the first operation that returns an error, while
667 		 * the PageError bit is more sticky and only cleared
668 		 * when the page is reread or dropped.  If an
669 		 * application assumes it will always get error on
670 		 * fsync, but does other operations on the fd before
671 		 * and the page is dropped between then the error
672 		 * will not be properly reported.
673 		 *
674 		 * This can already happen even without hwpoisoned
675 		 * pages: first on metadata IO errors (which only
676 		 * report through AS_EIO) or when the page is dropped
677 		 * at the wrong time.
678 		 *
679 		 * So right now we assume that the application DTRT on
680 		 * the first EIO, but we're not worse than other parts
681 		 * of the kernel.
682 		 */
683 		mapping_set_error(mapping, EIO);
684 	}
685 
686 	return me_pagecache_clean(p, pfn);
687 }
688 
689 /*
690  * Clean and dirty swap cache.
691  *
692  * Dirty swap cache page is tricky to handle. The page could live both in page
693  * cache and swap cache(ie. page is freshly swapped in). So it could be
694  * referenced concurrently by 2 types of PTEs:
695  * normal PTEs and swap PTEs. We try to handle them consistently by calling
696  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
697  * and then
698  *      - clear dirty bit to prevent IO
699  *      - remove from LRU
700  *      - but keep in the swap cache, so that when we return to it on
701  *        a later page fault, we know the application is accessing
702  *        corrupted data and shall be killed (we installed simple
703  *        interception code in do_swap_page to catch it).
704  *
705  * Clean swap cache pages can be directly isolated. A later page fault will
706  * bring in the known good data from disk.
707  */
708 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
709 {
710 	ClearPageDirty(p);
711 	/* Trigger EIO in shmem: */
712 	ClearPageUptodate(p);
713 
714 	if (!delete_from_lru_cache(p))
715 		return DELAYED;
716 	else
717 		return FAILED;
718 }
719 
720 static int me_swapcache_clean(struct page *p, unsigned long pfn)
721 {
722 	delete_from_swap_cache(p);
723 
724 	if (!delete_from_lru_cache(p))
725 		return RECOVERED;
726 	else
727 		return FAILED;
728 }
729 
730 /*
731  * Huge pages. Needs work.
732  * Issues:
733  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
734  *   To narrow down kill region to one page, we need to break up pmd.
735  */
736 static int me_huge_page(struct page *p, unsigned long pfn)
737 {
738 	int res = 0;
739 	struct page *hpage = compound_head(p);
740 	/*
741 	 * We can safely recover from error on free or reserved (i.e.
742 	 * not in-use) hugepage by dequeuing it from freelist.
743 	 * To check whether a hugepage is in-use or not, we can't use
744 	 * page->lru because it can be used in other hugepage operations,
745 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 	 * So instead we use page_mapping() and PageAnon().
747 	 * We assume that this function is called with page lock held,
748 	 * so there is no race between isolation and mapping/unmapping.
749 	 */
750 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
751 		res = dequeue_hwpoisoned_huge_page(hpage);
752 		if (!res)
753 			return RECOVERED;
754 	}
755 	return DELAYED;
756 }
757 
758 /*
759  * Various page states we can handle.
760  *
761  * A page state is defined by its current page->flags bits.
762  * The table matches them in order and calls the right handler.
763  *
764  * This is quite tricky because we can access page at any time
765  * in its live cycle, so all accesses have to be extremely careful.
766  *
767  * This is not complete. More states could be added.
768  * For any missing state don't attempt recovery.
769  */
770 
771 #define dirty		(1UL << PG_dirty)
772 #define sc		(1UL << PG_swapcache)
773 #define unevict		(1UL << PG_unevictable)
774 #define mlock		(1UL << PG_mlocked)
775 #define writeback	(1UL << PG_writeback)
776 #define lru		(1UL << PG_lru)
777 #define swapbacked	(1UL << PG_swapbacked)
778 #define head		(1UL << PG_head)
779 #define tail		(1UL << PG_tail)
780 #define compound	(1UL << PG_compound)
781 #define slab		(1UL << PG_slab)
782 #define reserved	(1UL << PG_reserved)
783 
784 static struct page_state {
785 	unsigned long mask;
786 	unsigned long res;
787 	char *msg;
788 	int (*action)(struct page *p, unsigned long pfn);
789 } error_states[] = {
790 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
791 	/*
792 	 * free pages are specially detected outside this table:
793 	 * PG_buddy pages only make a small fraction of all free pages.
794 	 */
795 
796 	/*
797 	 * Could in theory check if slab page is free or if we can drop
798 	 * currently unused objects without touching them. But just
799 	 * treat it as standard kernel for now.
800 	 */
801 	{ slab,		slab,		"kernel slab",	me_kernel },
802 
803 #ifdef CONFIG_PAGEFLAGS_EXTENDED
804 	{ head,		head,		"huge",		me_huge_page },
805 	{ tail,		tail,		"huge",		me_huge_page },
806 #else
807 	{ compound,	compound,	"huge",		me_huge_page },
808 #endif
809 
810 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
811 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
812 
813 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
814 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
815 
816 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
817 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
818 
819 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
820 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
821 
822 	/*
823 	 * Catchall entry: must be at end.
824 	 */
825 	{ 0,		0,		"unknown page state",	me_unknown },
826 };
827 
828 #undef dirty
829 #undef sc
830 #undef unevict
831 #undef mlock
832 #undef writeback
833 #undef lru
834 #undef swapbacked
835 #undef head
836 #undef tail
837 #undef compound
838 #undef slab
839 #undef reserved
840 
841 /*
842  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
843  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
844  */
845 static void action_result(unsigned long pfn, char *msg, int result)
846 {
847 	pr_err("MCE %#lx: %s page recovery: %s\n",
848 		pfn, msg, action_name[result]);
849 }
850 
851 static int page_action(struct page_state *ps, struct page *p,
852 			unsigned long pfn)
853 {
854 	int result;
855 	int count;
856 
857 	result = ps->action(p, pfn);
858 
859 	count = page_count(p) - 1;
860 	if (ps->action == me_swapcache_dirty && result == DELAYED)
861 		count--;
862 	if (count != 0) {
863 		printk(KERN_ERR
864 		       "MCE %#lx: %s page still referenced by %d users\n",
865 		       pfn, ps->msg, count);
866 		result = FAILED;
867 	}
868 	action_result(pfn, ps->msg, result);
869 
870 	/* Could do more checks here if page looks ok */
871 	/*
872 	 * Could adjust zone counters here to correct for the missing page.
873 	 */
874 
875 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
876 }
877 
878 /*
879  * Do all that is necessary to remove user space mappings. Unmap
880  * the pages and send SIGBUS to the processes if the data was dirty.
881  */
882 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
883 				  int trapno, int flags, struct page **hpagep)
884 {
885 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
886 	struct address_space *mapping;
887 	LIST_HEAD(tokill);
888 	int ret;
889 	int kill = 1, forcekill;
890 	struct page *hpage = *hpagep;
891 	struct page *ppage;
892 
893 	/*
894 	 * Here we are interested only in user-mapped pages, so skip any
895 	 * other types of pages.
896 	 */
897 	if (PageReserved(p) || PageSlab(p))
898 		return SWAP_SUCCESS;
899 	if (!(PageLRU(hpage) || PageHuge(p)))
900 		return SWAP_SUCCESS;
901 
902 	/*
903 	 * This check implies we don't kill processes if their pages
904 	 * are in the swap cache early. Those are always late kills.
905 	 */
906 	if (!page_mapped(hpage))
907 		return SWAP_SUCCESS;
908 
909 	if (PageKsm(p)) {
910 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
911 		return SWAP_FAIL;
912 	}
913 
914 	if (PageSwapCache(p)) {
915 		printk(KERN_ERR
916 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
917 		ttu |= TTU_IGNORE_HWPOISON;
918 	}
919 
920 	/*
921 	 * Propagate the dirty bit from PTEs to struct page first, because we
922 	 * need this to decide if we should kill or just drop the page.
923 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
924 	 * be called inside page lock (it's recommended but not enforced).
925 	 */
926 	mapping = page_mapping(hpage);
927 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
928 	    mapping_cap_writeback_dirty(mapping)) {
929 		if (page_mkclean(hpage)) {
930 			SetPageDirty(hpage);
931 		} else {
932 			kill = 0;
933 			ttu |= TTU_IGNORE_HWPOISON;
934 			printk(KERN_INFO
935 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
936 				pfn);
937 		}
938 	}
939 
940 	/*
941 	 * ppage: poisoned page
942 	 *   if p is regular page(4k page)
943 	 *        ppage == real poisoned page;
944 	 *   else p is hugetlb or THP, ppage == head page.
945 	 */
946 	ppage = hpage;
947 
948 	if (PageTransHuge(hpage)) {
949 		/*
950 		 * Verify that this isn't a hugetlbfs head page, the check for
951 		 * PageAnon is just for avoid tripping a split_huge_page
952 		 * internal debug check, as split_huge_page refuses to deal with
953 		 * anything that isn't an anon page. PageAnon can't go away fro
954 		 * under us because we hold a refcount on the hpage, without a
955 		 * refcount on the hpage. split_huge_page can't be safely called
956 		 * in the first place, having a refcount on the tail isn't
957 		 * enough * to be safe.
958 		 */
959 		if (!PageHuge(hpage) && PageAnon(hpage)) {
960 			if (unlikely(split_huge_page(hpage))) {
961 				/*
962 				 * FIXME: if splitting THP is failed, it is
963 				 * better to stop the following operation rather
964 				 * than causing panic by unmapping. System might
965 				 * survive if the page is freed later.
966 				 */
967 				printk(KERN_INFO
968 					"MCE %#lx: failed to split THP\n", pfn);
969 
970 				BUG_ON(!PageHWPoison(p));
971 				return SWAP_FAIL;
972 			}
973 			/*
974 			 * We pinned the head page for hwpoison handling,
975 			 * now we split the thp and we are interested in
976 			 * the hwpoisoned raw page, so move the refcount
977 			 * to it. Similarly, page lock is shifted.
978 			 */
979 			if (hpage != p) {
980 				if (!(flags & MF_COUNT_INCREASED)) {
981 					put_page(hpage);
982 					get_page(p);
983 				}
984 				lock_page(p);
985 				unlock_page(hpage);
986 				*hpagep = p;
987 			}
988 			/* THP is split, so ppage should be the real poisoned page. */
989 			ppage = p;
990 		}
991 	}
992 
993 	/*
994 	 * First collect all the processes that have the page
995 	 * mapped in dirty form.  This has to be done before try_to_unmap,
996 	 * because ttu takes the rmap data structures down.
997 	 *
998 	 * Error handling: We ignore errors here because
999 	 * there's nothing that can be done.
1000 	 */
1001 	if (kill)
1002 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1003 
1004 	ret = try_to_unmap(ppage, ttu);
1005 	if (ret != SWAP_SUCCESS)
1006 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1007 				pfn, page_mapcount(ppage));
1008 
1009 	/*
1010 	 * Now that the dirty bit has been propagated to the
1011 	 * struct page and all unmaps done we can decide if
1012 	 * killing is needed or not.  Only kill when the page
1013 	 * was dirty or the process is not restartable,
1014 	 * otherwise the tokill list is merely
1015 	 * freed.  When there was a problem unmapping earlier
1016 	 * use a more force-full uncatchable kill to prevent
1017 	 * any accesses to the poisoned memory.
1018 	 */
1019 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1020 	kill_procs(&tokill, forcekill, trapno,
1021 		      ret != SWAP_SUCCESS, p, pfn, flags);
1022 
1023 	return ret;
1024 }
1025 
1026 static void set_page_hwpoison_huge_page(struct page *hpage)
1027 {
1028 	int i;
1029 	int nr_pages = 1 << compound_order(hpage);
1030 	for (i = 0; i < nr_pages; i++)
1031 		SetPageHWPoison(hpage + i);
1032 }
1033 
1034 static void clear_page_hwpoison_huge_page(struct page *hpage)
1035 {
1036 	int i;
1037 	int nr_pages = 1 << compound_order(hpage);
1038 	for (i = 0; i < nr_pages; i++)
1039 		ClearPageHWPoison(hpage + i);
1040 }
1041 
1042 /**
1043  * memory_failure - Handle memory failure of a page.
1044  * @pfn: Page Number of the corrupted page
1045  * @trapno: Trap number reported in the signal to user space.
1046  * @flags: fine tune action taken
1047  *
1048  * This function is called by the low level machine check code
1049  * of an architecture when it detects hardware memory corruption
1050  * of a page. It tries its best to recover, which includes
1051  * dropping pages, killing processes etc.
1052  *
1053  * The function is primarily of use for corruptions that
1054  * happen outside the current execution context (e.g. when
1055  * detected by a background scrubber)
1056  *
1057  * Must run in process context (e.g. a work queue) with interrupts
1058  * enabled and no spinlocks hold.
1059  */
1060 int memory_failure(unsigned long pfn, int trapno, int flags)
1061 {
1062 	struct page_state *ps;
1063 	struct page *p;
1064 	struct page *hpage;
1065 	int res;
1066 	unsigned int nr_pages;
1067 	unsigned long page_flags;
1068 
1069 	if (!sysctl_memory_failure_recovery)
1070 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1071 
1072 	if (!pfn_valid(pfn)) {
1073 		printk(KERN_ERR
1074 		       "MCE %#lx: memory outside kernel control\n",
1075 		       pfn);
1076 		return -ENXIO;
1077 	}
1078 
1079 	p = pfn_to_page(pfn);
1080 	hpage = compound_head(p);
1081 	if (TestSetPageHWPoison(p)) {
1082 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1083 		return 0;
1084 	}
1085 
1086 	/*
1087 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1088 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1089 	 * transparent hugepages, they are supposed to be split and error
1090 	 * measurement is done in normal page units.  So nr_pages should be one
1091 	 * in this case.
1092 	 */
1093 	if (PageHuge(p))
1094 		nr_pages = 1 << compound_order(hpage);
1095 	else /* normal page or thp */
1096 		nr_pages = 1;
1097 	atomic_long_add(nr_pages, &num_poisoned_pages);
1098 
1099 	/*
1100 	 * We need/can do nothing about count=0 pages.
1101 	 * 1) it's a free page, and therefore in safe hand:
1102 	 *    prep_new_page() will be the gate keeper.
1103 	 * 2) it's a free hugepage, which is also safe:
1104 	 *    an affected hugepage will be dequeued from hugepage freelist,
1105 	 *    so there's no concern about reusing it ever after.
1106 	 * 3) it's part of a non-compound high order page.
1107 	 *    Implies some kernel user: cannot stop them from
1108 	 *    R/W the page; let's pray that the page has been
1109 	 *    used and will be freed some time later.
1110 	 * In fact it's dangerous to directly bump up page count from 0,
1111 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1112 	 */
1113 	if (!(flags & MF_COUNT_INCREASED) &&
1114 		!get_page_unless_zero(hpage)) {
1115 		if (is_free_buddy_page(p)) {
1116 			action_result(pfn, "free buddy", DELAYED);
1117 			return 0;
1118 		} else if (PageHuge(hpage)) {
1119 			/*
1120 			 * Check "filter hit" and "race with other subpage."
1121 			 */
1122 			lock_page(hpage);
1123 			if (PageHWPoison(hpage)) {
1124 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1125 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1126 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1127 					unlock_page(hpage);
1128 					return 0;
1129 				}
1130 			}
1131 			set_page_hwpoison_huge_page(hpage);
1132 			res = dequeue_hwpoisoned_huge_page(hpage);
1133 			action_result(pfn, "free huge",
1134 				      res ? IGNORED : DELAYED);
1135 			unlock_page(hpage);
1136 			return res;
1137 		} else {
1138 			action_result(pfn, "high order kernel", IGNORED);
1139 			return -EBUSY;
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * We ignore non-LRU pages for good reasons.
1145 	 * - PG_locked is only well defined for LRU pages and a few others
1146 	 * - to avoid races with __set_page_locked()
1147 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1148 	 * The check (unnecessarily) ignores LRU pages being isolated and
1149 	 * walked by the page reclaim code, however that's not a big loss.
1150 	 */
1151 	if (!PageHuge(p) && !PageTransTail(p)) {
1152 		if (!PageLRU(p))
1153 			shake_page(p, 0);
1154 		if (!PageLRU(p)) {
1155 			/*
1156 			 * shake_page could have turned it free.
1157 			 */
1158 			if (is_free_buddy_page(p)) {
1159 				if (flags & MF_COUNT_INCREASED)
1160 					action_result(pfn, "free buddy", DELAYED);
1161 				else
1162 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1163 				return 0;
1164 			}
1165 		}
1166 	}
1167 
1168 	lock_page(hpage);
1169 
1170 	/*
1171 	 * The page could have changed compound pages during the locking.
1172 	 * If this happens just bail out.
1173 	 */
1174 	if (compound_head(p) != hpage) {
1175 		action_result(pfn, "different compound page after locking", IGNORED);
1176 		res = -EBUSY;
1177 		goto out;
1178 	}
1179 
1180 	/*
1181 	 * We use page flags to determine what action should be taken, but
1182 	 * the flags can be modified by the error containment action.  One
1183 	 * example is an mlocked page, where PG_mlocked is cleared by
1184 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185 	 * correctly, we save a copy of the page flags at this time.
1186 	 */
1187 	page_flags = p->flags;
1188 
1189 	/*
1190 	 * unpoison always clear PG_hwpoison inside page lock
1191 	 */
1192 	if (!PageHWPoison(p)) {
1193 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1194 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1195 		put_page(hpage);
1196 		res = 0;
1197 		goto out;
1198 	}
1199 	if (hwpoison_filter(p)) {
1200 		if (TestClearPageHWPoison(p))
1201 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1202 		unlock_page(hpage);
1203 		put_page(hpage);
1204 		return 0;
1205 	}
1206 
1207 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1208 		goto identify_page_state;
1209 
1210 	/*
1211 	 * For error on the tail page, we should set PG_hwpoison
1212 	 * on the head page to show that the hugepage is hwpoisoned
1213 	 */
1214 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1215 		action_result(pfn, "hugepage already hardware poisoned",
1216 				IGNORED);
1217 		unlock_page(hpage);
1218 		put_page(hpage);
1219 		return 0;
1220 	}
1221 	/*
1222 	 * Set PG_hwpoison on all pages in an error hugepage,
1223 	 * because containment is done in hugepage unit for now.
1224 	 * Since we have done TestSetPageHWPoison() for the head page with
1225 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1226 	 */
1227 	if (PageHuge(p))
1228 		set_page_hwpoison_huge_page(hpage);
1229 
1230 	/*
1231 	 * It's very difficult to mess with pages currently under IO
1232 	 * and in many cases impossible, so we just avoid it here.
1233 	 */
1234 	wait_on_page_writeback(p);
1235 
1236 	/*
1237 	 * Now take care of user space mappings.
1238 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1239 	 *
1240 	 * When the raw error page is thp tail page, hpage points to the raw
1241 	 * page after thp split.
1242 	 */
1243 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1244 	    != SWAP_SUCCESS) {
1245 		action_result(pfn, "unmapping failed", IGNORED);
1246 		res = -EBUSY;
1247 		goto out;
1248 	}
1249 
1250 	/*
1251 	 * Torn down by someone else?
1252 	 */
1253 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1254 		action_result(pfn, "already truncated LRU", IGNORED);
1255 		res = -EBUSY;
1256 		goto out;
1257 	}
1258 
1259 identify_page_state:
1260 	res = -EBUSY;
1261 	/*
1262 	 * The first check uses the current page flags which may not have any
1263 	 * relevant information. The second check with the saved page flagss is
1264 	 * carried out only if the first check can't determine the page status.
1265 	 */
1266 	for (ps = error_states;; ps++)
1267 		if ((p->flags & ps->mask) == ps->res)
1268 			break;
1269 
1270 	page_flags |= (p->flags & (1UL << PG_dirty));
1271 
1272 	if (!ps->mask)
1273 		for (ps = error_states;; ps++)
1274 			if ((page_flags & ps->mask) == ps->res)
1275 				break;
1276 	res = page_action(ps, p, pfn);
1277 out:
1278 	unlock_page(hpage);
1279 	return res;
1280 }
1281 EXPORT_SYMBOL_GPL(memory_failure);
1282 
1283 #define MEMORY_FAILURE_FIFO_ORDER	4
1284 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1285 
1286 struct memory_failure_entry {
1287 	unsigned long pfn;
1288 	int trapno;
1289 	int flags;
1290 };
1291 
1292 struct memory_failure_cpu {
1293 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1294 		      MEMORY_FAILURE_FIFO_SIZE);
1295 	spinlock_t lock;
1296 	struct work_struct work;
1297 };
1298 
1299 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1300 
1301 /**
1302  * memory_failure_queue - Schedule handling memory failure of a page.
1303  * @pfn: Page Number of the corrupted page
1304  * @trapno: Trap number reported in the signal to user space.
1305  * @flags: Flags for memory failure handling
1306  *
1307  * This function is called by the low level hardware error handler
1308  * when it detects hardware memory corruption of a page. It schedules
1309  * the recovering of error page, including dropping pages, killing
1310  * processes etc.
1311  *
1312  * The function is primarily of use for corruptions that
1313  * happen outside the current execution context (e.g. when
1314  * detected by a background scrubber)
1315  *
1316  * Can run in IRQ context.
1317  */
1318 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1319 {
1320 	struct memory_failure_cpu *mf_cpu;
1321 	unsigned long proc_flags;
1322 	struct memory_failure_entry entry = {
1323 		.pfn =		pfn,
1324 		.trapno =	trapno,
1325 		.flags =	flags,
1326 	};
1327 
1328 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1329 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1330 	if (kfifo_put(&mf_cpu->fifo, entry))
1331 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1332 	else
1333 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1334 		       pfn);
1335 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1336 	put_cpu_var(memory_failure_cpu);
1337 }
1338 EXPORT_SYMBOL_GPL(memory_failure_queue);
1339 
1340 static void memory_failure_work_func(struct work_struct *work)
1341 {
1342 	struct memory_failure_cpu *mf_cpu;
1343 	struct memory_failure_entry entry = { 0, };
1344 	unsigned long proc_flags;
1345 	int gotten;
1346 
1347 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1348 	for (;;) {
1349 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1350 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1351 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352 		if (!gotten)
1353 			break;
1354 		if (entry.flags & MF_SOFT_OFFLINE)
1355 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1356 		else
1357 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1358 	}
1359 }
1360 
1361 static int __init memory_failure_init(void)
1362 {
1363 	struct memory_failure_cpu *mf_cpu;
1364 	int cpu;
1365 
1366 	for_each_possible_cpu(cpu) {
1367 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1368 		spin_lock_init(&mf_cpu->lock);
1369 		INIT_KFIFO(mf_cpu->fifo);
1370 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1371 	}
1372 
1373 	return 0;
1374 }
1375 core_initcall(memory_failure_init);
1376 
1377 /**
1378  * unpoison_memory - Unpoison a previously poisoned page
1379  * @pfn: Page number of the to be unpoisoned page
1380  *
1381  * Software-unpoison a page that has been poisoned by
1382  * memory_failure() earlier.
1383  *
1384  * This is only done on the software-level, so it only works
1385  * for linux injected failures, not real hardware failures
1386  *
1387  * Returns 0 for success, otherwise -errno.
1388  */
1389 int unpoison_memory(unsigned long pfn)
1390 {
1391 	struct page *page;
1392 	struct page *p;
1393 	int freeit = 0;
1394 	unsigned int nr_pages;
1395 
1396 	if (!pfn_valid(pfn))
1397 		return -ENXIO;
1398 
1399 	p = pfn_to_page(pfn);
1400 	page = compound_head(p);
1401 
1402 	if (!PageHWPoison(p)) {
1403 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1404 		return 0;
1405 	}
1406 
1407 	/*
1408 	 * unpoison_memory() can encounter thp only when the thp is being
1409 	 * worked by memory_failure() and the page lock is not held yet.
1410 	 * In such case, we yield to memory_failure() and make unpoison fail.
1411 	 */
1412 	if (!PageHuge(page) && PageTransHuge(page)) {
1413 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1414 			return 0;
1415 	}
1416 
1417 	nr_pages = 1 << compound_order(page);
1418 
1419 	if (!get_page_unless_zero(page)) {
1420 		/*
1421 		 * Since HWPoisoned hugepage should have non-zero refcount,
1422 		 * race between memory failure and unpoison seems to happen.
1423 		 * In such case unpoison fails and memory failure runs
1424 		 * to the end.
1425 		 */
1426 		if (PageHuge(page)) {
1427 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1428 			return 0;
1429 		}
1430 		if (TestClearPageHWPoison(p))
1431 			atomic_long_dec(&num_poisoned_pages);
1432 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1433 		return 0;
1434 	}
1435 
1436 	lock_page(page);
1437 	/*
1438 	 * This test is racy because PG_hwpoison is set outside of page lock.
1439 	 * That's acceptable because that won't trigger kernel panic. Instead,
1440 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1441 	 * the free buddy page pool.
1442 	 */
1443 	if (TestClearPageHWPoison(page)) {
1444 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1445 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1446 		freeit = 1;
1447 		if (PageHuge(page))
1448 			clear_page_hwpoison_huge_page(page);
1449 	}
1450 	unlock_page(page);
1451 
1452 	put_page(page);
1453 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1454 		put_page(page);
1455 
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL(unpoison_memory);
1459 
1460 static struct page *new_page(struct page *p, unsigned long private, int **x)
1461 {
1462 	int nid = page_to_nid(p);
1463 	if (PageHuge(p))
1464 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1465 						   nid);
1466 	else
1467 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1468 }
1469 
1470 /*
1471  * Safely get reference count of an arbitrary page.
1472  * Returns 0 for a free page, -EIO for a zero refcount page
1473  * that is not free, and 1 for any other page type.
1474  * For 1 the page is returned with increased page count, otherwise not.
1475  */
1476 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1477 {
1478 	int ret;
1479 
1480 	if (flags & MF_COUNT_INCREASED)
1481 		return 1;
1482 
1483 	/*
1484 	 * When the target page is a free hugepage, just remove it
1485 	 * from free hugepage list.
1486 	 */
1487 	if (!get_page_unless_zero(compound_head(p))) {
1488 		if (PageHuge(p)) {
1489 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1490 			ret = 0;
1491 		} else if (is_free_buddy_page(p)) {
1492 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1493 			ret = 0;
1494 		} else {
1495 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1496 				__func__, pfn, p->flags);
1497 			ret = -EIO;
1498 		}
1499 	} else {
1500 		/* Not a free page */
1501 		ret = 1;
1502 	}
1503 	return ret;
1504 }
1505 
1506 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1507 {
1508 	int ret = __get_any_page(page, pfn, flags);
1509 
1510 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1511 		/*
1512 		 * Try to free it.
1513 		 */
1514 		put_page(page);
1515 		shake_page(page, 1);
1516 
1517 		/*
1518 		 * Did it turn free?
1519 		 */
1520 		ret = __get_any_page(page, pfn, 0);
1521 		if (!PageLRU(page)) {
1522 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1523 				pfn, page->flags);
1524 			return -EIO;
1525 		}
1526 	}
1527 	return ret;
1528 }
1529 
1530 static int soft_offline_huge_page(struct page *page, int flags)
1531 {
1532 	int ret;
1533 	unsigned long pfn = page_to_pfn(page);
1534 	struct page *hpage = compound_head(page);
1535 	LIST_HEAD(pagelist);
1536 
1537 	/*
1538 	 * This double-check of PageHWPoison is to avoid the race with
1539 	 * memory_failure(). See also comment in __soft_offline_page().
1540 	 */
1541 	lock_page(hpage);
1542 	if (PageHWPoison(hpage)) {
1543 		unlock_page(hpage);
1544 		put_page(hpage);
1545 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1546 		return -EBUSY;
1547 	}
1548 	unlock_page(hpage);
1549 
1550 	/* Keep page count to indicate a given hugepage is isolated. */
1551 	list_move(&hpage->lru, &pagelist);
1552 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1553 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1554 	if (ret) {
1555 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1556 			pfn, ret, page->flags);
1557 		/*
1558 		 * We know that soft_offline_huge_page() tries to migrate
1559 		 * only one hugepage pointed to by hpage, so we need not
1560 		 * run through the pagelist here.
1561 		 */
1562 		putback_active_hugepage(hpage);
1563 		if (ret > 0)
1564 			ret = -EIO;
1565 	} else {
1566 		/* overcommit hugetlb page will be freed to buddy */
1567 		if (PageHuge(page)) {
1568 			set_page_hwpoison_huge_page(hpage);
1569 			dequeue_hwpoisoned_huge_page(hpage);
1570 			atomic_long_add(1 << compound_order(hpage),
1571 					&num_poisoned_pages);
1572 		} else {
1573 			SetPageHWPoison(page);
1574 			atomic_long_inc(&num_poisoned_pages);
1575 		}
1576 	}
1577 	return ret;
1578 }
1579 
1580 static int __soft_offline_page(struct page *page, int flags)
1581 {
1582 	int ret;
1583 	unsigned long pfn = page_to_pfn(page);
1584 
1585 	/*
1586 	 * Check PageHWPoison again inside page lock because PageHWPoison
1587 	 * is set by memory_failure() outside page lock. Note that
1588 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1589 	 * so there's no race between soft_offline_page() and memory_failure().
1590 	 */
1591 	lock_page(page);
1592 	wait_on_page_writeback(page);
1593 	if (PageHWPoison(page)) {
1594 		unlock_page(page);
1595 		put_page(page);
1596 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1597 		return -EBUSY;
1598 	}
1599 	/*
1600 	 * Try to invalidate first. This should work for
1601 	 * non dirty unmapped page cache pages.
1602 	 */
1603 	ret = invalidate_inode_page(page);
1604 	unlock_page(page);
1605 	/*
1606 	 * RED-PEN would be better to keep it isolated here, but we
1607 	 * would need to fix isolation locking first.
1608 	 */
1609 	if (ret == 1) {
1610 		put_page(page);
1611 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1612 		SetPageHWPoison(page);
1613 		atomic_long_inc(&num_poisoned_pages);
1614 		return 0;
1615 	}
1616 
1617 	/*
1618 	 * Simple invalidation didn't work.
1619 	 * Try to migrate to a new page instead. migrate.c
1620 	 * handles a large number of cases for us.
1621 	 */
1622 	ret = isolate_lru_page(page);
1623 	/*
1624 	 * Drop page reference which is came from get_any_page()
1625 	 * successful isolate_lru_page() already took another one.
1626 	 */
1627 	put_page(page);
1628 	if (!ret) {
1629 		LIST_HEAD(pagelist);
1630 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1631 					page_is_file_cache(page));
1632 		list_add(&page->lru, &pagelist);
1633 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1634 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1635 		if (ret) {
1636 			if (!list_empty(&pagelist)) {
1637 				list_del(&page->lru);
1638 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1639 						page_is_file_cache(page));
1640 				putback_lru_page(page);
1641 			}
1642 
1643 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1644 				pfn, ret, page->flags);
1645 			if (ret > 0)
1646 				ret = -EIO;
1647 		} else {
1648 			/*
1649 			 * After page migration succeeds, the source page can
1650 			 * be trapped in pagevec and actual freeing is delayed.
1651 			 * Freeing code works differently based on PG_hwpoison,
1652 			 * so there's a race. We need to make sure that the
1653 			 * source page should be freed back to buddy before
1654 			 * setting PG_hwpoison.
1655 			 */
1656 			if (!is_free_buddy_page(page))
1657 				lru_add_drain_all();
1658 			if (!is_free_buddy_page(page))
1659 				drain_all_pages(page_zone(page));
1660 			SetPageHWPoison(page);
1661 			if (!is_free_buddy_page(page))
1662 				pr_info("soft offline: %#lx: page leaked\n",
1663 					pfn);
1664 			atomic_long_inc(&num_poisoned_pages);
1665 		}
1666 	} else {
1667 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1668 			pfn, ret, page_count(page), page->flags);
1669 	}
1670 	return ret;
1671 }
1672 
1673 /**
1674  * soft_offline_page - Soft offline a page.
1675  * @page: page to offline
1676  * @flags: flags. Same as memory_failure().
1677  *
1678  * Returns 0 on success, otherwise negated errno.
1679  *
1680  * Soft offline a page, by migration or invalidation,
1681  * without killing anything. This is for the case when
1682  * a page is not corrupted yet (so it's still valid to access),
1683  * but has had a number of corrected errors and is better taken
1684  * out.
1685  *
1686  * The actual policy on when to do that is maintained by
1687  * user space.
1688  *
1689  * This should never impact any application or cause data loss,
1690  * however it might take some time.
1691  *
1692  * This is not a 100% solution for all memory, but tries to be
1693  * ``good enough'' for the majority of memory.
1694  */
1695 int soft_offline_page(struct page *page, int flags)
1696 {
1697 	int ret;
1698 	unsigned long pfn = page_to_pfn(page);
1699 	struct page *hpage = compound_head(page);
1700 
1701 	if (PageHWPoison(page)) {
1702 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1703 		return -EBUSY;
1704 	}
1705 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1706 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1707 			pr_info("soft offline: %#lx: failed to split THP\n",
1708 				pfn);
1709 			return -EBUSY;
1710 		}
1711 	}
1712 
1713 	get_online_mems();
1714 
1715 	/*
1716 	 * Isolate the page, so that it doesn't get reallocated if it
1717 	 * was free. This flag should be kept set until the source page
1718 	 * is freed and PG_hwpoison on it is set.
1719 	 */
1720 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1721 		set_migratetype_isolate(page, true);
1722 
1723 	ret = get_any_page(page, pfn, flags);
1724 	put_online_mems();
1725 	if (ret > 0) { /* for in-use pages */
1726 		if (PageHuge(page))
1727 			ret = soft_offline_huge_page(page, flags);
1728 		else
1729 			ret = __soft_offline_page(page, flags);
1730 	} else if (ret == 0) { /* for free pages */
1731 		if (PageHuge(page)) {
1732 			set_page_hwpoison_huge_page(hpage);
1733 			dequeue_hwpoisoned_huge_page(hpage);
1734 			atomic_long_add(1 << compound_order(hpage),
1735 					&num_poisoned_pages);
1736 		} else {
1737 			SetPageHWPoison(page);
1738 			atomic_long_inc(&num_poisoned_pages);
1739 		}
1740 	}
1741 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1742 	return ret;
1743 }
1744