xref: /openbmc/linux/mm/memory-failure.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 static bool __page_handle_poison(struct page *page)
72 {
73 	int ret;
74 
75 	zone_pcp_disable(page_zone(page));
76 	ret = dissolve_free_huge_page(page);
77 	if (!ret)
78 		ret = take_page_off_buddy(page);
79 	zone_pcp_enable(page_zone(page));
80 
81 	return ret > 0;
82 }
83 
84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85 {
86 	if (hugepage_or_freepage) {
87 		/*
88 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 		 * returns 0 for non-hugetlb pages as well.
90 		 */
91 		if (!__page_handle_poison(page))
92 			/*
93 			 * We could fail to take off the target page from buddy
94 			 * for example due to racy page allocation, but that's
95 			 * acceptable because soft-offlined page is not broken
96 			 * and if someone really want to use it, they should
97 			 * take it.
98 			 */
99 			return false;
100 	}
101 
102 	SetPageHWPoison(page);
103 	if (release)
104 		put_page(page);
105 	page_ref_inc(page);
106 	num_poisoned_pages_inc();
107 
108 	return true;
109 }
110 
111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112 
113 u32 hwpoison_filter_enable = 0;
114 u32 hwpoison_filter_dev_major = ~0U;
115 u32 hwpoison_filter_dev_minor = ~0U;
116 u64 hwpoison_filter_flags_mask;
117 u64 hwpoison_filter_flags_value;
118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
123 
124 static int hwpoison_filter_dev(struct page *p)
125 {
126 	struct address_space *mapping;
127 	dev_t dev;
128 
129 	if (hwpoison_filter_dev_major == ~0U &&
130 	    hwpoison_filter_dev_minor == ~0U)
131 		return 0;
132 
133 	/*
134 	 * page_mapping() does not accept slab pages.
135 	 */
136 	if (PageSlab(p))
137 		return -EINVAL;
138 
139 	mapping = page_mapping(p);
140 	if (mapping == NULL || mapping->host == NULL)
141 		return -EINVAL;
142 
143 	dev = mapping->host->i_sb->s_dev;
144 	if (hwpoison_filter_dev_major != ~0U &&
145 	    hwpoison_filter_dev_major != MAJOR(dev))
146 		return -EINVAL;
147 	if (hwpoison_filter_dev_minor != ~0U &&
148 	    hwpoison_filter_dev_minor != MINOR(dev))
149 		return -EINVAL;
150 
151 	return 0;
152 }
153 
154 static int hwpoison_filter_flags(struct page *p)
155 {
156 	if (!hwpoison_filter_flags_mask)
157 		return 0;
158 
159 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 				    hwpoison_filter_flags_value)
161 		return 0;
162 	else
163 		return -EINVAL;
164 }
165 
166 /*
167  * This allows stress tests to limit test scope to a collection of tasks
168  * by putting them under some memcg. This prevents killing unrelated/important
169  * processes such as /sbin/init. Note that the target task may share clean
170  * pages with init (eg. libc text), which is harmless. If the target task
171  * share _dirty_ pages with another task B, the test scheme must make sure B
172  * is also included in the memcg. At last, due to race conditions this filter
173  * can only guarantee that the page either belongs to the memcg tasks, or is
174  * a freed page.
175  */
176 #ifdef CONFIG_MEMCG
177 u64 hwpoison_filter_memcg;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179 static int hwpoison_filter_task(struct page *p)
180 {
181 	if (!hwpoison_filter_memcg)
182 		return 0;
183 
184 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 #else
190 static int hwpoison_filter_task(struct page *p) { return 0; }
191 #endif
192 
193 int hwpoison_filter(struct page *p)
194 {
195 	if (!hwpoison_filter_enable)
196 		return 0;
197 
198 	if (hwpoison_filter_dev(p))
199 		return -EINVAL;
200 
201 	if (hwpoison_filter_flags(p))
202 		return -EINVAL;
203 
204 	if (hwpoison_filter_task(p))
205 		return -EINVAL;
206 
207 	return 0;
208 }
209 #else
210 int hwpoison_filter(struct page *p)
211 {
212 	return 0;
213 }
214 #endif
215 
216 EXPORT_SYMBOL_GPL(hwpoison_filter);
217 
218 /*
219  * Kill all processes that have a poisoned page mapped and then isolate
220  * the page.
221  *
222  * General strategy:
223  * Find all processes having the page mapped and kill them.
224  * But we keep a page reference around so that the page is not
225  * actually freed yet.
226  * Then stash the page away
227  *
228  * There's no convenient way to get back to mapped processes
229  * from the VMAs. So do a brute-force search over all
230  * running processes.
231  *
232  * Remember that machine checks are not common (or rather
233  * if they are common you have other problems), so this shouldn't
234  * be a performance issue.
235  *
236  * Also there are some races possible while we get from the
237  * error detection to actually handle it.
238  */
239 
240 struct to_kill {
241 	struct list_head nd;
242 	struct task_struct *tsk;
243 	unsigned long addr;
244 	short size_shift;
245 };
246 
247 /*
248  * Send all the processes who have the page mapped a signal.
249  * ``action optional'' if they are not immediately affected by the error
250  * ``action required'' if error happened in current execution context
251  */
252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
253 {
254 	struct task_struct *t = tk->tsk;
255 	short addr_lsb = tk->size_shift;
256 	int ret = 0;
257 
258 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
259 			pfn, t->comm, t->pid);
260 
261 	if (flags & MF_ACTION_REQUIRED) {
262 		if (t == current)
263 			ret = force_sig_mceerr(BUS_MCEERR_AR,
264 					 (void __user *)tk->addr, addr_lsb);
265 		else
266 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
267 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 				addr_lsb, t);
269 	} else {
270 		/*
271 		 * Don't use force here, it's convenient if the signal
272 		 * can be temporarily blocked.
273 		 * This could cause a loop when the user sets SIGBUS
274 		 * to SIG_IGN, but hopefully no one will do that?
275 		 */
276 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
277 				      addr_lsb, t);  /* synchronous? */
278 	}
279 	if (ret < 0)
280 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
281 			t->comm, t->pid, ret);
282 	return ret;
283 }
284 
285 /*
286  * Unknown page type encountered. Try to check whether it can turn PageLRU by
287  * lru_add_drain_all.
288  */
289 void shake_page(struct page *p)
290 {
291 	if (PageHuge(p))
292 		return;
293 
294 	if (!PageSlab(p)) {
295 		lru_add_drain_all();
296 		if (PageLRU(p) || is_free_buddy_page(p))
297 			return;
298 	}
299 
300 	/*
301 	 * TODO: Could shrink slab caches here if a lightweight range-based
302 	 * shrinker will be available.
303 	 */
304 }
305 EXPORT_SYMBOL_GPL(shake_page);
306 
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 		struct vm_area_struct *vma)
309 {
310 	unsigned long address = vma_address(page, vma);
311 	unsigned long ret = 0;
312 	pgd_t *pgd;
313 	p4d_t *p4d;
314 	pud_t *pud;
315 	pmd_t *pmd;
316 	pte_t *pte;
317 
318 	pgd = pgd_offset(vma->vm_mm, address);
319 	if (!pgd_present(*pgd))
320 		return 0;
321 	p4d = p4d_offset(pgd, address);
322 	if (!p4d_present(*p4d))
323 		return 0;
324 	pud = pud_offset(p4d, address);
325 	if (!pud_present(*pud))
326 		return 0;
327 	if (pud_devmap(*pud))
328 		return PUD_SHIFT;
329 	pmd = pmd_offset(pud, address);
330 	if (!pmd_present(*pmd))
331 		return 0;
332 	if (pmd_devmap(*pmd))
333 		return PMD_SHIFT;
334 	pte = pte_offset_map(pmd, address);
335 	if (pte_present(*pte) && pte_devmap(*pte))
336 		ret = PAGE_SHIFT;
337 	pte_unmap(pte);
338 	return ret;
339 }
340 
341 /*
342  * Failure handling: if we can't find or can't kill a process there's
343  * not much we can do.	We just print a message and ignore otherwise.
344  */
345 
346 /*
347  * Schedule a process for later kill.
348  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349  */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 		       struct vm_area_struct *vma,
352 		       struct list_head *to_kill)
353 {
354 	struct to_kill *tk;
355 
356 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 	if (!tk) {
358 		pr_err("Memory failure: Out of memory while machine check handling\n");
359 		return;
360 	}
361 
362 	tk->addr = page_address_in_vma(p, vma);
363 	if (is_zone_device_page(p))
364 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 	else
366 		tk->size_shift = page_shift(compound_head(p));
367 
368 	/*
369 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 	 * so "tk->size_shift == 0" effectively checks no mapping on
372 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 	 * to a process' address space, it's possible not all N VMAs
374 	 * contain mappings for the page, but at least one VMA does.
375 	 * Only deliver SIGBUS with payload derived from the VMA that
376 	 * has a mapping for the page.
377 	 */
378 	if (tk->addr == -EFAULT) {
379 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 			page_to_pfn(p), tsk->comm);
381 	} else if (tk->size_shift == 0) {
382 		kfree(tk);
383 		return;
384 	}
385 
386 	get_task_struct(tsk);
387 	tk->tsk = tsk;
388 	list_add_tail(&tk->nd, to_kill);
389 }
390 
391 /*
392  * Kill the processes that have been collected earlier.
393  *
394  * Only do anything when FORCEKILL is set, otherwise just free the
395  * list (this is used for clean pages which do not need killing)
396  * Also when FAIL is set do a force kill because something went
397  * wrong earlier.
398  */
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 		unsigned long pfn, int flags)
401 {
402 	struct to_kill *tk, *next;
403 
404 	list_for_each_entry_safe (tk, next, to_kill, nd) {
405 		if (forcekill) {
406 			/*
407 			 * In case something went wrong with munmapping
408 			 * make sure the process doesn't catch the
409 			 * signal and then access the memory. Just kill it.
410 			 */
411 			if (fail || tk->addr == -EFAULT) {
412 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 				       pfn, tk->tsk->comm, tk->tsk->pid);
414 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 						 tk->tsk, PIDTYPE_PID);
416 			}
417 
418 			/*
419 			 * In theory the process could have mapped
420 			 * something else on the address in-between. We could
421 			 * check for that, but we need to tell the
422 			 * process anyways.
423 			 */
424 			else if (kill_proc(tk, pfn, flags) < 0)
425 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 				       pfn, tk->tsk->comm, tk->tsk->pid);
427 		}
428 		put_task_struct(tk->tsk);
429 		kfree(tk);
430 	}
431 }
432 
433 /*
434  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435  * on behalf of the thread group. Return task_struct of the (first found)
436  * dedicated thread if found, and return NULL otherwise.
437  *
438  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439  * have to call rcu_read_lock/unlock() in this function.
440  */
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(tsk, t) {
446 		if (t->flags & PF_MCE_PROCESS) {
447 			if (t->flags & PF_MCE_EARLY)
448 				return t;
449 		} else {
450 			if (sysctl_memory_failure_early_kill)
451 				return t;
452 		}
453 	}
454 	return NULL;
455 }
456 
457 /*
458  * Determine whether a given process is "early kill" process which expects
459  * to be signaled when some page under the process is hwpoisoned.
460  * Return task_struct of the dedicated thread (main thread unless explicitly
461  * specified) if the process is "early kill" and otherwise returns NULL.
462  *
463  * Note that the above is true for Action Optional case. For Action Required
464  * case, it's only meaningful to the current thread which need to be signaled
465  * with SIGBUS, this error is Action Optional for other non current
466  * processes sharing the same error page,if the process is "early kill", the
467  * task_struct of the dedicated thread will also be returned.
468  */
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
470 					   int force_early)
471 {
472 	if (!tsk->mm)
473 		return NULL;
474 	/*
475 	 * Comparing ->mm here because current task might represent
476 	 * a subthread, while tsk always points to the main thread.
477 	 */
478 	if (force_early && tsk->mm == current->mm)
479 		return current;
480 
481 	return find_early_kill_thread(tsk);
482 }
483 
484 /*
485  * Collect processes when the error hit an anonymous page.
486  */
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 				int force_early)
489 {
490 	struct vm_area_struct *vma;
491 	struct task_struct *tsk;
492 	struct anon_vma *av;
493 	pgoff_t pgoff;
494 
495 	av = page_lock_anon_vma_read(page);
496 	if (av == NULL)	/* Not actually mapped anymore */
497 		return;
498 
499 	pgoff = page_to_pgoff(page);
500 	read_lock(&tasklist_lock);
501 	for_each_process (tsk) {
502 		struct anon_vma_chain *vmac;
503 		struct task_struct *t = task_early_kill(tsk, force_early);
504 
505 		if (!t)
506 			continue;
507 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 					       pgoff, pgoff) {
509 			vma = vmac->vma;
510 			if (!page_mapped_in_vma(page, vma))
511 				continue;
512 			if (vma->vm_mm == t->mm)
513 				add_to_kill(t, page, vma, to_kill);
514 		}
515 	}
516 	read_unlock(&tasklist_lock);
517 	page_unlock_anon_vma_read(av);
518 }
519 
520 /*
521  * Collect processes when the error hit a file mapped page.
522  */
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 				int force_early)
525 {
526 	struct vm_area_struct *vma;
527 	struct task_struct *tsk;
528 	struct address_space *mapping = page->mapping;
529 	pgoff_t pgoff;
530 
531 	i_mmap_lock_read(mapping);
532 	read_lock(&tasklist_lock);
533 	pgoff = page_to_pgoff(page);
534 	for_each_process(tsk) {
535 		struct task_struct *t = task_early_kill(tsk, force_early);
536 
537 		if (!t)
538 			continue;
539 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 				      pgoff) {
541 			/*
542 			 * Send early kill signal to tasks where a vma covers
543 			 * the page but the corrupted page is not necessarily
544 			 * mapped it in its pte.
545 			 * Assume applications who requested early kill want
546 			 * to be informed of all such data corruptions.
547 			 */
548 			if (vma->vm_mm == t->mm)
549 				add_to_kill(t, page, vma, to_kill);
550 		}
551 	}
552 	read_unlock(&tasklist_lock);
553 	i_mmap_unlock_read(mapping);
554 }
555 
556 /*
557  * Collect the processes who have the corrupted page mapped to kill.
558  */
559 static void collect_procs(struct page *page, struct list_head *tokill,
560 				int force_early)
561 {
562 	if (!page->mapping)
563 		return;
564 
565 	if (PageAnon(page))
566 		collect_procs_anon(page, tokill, force_early);
567 	else
568 		collect_procs_file(page, tokill, force_early);
569 }
570 
571 struct hwp_walk {
572 	struct to_kill tk;
573 	unsigned long pfn;
574 	int flags;
575 };
576 
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578 {
579 	tk->addr = addr;
580 	tk->size_shift = shift;
581 }
582 
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 				unsigned long poisoned_pfn, struct to_kill *tk)
585 {
586 	unsigned long pfn = 0;
587 
588 	if (pte_present(pte)) {
589 		pfn = pte_pfn(pte);
590 	} else {
591 		swp_entry_t swp = pte_to_swp_entry(pte);
592 
593 		if (is_hwpoison_entry(swp))
594 			pfn = hwpoison_entry_to_pfn(swp);
595 	}
596 
597 	if (!pfn || pfn != poisoned_pfn)
598 		return 0;
599 
600 	set_to_kill(tk, addr, shift);
601 	return 1;
602 }
603 
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 				      struct hwp_walk *hwp)
607 {
608 	pmd_t pmd = *pmdp;
609 	unsigned long pfn;
610 	unsigned long hwpoison_vaddr;
611 
612 	if (!pmd_present(pmd))
613 		return 0;
614 	pfn = pmd_pfn(pmd);
615 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 		return 1;
619 	}
620 	return 0;
621 }
622 #else
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 				      struct hwp_walk *hwp)
625 {
626 	return 0;
627 }
628 #endif
629 
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 			      unsigned long end, struct mm_walk *walk)
632 {
633 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 	int ret = 0;
635 	pte_t *ptep, *mapped_pte;
636 	spinlock_t *ptl;
637 
638 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 	if (ptl) {
640 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 		spin_unlock(ptl);
642 		goto out;
643 	}
644 
645 	if (pmd_trans_unstable(pmdp))
646 		goto out;
647 
648 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
649 						addr, &ptl);
650 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
652 					     hwp->pfn, &hwp->tk);
653 		if (ret == 1)
654 			break;
655 	}
656 	pte_unmap_unlock(mapped_pte, ptl);
657 out:
658 	cond_resched();
659 	return ret;
660 }
661 
662 #ifdef CONFIG_HUGETLB_PAGE
663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 			    unsigned long addr, unsigned long end,
665 			    struct mm_walk *walk)
666 {
667 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 	pte_t pte = huge_ptep_get(ptep);
669 	struct hstate *h = hstate_vma(walk->vma);
670 
671 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
672 				      hwp->pfn, &hwp->tk);
673 }
674 #else
675 #define hwpoison_hugetlb_range	NULL
676 #endif
677 
678 static const struct mm_walk_ops hwp_walk_ops = {
679 	.pmd_entry = hwpoison_pte_range,
680 	.hugetlb_entry = hwpoison_hugetlb_range,
681 };
682 
683 /*
684  * Sends SIGBUS to the current process with error info.
685  *
686  * This function is intended to handle "Action Required" MCEs on already
687  * hardware poisoned pages. They could happen, for example, when
688  * memory_failure() failed to unmap the error page at the first call, or
689  * when multiple local machine checks happened on different CPUs.
690  *
691  * MCE handler currently has no easy access to the error virtual address,
692  * so this function walks page table to find it. The returned virtual address
693  * is proper in most cases, but it could be wrong when the application
694  * process has multiple entries mapping the error page.
695  */
696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
697 				  int flags)
698 {
699 	int ret;
700 	struct hwp_walk priv = {
701 		.pfn = pfn,
702 	};
703 	priv.tk.tsk = p;
704 
705 	mmap_read_lock(p->mm);
706 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
707 			      (void *)&priv);
708 	if (ret == 1 && priv.tk.addr)
709 		kill_proc(&priv.tk, pfn, flags);
710 	mmap_read_unlock(p->mm);
711 	return ret ? -EFAULT : -EHWPOISON;
712 }
713 
714 static const char *action_name[] = {
715 	[MF_IGNORED] = "Ignored",
716 	[MF_FAILED] = "Failed",
717 	[MF_DELAYED] = "Delayed",
718 	[MF_RECOVERED] = "Recovered",
719 };
720 
721 static const char * const action_page_types[] = {
722 	[MF_MSG_KERNEL]			= "reserved kernel page",
723 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
724 	[MF_MSG_SLAB]			= "kernel slab page",
725 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
726 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
727 	[MF_MSG_HUGE]			= "huge page",
728 	[MF_MSG_FREE_HUGE]		= "free huge page",
729 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
730 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
731 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
732 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
733 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
734 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
735 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
736 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
737 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
738 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
739 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
740 	[MF_MSG_BUDDY]			= "free buddy page",
741 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
742 	[MF_MSG_DAX]			= "dax page",
743 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
744 	[MF_MSG_UNKNOWN]		= "unknown page",
745 };
746 
747 /*
748  * XXX: It is possible that a page is isolated from LRU cache,
749  * and then kept in swap cache or failed to remove from page cache.
750  * The page count will stop it from being freed by unpoison.
751  * Stress tests should be aware of this memory leak problem.
752  */
753 static int delete_from_lru_cache(struct page *p)
754 {
755 	if (!isolate_lru_page(p)) {
756 		/*
757 		 * Clear sensible page flags, so that the buddy system won't
758 		 * complain when the page is unpoison-and-freed.
759 		 */
760 		ClearPageActive(p);
761 		ClearPageUnevictable(p);
762 
763 		/*
764 		 * Poisoned page might never drop its ref count to 0 so we have
765 		 * to uncharge it manually from its memcg.
766 		 */
767 		mem_cgroup_uncharge(page_folio(p));
768 
769 		/*
770 		 * drop the page count elevated by isolate_lru_page()
771 		 */
772 		put_page(p);
773 		return 0;
774 	}
775 	return -EIO;
776 }
777 
778 static int truncate_error_page(struct page *p, unsigned long pfn,
779 				struct address_space *mapping)
780 {
781 	int ret = MF_FAILED;
782 
783 	if (mapping->a_ops->error_remove_page) {
784 		int err = mapping->a_ops->error_remove_page(mapping, p);
785 
786 		if (err != 0) {
787 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
788 				pfn, err);
789 		} else if (page_has_private(p) &&
790 			   !try_to_release_page(p, GFP_NOIO)) {
791 			pr_info("Memory failure: %#lx: failed to release buffers\n",
792 				pfn);
793 		} else {
794 			ret = MF_RECOVERED;
795 		}
796 	} else {
797 		/*
798 		 * If the file system doesn't support it just invalidate
799 		 * This fails on dirty or anything with private pages
800 		 */
801 		if (invalidate_inode_page(p))
802 			ret = MF_RECOVERED;
803 		else
804 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
805 				pfn);
806 	}
807 
808 	return ret;
809 }
810 
811 struct page_state {
812 	unsigned long mask;
813 	unsigned long res;
814 	enum mf_action_page_type type;
815 
816 	/* Callback ->action() has to unlock the relevant page inside it. */
817 	int (*action)(struct page_state *ps, struct page *p);
818 };
819 
820 /*
821  * Return true if page is still referenced by others, otherwise return
822  * false.
823  *
824  * The extra_pins is true when one extra refcount is expected.
825  */
826 static bool has_extra_refcount(struct page_state *ps, struct page *p,
827 			       bool extra_pins)
828 {
829 	int count = page_count(p) - 1;
830 
831 	if (extra_pins)
832 		count -= 1;
833 
834 	if (count > 0) {
835 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
836 		       page_to_pfn(p), action_page_types[ps->type], count);
837 		return true;
838 	}
839 
840 	return false;
841 }
842 
843 /*
844  * Error hit kernel page.
845  * Do nothing, try to be lucky and not touch this instead. For a few cases we
846  * could be more sophisticated.
847  */
848 static int me_kernel(struct page_state *ps, struct page *p)
849 {
850 	unlock_page(p);
851 	return MF_IGNORED;
852 }
853 
854 /*
855  * Page in unknown state. Do nothing.
856  */
857 static int me_unknown(struct page_state *ps, struct page *p)
858 {
859 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
860 	unlock_page(p);
861 	return MF_FAILED;
862 }
863 
864 /*
865  * Clean (or cleaned) page cache page.
866  */
867 static int me_pagecache_clean(struct page_state *ps, struct page *p)
868 {
869 	int ret;
870 	struct address_space *mapping;
871 	bool extra_pins;
872 
873 	delete_from_lru_cache(p);
874 
875 	/*
876 	 * For anonymous pages we're done the only reference left
877 	 * should be the one m_f() holds.
878 	 */
879 	if (PageAnon(p)) {
880 		ret = MF_RECOVERED;
881 		goto out;
882 	}
883 
884 	/*
885 	 * Now truncate the page in the page cache. This is really
886 	 * more like a "temporary hole punch"
887 	 * Don't do this for block devices when someone else
888 	 * has a reference, because it could be file system metadata
889 	 * and that's not safe to truncate.
890 	 */
891 	mapping = page_mapping(p);
892 	if (!mapping) {
893 		/*
894 		 * Page has been teared down in the meanwhile
895 		 */
896 		ret = MF_FAILED;
897 		goto out;
898 	}
899 
900 	/*
901 	 * The shmem page is kept in page cache instead of truncating
902 	 * so is expected to have an extra refcount after error-handling.
903 	 */
904 	extra_pins = shmem_mapping(mapping);
905 
906 	/*
907 	 * Truncation is a bit tricky. Enable it per file system for now.
908 	 *
909 	 * Open: to take i_rwsem or not for this? Right now we don't.
910 	 */
911 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
912 	if (has_extra_refcount(ps, p, extra_pins))
913 		ret = MF_FAILED;
914 
915 out:
916 	unlock_page(p);
917 
918 	return ret;
919 }
920 
921 /*
922  * Dirty pagecache page
923  * Issues: when the error hit a hole page the error is not properly
924  * propagated.
925  */
926 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
927 {
928 	struct address_space *mapping = page_mapping(p);
929 
930 	SetPageError(p);
931 	/* TBD: print more information about the file. */
932 	if (mapping) {
933 		/*
934 		 * IO error will be reported by write(), fsync(), etc.
935 		 * who check the mapping.
936 		 * This way the application knows that something went
937 		 * wrong with its dirty file data.
938 		 *
939 		 * There's one open issue:
940 		 *
941 		 * The EIO will be only reported on the next IO
942 		 * operation and then cleared through the IO map.
943 		 * Normally Linux has two mechanisms to pass IO error
944 		 * first through the AS_EIO flag in the address space
945 		 * and then through the PageError flag in the page.
946 		 * Since we drop pages on memory failure handling the
947 		 * only mechanism open to use is through AS_AIO.
948 		 *
949 		 * This has the disadvantage that it gets cleared on
950 		 * the first operation that returns an error, while
951 		 * the PageError bit is more sticky and only cleared
952 		 * when the page is reread or dropped.  If an
953 		 * application assumes it will always get error on
954 		 * fsync, but does other operations on the fd before
955 		 * and the page is dropped between then the error
956 		 * will not be properly reported.
957 		 *
958 		 * This can already happen even without hwpoisoned
959 		 * pages: first on metadata IO errors (which only
960 		 * report through AS_EIO) or when the page is dropped
961 		 * at the wrong time.
962 		 *
963 		 * So right now we assume that the application DTRT on
964 		 * the first EIO, but we're not worse than other parts
965 		 * of the kernel.
966 		 */
967 		mapping_set_error(mapping, -EIO);
968 	}
969 
970 	return me_pagecache_clean(ps, p);
971 }
972 
973 /*
974  * Clean and dirty swap cache.
975  *
976  * Dirty swap cache page is tricky to handle. The page could live both in page
977  * cache and swap cache(ie. page is freshly swapped in). So it could be
978  * referenced concurrently by 2 types of PTEs:
979  * normal PTEs and swap PTEs. We try to handle them consistently by calling
980  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
981  * and then
982  *      - clear dirty bit to prevent IO
983  *      - remove from LRU
984  *      - but keep in the swap cache, so that when we return to it on
985  *        a later page fault, we know the application is accessing
986  *        corrupted data and shall be killed (we installed simple
987  *        interception code in do_swap_page to catch it).
988  *
989  * Clean swap cache pages can be directly isolated. A later page fault will
990  * bring in the known good data from disk.
991  */
992 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
993 {
994 	int ret;
995 	bool extra_pins = false;
996 
997 	ClearPageDirty(p);
998 	/* Trigger EIO in shmem: */
999 	ClearPageUptodate(p);
1000 
1001 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1002 	unlock_page(p);
1003 
1004 	if (ret == MF_DELAYED)
1005 		extra_pins = true;
1006 
1007 	if (has_extra_refcount(ps, p, extra_pins))
1008 		ret = MF_FAILED;
1009 
1010 	return ret;
1011 }
1012 
1013 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1014 {
1015 	int ret;
1016 
1017 	delete_from_swap_cache(p);
1018 
1019 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1020 	unlock_page(p);
1021 
1022 	if (has_extra_refcount(ps, p, false))
1023 		ret = MF_FAILED;
1024 
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Huge pages. Needs work.
1030  * Issues:
1031  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1032  *   To narrow down kill region to one page, we need to break up pmd.
1033  */
1034 static int me_huge_page(struct page_state *ps, struct page *p)
1035 {
1036 	int res;
1037 	struct page *hpage = compound_head(p);
1038 	struct address_space *mapping;
1039 
1040 	if (!PageHuge(hpage))
1041 		return MF_DELAYED;
1042 
1043 	mapping = page_mapping(hpage);
1044 	if (mapping) {
1045 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1046 		unlock_page(hpage);
1047 	} else {
1048 		res = MF_FAILED;
1049 		unlock_page(hpage);
1050 		/*
1051 		 * migration entry prevents later access on error anonymous
1052 		 * hugepage, so we can free and dissolve it into buddy to
1053 		 * save healthy subpages.
1054 		 */
1055 		if (PageAnon(hpage))
1056 			put_page(hpage);
1057 		if (__page_handle_poison(p)) {
1058 			page_ref_inc(p);
1059 			res = MF_RECOVERED;
1060 		}
1061 	}
1062 
1063 	if (has_extra_refcount(ps, p, false))
1064 		res = MF_FAILED;
1065 
1066 	return res;
1067 }
1068 
1069 /*
1070  * Various page states we can handle.
1071  *
1072  * A page state is defined by its current page->flags bits.
1073  * The table matches them in order and calls the right handler.
1074  *
1075  * This is quite tricky because we can access page at any time
1076  * in its live cycle, so all accesses have to be extremely careful.
1077  *
1078  * This is not complete. More states could be added.
1079  * For any missing state don't attempt recovery.
1080  */
1081 
1082 #define dirty		(1UL << PG_dirty)
1083 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1084 #define unevict		(1UL << PG_unevictable)
1085 #define mlock		(1UL << PG_mlocked)
1086 #define lru		(1UL << PG_lru)
1087 #define head		(1UL << PG_head)
1088 #define slab		(1UL << PG_slab)
1089 #define reserved	(1UL << PG_reserved)
1090 
1091 static struct page_state error_states[] = {
1092 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1093 	/*
1094 	 * free pages are specially detected outside this table:
1095 	 * PG_buddy pages only make a small fraction of all free pages.
1096 	 */
1097 
1098 	/*
1099 	 * Could in theory check if slab page is free or if we can drop
1100 	 * currently unused objects without touching them. But just
1101 	 * treat it as standard kernel for now.
1102 	 */
1103 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1104 
1105 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1106 
1107 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1108 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1109 
1110 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1111 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1112 
1113 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1114 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1115 
1116 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1117 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1118 
1119 	/*
1120 	 * Catchall entry: must be at end.
1121 	 */
1122 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1123 };
1124 
1125 #undef dirty
1126 #undef sc
1127 #undef unevict
1128 #undef mlock
1129 #undef lru
1130 #undef head
1131 #undef slab
1132 #undef reserved
1133 
1134 /*
1135  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1136  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1137  */
1138 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1139 			  enum mf_result result)
1140 {
1141 	trace_memory_failure_event(pfn, type, result);
1142 
1143 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1144 		pfn, action_page_types[type], action_name[result]);
1145 }
1146 
1147 static int page_action(struct page_state *ps, struct page *p,
1148 			unsigned long pfn)
1149 {
1150 	int result;
1151 
1152 	/* page p should be unlocked after returning from ps->action().  */
1153 	result = ps->action(ps, p);
1154 
1155 	action_result(pfn, ps->type, result);
1156 
1157 	/* Could do more checks here if page looks ok */
1158 	/*
1159 	 * Could adjust zone counters here to correct for the missing page.
1160 	 */
1161 
1162 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1163 }
1164 
1165 /*
1166  * Return true if a page type of a given page is supported by hwpoison
1167  * mechanism (while handling could fail), otherwise false.  This function
1168  * does not return true for hugetlb or device memory pages, so it's assumed
1169  * to be called only in the context where we never have such pages.
1170  */
1171 static inline bool HWPoisonHandlable(struct page *page)
1172 {
1173 	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1174 }
1175 
1176 static int __get_hwpoison_page(struct page *page)
1177 {
1178 	struct page *head = compound_head(page);
1179 	int ret = 0;
1180 	bool hugetlb = false;
1181 
1182 	ret = get_hwpoison_huge_page(head, &hugetlb);
1183 	if (hugetlb)
1184 		return ret;
1185 
1186 	/*
1187 	 * This check prevents from calling get_hwpoison_unless_zero()
1188 	 * for any unsupported type of page in order to reduce the risk of
1189 	 * unexpected races caused by taking a page refcount.
1190 	 */
1191 	if (!HWPoisonHandlable(head))
1192 		return -EBUSY;
1193 
1194 	if (get_page_unless_zero(head)) {
1195 		if (head == compound_head(page))
1196 			return 1;
1197 
1198 		pr_info("Memory failure: %#lx cannot catch tail\n",
1199 			page_to_pfn(page));
1200 		put_page(head);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int get_any_page(struct page *p, unsigned long flags)
1207 {
1208 	int ret = 0, pass = 0;
1209 	bool count_increased = false;
1210 
1211 	if (flags & MF_COUNT_INCREASED)
1212 		count_increased = true;
1213 
1214 try_again:
1215 	if (!count_increased) {
1216 		ret = __get_hwpoison_page(p);
1217 		if (!ret) {
1218 			if (page_count(p)) {
1219 				/* We raced with an allocation, retry. */
1220 				if (pass++ < 3)
1221 					goto try_again;
1222 				ret = -EBUSY;
1223 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1224 				/* We raced with put_page, retry. */
1225 				if (pass++ < 3)
1226 					goto try_again;
1227 				ret = -EIO;
1228 			}
1229 			goto out;
1230 		} else if (ret == -EBUSY) {
1231 			/*
1232 			 * We raced with (possibly temporary) unhandlable
1233 			 * page, retry.
1234 			 */
1235 			if (pass++ < 3) {
1236 				shake_page(p);
1237 				goto try_again;
1238 			}
1239 			ret = -EIO;
1240 			goto out;
1241 		}
1242 	}
1243 
1244 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1245 		ret = 1;
1246 	} else {
1247 		/*
1248 		 * A page we cannot handle. Check whether we can turn
1249 		 * it into something we can handle.
1250 		 */
1251 		if (pass++ < 3) {
1252 			put_page(p);
1253 			shake_page(p);
1254 			count_increased = false;
1255 			goto try_again;
1256 		}
1257 		put_page(p);
1258 		ret = -EIO;
1259 	}
1260 out:
1261 	if (ret == -EIO)
1262 		dump_page(p, "hwpoison: unhandlable page");
1263 
1264 	return ret;
1265 }
1266 
1267 /**
1268  * get_hwpoison_page() - Get refcount for memory error handling
1269  * @p:		Raw error page (hit by memory error)
1270  * @flags:	Flags controlling behavior of error handling
1271  *
1272  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1273  * error on it, after checking that the error page is in a well-defined state
1274  * (defined as a page-type we can successfully handle the memor error on it,
1275  * such as LRU page and hugetlb page).
1276  *
1277  * Memory error handling could be triggered at any time on any type of page,
1278  * so it's prone to race with typical memory management lifecycle (like
1279  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1280  * extra care for the error page's state (as done in __get_hwpoison_page()),
1281  * and has some retry logic in get_any_page().
1282  *
1283  * Return: 0 on failure,
1284  *         1 on success for in-use pages in a well-defined state,
1285  *         -EIO for pages on which we can not handle memory errors,
1286  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1287  *         operations like allocation and free.
1288  */
1289 static int get_hwpoison_page(struct page *p, unsigned long flags)
1290 {
1291 	int ret;
1292 
1293 	zone_pcp_disable(page_zone(p));
1294 	ret = get_any_page(p, flags);
1295 	zone_pcp_enable(page_zone(p));
1296 
1297 	return ret;
1298 }
1299 
1300 /*
1301  * Do all that is necessary to remove user space mappings. Unmap
1302  * the pages and send SIGBUS to the processes if the data was dirty.
1303  */
1304 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1305 				  int flags, struct page *hpage)
1306 {
1307 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1308 	struct address_space *mapping;
1309 	LIST_HEAD(tokill);
1310 	bool unmap_success;
1311 	int kill = 1, forcekill;
1312 	bool mlocked = PageMlocked(hpage);
1313 
1314 	/*
1315 	 * Here we are interested only in user-mapped pages, so skip any
1316 	 * other types of pages.
1317 	 */
1318 	if (PageReserved(p) || PageSlab(p))
1319 		return true;
1320 	if (!(PageLRU(hpage) || PageHuge(p)))
1321 		return true;
1322 
1323 	/*
1324 	 * This check implies we don't kill processes if their pages
1325 	 * are in the swap cache early. Those are always late kills.
1326 	 */
1327 	if (!page_mapped(hpage))
1328 		return true;
1329 
1330 	if (PageKsm(p)) {
1331 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1332 		return false;
1333 	}
1334 
1335 	if (PageSwapCache(p)) {
1336 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1337 			pfn);
1338 		ttu |= TTU_IGNORE_HWPOISON;
1339 	}
1340 
1341 	/*
1342 	 * Propagate the dirty bit from PTEs to struct page first, because we
1343 	 * need this to decide if we should kill or just drop the page.
1344 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1345 	 * be called inside page lock (it's recommended but not enforced).
1346 	 */
1347 	mapping = page_mapping(hpage);
1348 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1349 	    mapping_can_writeback(mapping)) {
1350 		if (page_mkclean(hpage)) {
1351 			SetPageDirty(hpage);
1352 		} else {
1353 			kill = 0;
1354 			ttu |= TTU_IGNORE_HWPOISON;
1355 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1356 				pfn);
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * First collect all the processes that have the page
1362 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1363 	 * because ttu takes the rmap data structures down.
1364 	 *
1365 	 * Error handling: We ignore errors here because
1366 	 * there's nothing that can be done.
1367 	 */
1368 	if (kill)
1369 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1370 
1371 	if (!PageHuge(hpage)) {
1372 		try_to_unmap(hpage, ttu);
1373 	} else {
1374 		if (!PageAnon(hpage)) {
1375 			/*
1376 			 * For hugetlb pages in shared mappings, try_to_unmap
1377 			 * could potentially call huge_pmd_unshare.  Because of
1378 			 * this, take semaphore in write mode here and set
1379 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1380 			 * at this higher level.
1381 			 */
1382 			mapping = hugetlb_page_mapping_lock_write(hpage);
1383 			if (mapping) {
1384 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1385 				i_mmap_unlock_write(mapping);
1386 			} else
1387 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1388 		} else {
1389 			try_to_unmap(hpage, ttu);
1390 		}
1391 	}
1392 
1393 	unmap_success = !page_mapped(hpage);
1394 	if (!unmap_success)
1395 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1396 		       pfn, page_mapcount(hpage));
1397 
1398 	/*
1399 	 * try_to_unmap() might put mlocked page in lru cache, so call
1400 	 * shake_page() again to ensure that it's flushed.
1401 	 */
1402 	if (mlocked)
1403 		shake_page(hpage);
1404 
1405 	/*
1406 	 * Now that the dirty bit has been propagated to the
1407 	 * struct page and all unmaps done we can decide if
1408 	 * killing is needed or not.  Only kill when the page
1409 	 * was dirty or the process is not restartable,
1410 	 * otherwise the tokill list is merely
1411 	 * freed.  When there was a problem unmapping earlier
1412 	 * use a more force-full uncatchable kill to prevent
1413 	 * any accesses to the poisoned memory.
1414 	 */
1415 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1416 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1417 
1418 	return unmap_success;
1419 }
1420 
1421 static int identify_page_state(unsigned long pfn, struct page *p,
1422 				unsigned long page_flags)
1423 {
1424 	struct page_state *ps;
1425 
1426 	/*
1427 	 * The first check uses the current page flags which may not have any
1428 	 * relevant information. The second check with the saved page flags is
1429 	 * carried out only if the first check can't determine the page status.
1430 	 */
1431 	for (ps = error_states;; ps++)
1432 		if ((p->flags & ps->mask) == ps->res)
1433 			break;
1434 
1435 	page_flags |= (p->flags & (1UL << PG_dirty));
1436 
1437 	if (!ps->mask)
1438 		for (ps = error_states;; ps++)
1439 			if ((page_flags & ps->mask) == ps->res)
1440 				break;
1441 	return page_action(ps, p, pfn);
1442 }
1443 
1444 static int try_to_split_thp_page(struct page *page, const char *msg)
1445 {
1446 	lock_page(page);
1447 	if (unlikely(split_huge_page(page))) {
1448 		unsigned long pfn = page_to_pfn(page);
1449 
1450 		unlock_page(page);
1451 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1452 		put_page(page);
1453 		return -EBUSY;
1454 	}
1455 	unlock_page(page);
1456 
1457 	return 0;
1458 }
1459 
1460 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1461 {
1462 	struct page *p = pfn_to_page(pfn);
1463 	struct page *head = compound_head(p);
1464 	int res;
1465 	unsigned long page_flags;
1466 
1467 	if (TestSetPageHWPoison(head)) {
1468 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1469 		       pfn);
1470 		res = -EHWPOISON;
1471 		if (flags & MF_ACTION_REQUIRED)
1472 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1473 		return res;
1474 	}
1475 
1476 	num_poisoned_pages_inc();
1477 
1478 	if (!(flags & MF_COUNT_INCREASED)) {
1479 		res = get_hwpoison_page(p, flags);
1480 		if (!res) {
1481 			/*
1482 			 * Check "filter hit" and "race with other subpage."
1483 			 */
1484 			lock_page(head);
1485 			if (PageHWPoison(head)) {
1486 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1487 				    || (p != head && TestSetPageHWPoison(head))) {
1488 					num_poisoned_pages_dec();
1489 					unlock_page(head);
1490 					return 0;
1491 				}
1492 			}
1493 			unlock_page(head);
1494 			res = MF_FAILED;
1495 			if (__page_handle_poison(p)) {
1496 				page_ref_inc(p);
1497 				res = MF_RECOVERED;
1498 			}
1499 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1500 			return res == MF_RECOVERED ? 0 : -EBUSY;
1501 		} else if (res < 0) {
1502 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1503 			return -EBUSY;
1504 		}
1505 	}
1506 
1507 	lock_page(head);
1508 	page_flags = head->flags;
1509 
1510 	if (!PageHWPoison(head)) {
1511 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1512 		num_poisoned_pages_dec();
1513 		unlock_page(head);
1514 		put_page(head);
1515 		return 0;
1516 	}
1517 
1518 	/*
1519 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1520 	 * simply disable it. In order to make it work properly, we need
1521 	 * make sure that:
1522 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1523 	 *    entry properly works, and
1524 	 *  - other mm code walking over page table is aware of pud-aligned
1525 	 *    hwpoison entries.
1526 	 */
1527 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1528 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1529 		res = -EBUSY;
1530 		goto out;
1531 	}
1532 
1533 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1534 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1535 		res = -EBUSY;
1536 		goto out;
1537 	}
1538 
1539 	return identify_page_state(pfn, p, page_flags);
1540 out:
1541 	unlock_page(head);
1542 	return res;
1543 }
1544 
1545 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1546 		struct dev_pagemap *pgmap)
1547 {
1548 	struct page *page = pfn_to_page(pfn);
1549 	unsigned long size = 0;
1550 	struct to_kill *tk;
1551 	LIST_HEAD(tokill);
1552 	int rc = -EBUSY;
1553 	loff_t start;
1554 	dax_entry_t cookie;
1555 
1556 	if (flags & MF_COUNT_INCREASED)
1557 		/*
1558 		 * Drop the extra refcount in case we come from madvise().
1559 		 */
1560 		put_page(page);
1561 
1562 	/* device metadata space is not recoverable */
1563 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1564 		rc = -ENXIO;
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * Prevent the inode from being freed while we are interrogating
1570 	 * the address_space, typically this would be handled by
1571 	 * lock_page(), but dax pages do not use the page lock. This
1572 	 * also prevents changes to the mapping of this pfn until
1573 	 * poison signaling is complete.
1574 	 */
1575 	cookie = dax_lock_page(page);
1576 	if (!cookie)
1577 		goto out;
1578 
1579 	if (hwpoison_filter(page)) {
1580 		rc = 0;
1581 		goto unlock;
1582 	}
1583 
1584 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1585 		/*
1586 		 * TODO: Handle HMM pages which may need coordination
1587 		 * with device-side memory.
1588 		 */
1589 		goto unlock;
1590 	}
1591 
1592 	/*
1593 	 * Use this flag as an indication that the dax page has been
1594 	 * remapped UC to prevent speculative consumption of poison.
1595 	 */
1596 	SetPageHWPoison(page);
1597 
1598 	/*
1599 	 * Unlike System-RAM there is no possibility to swap in a
1600 	 * different physical page at a given virtual address, so all
1601 	 * userspace consumption of ZONE_DEVICE memory necessitates
1602 	 * SIGBUS (i.e. MF_MUST_KILL)
1603 	 */
1604 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1605 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1606 
1607 	list_for_each_entry(tk, &tokill, nd)
1608 		if (tk->size_shift)
1609 			size = max(size, 1UL << tk->size_shift);
1610 	if (size) {
1611 		/*
1612 		 * Unmap the largest mapping to avoid breaking up
1613 		 * device-dax mappings which are constant size. The
1614 		 * actual size of the mapping being torn down is
1615 		 * communicated in siginfo, see kill_proc()
1616 		 */
1617 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1618 		unmap_mapping_range(page->mapping, start, size, 0);
1619 	}
1620 	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1621 	rc = 0;
1622 unlock:
1623 	dax_unlock_page(page, cookie);
1624 out:
1625 	/* drop pgmap ref acquired in caller */
1626 	put_dev_pagemap(pgmap);
1627 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1628 	return rc;
1629 }
1630 
1631 /**
1632  * memory_failure - Handle memory failure of a page.
1633  * @pfn: Page Number of the corrupted page
1634  * @flags: fine tune action taken
1635  *
1636  * This function is called by the low level machine check code
1637  * of an architecture when it detects hardware memory corruption
1638  * of a page. It tries its best to recover, which includes
1639  * dropping pages, killing processes etc.
1640  *
1641  * The function is primarily of use for corruptions that
1642  * happen outside the current execution context (e.g. when
1643  * detected by a background scrubber)
1644  *
1645  * Must run in process context (e.g. a work queue) with interrupts
1646  * enabled and no spinlocks hold.
1647  */
1648 int memory_failure(unsigned long pfn, int flags)
1649 {
1650 	struct page *p;
1651 	struct page *hpage;
1652 	struct page *orig_head;
1653 	struct dev_pagemap *pgmap;
1654 	int res = 0;
1655 	unsigned long page_flags;
1656 	bool retry = true;
1657 	static DEFINE_MUTEX(mf_mutex);
1658 
1659 	if (!sysctl_memory_failure_recovery)
1660 		panic("Memory failure on page %lx", pfn);
1661 
1662 	p = pfn_to_online_page(pfn);
1663 	if (!p) {
1664 		if (pfn_valid(pfn)) {
1665 			pgmap = get_dev_pagemap(pfn, NULL);
1666 			if (pgmap)
1667 				return memory_failure_dev_pagemap(pfn, flags,
1668 								  pgmap);
1669 		}
1670 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1671 			pfn);
1672 		return -ENXIO;
1673 	}
1674 
1675 	mutex_lock(&mf_mutex);
1676 
1677 try_again:
1678 	if (PageHuge(p)) {
1679 		res = memory_failure_hugetlb(pfn, flags);
1680 		goto unlock_mutex;
1681 	}
1682 
1683 	if (TestSetPageHWPoison(p)) {
1684 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1685 			pfn);
1686 		res = -EHWPOISON;
1687 		if (flags & MF_ACTION_REQUIRED)
1688 			res = kill_accessing_process(current, pfn, flags);
1689 		goto unlock_mutex;
1690 	}
1691 
1692 	orig_head = hpage = compound_head(p);
1693 	num_poisoned_pages_inc();
1694 
1695 	/*
1696 	 * We need/can do nothing about count=0 pages.
1697 	 * 1) it's a free page, and therefore in safe hand:
1698 	 *    prep_new_page() will be the gate keeper.
1699 	 * 2) it's part of a non-compound high order page.
1700 	 *    Implies some kernel user: cannot stop them from
1701 	 *    R/W the page; let's pray that the page has been
1702 	 *    used and will be freed some time later.
1703 	 * In fact it's dangerous to directly bump up page count from 0,
1704 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1705 	 */
1706 	if (!(flags & MF_COUNT_INCREASED)) {
1707 		res = get_hwpoison_page(p, flags);
1708 		if (!res) {
1709 			if (is_free_buddy_page(p)) {
1710 				if (take_page_off_buddy(p)) {
1711 					page_ref_inc(p);
1712 					res = MF_RECOVERED;
1713 				} else {
1714 					/* We lost the race, try again */
1715 					if (retry) {
1716 						ClearPageHWPoison(p);
1717 						num_poisoned_pages_dec();
1718 						retry = false;
1719 						goto try_again;
1720 					}
1721 					res = MF_FAILED;
1722 				}
1723 				action_result(pfn, MF_MSG_BUDDY, res);
1724 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1725 			} else {
1726 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1727 				res = -EBUSY;
1728 			}
1729 			goto unlock_mutex;
1730 		} else if (res < 0) {
1731 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1732 			res = -EBUSY;
1733 			goto unlock_mutex;
1734 		}
1735 	}
1736 
1737 	if (PageTransHuge(hpage)) {
1738 		/*
1739 		 * The flag must be set after the refcount is bumped
1740 		 * otherwise it may race with THP split.
1741 		 * And the flag can't be set in get_hwpoison_page() since
1742 		 * it is called by soft offline too and it is just called
1743 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1744 		 * place.
1745 		 *
1746 		 * Don't need care about the above error handling paths for
1747 		 * get_hwpoison_page() since they handle either free page
1748 		 * or unhandlable page.  The refcount is bumped iff the
1749 		 * page is a valid handlable page.
1750 		 */
1751 		SetPageHasHWPoisoned(hpage);
1752 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1753 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1754 			res = -EBUSY;
1755 			goto unlock_mutex;
1756 		}
1757 		VM_BUG_ON_PAGE(!page_count(p), p);
1758 	}
1759 
1760 	/*
1761 	 * We ignore non-LRU pages for good reasons.
1762 	 * - PG_locked is only well defined for LRU pages and a few others
1763 	 * - to avoid races with __SetPageLocked()
1764 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1765 	 * The check (unnecessarily) ignores LRU pages being isolated and
1766 	 * walked by the page reclaim code, however that's not a big loss.
1767 	 */
1768 	shake_page(p);
1769 
1770 	lock_page(p);
1771 
1772 	/*
1773 	 * The page could have changed compound pages during the locking.
1774 	 * If this happens just bail out.
1775 	 */
1776 	if (PageCompound(p) && compound_head(p) != orig_head) {
1777 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1778 		res = -EBUSY;
1779 		goto unlock_page;
1780 	}
1781 
1782 	/*
1783 	 * We use page flags to determine what action should be taken, but
1784 	 * the flags can be modified by the error containment action.  One
1785 	 * example is an mlocked page, where PG_mlocked is cleared by
1786 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1787 	 * correctly, we save a copy of the page flags at this time.
1788 	 */
1789 	page_flags = p->flags;
1790 
1791 	/*
1792 	 * unpoison always clear PG_hwpoison inside page lock
1793 	 */
1794 	if (!PageHWPoison(p)) {
1795 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1796 		num_poisoned_pages_dec();
1797 		unlock_page(p);
1798 		put_page(p);
1799 		goto unlock_mutex;
1800 	}
1801 	if (hwpoison_filter(p)) {
1802 		if (TestClearPageHWPoison(p))
1803 			num_poisoned_pages_dec();
1804 		unlock_page(p);
1805 		put_page(p);
1806 		goto unlock_mutex;
1807 	}
1808 
1809 	/*
1810 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1811 	 * page_lock. We need wait writeback completion for this page or it
1812 	 * may trigger vfs BUG while evict inode.
1813 	 */
1814 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1815 		goto identify_page_state;
1816 
1817 	/*
1818 	 * It's very difficult to mess with pages currently under IO
1819 	 * and in many cases impossible, so we just avoid it here.
1820 	 */
1821 	wait_on_page_writeback(p);
1822 
1823 	/*
1824 	 * Now take care of user space mappings.
1825 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1826 	 */
1827 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1828 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1829 		res = -EBUSY;
1830 		goto unlock_page;
1831 	}
1832 
1833 	/*
1834 	 * Torn down by someone else?
1835 	 */
1836 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1837 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1838 		res = -EBUSY;
1839 		goto unlock_page;
1840 	}
1841 
1842 identify_page_state:
1843 	res = identify_page_state(pfn, p, page_flags);
1844 	mutex_unlock(&mf_mutex);
1845 	return res;
1846 unlock_page:
1847 	unlock_page(p);
1848 unlock_mutex:
1849 	mutex_unlock(&mf_mutex);
1850 	return res;
1851 }
1852 EXPORT_SYMBOL_GPL(memory_failure);
1853 
1854 #define MEMORY_FAILURE_FIFO_ORDER	4
1855 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1856 
1857 struct memory_failure_entry {
1858 	unsigned long pfn;
1859 	int flags;
1860 };
1861 
1862 struct memory_failure_cpu {
1863 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1864 		      MEMORY_FAILURE_FIFO_SIZE);
1865 	spinlock_t lock;
1866 	struct work_struct work;
1867 };
1868 
1869 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1870 
1871 /**
1872  * memory_failure_queue - Schedule handling memory failure of a page.
1873  * @pfn: Page Number of the corrupted page
1874  * @flags: Flags for memory failure handling
1875  *
1876  * This function is called by the low level hardware error handler
1877  * when it detects hardware memory corruption of a page. It schedules
1878  * the recovering of error page, including dropping pages, killing
1879  * processes etc.
1880  *
1881  * The function is primarily of use for corruptions that
1882  * happen outside the current execution context (e.g. when
1883  * detected by a background scrubber)
1884  *
1885  * Can run in IRQ context.
1886  */
1887 void memory_failure_queue(unsigned long pfn, int flags)
1888 {
1889 	struct memory_failure_cpu *mf_cpu;
1890 	unsigned long proc_flags;
1891 	struct memory_failure_entry entry = {
1892 		.pfn =		pfn,
1893 		.flags =	flags,
1894 	};
1895 
1896 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1897 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1898 	if (kfifo_put(&mf_cpu->fifo, entry))
1899 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1900 	else
1901 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1902 		       pfn);
1903 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1904 	put_cpu_var(memory_failure_cpu);
1905 }
1906 EXPORT_SYMBOL_GPL(memory_failure_queue);
1907 
1908 static void memory_failure_work_func(struct work_struct *work)
1909 {
1910 	struct memory_failure_cpu *mf_cpu;
1911 	struct memory_failure_entry entry = { 0, };
1912 	unsigned long proc_flags;
1913 	int gotten;
1914 
1915 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1916 	for (;;) {
1917 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1918 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1919 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1920 		if (!gotten)
1921 			break;
1922 		if (entry.flags & MF_SOFT_OFFLINE)
1923 			soft_offline_page(entry.pfn, entry.flags);
1924 		else
1925 			memory_failure(entry.pfn, entry.flags);
1926 	}
1927 }
1928 
1929 /*
1930  * Process memory_failure work queued on the specified CPU.
1931  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1932  */
1933 void memory_failure_queue_kick(int cpu)
1934 {
1935 	struct memory_failure_cpu *mf_cpu;
1936 
1937 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1938 	cancel_work_sync(&mf_cpu->work);
1939 	memory_failure_work_func(&mf_cpu->work);
1940 }
1941 
1942 static int __init memory_failure_init(void)
1943 {
1944 	struct memory_failure_cpu *mf_cpu;
1945 	int cpu;
1946 
1947 	for_each_possible_cpu(cpu) {
1948 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1949 		spin_lock_init(&mf_cpu->lock);
1950 		INIT_KFIFO(mf_cpu->fifo);
1951 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1952 	}
1953 
1954 	return 0;
1955 }
1956 core_initcall(memory_failure_init);
1957 
1958 #define unpoison_pr_info(fmt, pfn, rs)			\
1959 ({							\
1960 	if (__ratelimit(rs))				\
1961 		pr_info(fmt, pfn);			\
1962 })
1963 
1964 /**
1965  * unpoison_memory - Unpoison a previously poisoned page
1966  * @pfn: Page number of the to be unpoisoned page
1967  *
1968  * Software-unpoison a page that has been poisoned by
1969  * memory_failure() earlier.
1970  *
1971  * This is only done on the software-level, so it only works
1972  * for linux injected failures, not real hardware failures
1973  *
1974  * Returns 0 for success, otherwise -errno.
1975  */
1976 int unpoison_memory(unsigned long pfn)
1977 {
1978 	struct page *page;
1979 	struct page *p;
1980 	int freeit = 0;
1981 	unsigned long flags = 0;
1982 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1983 					DEFAULT_RATELIMIT_BURST);
1984 
1985 	if (!pfn_valid(pfn))
1986 		return -ENXIO;
1987 
1988 	p = pfn_to_page(pfn);
1989 	page = compound_head(p);
1990 
1991 	if (!PageHWPoison(p)) {
1992 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1993 				 pfn, &unpoison_rs);
1994 		return 0;
1995 	}
1996 
1997 	if (page_count(page) > 1) {
1998 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1999 				 pfn, &unpoison_rs);
2000 		return 0;
2001 	}
2002 
2003 	if (page_mapped(page)) {
2004 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2005 				 pfn, &unpoison_rs);
2006 		return 0;
2007 	}
2008 
2009 	if (page_mapping(page)) {
2010 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2011 				 pfn, &unpoison_rs);
2012 		return 0;
2013 	}
2014 
2015 	/*
2016 	 * unpoison_memory() can encounter thp only when the thp is being
2017 	 * worked by memory_failure() and the page lock is not held yet.
2018 	 * In such case, we yield to memory_failure() and make unpoison fail.
2019 	 */
2020 	if (!PageHuge(page) && PageTransHuge(page)) {
2021 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
2022 				 pfn, &unpoison_rs);
2023 		return 0;
2024 	}
2025 
2026 	if (!get_hwpoison_page(p, flags)) {
2027 		if (TestClearPageHWPoison(p))
2028 			num_poisoned_pages_dec();
2029 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
2030 				 pfn, &unpoison_rs);
2031 		return 0;
2032 	}
2033 
2034 	lock_page(page);
2035 	/*
2036 	 * This test is racy because PG_hwpoison is set outside of page lock.
2037 	 * That's acceptable because that won't trigger kernel panic. Instead,
2038 	 * the PG_hwpoison page will be caught and isolated on the entrance to
2039 	 * the free buddy page pool.
2040 	 */
2041 	if (TestClearPageHWPoison(page)) {
2042 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2043 				 pfn, &unpoison_rs);
2044 		num_poisoned_pages_dec();
2045 		freeit = 1;
2046 	}
2047 	unlock_page(page);
2048 
2049 	put_page(page);
2050 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2051 		put_page(page);
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(unpoison_memory);
2056 
2057 static bool isolate_page(struct page *page, struct list_head *pagelist)
2058 {
2059 	bool isolated = false;
2060 	bool lru = PageLRU(page);
2061 
2062 	if (PageHuge(page)) {
2063 		isolated = isolate_huge_page(page, pagelist);
2064 	} else {
2065 		if (lru)
2066 			isolated = !isolate_lru_page(page);
2067 		else
2068 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2069 
2070 		if (isolated)
2071 			list_add(&page->lru, pagelist);
2072 	}
2073 
2074 	if (isolated && lru)
2075 		inc_node_page_state(page, NR_ISOLATED_ANON +
2076 				    page_is_file_lru(page));
2077 
2078 	/*
2079 	 * If we succeed to isolate the page, we grabbed another refcount on
2080 	 * the page, so we can safely drop the one we got from get_any_pages().
2081 	 * If we failed to isolate the page, it means that we cannot go further
2082 	 * and we will return an error, so drop the reference we got from
2083 	 * get_any_pages() as well.
2084 	 */
2085 	put_page(page);
2086 	return isolated;
2087 }
2088 
2089 /*
2090  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2091  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2092  * If the page is mapped, it migrates the contents over.
2093  */
2094 static int __soft_offline_page(struct page *page)
2095 {
2096 	int ret = 0;
2097 	unsigned long pfn = page_to_pfn(page);
2098 	struct page *hpage = compound_head(page);
2099 	char const *msg_page[] = {"page", "hugepage"};
2100 	bool huge = PageHuge(page);
2101 	LIST_HEAD(pagelist);
2102 	struct migration_target_control mtc = {
2103 		.nid = NUMA_NO_NODE,
2104 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2105 	};
2106 
2107 	/*
2108 	 * Check PageHWPoison again inside page lock because PageHWPoison
2109 	 * is set by memory_failure() outside page lock. Note that
2110 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2111 	 * so there's no race between soft_offline_page() and memory_failure().
2112 	 */
2113 	lock_page(page);
2114 	if (!PageHuge(page))
2115 		wait_on_page_writeback(page);
2116 	if (PageHWPoison(page)) {
2117 		unlock_page(page);
2118 		put_page(page);
2119 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2120 		return 0;
2121 	}
2122 
2123 	if (!PageHuge(page))
2124 		/*
2125 		 * Try to invalidate first. This should work for
2126 		 * non dirty unmapped page cache pages.
2127 		 */
2128 		ret = invalidate_inode_page(page);
2129 	unlock_page(page);
2130 
2131 	/*
2132 	 * RED-PEN would be better to keep it isolated here, but we
2133 	 * would need to fix isolation locking first.
2134 	 */
2135 	if (ret) {
2136 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2137 		page_handle_poison(page, false, true);
2138 		return 0;
2139 	}
2140 
2141 	if (isolate_page(hpage, &pagelist)) {
2142 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2143 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2144 		if (!ret) {
2145 			bool release = !huge;
2146 
2147 			if (!page_handle_poison(page, huge, release))
2148 				ret = -EBUSY;
2149 		} else {
2150 			if (!list_empty(&pagelist))
2151 				putback_movable_pages(&pagelist);
2152 
2153 			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
2154 				pfn, msg_page[huge], ret, &page->flags);
2155 			if (ret > 0)
2156 				ret = -EBUSY;
2157 		}
2158 	} else {
2159 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2160 			pfn, msg_page[huge], page_count(page), &page->flags);
2161 		ret = -EBUSY;
2162 	}
2163 	return ret;
2164 }
2165 
2166 static int soft_offline_in_use_page(struct page *page)
2167 {
2168 	struct page *hpage = compound_head(page);
2169 
2170 	if (!PageHuge(page) && PageTransHuge(hpage))
2171 		if (try_to_split_thp_page(page, "soft offline") < 0)
2172 			return -EBUSY;
2173 	return __soft_offline_page(page);
2174 }
2175 
2176 static int soft_offline_free_page(struct page *page)
2177 {
2178 	int rc = 0;
2179 
2180 	if (!page_handle_poison(page, true, false))
2181 		rc = -EBUSY;
2182 
2183 	return rc;
2184 }
2185 
2186 static void put_ref_page(struct page *page)
2187 {
2188 	if (page)
2189 		put_page(page);
2190 }
2191 
2192 /**
2193  * soft_offline_page - Soft offline a page.
2194  * @pfn: pfn to soft-offline
2195  * @flags: flags. Same as memory_failure().
2196  *
2197  * Returns 0 on success, otherwise negated errno.
2198  *
2199  * Soft offline a page, by migration or invalidation,
2200  * without killing anything. This is for the case when
2201  * a page is not corrupted yet (so it's still valid to access),
2202  * but has had a number of corrected errors and is better taken
2203  * out.
2204  *
2205  * The actual policy on when to do that is maintained by
2206  * user space.
2207  *
2208  * This should never impact any application or cause data loss,
2209  * however it might take some time.
2210  *
2211  * This is not a 100% solution for all memory, but tries to be
2212  * ``good enough'' for the majority of memory.
2213  */
2214 int soft_offline_page(unsigned long pfn, int flags)
2215 {
2216 	int ret;
2217 	bool try_again = true;
2218 	struct page *page, *ref_page = NULL;
2219 
2220 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2221 
2222 	if (!pfn_valid(pfn))
2223 		return -ENXIO;
2224 	if (flags & MF_COUNT_INCREASED)
2225 		ref_page = pfn_to_page(pfn);
2226 
2227 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2228 	page = pfn_to_online_page(pfn);
2229 	if (!page) {
2230 		put_ref_page(ref_page);
2231 		return -EIO;
2232 	}
2233 
2234 	if (PageHWPoison(page)) {
2235 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2236 		put_ref_page(ref_page);
2237 		return 0;
2238 	}
2239 
2240 retry:
2241 	get_online_mems();
2242 	ret = get_hwpoison_page(page, flags);
2243 	put_online_mems();
2244 
2245 	if (ret > 0) {
2246 		ret = soft_offline_in_use_page(page);
2247 	} else if (ret == 0) {
2248 		if (soft_offline_free_page(page) && try_again) {
2249 			try_again = false;
2250 			goto retry;
2251 		}
2252 	}
2253 
2254 	return ret;
2255 }
2256