1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 static bool __page_handle_poison(struct page *page) 72 { 73 int ret; 74 75 zone_pcp_disable(page_zone(page)); 76 ret = dissolve_free_huge_page(page); 77 if (!ret) 78 ret = take_page_off_buddy(page); 79 zone_pcp_enable(page_zone(page)); 80 81 return ret > 0; 82 } 83 84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 85 { 86 if (hugepage_or_freepage) { 87 /* 88 * Doing this check for free pages is also fine since dissolve_free_huge_page 89 * returns 0 for non-hugetlb pages as well. 90 */ 91 if (!__page_handle_poison(page)) 92 /* 93 * We could fail to take off the target page from buddy 94 * for example due to racy page allocation, but that's 95 * acceptable because soft-offlined page is not broken 96 * and if someone really want to use it, they should 97 * take it. 98 */ 99 return false; 100 } 101 102 SetPageHWPoison(page); 103 if (release) 104 put_page(page); 105 page_ref_inc(page); 106 num_poisoned_pages_inc(); 107 108 return true; 109 } 110 111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 112 113 u32 hwpoison_filter_enable = 0; 114 u32 hwpoison_filter_dev_major = ~0U; 115 u32 hwpoison_filter_dev_minor = ~0U; 116 u64 hwpoison_filter_flags_mask; 117 u64 hwpoison_filter_flags_value; 118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 123 124 static int hwpoison_filter_dev(struct page *p) 125 { 126 struct address_space *mapping; 127 dev_t dev; 128 129 if (hwpoison_filter_dev_major == ~0U && 130 hwpoison_filter_dev_minor == ~0U) 131 return 0; 132 133 /* 134 * page_mapping() does not accept slab pages. 135 */ 136 if (PageSlab(p)) 137 return -EINVAL; 138 139 mapping = page_mapping(p); 140 if (mapping == NULL || mapping->host == NULL) 141 return -EINVAL; 142 143 dev = mapping->host->i_sb->s_dev; 144 if (hwpoison_filter_dev_major != ~0U && 145 hwpoison_filter_dev_major != MAJOR(dev)) 146 return -EINVAL; 147 if (hwpoison_filter_dev_minor != ~0U && 148 hwpoison_filter_dev_minor != MINOR(dev)) 149 return -EINVAL; 150 151 return 0; 152 } 153 154 static int hwpoison_filter_flags(struct page *p) 155 { 156 if (!hwpoison_filter_flags_mask) 157 return 0; 158 159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 160 hwpoison_filter_flags_value) 161 return 0; 162 else 163 return -EINVAL; 164 } 165 166 /* 167 * This allows stress tests to limit test scope to a collection of tasks 168 * by putting them under some memcg. This prevents killing unrelated/important 169 * processes such as /sbin/init. Note that the target task may share clean 170 * pages with init (eg. libc text), which is harmless. If the target task 171 * share _dirty_ pages with another task B, the test scheme must make sure B 172 * is also included in the memcg. At last, due to race conditions this filter 173 * can only guarantee that the page either belongs to the memcg tasks, or is 174 * a freed page. 175 */ 176 #ifdef CONFIG_MEMCG 177 u64 hwpoison_filter_memcg; 178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 179 static int hwpoison_filter_task(struct page *p) 180 { 181 if (!hwpoison_filter_memcg) 182 return 0; 183 184 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 185 return -EINVAL; 186 187 return 0; 188 } 189 #else 190 static int hwpoison_filter_task(struct page *p) { return 0; } 191 #endif 192 193 int hwpoison_filter(struct page *p) 194 { 195 if (!hwpoison_filter_enable) 196 return 0; 197 198 if (hwpoison_filter_dev(p)) 199 return -EINVAL; 200 201 if (hwpoison_filter_flags(p)) 202 return -EINVAL; 203 204 if (hwpoison_filter_task(p)) 205 return -EINVAL; 206 207 return 0; 208 } 209 #else 210 int hwpoison_filter(struct page *p) 211 { 212 return 0; 213 } 214 #endif 215 216 EXPORT_SYMBOL_GPL(hwpoison_filter); 217 218 /* 219 * Kill all processes that have a poisoned page mapped and then isolate 220 * the page. 221 * 222 * General strategy: 223 * Find all processes having the page mapped and kill them. 224 * But we keep a page reference around so that the page is not 225 * actually freed yet. 226 * Then stash the page away 227 * 228 * There's no convenient way to get back to mapped processes 229 * from the VMAs. So do a brute-force search over all 230 * running processes. 231 * 232 * Remember that machine checks are not common (or rather 233 * if they are common you have other problems), so this shouldn't 234 * be a performance issue. 235 * 236 * Also there are some races possible while we get from the 237 * error detection to actually handle it. 238 */ 239 240 struct to_kill { 241 struct list_head nd; 242 struct task_struct *tsk; 243 unsigned long addr; 244 short size_shift; 245 }; 246 247 /* 248 * Send all the processes who have the page mapped a signal. 249 * ``action optional'' if they are not immediately affected by the error 250 * ``action required'' if error happened in current execution context 251 */ 252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 253 { 254 struct task_struct *t = tk->tsk; 255 short addr_lsb = tk->size_shift; 256 int ret = 0; 257 258 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 259 pfn, t->comm, t->pid); 260 261 if (flags & MF_ACTION_REQUIRED) { 262 if (t == current) 263 ret = force_sig_mceerr(BUS_MCEERR_AR, 264 (void __user *)tk->addr, addr_lsb); 265 else 266 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 268 addr_lsb, t); 269 } else { 270 /* 271 * Don't use force here, it's convenient if the signal 272 * can be temporarily blocked. 273 * This could cause a loop when the user sets SIGBUS 274 * to SIG_IGN, but hopefully no one will do that? 275 */ 276 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 277 addr_lsb, t); /* synchronous? */ 278 } 279 if (ret < 0) 280 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 281 t->comm, t->pid, ret); 282 return ret; 283 } 284 285 /* 286 * Unknown page type encountered. Try to check whether it can turn PageLRU by 287 * lru_add_drain_all. 288 */ 289 void shake_page(struct page *p) 290 { 291 if (PageHuge(p)) 292 return; 293 294 if (!PageSlab(p)) { 295 lru_add_drain_all(); 296 if (PageLRU(p) || is_free_buddy_page(p)) 297 return; 298 } 299 300 /* 301 * TODO: Could shrink slab caches here if a lightweight range-based 302 * shrinker will be available. 303 */ 304 } 305 EXPORT_SYMBOL_GPL(shake_page); 306 307 static unsigned long dev_pagemap_mapping_shift(struct page *page, 308 struct vm_area_struct *vma) 309 { 310 unsigned long address = vma_address(page, vma); 311 unsigned long ret = 0; 312 pgd_t *pgd; 313 p4d_t *p4d; 314 pud_t *pud; 315 pmd_t *pmd; 316 pte_t *pte; 317 318 pgd = pgd_offset(vma->vm_mm, address); 319 if (!pgd_present(*pgd)) 320 return 0; 321 p4d = p4d_offset(pgd, address); 322 if (!p4d_present(*p4d)) 323 return 0; 324 pud = pud_offset(p4d, address); 325 if (!pud_present(*pud)) 326 return 0; 327 if (pud_devmap(*pud)) 328 return PUD_SHIFT; 329 pmd = pmd_offset(pud, address); 330 if (!pmd_present(*pmd)) 331 return 0; 332 if (pmd_devmap(*pmd)) 333 return PMD_SHIFT; 334 pte = pte_offset_map(pmd, address); 335 if (pte_present(*pte) && pte_devmap(*pte)) 336 ret = PAGE_SHIFT; 337 pte_unmap(pte); 338 return ret; 339 } 340 341 /* 342 * Failure handling: if we can't find or can't kill a process there's 343 * not much we can do. We just print a message and ignore otherwise. 344 */ 345 346 /* 347 * Schedule a process for later kill. 348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 349 */ 350 static void add_to_kill(struct task_struct *tsk, struct page *p, 351 struct vm_area_struct *vma, 352 struct list_head *to_kill) 353 { 354 struct to_kill *tk; 355 356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 357 if (!tk) { 358 pr_err("Memory failure: Out of memory while machine check handling\n"); 359 return; 360 } 361 362 tk->addr = page_address_in_vma(p, vma); 363 if (is_zone_device_page(p)) 364 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 365 else 366 tk->size_shift = page_shift(compound_head(p)); 367 368 /* 369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 370 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 371 * so "tk->size_shift == 0" effectively checks no mapping on 372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 373 * to a process' address space, it's possible not all N VMAs 374 * contain mappings for the page, but at least one VMA does. 375 * Only deliver SIGBUS with payload derived from the VMA that 376 * has a mapping for the page. 377 */ 378 if (tk->addr == -EFAULT) { 379 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 380 page_to_pfn(p), tsk->comm); 381 } else if (tk->size_shift == 0) { 382 kfree(tk); 383 return; 384 } 385 386 get_task_struct(tsk); 387 tk->tsk = tsk; 388 list_add_tail(&tk->nd, to_kill); 389 } 390 391 /* 392 * Kill the processes that have been collected earlier. 393 * 394 * Only do anything when FORCEKILL is set, otherwise just free the 395 * list (this is used for clean pages which do not need killing) 396 * Also when FAIL is set do a force kill because something went 397 * wrong earlier. 398 */ 399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 400 unsigned long pfn, int flags) 401 { 402 struct to_kill *tk, *next; 403 404 list_for_each_entry_safe (tk, next, to_kill, nd) { 405 if (forcekill) { 406 /* 407 * In case something went wrong with munmapping 408 * make sure the process doesn't catch the 409 * signal and then access the memory. Just kill it. 410 */ 411 if (fail || tk->addr == -EFAULT) { 412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 413 pfn, tk->tsk->comm, tk->tsk->pid); 414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 415 tk->tsk, PIDTYPE_PID); 416 } 417 418 /* 419 * In theory the process could have mapped 420 * something else on the address in-between. We could 421 * check for that, but we need to tell the 422 * process anyways. 423 */ 424 else if (kill_proc(tk, pfn, flags) < 0) 425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 426 pfn, tk->tsk->comm, tk->tsk->pid); 427 } 428 put_task_struct(tk->tsk); 429 kfree(tk); 430 } 431 } 432 433 /* 434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 435 * on behalf of the thread group. Return task_struct of the (first found) 436 * dedicated thread if found, and return NULL otherwise. 437 * 438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 439 * have to call rcu_read_lock/unlock() in this function. 440 */ 441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 442 { 443 struct task_struct *t; 444 445 for_each_thread(tsk, t) { 446 if (t->flags & PF_MCE_PROCESS) { 447 if (t->flags & PF_MCE_EARLY) 448 return t; 449 } else { 450 if (sysctl_memory_failure_early_kill) 451 return t; 452 } 453 } 454 return NULL; 455 } 456 457 /* 458 * Determine whether a given process is "early kill" process which expects 459 * to be signaled when some page under the process is hwpoisoned. 460 * Return task_struct of the dedicated thread (main thread unless explicitly 461 * specified) if the process is "early kill" and otherwise returns NULL. 462 * 463 * Note that the above is true for Action Optional case. For Action Required 464 * case, it's only meaningful to the current thread which need to be signaled 465 * with SIGBUS, this error is Action Optional for other non current 466 * processes sharing the same error page,if the process is "early kill", the 467 * task_struct of the dedicated thread will also be returned. 468 */ 469 static struct task_struct *task_early_kill(struct task_struct *tsk, 470 int force_early) 471 { 472 if (!tsk->mm) 473 return NULL; 474 /* 475 * Comparing ->mm here because current task might represent 476 * a subthread, while tsk always points to the main thread. 477 */ 478 if (force_early && tsk->mm == current->mm) 479 return current; 480 481 return find_early_kill_thread(tsk); 482 } 483 484 /* 485 * Collect processes when the error hit an anonymous page. 486 */ 487 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 488 int force_early) 489 { 490 struct vm_area_struct *vma; 491 struct task_struct *tsk; 492 struct anon_vma *av; 493 pgoff_t pgoff; 494 495 av = page_lock_anon_vma_read(page); 496 if (av == NULL) /* Not actually mapped anymore */ 497 return; 498 499 pgoff = page_to_pgoff(page); 500 read_lock(&tasklist_lock); 501 for_each_process (tsk) { 502 struct anon_vma_chain *vmac; 503 struct task_struct *t = task_early_kill(tsk, force_early); 504 505 if (!t) 506 continue; 507 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 508 pgoff, pgoff) { 509 vma = vmac->vma; 510 if (!page_mapped_in_vma(page, vma)) 511 continue; 512 if (vma->vm_mm == t->mm) 513 add_to_kill(t, page, vma, to_kill); 514 } 515 } 516 read_unlock(&tasklist_lock); 517 page_unlock_anon_vma_read(av); 518 } 519 520 /* 521 * Collect processes when the error hit a file mapped page. 522 */ 523 static void collect_procs_file(struct page *page, struct list_head *to_kill, 524 int force_early) 525 { 526 struct vm_area_struct *vma; 527 struct task_struct *tsk; 528 struct address_space *mapping = page->mapping; 529 pgoff_t pgoff; 530 531 i_mmap_lock_read(mapping); 532 read_lock(&tasklist_lock); 533 pgoff = page_to_pgoff(page); 534 for_each_process(tsk) { 535 struct task_struct *t = task_early_kill(tsk, force_early); 536 537 if (!t) 538 continue; 539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 540 pgoff) { 541 /* 542 * Send early kill signal to tasks where a vma covers 543 * the page but the corrupted page is not necessarily 544 * mapped it in its pte. 545 * Assume applications who requested early kill want 546 * to be informed of all such data corruptions. 547 */ 548 if (vma->vm_mm == t->mm) 549 add_to_kill(t, page, vma, to_kill); 550 } 551 } 552 read_unlock(&tasklist_lock); 553 i_mmap_unlock_read(mapping); 554 } 555 556 /* 557 * Collect the processes who have the corrupted page mapped to kill. 558 */ 559 static void collect_procs(struct page *page, struct list_head *tokill, 560 int force_early) 561 { 562 if (!page->mapping) 563 return; 564 565 if (PageAnon(page)) 566 collect_procs_anon(page, tokill, force_early); 567 else 568 collect_procs_file(page, tokill, force_early); 569 } 570 571 struct hwp_walk { 572 struct to_kill tk; 573 unsigned long pfn; 574 int flags; 575 }; 576 577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 578 { 579 tk->addr = addr; 580 tk->size_shift = shift; 581 } 582 583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 584 unsigned long poisoned_pfn, struct to_kill *tk) 585 { 586 unsigned long pfn = 0; 587 588 if (pte_present(pte)) { 589 pfn = pte_pfn(pte); 590 } else { 591 swp_entry_t swp = pte_to_swp_entry(pte); 592 593 if (is_hwpoison_entry(swp)) 594 pfn = hwpoison_entry_to_pfn(swp); 595 } 596 597 if (!pfn || pfn != poisoned_pfn) 598 return 0; 599 600 set_to_kill(tk, addr, shift); 601 return 1; 602 } 603 604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 606 struct hwp_walk *hwp) 607 { 608 pmd_t pmd = *pmdp; 609 unsigned long pfn; 610 unsigned long hwpoison_vaddr; 611 612 if (!pmd_present(pmd)) 613 return 0; 614 pfn = pmd_pfn(pmd); 615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 618 return 1; 619 } 620 return 0; 621 } 622 #else 623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 624 struct hwp_walk *hwp) 625 { 626 return 0; 627 } 628 #endif 629 630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 631 unsigned long end, struct mm_walk *walk) 632 { 633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 634 int ret = 0; 635 pte_t *ptep, *mapped_pte; 636 spinlock_t *ptl; 637 638 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 639 if (ptl) { 640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 641 spin_unlock(ptl); 642 goto out; 643 } 644 645 if (pmd_trans_unstable(pmdp)) 646 goto out; 647 648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 649 addr, &ptl); 650 for (; addr != end; ptep++, addr += PAGE_SIZE) { 651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 652 hwp->pfn, &hwp->tk); 653 if (ret == 1) 654 break; 655 } 656 pte_unmap_unlock(mapped_pte, ptl); 657 out: 658 cond_resched(); 659 return ret; 660 } 661 662 #ifdef CONFIG_HUGETLB_PAGE 663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 664 unsigned long addr, unsigned long end, 665 struct mm_walk *walk) 666 { 667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 668 pte_t pte = huge_ptep_get(ptep); 669 struct hstate *h = hstate_vma(walk->vma); 670 671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 672 hwp->pfn, &hwp->tk); 673 } 674 #else 675 #define hwpoison_hugetlb_range NULL 676 #endif 677 678 static const struct mm_walk_ops hwp_walk_ops = { 679 .pmd_entry = hwpoison_pte_range, 680 .hugetlb_entry = hwpoison_hugetlb_range, 681 }; 682 683 /* 684 * Sends SIGBUS to the current process with error info. 685 * 686 * This function is intended to handle "Action Required" MCEs on already 687 * hardware poisoned pages. They could happen, for example, when 688 * memory_failure() failed to unmap the error page at the first call, or 689 * when multiple local machine checks happened on different CPUs. 690 * 691 * MCE handler currently has no easy access to the error virtual address, 692 * so this function walks page table to find it. The returned virtual address 693 * is proper in most cases, but it could be wrong when the application 694 * process has multiple entries mapping the error page. 695 */ 696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 697 int flags) 698 { 699 int ret; 700 struct hwp_walk priv = { 701 .pfn = pfn, 702 }; 703 priv.tk.tsk = p; 704 705 mmap_read_lock(p->mm); 706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 707 (void *)&priv); 708 if (ret == 1 && priv.tk.addr) 709 kill_proc(&priv.tk, pfn, flags); 710 mmap_read_unlock(p->mm); 711 return ret ? -EFAULT : -EHWPOISON; 712 } 713 714 static const char *action_name[] = { 715 [MF_IGNORED] = "Ignored", 716 [MF_FAILED] = "Failed", 717 [MF_DELAYED] = "Delayed", 718 [MF_RECOVERED] = "Recovered", 719 }; 720 721 static const char * const action_page_types[] = { 722 [MF_MSG_KERNEL] = "reserved kernel page", 723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 724 [MF_MSG_SLAB] = "kernel slab page", 725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 726 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 727 [MF_MSG_HUGE] = "huge page", 728 [MF_MSG_FREE_HUGE] = "free huge page", 729 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 730 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 731 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 732 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 733 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 734 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 735 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 736 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 737 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 738 [MF_MSG_CLEAN_LRU] = "clean LRU page", 739 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 740 [MF_MSG_BUDDY] = "free buddy page", 741 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 742 [MF_MSG_DAX] = "dax page", 743 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 744 [MF_MSG_UNKNOWN] = "unknown page", 745 }; 746 747 /* 748 * XXX: It is possible that a page is isolated from LRU cache, 749 * and then kept in swap cache or failed to remove from page cache. 750 * The page count will stop it from being freed by unpoison. 751 * Stress tests should be aware of this memory leak problem. 752 */ 753 static int delete_from_lru_cache(struct page *p) 754 { 755 if (!isolate_lru_page(p)) { 756 /* 757 * Clear sensible page flags, so that the buddy system won't 758 * complain when the page is unpoison-and-freed. 759 */ 760 ClearPageActive(p); 761 ClearPageUnevictable(p); 762 763 /* 764 * Poisoned page might never drop its ref count to 0 so we have 765 * to uncharge it manually from its memcg. 766 */ 767 mem_cgroup_uncharge(page_folio(p)); 768 769 /* 770 * drop the page count elevated by isolate_lru_page() 771 */ 772 put_page(p); 773 return 0; 774 } 775 return -EIO; 776 } 777 778 static int truncate_error_page(struct page *p, unsigned long pfn, 779 struct address_space *mapping) 780 { 781 int ret = MF_FAILED; 782 783 if (mapping->a_ops->error_remove_page) { 784 int err = mapping->a_ops->error_remove_page(mapping, p); 785 786 if (err != 0) { 787 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 788 pfn, err); 789 } else if (page_has_private(p) && 790 !try_to_release_page(p, GFP_NOIO)) { 791 pr_info("Memory failure: %#lx: failed to release buffers\n", 792 pfn); 793 } else { 794 ret = MF_RECOVERED; 795 } 796 } else { 797 /* 798 * If the file system doesn't support it just invalidate 799 * This fails on dirty or anything with private pages 800 */ 801 if (invalidate_inode_page(p)) 802 ret = MF_RECOVERED; 803 else 804 pr_info("Memory failure: %#lx: Failed to invalidate\n", 805 pfn); 806 } 807 808 return ret; 809 } 810 811 struct page_state { 812 unsigned long mask; 813 unsigned long res; 814 enum mf_action_page_type type; 815 816 /* Callback ->action() has to unlock the relevant page inside it. */ 817 int (*action)(struct page_state *ps, struct page *p); 818 }; 819 820 /* 821 * Return true if page is still referenced by others, otherwise return 822 * false. 823 * 824 * The extra_pins is true when one extra refcount is expected. 825 */ 826 static bool has_extra_refcount(struct page_state *ps, struct page *p, 827 bool extra_pins) 828 { 829 int count = page_count(p) - 1; 830 831 if (extra_pins) 832 count -= 1; 833 834 if (count > 0) { 835 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 836 page_to_pfn(p), action_page_types[ps->type], count); 837 return true; 838 } 839 840 return false; 841 } 842 843 /* 844 * Error hit kernel page. 845 * Do nothing, try to be lucky and not touch this instead. For a few cases we 846 * could be more sophisticated. 847 */ 848 static int me_kernel(struct page_state *ps, struct page *p) 849 { 850 unlock_page(p); 851 return MF_IGNORED; 852 } 853 854 /* 855 * Page in unknown state. Do nothing. 856 */ 857 static int me_unknown(struct page_state *ps, struct page *p) 858 { 859 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 860 unlock_page(p); 861 return MF_FAILED; 862 } 863 864 /* 865 * Clean (or cleaned) page cache page. 866 */ 867 static int me_pagecache_clean(struct page_state *ps, struct page *p) 868 { 869 int ret; 870 struct address_space *mapping; 871 bool extra_pins; 872 873 delete_from_lru_cache(p); 874 875 /* 876 * For anonymous pages we're done the only reference left 877 * should be the one m_f() holds. 878 */ 879 if (PageAnon(p)) { 880 ret = MF_RECOVERED; 881 goto out; 882 } 883 884 /* 885 * Now truncate the page in the page cache. This is really 886 * more like a "temporary hole punch" 887 * Don't do this for block devices when someone else 888 * has a reference, because it could be file system metadata 889 * and that's not safe to truncate. 890 */ 891 mapping = page_mapping(p); 892 if (!mapping) { 893 /* 894 * Page has been teared down in the meanwhile 895 */ 896 ret = MF_FAILED; 897 goto out; 898 } 899 900 /* 901 * The shmem page is kept in page cache instead of truncating 902 * so is expected to have an extra refcount after error-handling. 903 */ 904 extra_pins = shmem_mapping(mapping); 905 906 /* 907 * Truncation is a bit tricky. Enable it per file system for now. 908 * 909 * Open: to take i_rwsem or not for this? Right now we don't. 910 */ 911 ret = truncate_error_page(p, page_to_pfn(p), mapping); 912 if (has_extra_refcount(ps, p, extra_pins)) 913 ret = MF_FAILED; 914 915 out: 916 unlock_page(p); 917 918 return ret; 919 } 920 921 /* 922 * Dirty pagecache page 923 * Issues: when the error hit a hole page the error is not properly 924 * propagated. 925 */ 926 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 927 { 928 struct address_space *mapping = page_mapping(p); 929 930 SetPageError(p); 931 /* TBD: print more information about the file. */ 932 if (mapping) { 933 /* 934 * IO error will be reported by write(), fsync(), etc. 935 * who check the mapping. 936 * This way the application knows that something went 937 * wrong with its dirty file data. 938 * 939 * There's one open issue: 940 * 941 * The EIO will be only reported on the next IO 942 * operation and then cleared through the IO map. 943 * Normally Linux has two mechanisms to pass IO error 944 * first through the AS_EIO flag in the address space 945 * and then through the PageError flag in the page. 946 * Since we drop pages on memory failure handling the 947 * only mechanism open to use is through AS_AIO. 948 * 949 * This has the disadvantage that it gets cleared on 950 * the first operation that returns an error, while 951 * the PageError bit is more sticky and only cleared 952 * when the page is reread or dropped. If an 953 * application assumes it will always get error on 954 * fsync, but does other operations on the fd before 955 * and the page is dropped between then the error 956 * will not be properly reported. 957 * 958 * This can already happen even without hwpoisoned 959 * pages: first on metadata IO errors (which only 960 * report through AS_EIO) or when the page is dropped 961 * at the wrong time. 962 * 963 * So right now we assume that the application DTRT on 964 * the first EIO, but we're not worse than other parts 965 * of the kernel. 966 */ 967 mapping_set_error(mapping, -EIO); 968 } 969 970 return me_pagecache_clean(ps, p); 971 } 972 973 /* 974 * Clean and dirty swap cache. 975 * 976 * Dirty swap cache page is tricky to handle. The page could live both in page 977 * cache and swap cache(ie. page is freshly swapped in). So it could be 978 * referenced concurrently by 2 types of PTEs: 979 * normal PTEs and swap PTEs. We try to handle them consistently by calling 980 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 981 * and then 982 * - clear dirty bit to prevent IO 983 * - remove from LRU 984 * - but keep in the swap cache, so that when we return to it on 985 * a later page fault, we know the application is accessing 986 * corrupted data and shall be killed (we installed simple 987 * interception code in do_swap_page to catch it). 988 * 989 * Clean swap cache pages can be directly isolated. A later page fault will 990 * bring in the known good data from disk. 991 */ 992 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 993 { 994 int ret; 995 bool extra_pins = false; 996 997 ClearPageDirty(p); 998 /* Trigger EIO in shmem: */ 999 ClearPageUptodate(p); 1000 1001 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1002 unlock_page(p); 1003 1004 if (ret == MF_DELAYED) 1005 extra_pins = true; 1006 1007 if (has_extra_refcount(ps, p, extra_pins)) 1008 ret = MF_FAILED; 1009 1010 return ret; 1011 } 1012 1013 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1014 { 1015 int ret; 1016 1017 delete_from_swap_cache(p); 1018 1019 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1020 unlock_page(p); 1021 1022 if (has_extra_refcount(ps, p, false)) 1023 ret = MF_FAILED; 1024 1025 return ret; 1026 } 1027 1028 /* 1029 * Huge pages. Needs work. 1030 * Issues: 1031 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1032 * To narrow down kill region to one page, we need to break up pmd. 1033 */ 1034 static int me_huge_page(struct page_state *ps, struct page *p) 1035 { 1036 int res; 1037 struct page *hpage = compound_head(p); 1038 struct address_space *mapping; 1039 1040 if (!PageHuge(hpage)) 1041 return MF_DELAYED; 1042 1043 mapping = page_mapping(hpage); 1044 if (mapping) { 1045 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1046 unlock_page(hpage); 1047 } else { 1048 res = MF_FAILED; 1049 unlock_page(hpage); 1050 /* 1051 * migration entry prevents later access on error anonymous 1052 * hugepage, so we can free and dissolve it into buddy to 1053 * save healthy subpages. 1054 */ 1055 if (PageAnon(hpage)) 1056 put_page(hpage); 1057 if (__page_handle_poison(p)) { 1058 page_ref_inc(p); 1059 res = MF_RECOVERED; 1060 } 1061 } 1062 1063 if (has_extra_refcount(ps, p, false)) 1064 res = MF_FAILED; 1065 1066 return res; 1067 } 1068 1069 /* 1070 * Various page states we can handle. 1071 * 1072 * A page state is defined by its current page->flags bits. 1073 * The table matches them in order and calls the right handler. 1074 * 1075 * This is quite tricky because we can access page at any time 1076 * in its live cycle, so all accesses have to be extremely careful. 1077 * 1078 * This is not complete. More states could be added. 1079 * For any missing state don't attempt recovery. 1080 */ 1081 1082 #define dirty (1UL << PG_dirty) 1083 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1084 #define unevict (1UL << PG_unevictable) 1085 #define mlock (1UL << PG_mlocked) 1086 #define lru (1UL << PG_lru) 1087 #define head (1UL << PG_head) 1088 #define slab (1UL << PG_slab) 1089 #define reserved (1UL << PG_reserved) 1090 1091 static struct page_state error_states[] = { 1092 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1093 /* 1094 * free pages are specially detected outside this table: 1095 * PG_buddy pages only make a small fraction of all free pages. 1096 */ 1097 1098 /* 1099 * Could in theory check if slab page is free or if we can drop 1100 * currently unused objects without touching them. But just 1101 * treat it as standard kernel for now. 1102 */ 1103 { slab, slab, MF_MSG_SLAB, me_kernel }, 1104 1105 { head, head, MF_MSG_HUGE, me_huge_page }, 1106 1107 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1108 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1109 1110 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1111 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1112 1113 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1114 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1115 1116 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1117 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1118 1119 /* 1120 * Catchall entry: must be at end. 1121 */ 1122 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1123 }; 1124 1125 #undef dirty 1126 #undef sc 1127 #undef unevict 1128 #undef mlock 1129 #undef lru 1130 #undef head 1131 #undef slab 1132 #undef reserved 1133 1134 /* 1135 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1136 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1137 */ 1138 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1139 enum mf_result result) 1140 { 1141 trace_memory_failure_event(pfn, type, result); 1142 1143 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1144 pfn, action_page_types[type], action_name[result]); 1145 } 1146 1147 static int page_action(struct page_state *ps, struct page *p, 1148 unsigned long pfn) 1149 { 1150 int result; 1151 1152 /* page p should be unlocked after returning from ps->action(). */ 1153 result = ps->action(ps, p); 1154 1155 action_result(pfn, ps->type, result); 1156 1157 /* Could do more checks here if page looks ok */ 1158 /* 1159 * Could adjust zone counters here to correct for the missing page. 1160 */ 1161 1162 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1163 } 1164 1165 /* 1166 * Return true if a page type of a given page is supported by hwpoison 1167 * mechanism (while handling could fail), otherwise false. This function 1168 * does not return true for hugetlb or device memory pages, so it's assumed 1169 * to be called only in the context where we never have such pages. 1170 */ 1171 static inline bool HWPoisonHandlable(struct page *page) 1172 { 1173 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page); 1174 } 1175 1176 static int __get_hwpoison_page(struct page *page) 1177 { 1178 struct page *head = compound_head(page); 1179 int ret = 0; 1180 bool hugetlb = false; 1181 1182 ret = get_hwpoison_huge_page(head, &hugetlb); 1183 if (hugetlb) 1184 return ret; 1185 1186 /* 1187 * This check prevents from calling get_hwpoison_unless_zero() 1188 * for any unsupported type of page in order to reduce the risk of 1189 * unexpected races caused by taking a page refcount. 1190 */ 1191 if (!HWPoisonHandlable(head)) 1192 return -EBUSY; 1193 1194 if (get_page_unless_zero(head)) { 1195 if (head == compound_head(page)) 1196 return 1; 1197 1198 pr_info("Memory failure: %#lx cannot catch tail\n", 1199 page_to_pfn(page)); 1200 put_page(head); 1201 } 1202 1203 return 0; 1204 } 1205 1206 static int get_any_page(struct page *p, unsigned long flags) 1207 { 1208 int ret = 0, pass = 0; 1209 bool count_increased = false; 1210 1211 if (flags & MF_COUNT_INCREASED) 1212 count_increased = true; 1213 1214 try_again: 1215 if (!count_increased) { 1216 ret = __get_hwpoison_page(p); 1217 if (!ret) { 1218 if (page_count(p)) { 1219 /* We raced with an allocation, retry. */ 1220 if (pass++ < 3) 1221 goto try_again; 1222 ret = -EBUSY; 1223 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1224 /* We raced with put_page, retry. */ 1225 if (pass++ < 3) 1226 goto try_again; 1227 ret = -EIO; 1228 } 1229 goto out; 1230 } else if (ret == -EBUSY) { 1231 /* 1232 * We raced with (possibly temporary) unhandlable 1233 * page, retry. 1234 */ 1235 if (pass++ < 3) { 1236 shake_page(p); 1237 goto try_again; 1238 } 1239 ret = -EIO; 1240 goto out; 1241 } 1242 } 1243 1244 if (PageHuge(p) || HWPoisonHandlable(p)) { 1245 ret = 1; 1246 } else { 1247 /* 1248 * A page we cannot handle. Check whether we can turn 1249 * it into something we can handle. 1250 */ 1251 if (pass++ < 3) { 1252 put_page(p); 1253 shake_page(p); 1254 count_increased = false; 1255 goto try_again; 1256 } 1257 put_page(p); 1258 ret = -EIO; 1259 } 1260 out: 1261 if (ret == -EIO) 1262 dump_page(p, "hwpoison: unhandlable page"); 1263 1264 return ret; 1265 } 1266 1267 /** 1268 * get_hwpoison_page() - Get refcount for memory error handling 1269 * @p: Raw error page (hit by memory error) 1270 * @flags: Flags controlling behavior of error handling 1271 * 1272 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1273 * error on it, after checking that the error page is in a well-defined state 1274 * (defined as a page-type we can successfully handle the memor error on it, 1275 * such as LRU page and hugetlb page). 1276 * 1277 * Memory error handling could be triggered at any time on any type of page, 1278 * so it's prone to race with typical memory management lifecycle (like 1279 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1280 * extra care for the error page's state (as done in __get_hwpoison_page()), 1281 * and has some retry logic in get_any_page(). 1282 * 1283 * Return: 0 on failure, 1284 * 1 on success for in-use pages in a well-defined state, 1285 * -EIO for pages on which we can not handle memory errors, 1286 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1287 * operations like allocation and free. 1288 */ 1289 static int get_hwpoison_page(struct page *p, unsigned long flags) 1290 { 1291 int ret; 1292 1293 zone_pcp_disable(page_zone(p)); 1294 ret = get_any_page(p, flags); 1295 zone_pcp_enable(page_zone(p)); 1296 1297 return ret; 1298 } 1299 1300 /* 1301 * Do all that is necessary to remove user space mappings. Unmap 1302 * the pages and send SIGBUS to the processes if the data was dirty. 1303 */ 1304 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1305 int flags, struct page *hpage) 1306 { 1307 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1308 struct address_space *mapping; 1309 LIST_HEAD(tokill); 1310 bool unmap_success; 1311 int kill = 1, forcekill; 1312 bool mlocked = PageMlocked(hpage); 1313 1314 /* 1315 * Here we are interested only in user-mapped pages, so skip any 1316 * other types of pages. 1317 */ 1318 if (PageReserved(p) || PageSlab(p)) 1319 return true; 1320 if (!(PageLRU(hpage) || PageHuge(p))) 1321 return true; 1322 1323 /* 1324 * This check implies we don't kill processes if their pages 1325 * are in the swap cache early. Those are always late kills. 1326 */ 1327 if (!page_mapped(hpage)) 1328 return true; 1329 1330 if (PageKsm(p)) { 1331 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1332 return false; 1333 } 1334 1335 if (PageSwapCache(p)) { 1336 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1337 pfn); 1338 ttu |= TTU_IGNORE_HWPOISON; 1339 } 1340 1341 /* 1342 * Propagate the dirty bit from PTEs to struct page first, because we 1343 * need this to decide if we should kill or just drop the page. 1344 * XXX: the dirty test could be racy: set_page_dirty() may not always 1345 * be called inside page lock (it's recommended but not enforced). 1346 */ 1347 mapping = page_mapping(hpage); 1348 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1349 mapping_can_writeback(mapping)) { 1350 if (page_mkclean(hpage)) { 1351 SetPageDirty(hpage); 1352 } else { 1353 kill = 0; 1354 ttu |= TTU_IGNORE_HWPOISON; 1355 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1356 pfn); 1357 } 1358 } 1359 1360 /* 1361 * First collect all the processes that have the page 1362 * mapped in dirty form. This has to be done before try_to_unmap, 1363 * because ttu takes the rmap data structures down. 1364 * 1365 * Error handling: We ignore errors here because 1366 * there's nothing that can be done. 1367 */ 1368 if (kill) 1369 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1370 1371 if (!PageHuge(hpage)) { 1372 try_to_unmap(hpage, ttu); 1373 } else { 1374 if (!PageAnon(hpage)) { 1375 /* 1376 * For hugetlb pages in shared mappings, try_to_unmap 1377 * could potentially call huge_pmd_unshare. Because of 1378 * this, take semaphore in write mode here and set 1379 * TTU_RMAP_LOCKED to indicate we have taken the lock 1380 * at this higher level. 1381 */ 1382 mapping = hugetlb_page_mapping_lock_write(hpage); 1383 if (mapping) { 1384 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED); 1385 i_mmap_unlock_write(mapping); 1386 } else 1387 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1388 } else { 1389 try_to_unmap(hpage, ttu); 1390 } 1391 } 1392 1393 unmap_success = !page_mapped(hpage); 1394 if (!unmap_success) 1395 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1396 pfn, page_mapcount(hpage)); 1397 1398 /* 1399 * try_to_unmap() might put mlocked page in lru cache, so call 1400 * shake_page() again to ensure that it's flushed. 1401 */ 1402 if (mlocked) 1403 shake_page(hpage); 1404 1405 /* 1406 * Now that the dirty bit has been propagated to the 1407 * struct page and all unmaps done we can decide if 1408 * killing is needed or not. Only kill when the page 1409 * was dirty or the process is not restartable, 1410 * otherwise the tokill list is merely 1411 * freed. When there was a problem unmapping earlier 1412 * use a more force-full uncatchable kill to prevent 1413 * any accesses to the poisoned memory. 1414 */ 1415 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1416 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1417 1418 return unmap_success; 1419 } 1420 1421 static int identify_page_state(unsigned long pfn, struct page *p, 1422 unsigned long page_flags) 1423 { 1424 struct page_state *ps; 1425 1426 /* 1427 * The first check uses the current page flags which may not have any 1428 * relevant information. The second check with the saved page flags is 1429 * carried out only if the first check can't determine the page status. 1430 */ 1431 for (ps = error_states;; ps++) 1432 if ((p->flags & ps->mask) == ps->res) 1433 break; 1434 1435 page_flags |= (p->flags & (1UL << PG_dirty)); 1436 1437 if (!ps->mask) 1438 for (ps = error_states;; ps++) 1439 if ((page_flags & ps->mask) == ps->res) 1440 break; 1441 return page_action(ps, p, pfn); 1442 } 1443 1444 static int try_to_split_thp_page(struct page *page, const char *msg) 1445 { 1446 lock_page(page); 1447 if (unlikely(split_huge_page(page))) { 1448 unsigned long pfn = page_to_pfn(page); 1449 1450 unlock_page(page); 1451 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1452 put_page(page); 1453 return -EBUSY; 1454 } 1455 unlock_page(page); 1456 1457 return 0; 1458 } 1459 1460 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1461 { 1462 struct page *p = pfn_to_page(pfn); 1463 struct page *head = compound_head(p); 1464 int res; 1465 unsigned long page_flags; 1466 1467 if (TestSetPageHWPoison(head)) { 1468 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1469 pfn); 1470 res = -EHWPOISON; 1471 if (flags & MF_ACTION_REQUIRED) 1472 res = kill_accessing_process(current, page_to_pfn(head), flags); 1473 return res; 1474 } 1475 1476 num_poisoned_pages_inc(); 1477 1478 if (!(flags & MF_COUNT_INCREASED)) { 1479 res = get_hwpoison_page(p, flags); 1480 if (!res) { 1481 /* 1482 * Check "filter hit" and "race with other subpage." 1483 */ 1484 lock_page(head); 1485 if (PageHWPoison(head)) { 1486 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1487 || (p != head && TestSetPageHWPoison(head))) { 1488 num_poisoned_pages_dec(); 1489 unlock_page(head); 1490 return 0; 1491 } 1492 } 1493 unlock_page(head); 1494 res = MF_FAILED; 1495 if (__page_handle_poison(p)) { 1496 page_ref_inc(p); 1497 res = MF_RECOVERED; 1498 } 1499 action_result(pfn, MF_MSG_FREE_HUGE, res); 1500 return res == MF_RECOVERED ? 0 : -EBUSY; 1501 } else if (res < 0) { 1502 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1503 return -EBUSY; 1504 } 1505 } 1506 1507 lock_page(head); 1508 page_flags = head->flags; 1509 1510 if (!PageHWPoison(head)) { 1511 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1512 num_poisoned_pages_dec(); 1513 unlock_page(head); 1514 put_page(head); 1515 return 0; 1516 } 1517 1518 /* 1519 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1520 * simply disable it. In order to make it work properly, we need 1521 * make sure that: 1522 * - conversion of a pud that maps an error hugetlb into hwpoison 1523 * entry properly works, and 1524 * - other mm code walking over page table is aware of pud-aligned 1525 * hwpoison entries. 1526 */ 1527 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1528 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1529 res = -EBUSY; 1530 goto out; 1531 } 1532 1533 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1534 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1535 res = -EBUSY; 1536 goto out; 1537 } 1538 1539 return identify_page_state(pfn, p, page_flags); 1540 out: 1541 unlock_page(head); 1542 return res; 1543 } 1544 1545 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1546 struct dev_pagemap *pgmap) 1547 { 1548 struct page *page = pfn_to_page(pfn); 1549 unsigned long size = 0; 1550 struct to_kill *tk; 1551 LIST_HEAD(tokill); 1552 int rc = -EBUSY; 1553 loff_t start; 1554 dax_entry_t cookie; 1555 1556 if (flags & MF_COUNT_INCREASED) 1557 /* 1558 * Drop the extra refcount in case we come from madvise(). 1559 */ 1560 put_page(page); 1561 1562 /* device metadata space is not recoverable */ 1563 if (!pgmap_pfn_valid(pgmap, pfn)) { 1564 rc = -ENXIO; 1565 goto out; 1566 } 1567 1568 /* 1569 * Prevent the inode from being freed while we are interrogating 1570 * the address_space, typically this would be handled by 1571 * lock_page(), but dax pages do not use the page lock. This 1572 * also prevents changes to the mapping of this pfn until 1573 * poison signaling is complete. 1574 */ 1575 cookie = dax_lock_page(page); 1576 if (!cookie) 1577 goto out; 1578 1579 if (hwpoison_filter(page)) { 1580 rc = 0; 1581 goto unlock; 1582 } 1583 1584 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1585 /* 1586 * TODO: Handle HMM pages which may need coordination 1587 * with device-side memory. 1588 */ 1589 goto unlock; 1590 } 1591 1592 /* 1593 * Use this flag as an indication that the dax page has been 1594 * remapped UC to prevent speculative consumption of poison. 1595 */ 1596 SetPageHWPoison(page); 1597 1598 /* 1599 * Unlike System-RAM there is no possibility to swap in a 1600 * different physical page at a given virtual address, so all 1601 * userspace consumption of ZONE_DEVICE memory necessitates 1602 * SIGBUS (i.e. MF_MUST_KILL) 1603 */ 1604 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1605 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1606 1607 list_for_each_entry(tk, &tokill, nd) 1608 if (tk->size_shift) 1609 size = max(size, 1UL << tk->size_shift); 1610 if (size) { 1611 /* 1612 * Unmap the largest mapping to avoid breaking up 1613 * device-dax mappings which are constant size. The 1614 * actual size of the mapping being torn down is 1615 * communicated in siginfo, see kill_proc() 1616 */ 1617 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1618 unmap_mapping_range(page->mapping, start, size, 0); 1619 } 1620 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags); 1621 rc = 0; 1622 unlock: 1623 dax_unlock_page(page, cookie); 1624 out: 1625 /* drop pgmap ref acquired in caller */ 1626 put_dev_pagemap(pgmap); 1627 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1628 return rc; 1629 } 1630 1631 /** 1632 * memory_failure - Handle memory failure of a page. 1633 * @pfn: Page Number of the corrupted page 1634 * @flags: fine tune action taken 1635 * 1636 * This function is called by the low level machine check code 1637 * of an architecture when it detects hardware memory corruption 1638 * of a page. It tries its best to recover, which includes 1639 * dropping pages, killing processes etc. 1640 * 1641 * The function is primarily of use for corruptions that 1642 * happen outside the current execution context (e.g. when 1643 * detected by a background scrubber) 1644 * 1645 * Must run in process context (e.g. a work queue) with interrupts 1646 * enabled and no spinlocks hold. 1647 */ 1648 int memory_failure(unsigned long pfn, int flags) 1649 { 1650 struct page *p; 1651 struct page *hpage; 1652 struct page *orig_head; 1653 struct dev_pagemap *pgmap; 1654 int res = 0; 1655 unsigned long page_flags; 1656 bool retry = true; 1657 static DEFINE_MUTEX(mf_mutex); 1658 1659 if (!sysctl_memory_failure_recovery) 1660 panic("Memory failure on page %lx", pfn); 1661 1662 p = pfn_to_online_page(pfn); 1663 if (!p) { 1664 if (pfn_valid(pfn)) { 1665 pgmap = get_dev_pagemap(pfn, NULL); 1666 if (pgmap) 1667 return memory_failure_dev_pagemap(pfn, flags, 1668 pgmap); 1669 } 1670 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1671 pfn); 1672 return -ENXIO; 1673 } 1674 1675 mutex_lock(&mf_mutex); 1676 1677 try_again: 1678 if (PageHuge(p)) { 1679 res = memory_failure_hugetlb(pfn, flags); 1680 goto unlock_mutex; 1681 } 1682 1683 if (TestSetPageHWPoison(p)) { 1684 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1685 pfn); 1686 res = -EHWPOISON; 1687 if (flags & MF_ACTION_REQUIRED) 1688 res = kill_accessing_process(current, pfn, flags); 1689 goto unlock_mutex; 1690 } 1691 1692 orig_head = hpage = compound_head(p); 1693 num_poisoned_pages_inc(); 1694 1695 /* 1696 * We need/can do nothing about count=0 pages. 1697 * 1) it's a free page, and therefore in safe hand: 1698 * prep_new_page() will be the gate keeper. 1699 * 2) it's part of a non-compound high order page. 1700 * Implies some kernel user: cannot stop them from 1701 * R/W the page; let's pray that the page has been 1702 * used and will be freed some time later. 1703 * In fact it's dangerous to directly bump up page count from 0, 1704 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1705 */ 1706 if (!(flags & MF_COUNT_INCREASED)) { 1707 res = get_hwpoison_page(p, flags); 1708 if (!res) { 1709 if (is_free_buddy_page(p)) { 1710 if (take_page_off_buddy(p)) { 1711 page_ref_inc(p); 1712 res = MF_RECOVERED; 1713 } else { 1714 /* We lost the race, try again */ 1715 if (retry) { 1716 ClearPageHWPoison(p); 1717 num_poisoned_pages_dec(); 1718 retry = false; 1719 goto try_again; 1720 } 1721 res = MF_FAILED; 1722 } 1723 action_result(pfn, MF_MSG_BUDDY, res); 1724 res = res == MF_RECOVERED ? 0 : -EBUSY; 1725 } else { 1726 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1727 res = -EBUSY; 1728 } 1729 goto unlock_mutex; 1730 } else if (res < 0) { 1731 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1732 res = -EBUSY; 1733 goto unlock_mutex; 1734 } 1735 } 1736 1737 if (PageTransHuge(hpage)) { 1738 /* 1739 * The flag must be set after the refcount is bumped 1740 * otherwise it may race with THP split. 1741 * And the flag can't be set in get_hwpoison_page() since 1742 * it is called by soft offline too and it is just called 1743 * for !MF_COUNT_INCREASE. So here seems to be the best 1744 * place. 1745 * 1746 * Don't need care about the above error handling paths for 1747 * get_hwpoison_page() since they handle either free page 1748 * or unhandlable page. The refcount is bumped iff the 1749 * page is a valid handlable page. 1750 */ 1751 SetPageHasHWPoisoned(hpage); 1752 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1753 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1754 res = -EBUSY; 1755 goto unlock_mutex; 1756 } 1757 VM_BUG_ON_PAGE(!page_count(p), p); 1758 } 1759 1760 /* 1761 * We ignore non-LRU pages for good reasons. 1762 * - PG_locked is only well defined for LRU pages and a few others 1763 * - to avoid races with __SetPageLocked() 1764 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1765 * The check (unnecessarily) ignores LRU pages being isolated and 1766 * walked by the page reclaim code, however that's not a big loss. 1767 */ 1768 shake_page(p); 1769 1770 lock_page(p); 1771 1772 /* 1773 * The page could have changed compound pages during the locking. 1774 * If this happens just bail out. 1775 */ 1776 if (PageCompound(p) && compound_head(p) != orig_head) { 1777 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1778 res = -EBUSY; 1779 goto unlock_page; 1780 } 1781 1782 /* 1783 * We use page flags to determine what action should be taken, but 1784 * the flags can be modified by the error containment action. One 1785 * example is an mlocked page, where PG_mlocked is cleared by 1786 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1787 * correctly, we save a copy of the page flags at this time. 1788 */ 1789 page_flags = p->flags; 1790 1791 /* 1792 * unpoison always clear PG_hwpoison inside page lock 1793 */ 1794 if (!PageHWPoison(p)) { 1795 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1796 num_poisoned_pages_dec(); 1797 unlock_page(p); 1798 put_page(p); 1799 goto unlock_mutex; 1800 } 1801 if (hwpoison_filter(p)) { 1802 if (TestClearPageHWPoison(p)) 1803 num_poisoned_pages_dec(); 1804 unlock_page(p); 1805 put_page(p); 1806 goto unlock_mutex; 1807 } 1808 1809 /* 1810 * __munlock_pagevec may clear a writeback page's LRU flag without 1811 * page_lock. We need wait writeback completion for this page or it 1812 * may trigger vfs BUG while evict inode. 1813 */ 1814 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1815 goto identify_page_state; 1816 1817 /* 1818 * It's very difficult to mess with pages currently under IO 1819 * and in many cases impossible, so we just avoid it here. 1820 */ 1821 wait_on_page_writeback(p); 1822 1823 /* 1824 * Now take care of user space mappings. 1825 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1826 */ 1827 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1828 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1829 res = -EBUSY; 1830 goto unlock_page; 1831 } 1832 1833 /* 1834 * Torn down by someone else? 1835 */ 1836 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1837 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1838 res = -EBUSY; 1839 goto unlock_page; 1840 } 1841 1842 identify_page_state: 1843 res = identify_page_state(pfn, p, page_flags); 1844 mutex_unlock(&mf_mutex); 1845 return res; 1846 unlock_page: 1847 unlock_page(p); 1848 unlock_mutex: 1849 mutex_unlock(&mf_mutex); 1850 return res; 1851 } 1852 EXPORT_SYMBOL_GPL(memory_failure); 1853 1854 #define MEMORY_FAILURE_FIFO_ORDER 4 1855 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1856 1857 struct memory_failure_entry { 1858 unsigned long pfn; 1859 int flags; 1860 }; 1861 1862 struct memory_failure_cpu { 1863 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1864 MEMORY_FAILURE_FIFO_SIZE); 1865 spinlock_t lock; 1866 struct work_struct work; 1867 }; 1868 1869 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1870 1871 /** 1872 * memory_failure_queue - Schedule handling memory failure of a page. 1873 * @pfn: Page Number of the corrupted page 1874 * @flags: Flags for memory failure handling 1875 * 1876 * This function is called by the low level hardware error handler 1877 * when it detects hardware memory corruption of a page. It schedules 1878 * the recovering of error page, including dropping pages, killing 1879 * processes etc. 1880 * 1881 * The function is primarily of use for corruptions that 1882 * happen outside the current execution context (e.g. when 1883 * detected by a background scrubber) 1884 * 1885 * Can run in IRQ context. 1886 */ 1887 void memory_failure_queue(unsigned long pfn, int flags) 1888 { 1889 struct memory_failure_cpu *mf_cpu; 1890 unsigned long proc_flags; 1891 struct memory_failure_entry entry = { 1892 .pfn = pfn, 1893 .flags = flags, 1894 }; 1895 1896 mf_cpu = &get_cpu_var(memory_failure_cpu); 1897 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1898 if (kfifo_put(&mf_cpu->fifo, entry)) 1899 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1900 else 1901 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1902 pfn); 1903 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1904 put_cpu_var(memory_failure_cpu); 1905 } 1906 EXPORT_SYMBOL_GPL(memory_failure_queue); 1907 1908 static void memory_failure_work_func(struct work_struct *work) 1909 { 1910 struct memory_failure_cpu *mf_cpu; 1911 struct memory_failure_entry entry = { 0, }; 1912 unsigned long proc_flags; 1913 int gotten; 1914 1915 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1916 for (;;) { 1917 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1918 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1919 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1920 if (!gotten) 1921 break; 1922 if (entry.flags & MF_SOFT_OFFLINE) 1923 soft_offline_page(entry.pfn, entry.flags); 1924 else 1925 memory_failure(entry.pfn, entry.flags); 1926 } 1927 } 1928 1929 /* 1930 * Process memory_failure work queued on the specified CPU. 1931 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1932 */ 1933 void memory_failure_queue_kick(int cpu) 1934 { 1935 struct memory_failure_cpu *mf_cpu; 1936 1937 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1938 cancel_work_sync(&mf_cpu->work); 1939 memory_failure_work_func(&mf_cpu->work); 1940 } 1941 1942 static int __init memory_failure_init(void) 1943 { 1944 struct memory_failure_cpu *mf_cpu; 1945 int cpu; 1946 1947 for_each_possible_cpu(cpu) { 1948 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1949 spin_lock_init(&mf_cpu->lock); 1950 INIT_KFIFO(mf_cpu->fifo); 1951 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1952 } 1953 1954 return 0; 1955 } 1956 core_initcall(memory_failure_init); 1957 1958 #define unpoison_pr_info(fmt, pfn, rs) \ 1959 ({ \ 1960 if (__ratelimit(rs)) \ 1961 pr_info(fmt, pfn); \ 1962 }) 1963 1964 /** 1965 * unpoison_memory - Unpoison a previously poisoned page 1966 * @pfn: Page number of the to be unpoisoned page 1967 * 1968 * Software-unpoison a page that has been poisoned by 1969 * memory_failure() earlier. 1970 * 1971 * This is only done on the software-level, so it only works 1972 * for linux injected failures, not real hardware failures 1973 * 1974 * Returns 0 for success, otherwise -errno. 1975 */ 1976 int unpoison_memory(unsigned long pfn) 1977 { 1978 struct page *page; 1979 struct page *p; 1980 int freeit = 0; 1981 unsigned long flags = 0; 1982 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1983 DEFAULT_RATELIMIT_BURST); 1984 1985 if (!pfn_valid(pfn)) 1986 return -ENXIO; 1987 1988 p = pfn_to_page(pfn); 1989 page = compound_head(p); 1990 1991 if (!PageHWPoison(p)) { 1992 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1993 pfn, &unpoison_rs); 1994 return 0; 1995 } 1996 1997 if (page_count(page) > 1) { 1998 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1999 pfn, &unpoison_rs); 2000 return 0; 2001 } 2002 2003 if (page_mapped(page)) { 2004 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2005 pfn, &unpoison_rs); 2006 return 0; 2007 } 2008 2009 if (page_mapping(page)) { 2010 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2011 pfn, &unpoison_rs); 2012 return 0; 2013 } 2014 2015 /* 2016 * unpoison_memory() can encounter thp only when the thp is being 2017 * worked by memory_failure() and the page lock is not held yet. 2018 * In such case, we yield to memory_failure() and make unpoison fail. 2019 */ 2020 if (!PageHuge(page) && PageTransHuge(page)) { 2021 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 2022 pfn, &unpoison_rs); 2023 return 0; 2024 } 2025 2026 if (!get_hwpoison_page(p, flags)) { 2027 if (TestClearPageHWPoison(p)) 2028 num_poisoned_pages_dec(); 2029 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 2030 pfn, &unpoison_rs); 2031 return 0; 2032 } 2033 2034 lock_page(page); 2035 /* 2036 * This test is racy because PG_hwpoison is set outside of page lock. 2037 * That's acceptable because that won't trigger kernel panic. Instead, 2038 * the PG_hwpoison page will be caught and isolated on the entrance to 2039 * the free buddy page pool. 2040 */ 2041 if (TestClearPageHWPoison(page)) { 2042 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2043 pfn, &unpoison_rs); 2044 num_poisoned_pages_dec(); 2045 freeit = 1; 2046 } 2047 unlock_page(page); 2048 2049 put_page(page); 2050 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 2051 put_page(page); 2052 2053 return 0; 2054 } 2055 EXPORT_SYMBOL(unpoison_memory); 2056 2057 static bool isolate_page(struct page *page, struct list_head *pagelist) 2058 { 2059 bool isolated = false; 2060 bool lru = PageLRU(page); 2061 2062 if (PageHuge(page)) { 2063 isolated = isolate_huge_page(page, pagelist); 2064 } else { 2065 if (lru) 2066 isolated = !isolate_lru_page(page); 2067 else 2068 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2069 2070 if (isolated) 2071 list_add(&page->lru, pagelist); 2072 } 2073 2074 if (isolated && lru) 2075 inc_node_page_state(page, NR_ISOLATED_ANON + 2076 page_is_file_lru(page)); 2077 2078 /* 2079 * If we succeed to isolate the page, we grabbed another refcount on 2080 * the page, so we can safely drop the one we got from get_any_pages(). 2081 * If we failed to isolate the page, it means that we cannot go further 2082 * and we will return an error, so drop the reference we got from 2083 * get_any_pages() as well. 2084 */ 2085 put_page(page); 2086 return isolated; 2087 } 2088 2089 /* 2090 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2091 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2092 * If the page is mapped, it migrates the contents over. 2093 */ 2094 static int __soft_offline_page(struct page *page) 2095 { 2096 int ret = 0; 2097 unsigned long pfn = page_to_pfn(page); 2098 struct page *hpage = compound_head(page); 2099 char const *msg_page[] = {"page", "hugepage"}; 2100 bool huge = PageHuge(page); 2101 LIST_HEAD(pagelist); 2102 struct migration_target_control mtc = { 2103 .nid = NUMA_NO_NODE, 2104 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2105 }; 2106 2107 /* 2108 * Check PageHWPoison again inside page lock because PageHWPoison 2109 * is set by memory_failure() outside page lock. Note that 2110 * memory_failure() also double-checks PageHWPoison inside page lock, 2111 * so there's no race between soft_offline_page() and memory_failure(). 2112 */ 2113 lock_page(page); 2114 if (!PageHuge(page)) 2115 wait_on_page_writeback(page); 2116 if (PageHWPoison(page)) { 2117 unlock_page(page); 2118 put_page(page); 2119 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2120 return 0; 2121 } 2122 2123 if (!PageHuge(page)) 2124 /* 2125 * Try to invalidate first. This should work for 2126 * non dirty unmapped page cache pages. 2127 */ 2128 ret = invalidate_inode_page(page); 2129 unlock_page(page); 2130 2131 /* 2132 * RED-PEN would be better to keep it isolated here, but we 2133 * would need to fix isolation locking first. 2134 */ 2135 if (ret) { 2136 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2137 page_handle_poison(page, false, true); 2138 return 0; 2139 } 2140 2141 if (isolate_page(hpage, &pagelist)) { 2142 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2143 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2144 if (!ret) { 2145 bool release = !huge; 2146 2147 if (!page_handle_poison(page, huge, release)) 2148 ret = -EBUSY; 2149 } else { 2150 if (!list_empty(&pagelist)) 2151 putback_movable_pages(&pagelist); 2152 2153 pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n", 2154 pfn, msg_page[huge], ret, &page->flags); 2155 if (ret > 0) 2156 ret = -EBUSY; 2157 } 2158 } else { 2159 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2160 pfn, msg_page[huge], page_count(page), &page->flags); 2161 ret = -EBUSY; 2162 } 2163 return ret; 2164 } 2165 2166 static int soft_offline_in_use_page(struct page *page) 2167 { 2168 struct page *hpage = compound_head(page); 2169 2170 if (!PageHuge(page) && PageTransHuge(hpage)) 2171 if (try_to_split_thp_page(page, "soft offline") < 0) 2172 return -EBUSY; 2173 return __soft_offline_page(page); 2174 } 2175 2176 static int soft_offline_free_page(struct page *page) 2177 { 2178 int rc = 0; 2179 2180 if (!page_handle_poison(page, true, false)) 2181 rc = -EBUSY; 2182 2183 return rc; 2184 } 2185 2186 static void put_ref_page(struct page *page) 2187 { 2188 if (page) 2189 put_page(page); 2190 } 2191 2192 /** 2193 * soft_offline_page - Soft offline a page. 2194 * @pfn: pfn to soft-offline 2195 * @flags: flags. Same as memory_failure(). 2196 * 2197 * Returns 0 on success, otherwise negated errno. 2198 * 2199 * Soft offline a page, by migration or invalidation, 2200 * without killing anything. This is for the case when 2201 * a page is not corrupted yet (so it's still valid to access), 2202 * but has had a number of corrected errors and is better taken 2203 * out. 2204 * 2205 * The actual policy on when to do that is maintained by 2206 * user space. 2207 * 2208 * This should never impact any application or cause data loss, 2209 * however it might take some time. 2210 * 2211 * This is not a 100% solution for all memory, but tries to be 2212 * ``good enough'' for the majority of memory. 2213 */ 2214 int soft_offline_page(unsigned long pfn, int flags) 2215 { 2216 int ret; 2217 bool try_again = true; 2218 struct page *page, *ref_page = NULL; 2219 2220 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2221 2222 if (!pfn_valid(pfn)) 2223 return -ENXIO; 2224 if (flags & MF_COUNT_INCREASED) 2225 ref_page = pfn_to_page(pfn); 2226 2227 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2228 page = pfn_to_online_page(pfn); 2229 if (!page) { 2230 put_ref_page(ref_page); 2231 return -EIO; 2232 } 2233 2234 if (PageHWPoison(page)) { 2235 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2236 put_ref_page(ref_page); 2237 return 0; 2238 } 2239 2240 retry: 2241 get_online_mems(); 2242 ret = get_hwpoison_page(page, flags); 2243 put_online_mems(); 2244 2245 if (ret > 0) { 2246 ret = soft_offline_in_use_page(page); 2247 } else if (ret == 0) { 2248 if (soft_offline_free_page(page) && try_again) { 2249 try_again = false; 2250 goto retry; 2251 } 2252 } 2253 2254 return ret; 2255 } 2256