1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "swap.h" 63 #include "internal.h" 64 #include "ras/ras_event.h" 65 66 int sysctl_memory_failure_early_kill __read_mostly = 0; 67 68 int sysctl_memory_failure_recovery __read_mostly = 1; 69 70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 71 72 static bool hw_memory_failure __read_mostly = false; 73 74 static bool __page_handle_poison(struct page *page) 75 { 76 int ret; 77 78 zone_pcp_disable(page_zone(page)); 79 ret = dissolve_free_huge_page(page); 80 if (!ret) 81 ret = take_page_off_buddy(page); 82 zone_pcp_enable(page_zone(page)); 83 84 return ret > 0; 85 } 86 87 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 88 { 89 if (hugepage_or_freepage) { 90 /* 91 * Doing this check for free pages is also fine since dissolve_free_huge_page 92 * returns 0 for non-hugetlb pages as well. 93 */ 94 if (!__page_handle_poison(page)) 95 /* 96 * We could fail to take off the target page from buddy 97 * for example due to racy page allocation, but that's 98 * acceptable because soft-offlined page is not broken 99 * and if someone really want to use it, they should 100 * take it. 101 */ 102 return false; 103 } 104 105 SetPageHWPoison(page); 106 if (release) 107 put_page(page); 108 page_ref_inc(page); 109 num_poisoned_pages_inc(); 110 111 return true; 112 } 113 114 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 115 116 u32 hwpoison_filter_enable = 0; 117 u32 hwpoison_filter_dev_major = ~0U; 118 u32 hwpoison_filter_dev_minor = ~0U; 119 u64 hwpoison_filter_flags_mask; 120 u64 hwpoison_filter_flags_value; 121 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 123 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 124 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 125 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 126 127 static int hwpoison_filter_dev(struct page *p) 128 { 129 struct address_space *mapping; 130 dev_t dev; 131 132 if (hwpoison_filter_dev_major == ~0U && 133 hwpoison_filter_dev_minor == ~0U) 134 return 0; 135 136 mapping = page_mapping(p); 137 if (mapping == NULL || mapping->host == NULL) 138 return -EINVAL; 139 140 dev = mapping->host->i_sb->s_dev; 141 if (hwpoison_filter_dev_major != ~0U && 142 hwpoison_filter_dev_major != MAJOR(dev)) 143 return -EINVAL; 144 if (hwpoison_filter_dev_minor != ~0U && 145 hwpoison_filter_dev_minor != MINOR(dev)) 146 return -EINVAL; 147 148 return 0; 149 } 150 151 static int hwpoison_filter_flags(struct page *p) 152 { 153 if (!hwpoison_filter_flags_mask) 154 return 0; 155 156 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 157 hwpoison_filter_flags_value) 158 return 0; 159 else 160 return -EINVAL; 161 } 162 163 /* 164 * This allows stress tests to limit test scope to a collection of tasks 165 * by putting them under some memcg. This prevents killing unrelated/important 166 * processes such as /sbin/init. Note that the target task may share clean 167 * pages with init (eg. libc text), which is harmless. If the target task 168 * share _dirty_ pages with another task B, the test scheme must make sure B 169 * is also included in the memcg. At last, due to race conditions this filter 170 * can only guarantee that the page either belongs to the memcg tasks, or is 171 * a freed page. 172 */ 173 #ifdef CONFIG_MEMCG 174 u64 hwpoison_filter_memcg; 175 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 176 static int hwpoison_filter_task(struct page *p) 177 { 178 if (!hwpoison_filter_memcg) 179 return 0; 180 181 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 182 return -EINVAL; 183 184 return 0; 185 } 186 #else 187 static int hwpoison_filter_task(struct page *p) { return 0; } 188 #endif 189 190 int hwpoison_filter(struct page *p) 191 { 192 if (!hwpoison_filter_enable) 193 return 0; 194 195 if (hwpoison_filter_dev(p)) 196 return -EINVAL; 197 198 if (hwpoison_filter_flags(p)) 199 return -EINVAL; 200 201 if (hwpoison_filter_task(p)) 202 return -EINVAL; 203 204 return 0; 205 } 206 #else 207 int hwpoison_filter(struct page *p) 208 { 209 return 0; 210 } 211 #endif 212 213 EXPORT_SYMBOL_GPL(hwpoison_filter); 214 215 /* 216 * Kill all processes that have a poisoned page mapped and then isolate 217 * the page. 218 * 219 * General strategy: 220 * Find all processes having the page mapped and kill them. 221 * But we keep a page reference around so that the page is not 222 * actually freed yet. 223 * Then stash the page away 224 * 225 * There's no convenient way to get back to mapped processes 226 * from the VMAs. So do a brute-force search over all 227 * running processes. 228 * 229 * Remember that machine checks are not common (or rather 230 * if they are common you have other problems), so this shouldn't 231 * be a performance issue. 232 * 233 * Also there are some races possible while we get from the 234 * error detection to actually handle it. 235 */ 236 237 struct to_kill { 238 struct list_head nd; 239 struct task_struct *tsk; 240 unsigned long addr; 241 short size_shift; 242 }; 243 244 /* 245 * Send all the processes who have the page mapped a signal. 246 * ``action optional'' if they are not immediately affected by the error 247 * ``action required'' if error happened in current execution context 248 */ 249 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 250 { 251 struct task_struct *t = tk->tsk; 252 short addr_lsb = tk->size_shift; 253 int ret = 0; 254 255 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 256 pfn, t->comm, t->pid); 257 258 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 259 ret = force_sig_mceerr(BUS_MCEERR_AR, 260 (void __user *)tk->addr, addr_lsb); 261 else 262 /* 263 * Signal other processes sharing the page if they have 264 * PF_MCE_EARLY set. 265 * Don't use force here, it's convenient if the signal 266 * can be temporarily blocked. 267 * This could cause a loop when the user sets SIGBUS 268 * to SIG_IGN, but hopefully no one will do that? 269 */ 270 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 271 addr_lsb, t); /* synchronous? */ 272 if (ret < 0) 273 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 274 t->comm, t->pid, ret); 275 return ret; 276 } 277 278 /* 279 * Unknown page type encountered. Try to check whether it can turn PageLRU by 280 * lru_add_drain_all. 281 */ 282 void shake_page(struct page *p) 283 { 284 if (PageHuge(p)) 285 return; 286 287 if (!PageSlab(p)) { 288 lru_add_drain_all(); 289 if (PageLRU(p) || is_free_buddy_page(p)) 290 return; 291 } 292 293 /* 294 * TODO: Could shrink slab caches here if a lightweight range-based 295 * shrinker will be available. 296 */ 297 } 298 EXPORT_SYMBOL_GPL(shake_page); 299 300 static unsigned long dev_pagemap_mapping_shift(struct page *page, 301 struct vm_area_struct *vma) 302 { 303 unsigned long address = vma_address(page, vma); 304 unsigned long ret = 0; 305 pgd_t *pgd; 306 p4d_t *p4d; 307 pud_t *pud; 308 pmd_t *pmd; 309 pte_t *pte; 310 311 VM_BUG_ON_VMA(address == -EFAULT, vma); 312 pgd = pgd_offset(vma->vm_mm, address); 313 if (!pgd_present(*pgd)) 314 return 0; 315 p4d = p4d_offset(pgd, address); 316 if (!p4d_present(*p4d)) 317 return 0; 318 pud = pud_offset(p4d, address); 319 if (!pud_present(*pud)) 320 return 0; 321 if (pud_devmap(*pud)) 322 return PUD_SHIFT; 323 pmd = pmd_offset(pud, address); 324 if (!pmd_present(*pmd)) 325 return 0; 326 if (pmd_devmap(*pmd)) 327 return PMD_SHIFT; 328 pte = pte_offset_map(pmd, address); 329 if (pte_present(*pte) && pte_devmap(*pte)) 330 ret = PAGE_SHIFT; 331 pte_unmap(pte); 332 return ret; 333 } 334 335 /* 336 * Failure handling: if we can't find or can't kill a process there's 337 * not much we can do. We just print a message and ignore otherwise. 338 */ 339 340 /* 341 * Schedule a process for later kill. 342 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 343 */ 344 static void add_to_kill(struct task_struct *tsk, struct page *p, 345 struct vm_area_struct *vma, 346 struct list_head *to_kill) 347 { 348 struct to_kill *tk; 349 350 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 351 if (!tk) { 352 pr_err("Memory failure: Out of memory while machine check handling\n"); 353 return; 354 } 355 356 tk->addr = page_address_in_vma(p, vma); 357 if (is_zone_device_page(p)) 358 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 359 else 360 tk->size_shift = page_shift(compound_head(p)); 361 362 /* 363 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 364 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 365 * so "tk->size_shift == 0" effectively checks no mapping on 366 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 367 * to a process' address space, it's possible not all N VMAs 368 * contain mappings for the page, but at least one VMA does. 369 * Only deliver SIGBUS with payload derived from the VMA that 370 * has a mapping for the page. 371 */ 372 if (tk->addr == -EFAULT) { 373 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 374 page_to_pfn(p), tsk->comm); 375 } else if (tk->size_shift == 0) { 376 kfree(tk); 377 return; 378 } 379 380 get_task_struct(tsk); 381 tk->tsk = tsk; 382 list_add_tail(&tk->nd, to_kill); 383 } 384 385 /* 386 * Kill the processes that have been collected earlier. 387 * 388 * Only do anything when FORCEKILL is set, otherwise just free the 389 * list (this is used for clean pages which do not need killing) 390 * Also when FAIL is set do a force kill because something went 391 * wrong earlier. 392 */ 393 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 394 unsigned long pfn, int flags) 395 { 396 struct to_kill *tk, *next; 397 398 list_for_each_entry_safe (tk, next, to_kill, nd) { 399 if (forcekill) { 400 /* 401 * In case something went wrong with munmapping 402 * make sure the process doesn't catch the 403 * signal and then access the memory. Just kill it. 404 */ 405 if (fail || tk->addr == -EFAULT) { 406 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 407 pfn, tk->tsk->comm, tk->tsk->pid); 408 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 409 tk->tsk, PIDTYPE_PID); 410 } 411 412 /* 413 * In theory the process could have mapped 414 * something else on the address in-between. We could 415 * check for that, but we need to tell the 416 * process anyways. 417 */ 418 else if (kill_proc(tk, pfn, flags) < 0) 419 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 420 pfn, tk->tsk->comm, tk->tsk->pid); 421 } 422 put_task_struct(tk->tsk); 423 kfree(tk); 424 } 425 } 426 427 /* 428 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 429 * on behalf of the thread group. Return task_struct of the (first found) 430 * dedicated thread if found, and return NULL otherwise. 431 * 432 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 433 * have to call rcu_read_lock/unlock() in this function. 434 */ 435 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 436 { 437 struct task_struct *t; 438 439 for_each_thread(tsk, t) { 440 if (t->flags & PF_MCE_PROCESS) { 441 if (t->flags & PF_MCE_EARLY) 442 return t; 443 } else { 444 if (sysctl_memory_failure_early_kill) 445 return t; 446 } 447 } 448 return NULL; 449 } 450 451 /* 452 * Determine whether a given process is "early kill" process which expects 453 * to be signaled when some page under the process is hwpoisoned. 454 * Return task_struct of the dedicated thread (main thread unless explicitly 455 * specified) if the process is "early kill" and otherwise returns NULL. 456 * 457 * Note that the above is true for Action Optional case. For Action Required 458 * case, it's only meaningful to the current thread which need to be signaled 459 * with SIGBUS, this error is Action Optional for other non current 460 * processes sharing the same error page,if the process is "early kill", the 461 * task_struct of the dedicated thread will also be returned. 462 */ 463 static struct task_struct *task_early_kill(struct task_struct *tsk, 464 int force_early) 465 { 466 if (!tsk->mm) 467 return NULL; 468 /* 469 * Comparing ->mm here because current task might represent 470 * a subthread, while tsk always points to the main thread. 471 */ 472 if (force_early && tsk->mm == current->mm) 473 return current; 474 475 return find_early_kill_thread(tsk); 476 } 477 478 /* 479 * Collect processes when the error hit an anonymous page. 480 */ 481 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 482 int force_early) 483 { 484 struct folio *folio = page_folio(page); 485 struct vm_area_struct *vma; 486 struct task_struct *tsk; 487 struct anon_vma *av; 488 pgoff_t pgoff; 489 490 av = folio_lock_anon_vma_read(folio, NULL); 491 if (av == NULL) /* Not actually mapped anymore */ 492 return; 493 494 pgoff = page_to_pgoff(page); 495 read_lock(&tasklist_lock); 496 for_each_process (tsk) { 497 struct anon_vma_chain *vmac; 498 struct task_struct *t = task_early_kill(tsk, force_early); 499 500 if (!t) 501 continue; 502 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 503 pgoff, pgoff) { 504 vma = vmac->vma; 505 if (!page_mapped_in_vma(page, vma)) 506 continue; 507 if (vma->vm_mm == t->mm) 508 add_to_kill(t, page, vma, to_kill); 509 } 510 } 511 read_unlock(&tasklist_lock); 512 page_unlock_anon_vma_read(av); 513 } 514 515 /* 516 * Collect processes when the error hit a file mapped page. 517 */ 518 static void collect_procs_file(struct page *page, struct list_head *to_kill, 519 int force_early) 520 { 521 struct vm_area_struct *vma; 522 struct task_struct *tsk; 523 struct address_space *mapping = page->mapping; 524 pgoff_t pgoff; 525 526 i_mmap_lock_read(mapping); 527 read_lock(&tasklist_lock); 528 pgoff = page_to_pgoff(page); 529 for_each_process(tsk) { 530 struct task_struct *t = task_early_kill(tsk, force_early); 531 532 if (!t) 533 continue; 534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 535 pgoff) { 536 /* 537 * Send early kill signal to tasks where a vma covers 538 * the page but the corrupted page is not necessarily 539 * mapped it in its pte. 540 * Assume applications who requested early kill want 541 * to be informed of all such data corruptions. 542 */ 543 if (vma->vm_mm == t->mm) 544 add_to_kill(t, page, vma, to_kill); 545 } 546 } 547 read_unlock(&tasklist_lock); 548 i_mmap_unlock_read(mapping); 549 } 550 551 /* 552 * Collect the processes who have the corrupted page mapped to kill. 553 */ 554 static void collect_procs(struct page *page, struct list_head *tokill, 555 int force_early) 556 { 557 if (!page->mapping) 558 return; 559 560 if (PageAnon(page)) 561 collect_procs_anon(page, tokill, force_early); 562 else 563 collect_procs_file(page, tokill, force_early); 564 } 565 566 struct hwp_walk { 567 struct to_kill tk; 568 unsigned long pfn; 569 int flags; 570 }; 571 572 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 573 { 574 tk->addr = addr; 575 tk->size_shift = shift; 576 } 577 578 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 579 unsigned long poisoned_pfn, struct to_kill *tk) 580 { 581 unsigned long pfn = 0; 582 583 if (pte_present(pte)) { 584 pfn = pte_pfn(pte); 585 } else { 586 swp_entry_t swp = pte_to_swp_entry(pte); 587 588 if (is_hwpoison_entry(swp)) 589 pfn = hwpoison_entry_to_pfn(swp); 590 } 591 592 if (!pfn || pfn != poisoned_pfn) 593 return 0; 594 595 set_to_kill(tk, addr, shift); 596 return 1; 597 } 598 599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 600 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 601 struct hwp_walk *hwp) 602 { 603 pmd_t pmd = *pmdp; 604 unsigned long pfn; 605 unsigned long hwpoison_vaddr; 606 607 if (!pmd_present(pmd)) 608 return 0; 609 pfn = pmd_pfn(pmd); 610 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 611 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 612 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 613 return 1; 614 } 615 return 0; 616 } 617 #else 618 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 619 struct hwp_walk *hwp) 620 { 621 return 0; 622 } 623 #endif 624 625 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 626 unsigned long end, struct mm_walk *walk) 627 { 628 struct hwp_walk *hwp = walk->private; 629 int ret = 0; 630 pte_t *ptep, *mapped_pte; 631 spinlock_t *ptl; 632 633 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 634 if (ptl) { 635 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 636 spin_unlock(ptl); 637 goto out; 638 } 639 640 if (pmd_trans_unstable(pmdp)) 641 goto out; 642 643 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 644 addr, &ptl); 645 for (; addr != end; ptep++, addr += PAGE_SIZE) { 646 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 647 hwp->pfn, &hwp->tk); 648 if (ret == 1) 649 break; 650 } 651 pte_unmap_unlock(mapped_pte, ptl); 652 out: 653 cond_resched(); 654 return ret; 655 } 656 657 #ifdef CONFIG_HUGETLB_PAGE 658 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 659 unsigned long addr, unsigned long end, 660 struct mm_walk *walk) 661 { 662 struct hwp_walk *hwp = walk->private; 663 pte_t pte = huge_ptep_get(ptep); 664 struct hstate *h = hstate_vma(walk->vma); 665 666 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 667 hwp->pfn, &hwp->tk); 668 } 669 #else 670 #define hwpoison_hugetlb_range NULL 671 #endif 672 673 static const struct mm_walk_ops hwp_walk_ops = { 674 .pmd_entry = hwpoison_pte_range, 675 .hugetlb_entry = hwpoison_hugetlb_range, 676 }; 677 678 /* 679 * Sends SIGBUS to the current process with error info. 680 * 681 * This function is intended to handle "Action Required" MCEs on already 682 * hardware poisoned pages. They could happen, for example, when 683 * memory_failure() failed to unmap the error page at the first call, or 684 * when multiple local machine checks happened on different CPUs. 685 * 686 * MCE handler currently has no easy access to the error virtual address, 687 * so this function walks page table to find it. The returned virtual address 688 * is proper in most cases, but it could be wrong when the application 689 * process has multiple entries mapping the error page. 690 */ 691 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 692 int flags) 693 { 694 int ret; 695 struct hwp_walk priv = { 696 .pfn = pfn, 697 }; 698 priv.tk.tsk = p; 699 700 mmap_read_lock(p->mm); 701 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 702 (void *)&priv); 703 if (ret == 1 && priv.tk.addr) 704 kill_proc(&priv.tk, pfn, flags); 705 else 706 ret = 0; 707 mmap_read_unlock(p->mm); 708 return ret > 0 ? -EHWPOISON : -EFAULT; 709 } 710 711 static const char *action_name[] = { 712 [MF_IGNORED] = "Ignored", 713 [MF_FAILED] = "Failed", 714 [MF_DELAYED] = "Delayed", 715 [MF_RECOVERED] = "Recovered", 716 }; 717 718 static const char * const action_page_types[] = { 719 [MF_MSG_KERNEL] = "reserved kernel page", 720 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 721 [MF_MSG_SLAB] = "kernel slab page", 722 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 723 [MF_MSG_HUGE] = "huge page", 724 [MF_MSG_FREE_HUGE] = "free huge page", 725 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 726 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 727 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 728 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 729 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 730 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 731 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 732 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 733 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 734 [MF_MSG_CLEAN_LRU] = "clean LRU page", 735 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 736 [MF_MSG_BUDDY] = "free buddy page", 737 [MF_MSG_DAX] = "dax page", 738 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 739 [MF_MSG_UNKNOWN] = "unknown page", 740 }; 741 742 /* 743 * XXX: It is possible that a page is isolated from LRU cache, 744 * and then kept in swap cache or failed to remove from page cache. 745 * The page count will stop it from being freed by unpoison. 746 * Stress tests should be aware of this memory leak problem. 747 */ 748 static int delete_from_lru_cache(struct page *p) 749 { 750 if (!isolate_lru_page(p)) { 751 /* 752 * Clear sensible page flags, so that the buddy system won't 753 * complain when the page is unpoison-and-freed. 754 */ 755 ClearPageActive(p); 756 ClearPageUnevictable(p); 757 758 /* 759 * Poisoned page might never drop its ref count to 0 so we have 760 * to uncharge it manually from its memcg. 761 */ 762 mem_cgroup_uncharge(page_folio(p)); 763 764 /* 765 * drop the page count elevated by isolate_lru_page() 766 */ 767 put_page(p); 768 return 0; 769 } 770 return -EIO; 771 } 772 773 static int truncate_error_page(struct page *p, unsigned long pfn, 774 struct address_space *mapping) 775 { 776 int ret = MF_FAILED; 777 778 if (mapping->a_ops->error_remove_page) { 779 int err = mapping->a_ops->error_remove_page(mapping, p); 780 781 if (err != 0) { 782 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 783 pfn, err); 784 } else if (page_has_private(p) && 785 !try_to_release_page(p, GFP_NOIO)) { 786 pr_info("Memory failure: %#lx: failed to release buffers\n", 787 pfn); 788 } else { 789 ret = MF_RECOVERED; 790 } 791 } else { 792 /* 793 * If the file system doesn't support it just invalidate 794 * This fails on dirty or anything with private pages 795 */ 796 if (invalidate_inode_page(p)) 797 ret = MF_RECOVERED; 798 else 799 pr_info("Memory failure: %#lx: Failed to invalidate\n", 800 pfn); 801 } 802 803 return ret; 804 } 805 806 struct page_state { 807 unsigned long mask; 808 unsigned long res; 809 enum mf_action_page_type type; 810 811 /* Callback ->action() has to unlock the relevant page inside it. */ 812 int (*action)(struct page_state *ps, struct page *p); 813 }; 814 815 /* 816 * Return true if page is still referenced by others, otherwise return 817 * false. 818 * 819 * The extra_pins is true when one extra refcount is expected. 820 */ 821 static bool has_extra_refcount(struct page_state *ps, struct page *p, 822 bool extra_pins) 823 { 824 int count = page_count(p) - 1; 825 826 if (extra_pins) 827 count -= 1; 828 829 if (count > 0) { 830 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 831 page_to_pfn(p), action_page_types[ps->type], count); 832 return true; 833 } 834 835 return false; 836 } 837 838 /* 839 * Error hit kernel page. 840 * Do nothing, try to be lucky and not touch this instead. For a few cases we 841 * could be more sophisticated. 842 */ 843 static int me_kernel(struct page_state *ps, struct page *p) 844 { 845 unlock_page(p); 846 return MF_IGNORED; 847 } 848 849 /* 850 * Page in unknown state. Do nothing. 851 */ 852 static int me_unknown(struct page_state *ps, struct page *p) 853 { 854 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 855 unlock_page(p); 856 return MF_FAILED; 857 } 858 859 /* 860 * Clean (or cleaned) page cache page. 861 */ 862 static int me_pagecache_clean(struct page_state *ps, struct page *p) 863 { 864 int ret; 865 struct address_space *mapping; 866 bool extra_pins; 867 868 delete_from_lru_cache(p); 869 870 /* 871 * For anonymous pages we're done the only reference left 872 * should be the one m_f() holds. 873 */ 874 if (PageAnon(p)) { 875 ret = MF_RECOVERED; 876 goto out; 877 } 878 879 /* 880 * Now truncate the page in the page cache. This is really 881 * more like a "temporary hole punch" 882 * Don't do this for block devices when someone else 883 * has a reference, because it could be file system metadata 884 * and that's not safe to truncate. 885 */ 886 mapping = page_mapping(p); 887 if (!mapping) { 888 /* 889 * Page has been teared down in the meanwhile 890 */ 891 ret = MF_FAILED; 892 goto out; 893 } 894 895 /* 896 * The shmem page is kept in page cache instead of truncating 897 * so is expected to have an extra refcount after error-handling. 898 */ 899 extra_pins = shmem_mapping(mapping); 900 901 /* 902 * Truncation is a bit tricky. Enable it per file system for now. 903 * 904 * Open: to take i_rwsem or not for this? Right now we don't. 905 */ 906 ret = truncate_error_page(p, page_to_pfn(p), mapping); 907 if (has_extra_refcount(ps, p, extra_pins)) 908 ret = MF_FAILED; 909 910 out: 911 unlock_page(p); 912 913 return ret; 914 } 915 916 /* 917 * Dirty pagecache page 918 * Issues: when the error hit a hole page the error is not properly 919 * propagated. 920 */ 921 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 922 { 923 struct address_space *mapping = page_mapping(p); 924 925 SetPageError(p); 926 /* TBD: print more information about the file. */ 927 if (mapping) { 928 /* 929 * IO error will be reported by write(), fsync(), etc. 930 * who check the mapping. 931 * This way the application knows that something went 932 * wrong with its dirty file data. 933 * 934 * There's one open issue: 935 * 936 * The EIO will be only reported on the next IO 937 * operation and then cleared through the IO map. 938 * Normally Linux has two mechanisms to pass IO error 939 * first through the AS_EIO flag in the address space 940 * and then through the PageError flag in the page. 941 * Since we drop pages on memory failure handling the 942 * only mechanism open to use is through AS_AIO. 943 * 944 * This has the disadvantage that it gets cleared on 945 * the first operation that returns an error, while 946 * the PageError bit is more sticky and only cleared 947 * when the page is reread or dropped. If an 948 * application assumes it will always get error on 949 * fsync, but does other operations on the fd before 950 * and the page is dropped between then the error 951 * will not be properly reported. 952 * 953 * This can already happen even without hwpoisoned 954 * pages: first on metadata IO errors (which only 955 * report through AS_EIO) or when the page is dropped 956 * at the wrong time. 957 * 958 * So right now we assume that the application DTRT on 959 * the first EIO, but we're not worse than other parts 960 * of the kernel. 961 */ 962 mapping_set_error(mapping, -EIO); 963 } 964 965 return me_pagecache_clean(ps, p); 966 } 967 968 /* 969 * Clean and dirty swap cache. 970 * 971 * Dirty swap cache page is tricky to handle. The page could live both in page 972 * cache and swap cache(ie. page is freshly swapped in). So it could be 973 * referenced concurrently by 2 types of PTEs: 974 * normal PTEs and swap PTEs. We try to handle them consistently by calling 975 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 976 * and then 977 * - clear dirty bit to prevent IO 978 * - remove from LRU 979 * - but keep in the swap cache, so that when we return to it on 980 * a later page fault, we know the application is accessing 981 * corrupted data and shall be killed (we installed simple 982 * interception code in do_swap_page to catch it). 983 * 984 * Clean swap cache pages can be directly isolated. A later page fault will 985 * bring in the known good data from disk. 986 */ 987 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 988 { 989 int ret; 990 bool extra_pins = false; 991 992 ClearPageDirty(p); 993 /* Trigger EIO in shmem: */ 994 ClearPageUptodate(p); 995 996 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 997 unlock_page(p); 998 999 if (ret == MF_DELAYED) 1000 extra_pins = true; 1001 1002 if (has_extra_refcount(ps, p, extra_pins)) 1003 ret = MF_FAILED; 1004 1005 return ret; 1006 } 1007 1008 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1009 { 1010 int ret; 1011 1012 delete_from_swap_cache(p); 1013 1014 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1015 unlock_page(p); 1016 1017 if (has_extra_refcount(ps, p, false)) 1018 ret = MF_FAILED; 1019 1020 return ret; 1021 } 1022 1023 /* 1024 * Huge pages. Needs work. 1025 * Issues: 1026 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1027 * To narrow down kill region to one page, we need to break up pmd. 1028 */ 1029 static int me_huge_page(struct page_state *ps, struct page *p) 1030 { 1031 int res; 1032 struct page *hpage = compound_head(p); 1033 struct address_space *mapping; 1034 1035 if (!PageHuge(hpage)) 1036 return MF_DELAYED; 1037 1038 mapping = page_mapping(hpage); 1039 if (mapping) { 1040 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1041 unlock_page(hpage); 1042 } else { 1043 res = MF_FAILED; 1044 unlock_page(hpage); 1045 /* 1046 * migration entry prevents later access on error hugepage, 1047 * so we can free and dissolve it into buddy to save healthy 1048 * subpages. 1049 */ 1050 put_page(hpage); 1051 if (__page_handle_poison(p)) { 1052 page_ref_inc(p); 1053 res = MF_RECOVERED; 1054 } 1055 } 1056 1057 if (has_extra_refcount(ps, p, false)) 1058 res = MF_FAILED; 1059 1060 return res; 1061 } 1062 1063 /* 1064 * Various page states we can handle. 1065 * 1066 * A page state is defined by its current page->flags bits. 1067 * The table matches them in order and calls the right handler. 1068 * 1069 * This is quite tricky because we can access page at any time 1070 * in its live cycle, so all accesses have to be extremely careful. 1071 * 1072 * This is not complete. More states could be added. 1073 * For any missing state don't attempt recovery. 1074 */ 1075 1076 #define dirty (1UL << PG_dirty) 1077 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1078 #define unevict (1UL << PG_unevictable) 1079 #define mlock (1UL << PG_mlocked) 1080 #define lru (1UL << PG_lru) 1081 #define head (1UL << PG_head) 1082 #define slab (1UL << PG_slab) 1083 #define reserved (1UL << PG_reserved) 1084 1085 static struct page_state error_states[] = { 1086 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1087 /* 1088 * free pages are specially detected outside this table: 1089 * PG_buddy pages only make a small fraction of all free pages. 1090 */ 1091 1092 /* 1093 * Could in theory check if slab page is free or if we can drop 1094 * currently unused objects without touching them. But just 1095 * treat it as standard kernel for now. 1096 */ 1097 { slab, slab, MF_MSG_SLAB, me_kernel }, 1098 1099 { head, head, MF_MSG_HUGE, me_huge_page }, 1100 1101 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1102 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1103 1104 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1105 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1106 1107 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1108 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1109 1110 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1111 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1112 1113 /* 1114 * Catchall entry: must be at end. 1115 */ 1116 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1117 }; 1118 1119 #undef dirty 1120 #undef sc 1121 #undef unevict 1122 #undef mlock 1123 #undef lru 1124 #undef head 1125 #undef slab 1126 #undef reserved 1127 1128 /* 1129 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1130 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1131 */ 1132 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1133 enum mf_result result) 1134 { 1135 trace_memory_failure_event(pfn, type, result); 1136 1137 num_poisoned_pages_inc(); 1138 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1139 pfn, action_page_types[type], action_name[result]); 1140 } 1141 1142 static int page_action(struct page_state *ps, struct page *p, 1143 unsigned long pfn) 1144 { 1145 int result; 1146 1147 /* page p should be unlocked after returning from ps->action(). */ 1148 result = ps->action(ps, p); 1149 1150 action_result(pfn, ps->type, result); 1151 1152 /* Could do more checks here if page looks ok */ 1153 /* 1154 * Could adjust zone counters here to correct for the missing page. 1155 */ 1156 1157 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1158 } 1159 1160 static inline bool PageHWPoisonTakenOff(struct page *page) 1161 { 1162 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1163 } 1164 1165 void SetPageHWPoisonTakenOff(struct page *page) 1166 { 1167 set_page_private(page, MAGIC_HWPOISON); 1168 } 1169 1170 void ClearPageHWPoisonTakenOff(struct page *page) 1171 { 1172 if (PageHWPoison(page)) 1173 set_page_private(page, 0); 1174 } 1175 1176 /* 1177 * Return true if a page type of a given page is supported by hwpoison 1178 * mechanism (while handling could fail), otherwise false. This function 1179 * does not return true for hugetlb or device memory pages, so it's assumed 1180 * to be called only in the context where we never have such pages. 1181 */ 1182 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1183 { 1184 /* Soft offline could migrate non-LRU movable pages */ 1185 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1186 return true; 1187 1188 return PageLRU(page) || is_free_buddy_page(page); 1189 } 1190 1191 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1192 { 1193 struct page *head = compound_head(page); 1194 int ret = 0; 1195 bool hugetlb = false; 1196 1197 ret = get_hwpoison_huge_page(head, &hugetlb); 1198 if (hugetlb) 1199 return ret; 1200 1201 /* 1202 * This check prevents from calling get_hwpoison_unless_zero() 1203 * for any unsupported type of page in order to reduce the risk of 1204 * unexpected races caused by taking a page refcount. 1205 */ 1206 if (!HWPoisonHandlable(head, flags)) 1207 return -EBUSY; 1208 1209 if (get_page_unless_zero(head)) { 1210 if (head == compound_head(page)) 1211 return 1; 1212 1213 pr_info("Memory failure: %#lx cannot catch tail\n", 1214 page_to_pfn(page)); 1215 put_page(head); 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int get_any_page(struct page *p, unsigned long flags) 1222 { 1223 int ret = 0, pass = 0; 1224 bool count_increased = false; 1225 1226 if (flags & MF_COUNT_INCREASED) 1227 count_increased = true; 1228 1229 try_again: 1230 if (!count_increased) { 1231 ret = __get_hwpoison_page(p, flags); 1232 if (!ret) { 1233 if (page_count(p)) { 1234 /* We raced with an allocation, retry. */ 1235 if (pass++ < 3) 1236 goto try_again; 1237 ret = -EBUSY; 1238 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1239 /* We raced with put_page, retry. */ 1240 if (pass++ < 3) 1241 goto try_again; 1242 ret = -EIO; 1243 } 1244 goto out; 1245 } else if (ret == -EBUSY) { 1246 /* 1247 * We raced with (possibly temporary) unhandlable 1248 * page, retry. 1249 */ 1250 if (pass++ < 3) { 1251 shake_page(p); 1252 goto try_again; 1253 } 1254 ret = -EIO; 1255 goto out; 1256 } 1257 } 1258 1259 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1260 ret = 1; 1261 } else { 1262 /* 1263 * A page we cannot handle. Check whether we can turn 1264 * it into something we can handle. 1265 */ 1266 if (pass++ < 3) { 1267 put_page(p); 1268 shake_page(p); 1269 count_increased = false; 1270 goto try_again; 1271 } 1272 put_page(p); 1273 ret = -EIO; 1274 } 1275 out: 1276 if (ret == -EIO) 1277 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p)); 1278 1279 return ret; 1280 } 1281 1282 static int __get_unpoison_page(struct page *page) 1283 { 1284 struct page *head = compound_head(page); 1285 int ret = 0; 1286 bool hugetlb = false; 1287 1288 ret = get_hwpoison_huge_page(head, &hugetlb); 1289 if (hugetlb) 1290 return ret; 1291 1292 /* 1293 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1294 * but also isolated from buddy freelist, so need to identify the 1295 * state and have to cancel both operations to unpoison. 1296 */ 1297 if (PageHWPoisonTakenOff(page)) 1298 return -EHWPOISON; 1299 1300 return get_page_unless_zero(page) ? 1 : 0; 1301 } 1302 1303 /** 1304 * get_hwpoison_page() - Get refcount for memory error handling 1305 * @p: Raw error page (hit by memory error) 1306 * @flags: Flags controlling behavior of error handling 1307 * 1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1309 * error on it, after checking that the error page is in a well-defined state 1310 * (defined as a page-type we can successfully handle the memory error on it, 1311 * such as LRU page and hugetlb page). 1312 * 1313 * Memory error handling could be triggered at any time on any type of page, 1314 * so it's prone to race with typical memory management lifecycle (like 1315 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1316 * extra care for the error page's state (as done in __get_hwpoison_page()), 1317 * and has some retry logic in get_any_page(). 1318 * 1319 * When called from unpoison_memory(), the caller should already ensure that 1320 * the given page has PG_hwpoison. So it's never reused for other page 1321 * allocations, and __get_unpoison_page() never races with them. 1322 * 1323 * Return: 0 on failure, 1324 * 1 on success for in-use pages in a well-defined state, 1325 * -EIO for pages on which we can not handle memory errors, 1326 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1327 * operations like allocation and free, 1328 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1329 */ 1330 static int get_hwpoison_page(struct page *p, unsigned long flags) 1331 { 1332 int ret; 1333 1334 zone_pcp_disable(page_zone(p)); 1335 if (flags & MF_UNPOISON) 1336 ret = __get_unpoison_page(p); 1337 else 1338 ret = get_any_page(p, flags); 1339 zone_pcp_enable(page_zone(p)); 1340 1341 return ret; 1342 } 1343 1344 /* 1345 * Do all that is necessary to remove user space mappings. Unmap 1346 * the pages and send SIGBUS to the processes if the data was dirty. 1347 */ 1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1349 int flags, struct page *hpage) 1350 { 1351 struct folio *folio = page_folio(hpage); 1352 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1353 struct address_space *mapping; 1354 LIST_HEAD(tokill); 1355 bool unmap_success; 1356 int kill = 1, forcekill; 1357 bool mlocked = PageMlocked(hpage); 1358 1359 /* 1360 * Here we are interested only in user-mapped pages, so skip any 1361 * other types of pages. 1362 */ 1363 if (PageReserved(p) || PageSlab(p)) 1364 return true; 1365 if (!(PageLRU(hpage) || PageHuge(p))) 1366 return true; 1367 1368 /* 1369 * This check implies we don't kill processes if their pages 1370 * are in the swap cache early. Those are always late kills. 1371 */ 1372 if (!page_mapped(hpage)) 1373 return true; 1374 1375 if (PageKsm(p)) { 1376 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1377 return false; 1378 } 1379 1380 if (PageSwapCache(p)) { 1381 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1382 pfn); 1383 ttu |= TTU_IGNORE_HWPOISON; 1384 } 1385 1386 /* 1387 * Propagate the dirty bit from PTEs to struct page first, because we 1388 * need this to decide if we should kill or just drop the page. 1389 * XXX: the dirty test could be racy: set_page_dirty() may not always 1390 * be called inside page lock (it's recommended but not enforced). 1391 */ 1392 mapping = page_mapping(hpage); 1393 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1394 mapping_can_writeback(mapping)) { 1395 if (page_mkclean(hpage)) { 1396 SetPageDirty(hpage); 1397 } else { 1398 kill = 0; 1399 ttu |= TTU_IGNORE_HWPOISON; 1400 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1401 pfn); 1402 } 1403 } 1404 1405 /* 1406 * First collect all the processes that have the page 1407 * mapped in dirty form. This has to be done before try_to_unmap, 1408 * because ttu takes the rmap data structures down. 1409 * 1410 * Error handling: We ignore errors here because 1411 * there's nothing that can be done. 1412 */ 1413 if (kill) 1414 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1415 1416 if (PageHuge(hpage) && !PageAnon(hpage)) { 1417 /* 1418 * For hugetlb pages in shared mappings, try_to_unmap 1419 * could potentially call huge_pmd_unshare. Because of 1420 * this, take semaphore in write mode here and set 1421 * TTU_RMAP_LOCKED to indicate we have taken the lock 1422 * at this higher level. 1423 */ 1424 mapping = hugetlb_page_mapping_lock_write(hpage); 1425 if (mapping) { 1426 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1427 i_mmap_unlock_write(mapping); 1428 } else 1429 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1430 } else { 1431 try_to_unmap(folio, ttu); 1432 } 1433 1434 unmap_success = !page_mapped(hpage); 1435 if (!unmap_success) 1436 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1437 pfn, page_mapcount(hpage)); 1438 1439 /* 1440 * try_to_unmap() might put mlocked page in lru cache, so call 1441 * shake_page() again to ensure that it's flushed. 1442 */ 1443 if (mlocked) 1444 shake_page(hpage); 1445 1446 /* 1447 * Now that the dirty bit has been propagated to the 1448 * struct page and all unmaps done we can decide if 1449 * killing is needed or not. Only kill when the page 1450 * was dirty or the process is not restartable, 1451 * otherwise the tokill list is merely 1452 * freed. When there was a problem unmapping earlier 1453 * use a more force-full uncatchable kill to prevent 1454 * any accesses to the poisoned memory. 1455 */ 1456 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1457 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1458 1459 return unmap_success; 1460 } 1461 1462 static int identify_page_state(unsigned long pfn, struct page *p, 1463 unsigned long page_flags) 1464 { 1465 struct page_state *ps; 1466 1467 /* 1468 * The first check uses the current page flags which may not have any 1469 * relevant information. The second check with the saved page flags is 1470 * carried out only if the first check can't determine the page status. 1471 */ 1472 for (ps = error_states;; ps++) 1473 if ((p->flags & ps->mask) == ps->res) 1474 break; 1475 1476 page_flags |= (p->flags & (1UL << PG_dirty)); 1477 1478 if (!ps->mask) 1479 for (ps = error_states;; ps++) 1480 if ((page_flags & ps->mask) == ps->res) 1481 break; 1482 return page_action(ps, p, pfn); 1483 } 1484 1485 static int try_to_split_thp_page(struct page *page, const char *msg) 1486 { 1487 lock_page(page); 1488 if (unlikely(split_huge_page(page))) { 1489 unsigned long pfn = page_to_pfn(page); 1490 1491 unlock_page(page); 1492 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1493 put_page(page); 1494 return -EBUSY; 1495 } 1496 unlock_page(page); 1497 1498 return 0; 1499 } 1500 1501 /* 1502 * Called from hugetlb code with hugetlb_lock held. 1503 * 1504 * Return values: 1505 * 0 - free hugepage 1506 * 1 - in-use hugepage 1507 * 2 - not a hugepage 1508 * -EBUSY - the hugepage is busy (try to retry) 1509 * -EHWPOISON - the hugepage is already hwpoisoned 1510 */ 1511 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1512 { 1513 struct page *page = pfn_to_page(pfn); 1514 struct page *head = compound_head(page); 1515 int ret = 2; /* fallback to normal page handling */ 1516 bool count_increased = false; 1517 1518 if (!PageHeadHuge(head)) 1519 goto out; 1520 1521 if (flags & MF_COUNT_INCREASED) { 1522 ret = 1; 1523 count_increased = true; 1524 } else if (HPageFreed(head)) { 1525 ret = 0; 1526 } else if (HPageMigratable(head)) { 1527 ret = get_page_unless_zero(head); 1528 if (ret) 1529 count_increased = true; 1530 } else { 1531 ret = -EBUSY; 1532 goto out; 1533 } 1534 1535 if (TestSetPageHWPoison(head)) { 1536 ret = -EHWPOISON; 1537 goto out; 1538 } 1539 1540 return ret; 1541 out: 1542 if (count_increased) 1543 put_page(head); 1544 return ret; 1545 } 1546 1547 #ifdef CONFIG_HUGETLB_PAGE 1548 /* 1549 * Taking refcount of hugetlb pages needs extra care about race conditions 1550 * with basic operations like hugepage allocation/free/demotion. 1551 * So some of prechecks for hwpoison (pinning, and testing/setting 1552 * PageHWPoison) should be done in single hugetlb_lock range. 1553 */ 1554 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1555 { 1556 int res; 1557 struct page *p = pfn_to_page(pfn); 1558 struct page *head; 1559 unsigned long page_flags; 1560 bool retry = true; 1561 1562 *hugetlb = 1; 1563 retry: 1564 res = get_huge_page_for_hwpoison(pfn, flags); 1565 if (res == 2) { /* fallback to normal page handling */ 1566 *hugetlb = 0; 1567 return 0; 1568 } else if (res == -EHWPOISON) { 1569 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); 1570 if (flags & MF_ACTION_REQUIRED) { 1571 head = compound_head(p); 1572 res = kill_accessing_process(current, page_to_pfn(head), flags); 1573 } 1574 return res; 1575 } else if (res == -EBUSY) { 1576 if (retry) { 1577 retry = false; 1578 goto retry; 1579 } 1580 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1581 return res; 1582 } 1583 1584 head = compound_head(p); 1585 lock_page(head); 1586 1587 if (hwpoison_filter(p)) { 1588 ClearPageHWPoison(head); 1589 res = -EOPNOTSUPP; 1590 goto out; 1591 } 1592 1593 /* 1594 * Handling free hugepage. The possible race with hugepage allocation 1595 * or demotion can be prevented by PageHWPoison flag. 1596 */ 1597 if (res == 0) { 1598 unlock_page(head); 1599 res = MF_FAILED; 1600 if (__page_handle_poison(p)) { 1601 page_ref_inc(p); 1602 res = MF_RECOVERED; 1603 } 1604 action_result(pfn, MF_MSG_FREE_HUGE, res); 1605 return res == MF_RECOVERED ? 0 : -EBUSY; 1606 } 1607 1608 page_flags = head->flags; 1609 1610 /* 1611 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1612 * simply disable it. In order to make it work properly, we need 1613 * make sure that: 1614 * - conversion of a pud that maps an error hugetlb into hwpoison 1615 * entry properly works, and 1616 * - other mm code walking over page table is aware of pud-aligned 1617 * hwpoison entries. 1618 */ 1619 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1620 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1621 res = -EBUSY; 1622 goto out; 1623 } 1624 1625 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1626 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1627 res = -EBUSY; 1628 goto out; 1629 } 1630 1631 return identify_page_state(pfn, p, page_flags); 1632 out: 1633 unlock_page(head); 1634 return res; 1635 } 1636 #else 1637 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1638 { 1639 return 0; 1640 } 1641 #endif 1642 1643 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1644 struct dev_pagemap *pgmap) 1645 { 1646 struct page *page = pfn_to_page(pfn); 1647 unsigned long size = 0; 1648 struct to_kill *tk; 1649 LIST_HEAD(tokill); 1650 int rc = -EBUSY; 1651 loff_t start; 1652 dax_entry_t cookie; 1653 1654 if (flags & MF_COUNT_INCREASED) 1655 /* 1656 * Drop the extra refcount in case we come from madvise(). 1657 */ 1658 put_page(page); 1659 1660 /* device metadata space is not recoverable */ 1661 if (!pgmap_pfn_valid(pgmap, pfn)) { 1662 rc = -ENXIO; 1663 goto out; 1664 } 1665 1666 /* 1667 * Pages instantiated by device-dax (not filesystem-dax) 1668 * may be compound pages. 1669 */ 1670 page = compound_head(page); 1671 1672 /* 1673 * Prevent the inode from being freed while we are interrogating 1674 * the address_space, typically this would be handled by 1675 * lock_page(), but dax pages do not use the page lock. This 1676 * also prevents changes to the mapping of this pfn until 1677 * poison signaling is complete. 1678 */ 1679 cookie = dax_lock_page(page); 1680 if (!cookie) 1681 goto out; 1682 1683 if (hwpoison_filter(page)) { 1684 rc = -EOPNOTSUPP; 1685 goto unlock; 1686 } 1687 1688 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1689 /* 1690 * TODO: Handle HMM pages which may need coordination 1691 * with device-side memory. 1692 */ 1693 goto unlock; 1694 } 1695 1696 /* 1697 * Use this flag as an indication that the dax page has been 1698 * remapped UC to prevent speculative consumption of poison. 1699 */ 1700 SetPageHWPoison(page); 1701 1702 /* 1703 * Unlike System-RAM there is no possibility to swap in a 1704 * different physical page at a given virtual address, so all 1705 * userspace consumption of ZONE_DEVICE memory necessitates 1706 * SIGBUS (i.e. MF_MUST_KILL) 1707 */ 1708 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1709 collect_procs(page, &tokill, true); 1710 1711 list_for_each_entry(tk, &tokill, nd) 1712 if (tk->size_shift) 1713 size = max(size, 1UL << tk->size_shift); 1714 if (size) { 1715 /* 1716 * Unmap the largest mapping to avoid breaking up 1717 * device-dax mappings which are constant size. The 1718 * actual size of the mapping being torn down is 1719 * communicated in siginfo, see kill_proc() 1720 */ 1721 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1722 unmap_mapping_range(page->mapping, start, size, 0); 1723 } 1724 kill_procs(&tokill, true, false, pfn, flags); 1725 rc = 0; 1726 unlock: 1727 dax_unlock_page(page, cookie); 1728 out: 1729 /* drop pgmap ref acquired in caller */ 1730 put_dev_pagemap(pgmap); 1731 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1732 return rc; 1733 } 1734 1735 static DEFINE_MUTEX(mf_mutex); 1736 1737 /** 1738 * memory_failure - Handle memory failure of a page. 1739 * @pfn: Page Number of the corrupted page 1740 * @flags: fine tune action taken 1741 * 1742 * This function is called by the low level machine check code 1743 * of an architecture when it detects hardware memory corruption 1744 * of a page. It tries its best to recover, which includes 1745 * dropping pages, killing processes etc. 1746 * 1747 * The function is primarily of use for corruptions that 1748 * happen outside the current execution context (e.g. when 1749 * detected by a background scrubber) 1750 * 1751 * Must run in process context (e.g. a work queue) with interrupts 1752 * enabled and no spinlocks hold. 1753 * 1754 * Return: 0 for successfully handled the memory error, 1755 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 1756 * < 0(except -EOPNOTSUPP) on failure. 1757 */ 1758 int memory_failure(unsigned long pfn, int flags) 1759 { 1760 struct page *p; 1761 struct page *hpage; 1762 struct dev_pagemap *pgmap; 1763 int res = 0; 1764 unsigned long page_flags; 1765 bool retry = true; 1766 int hugetlb = 0; 1767 1768 if (!sysctl_memory_failure_recovery) 1769 panic("Memory failure on page %lx", pfn); 1770 1771 mutex_lock(&mf_mutex); 1772 1773 if (!(flags & MF_SW_SIMULATED)) 1774 hw_memory_failure = true; 1775 1776 p = pfn_to_online_page(pfn); 1777 if (!p) { 1778 res = arch_memory_failure(pfn, flags); 1779 if (res == 0) 1780 goto unlock_mutex; 1781 1782 if (pfn_valid(pfn)) { 1783 pgmap = get_dev_pagemap(pfn, NULL); 1784 if (pgmap) { 1785 res = memory_failure_dev_pagemap(pfn, flags, 1786 pgmap); 1787 goto unlock_mutex; 1788 } 1789 } 1790 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1791 pfn); 1792 res = -ENXIO; 1793 goto unlock_mutex; 1794 } 1795 1796 try_again: 1797 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 1798 if (hugetlb) 1799 goto unlock_mutex; 1800 1801 if (TestSetPageHWPoison(p)) { 1802 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1803 pfn); 1804 res = -EHWPOISON; 1805 if (flags & MF_ACTION_REQUIRED) 1806 res = kill_accessing_process(current, pfn, flags); 1807 if (flags & MF_COUNT_INCREASED) 1808 put_page(p); 1809 goto unlock_mutex; 1810 } 1811 1812 hpage = compound_head(p); 1813 1814 /* 1815 * We need/can do nothing about count=0 pages. 1816 * 1) it's a free page, and therefore in safe hand: 1817 * prep_new_page() will be the gate keeper. 1818 * 2) it's part of a non-compound high order page. 1819 * Implies some kernel user: cannot stop them from 1820 * R/W the page; let's pray that the page has been 1821 * used and will be freed some time later. 1822 * In fact it's dangerous to directly bump up page count from 0, 1823 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1824 */ 1825 if (!(flags & MF_COUNT_INCREASED)) { 1826 res = get_hwpoison_page(p, flags); 1827 if (!res) { 1828 if (is_free_buddy_page(p)) { 1829 if (take_page_off_buddy(p)) { 1830 page_ref_inc(p); 1831 res = MF_RECOVERED; 1832 } else { 1833 /* We lost the race, try again */ 1834 if (retry) { 1835 ClearPageHWPoison(p); 1836 retry = false; 1837 goto try_again; 1838 } 1839 res = MF_FAILED; 1840 } 1841 action_result(pfn, MF_MSG_BUDDY, res); 1842 res = res == MF_RECOVERED ? 0 : -EBUSY; 1843 } else { 1844 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1845 res = -EBUSY; 1846 } 1847 goto unlock_mutex; 1848 } else if (res < 0) { 1849 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1850 res = -EBUSY; 1851 goto unlock_mutex; 1852 } 1853 } 1854 1855 if (PageTransHuge(hpage)) { 1856 /* 1857 * The flag must be set after the refcount is bumped 1858 * otherwise it may race with THP split. 1859 * And the flag can't be set in get_hwpoison_page() since 1860 * it is called by soft offline too and it is just called 1861 * for !MF_COUNT_INCREASE. So here seems to be the best 1862 * place. 1863 * 1864 * Don't need care about the above error handling paths for 1865 * get_hwpoison_page() since they handle either free page 1866 * or unhandlable page. The refcount is bumped iff the 1867 * page is a valid handlable page. 1868 */ 1869 SetPageHasHWPoisoned(hpage); 1870 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1871 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1872 res = -EBUSY; 1873 goto unlock_mutex; 1874 } 1875 VM_BUG_ON_PAGE(!page_count(p), p); 1876 } 1877 1878 /* 1879 * We ignore non-LRU pages for good reasons. 1880 * - PG_locked is only well defined for LRU pages and a few others 1881 * - to avoid races with __SetPageLocked() 1882 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1883 * The check (unnecessarily) ignores LRU pages being isolated and 1884 * walked by the page reclaim code, however that's not a big loss. 1885 */ 1886 shake_page(p); 1887 1888 lock_page(p); 1889 1890 /* 1891 * We're only intended to deal with the non-Compound page here. 1892 * However, the page could have changed compound pages due to 1893 * race window. If this happens, we could try again to hopefully 1894 * handle the page next round. 1895 */ 1896 if (PageCompound(p)) { 1897 if (retry) { 1898 ClearPageHWPoison(p); 1899 unlock_page(p); 1900 put_page(p); 1901 flags &= ~MF_COUNT_INCREASED; 1902 retry = false; 1903 goto try_again; 1904 } 1905 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1906 res = -EBUSY; 1907 goto unlock_page; 1908 } 1909 1910 /* 1911 * We use page flags to determine what action should be taken, but 1912 * the flags can be modified by the error containment action. One 1913 * example is an mlocked page, where PG_mlocked is cleared by 1914 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1915 * correctly, we save a copy of the page flags at this time. 1916 */ 1917 page_flags = p->flags; 1918 1919 if (hwpoison_filter(p)) { 1920 TestClearPageHWPoison(p); 1921 unlock_page(p); 1922 put_page(p); 1923 res = -EOPNOTSUPP; 1924 goto unlock_mutex; 1925 } 1926 1927 /* 1928 * __munlock_pagevec may clear a writeback page's LRU flag without 1929 * page_lock. We need wait writeback completion for this page or it 1930 * may trigger vfs BUG while evict inode. 1931 */ 1932 if (!PageLRU(p) && !PageWriteback(p)) 1933 goto identify_page_state; 1934 1935 /* 1936 * It's very difficult to mess with pages currently under IO 1937 * and in many cases impossible, so we just avoid it here. 1938 */ 1939 wait_on_page_writeback(p); 1940 1941 /* 1942 * Now take care of user space mappings. 1943 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1944 */ 1945 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1946 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1947 res = -EBUSY; 1948 goto unlock_page; 1949 } 1950 1951 /* 1952 * Torn down by someone else? 1953 */ 1954 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1955 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1956 res = -EBUSY; 1957 goto unlock_page; 1958 } 1959 1960 identify_page_state: 1961 res = identify_page_state(pfn, p, page_flags); 1962 mutex_unlock(&mf_mutex); 1963 return res; 1964 unlock_page: 1965 unlock_page(p); 1966 unlock_mutex: 1967 mutex_unlock(&mf_mutex); 1968 return res; 1969 } 1970 EXPORT_SYMBOL_GPL(memory_failure); 1971 1972 #define MEMORY_FAILURE_FIFO_ORDER 4 1973 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1974 1975 struct memory_failure_entry { 1976 unsigned long pfn; 1977 int flags; 1978 }; 1979 1980 struct memory_failure_cpu { 1981 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1982 MEMORY_FAILURE_FIFO_SIZE); 1983 spinlock_t lock; 1984 struct work_struct work; 1985 }; 1986 1987 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1988 1989 /** 1990 * memory_failure_queue - Schedule handling memory failure of a page. 1991 * @pfn: Page Number of the corrupted page 1992 * @flags: Flags for memory failure handling 1993 * 1994 * This function is called by the low level hardware error handler 1995 * when it detects hardware memory corruption of a page. It schedules 1996 * the recovering of error page, including dropping pages, killing 1997 * processes etc. 1998 * 1999 * The function is primarily of use for corruptions that 2000 * happen outside the current execution context (e.g. when 2001 * detected by a background scrubber) 2002 * 2003 * Can run in IRQ context. 2004 */ 2005 void memory_failure_queue(unsigned long pfn, int flags) 2006 { 2007 struct memory_failure_cpu *mf_cpu; 2008 unsigned long proc_flags; 2009 struct memory_failure_entry entry = { 2010 .pfn = pfn, 2011 .flags = flags, 2012 }; 2013 2014 mf_cpu = &get_cpu_var(memory_failure_cpu); 2015 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2016 if (kfifo_put(&mf_cpu->fifo, entry)) 2017 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2018 else 2019 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 2020 pfn); 2021 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2022 put_cpu_var(memory_failure_cpu); 2023 } 2024 EXPORT_SYMBOL_GPL(memory_failure_queue); 2025 2026 static void memory_failure_work_func(struct work_struct *work) 2027 { 2028 struct memory_failure_cpu *mf_cpu; 2029 struct memory_failure_entry entry = { 0, }; 2030 unsigned long proc_flags; 2031 int gotten; 2032 2033 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2034 for (;;) { 2035 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2036 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2037 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2038 if (!gotten) 2039 break; 2040 if (entry.flags & MF_SOFT_OFFLINE) 2041 soft_offline_page(entry.pfn, entry.flags); 2042 else 2043 memory_failure(entry.pfn, entry.flags); 2044 } 2045 } 2046 2047 /* 2048 * Process memory_failure work queued on the specified CPU. 2049 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2050 */ 2051 void memory_failure_queue_kick(int cpu) 2052 { 2053 struct memory_failure_cpu *mf_cpu; 2054 2055 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2056 cancel_work_sync(&mf_cpu->work); 2057 memory_failure_work_func(&mf_cpu->work); 2058 } 2059 2060 static int __init memory_failure_init(void) 2061 { 2062 struct memory_failure_cpu *mf_cpu; 2063 int cpu; 2064 2065 for_each_possible_cpu(cpu) { 2066 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2067 spin_lock_init(&mf_cpu->lock); 2068 INIT_KFIFO(mf_cpu->fifo); 2069 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2070 } 2071 2072 return 0; 2073 } 2074 core_initcall(memory_failure_init); 2075 2076 #define unpoison_pr_info(fmt, pfn, rs) \ 2077 ({ \ 2078 if (__ratelimit(rs)) \ 2079 pr_info(fmt, pfn); \ 2080 }) 2081 2082 /** 2083 * unpoison_memory - Unpoison a previously poisoned page 2084 * @pfn: Page number of the to be unpoisoned page 2085 * 2086 * Software-unpoison a page that has been poisoned by 2087 * memory_failure() earlier. 2088 * 2089 * This is only done on the software-level, so it only works 2090 * for linux injected failures, not real hardware failures 2091 * 2092 * Returns 0 for success, otherwise -errno. 2093 */ 2094 int unpoison_memory(unsigned long pfn) 2095 { 2096 struct page *page; 2097 struct page *p; 2098 int ret = -EBUSY; 2099 int freeit = 0; 2100 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2101 DEFAULT_RATELIMIT_BURST); 2102 2103 if (!pfn_valid(pfn)) 2104 return -ENXIO; 2105 2106 p = pfn_to_page(pfn); 2107 page = compound_head(p); 2108 2109 mutex_lock(&mf_mutex); 2110 2111 if (hw_memory_failure) { 2112 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2113 pfn, &unpoison_rs); 2114 ret = -EOPNOTSUPP; 2115 goto unlock_mutex; 2116 } 2117 2118 if (!PageHWPoison(p)) { 2119 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2120 pfn, &unpoison_rs); 2121 goto unlock_mutex; 2122 } 2123 2124 if (page_count(page) > 1) { 2125 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2126 pfn, &unpoison_rs); 2127 goto unlock_mutex; 2128 } 2129 2130 if (page_mapped(page)) { 2131 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2132 pfn, &unpoison_rs); 2133 goto unlock_mutex; 2134 } 2135 2136 if (page_mapping(page)) { 2137 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2138 pfn, &unpoison_rs); 2139 goto unlock_mutex; 2140 } 2141 2142 if (PageSlab(page) || PageTable(page)) 2143 goto unlock_mutex; 2144 2145 ret = get_hwpoison_page(p, MF_UNPOISON); 2146 if (!ret) { 2147 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; 2148 } else if (ret < 0) { 2149 if (ret == -EHWPOISON) { 2150 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2151 } else 2152 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2153 pfn, &unpoison_rs); 2154 } else { 2155 freeit = !!TestClearPageHWPoison(p); 2156 2157 put_page(page); 2158 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2159 put_page(page); 2160 ret = 0; 2161 } 2162 } 2163 2164 unlock_mutex: 2165 mutex_unlock(&mf_mutex); 2166 if (!ret || freeit) { 2167 num_poisoned_pages_dec(); 2168 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2169 page_to_pfn(p), &unpoison_rs); 2170 } 2171 return ret; 2172 } 2173 EXPORT_SYMBOL(unpoison_memory); 2174 2175 static bool isolate_page(struct page *page, struct list_head *pagelist) 2176 { 2177 bool isolated = false; 2178 bool lru = PageLRU(page); 2179 2180 if (PageHuge(page)) { 2181 isolated = isolate_huge_page(page, pagelist); 2182 } else { 2183 if (lru) 2184 isolated = !isolate_lru_page(page); 2185 else 2186 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2187 2188 if (isolated) 2189 list_add(&page->lru, pagelist); 2190 } 2191 2192 if (isolated && lru) 2193 inc_node_page_state(page, NR_ISOLATED_ANON + 2194 page_is_file_lru(page)); 2195 2196 /* 2197 * If we succeed to isolate the page, we grabbed another refcount on 2198 * the page, so we can safely drop the one we got from get_any_pages(). 2199 * If we failed to isolate the page, it means that we cannot go further 2200 * and we will return an error, so drop the reference we got from 2201 * get_any_pages() as well. 2202 */ 2203 put_page(page); 2204 return isolated; 2205 } 2206 2207 /* 2208 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2209 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2210 * If the page is mapped, it migrates the contents over. 2211 */ 2212 static int __soft_offline_page(struct page *page) 2213 { 2214 long ret = 0; 2215 unsigned long pfn = page_to_pfn(page); 2216 struct page *hpage = compound_head(page); 2217 char const *msg_page[] = {"page", "hugepage"}; 2218 bool huge = PageHuge(page); 2219 LIST_HEAD(pagelist); 2220 struct migration_target_control mtc = { 2221 .nid = NUMA_NO_NODE, 2222 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2223 }; 2224 2225 lock_page(page); 2226 if (!PageHuge(page)) 2227 wait_on_page_writeback(page); 2228 if (PageHWPoison(page)) { 2229 unlock_page(page); 2230 put_page(page); 2231 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2232 return 0; 2233 } 2234 2235 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2236 /* 2237 * Try to invalidate first. This should work for 2238 * non dirty unmapped page cache pages. 2239 */ 2240 ret = invalidate_inode_page(page); 2241 unlock_page(page); 2242 2243 if (ret) { 2244 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2245 page_handle_poison(page, false, true); 2246 return 0; 2247 } 2248 2249 if (isolate_page(hpage, &pagelist)) { 2250 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2251 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2252 if (!ret) { 2253 bool release = !huge; 2254 2255 if (!page_handle_poison(page, huge, release)) 2256 ret = -EBUSY; 2257 } else { 2258 if (!list_empty(&pagelist)) 2259 putback_movable_pages(&pagelist); 2260 2261 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2262 pfn, msg_page[huge], ret, &page->flags); 2263 if (ret > 0) 2264 ret = -EBUSY; 2265 } 2266 } else { 2267 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2268 pfn, msg_page[huge], page_count(page), &page->flags); 2269 ret = -EBUSY; 2270 } 2271 return ret; 2272 } 2273 2274 static int soft_offline_in_use_page(struct page *page) 2275 { 2276 struct page *hpage = compound_head(page); 2277 2278 if (!PageHuge(page) && PageTransHuge(hpage)) 2279 if (try_to_split_thp_page(page, "soft offline") < 0) 2280 return -EBUSY; 2281 return __soft_offline_page(page); 2282 } 2283 2284 static int soft_offline_free_page(struct page *page) 2285 { 2286 int rc = 0; 2287 2288 if (!page_handle_poison(page, true, false)) 2289 rc = -EBUSY; 2290 2291 return rc; 2292 } 2293 2294 static void put_ref_page(struct page *page) 2295 { 2296 if (page) 2297 put_page(page); 2298 } 2299 2300 /** 2301 * soft_offline_page - Soft offline a page. 2302 * @pfn: pfn to soft-offline 2303 * @flags: flags. Same as memory_failure(). 2304 * 2305 * Returns 0 on success 2306 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2307 * < 0 otherwise negated errno. 2308 * 2309 * Soft offline a page, by migration or invalidation, 2310 * without killing anything. This is for the case when 2311 * a page is not corrupted yet (so it's still valid to access), 2312 * but has had a number of corrected errors and is better taken 2313 * out. 2314 * 2315 * The actual policy on when to do that is maintained by 2316 * user space. 2317 * 2318 * This should never impact any application or cause data loss, 2319 * however it might take some time. 2320 * 2321 * This is not a 100% solution for all memory, but tries to be 2322 * ``good enough'' for the majority of memory. 2323 */ 2324 int soft_offline_page(unsigned long pfn, int flags) 2325 { 2326 int ret; 2327 bool try_again = true; 2328 struct page *page, *ref_page = NULL; 2329 2330 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2331 2332 if (!pfn_valid(pfn)) 2333 return -ENXIO; 2334 if (flags & MF_COUNT_INCREASED) 2335 ref_page = pfn_to_page(pfn); 2336 2337 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2338 page = pfn_to_online_page(pfn); 2339 if (!page) { 2340 put_ref_page(ref_page); 2341 return -EIO; 2342 } 2343 2344 mutex_lock(&mf_mutex); 2345 2346 if (PageHWPoison(page)) { 2347 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2348 put_ref_page(ref_page); 2349 mutex_unlock(&mf_mutex); 2350 return 0; 2351 } 2352 2353 retry: 2354 get_online_mems(); 2355 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2356 put_online_mems(); 2357 2358 if (hwpoison_filter(page)) { 2359 if (ret > 0) 2360 put_page(page); 2361 else 2362 put_ref_page(ref_page); 2363 2364 mutex_unlock(&mf_mutex); 2365 return -EOPNOTSUPP; 2366 } 2367 2368 if (ret > 0) { 2369 ret = soft_offline_in_use_page(page); 2370 } else if (ret == 0) { 2371 if (soft_offline_free_page(page) && try_again) { 2372 try_again = false; 2373 flags &= ~MF_COUNT_INCREASED; 2374 goto retry; 2375 } 2376 } 2377 2378 mutex_unlock(&mf_mutex); 2379 2380 return ret; 2381 } 2382 2383 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 2384 { 2385 int i; 2386 2387 /* 2388 * A further optimization is to have per section refcounted 2389 * num_poisoned_pages. But that would need more space per memmap, so 2390 * for now just do a quick global check to speed up this routine in the 2391 * absence of bad pages. 2392 */ 2393 if (atomic_long_read(&num_poisoned_pages) == 0) 2394 return; 2395 2396 for (i = 0; i < nr_pages; i++) { 2397 if (PageHWPoison(&memmap[i])) { 2398 num_poisoned_pages_dec(); 2399 ClearPageHWPoison(&memmap[i]); 2400 } 2401 } 2402 } 2403