1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 static bool __page_handle_poison(struct page *page) 72 { 73 int ret; 74 75 zone_pcp_disable(page_zone(page)); 76 ret = dissolve_free_huge_page(page); 77 if (!ret) 78 ret = take_page_off_buddy(page); 79 zone_pcp_enable(page_zone(page)); 80 81 return ret > 0; 82 } 83 84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 85 { 86 if (hugepage_or_freepage) { 87 /* 88 * Doing this check for free pages is also fine since dissolve_free_huge_page 89 * returns 0 for non-hugetlb pages as well. 90 */ 91 if (!__page_handle_poison(page)) 92 /* 93 * We could fail to take off the target page from buddy 94 * for example due to racy page allocation, but that's 95 * acceptable because soft-offlined page is not broken 96 * and if someone really want to use it, they should 97 * take it. 98 */ 99 return false; 100 } 101 102 SetPageHWPoison(page); 103 if (release) 104 put_page(page); 105 page_ref_inc(page); 106 num_poisoned_pages_inc(); 107 108 return true; 109 } 110 111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 112 113 u32 hwpoison_filter_enable = 0; 114 u32 hwpoison_filter_dev_major = ~0U; 115 u32 hwpoison_filter_dev_minor = ~0U; 116 u64 hwpoison_filter_flags_mask; 117 u64 hwpoison_filter_flags_value; 118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 123 124 static int hwpoison_filter_dev(struct page *p) 125 { 126 struct address_space *mapping; 127 dev_t dev; 128 129 if (hwpoison_filter_dev_major == ~0U && 130 hwpoison_filter_dev_minor == ~0U) 131 return 0; 132 133 /* 134 * page_mapping() does not accept slab pages. 135 */ 136 if (PageSlab(p)) 137 return -EINVAL; 138 139 mapping = page_mapping(p); 140 if (mapping == NULL || mapping->host == NULL) 141 return -EINVAL; 142 143 dev = mapping->host->i_sb->s_dev; 144 if (hwpoison_filter_dev_major != ~0U && 145 hwpoison_filter_dev_major != MAJOR(dev)) 146 return -EINVAL; 147 if (hwpoison_filter_dev_minor != ~0U && 148 hwpoison_filter_dev_minor != MINOR(dev)) 149 return -EINVAL; 150 151 return 0; 152 } 153 154 static int hwpoison_filter_flags(struct page *p) 155 { 156 if (!hwpoison_filter_flags_mask) 157 return 0; 158 159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 160 hwpoison_filter_flags_value) 161 return 0; 162 else 163 return -EINVAL; 164 } 165 166 /* 167 * This allows stress tests to limit test scope to a collection of tasks 168 * by putting them under some memcg. This prevents killing unrelated/important 169 * processes such as /sbin/init. Note that the target task may share clean 170 * pages with init (eg. libc text), which is harmless. If the target task 171 * share _dirty_ pages with another task B, the test scheme must make sure B 172 * is also included in the memcg. At last, due to race conditions this filter 173 * can only guarantee that the page either belongs to the memcg tasks, or is 174 * a freed page. 175 */ 176 #ifdef CONFIG_MEMCG 177 u64 hwpoison_filter_memcg; 178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 179 static int hwpoison_filter_task(struct page *p) 180 { 181 if (!hwpoison_filter_memcg) 182 return 0; 183 184 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 185 return -EINVAL; 186 187 return 0; 188 } 189 #else 190 static int hwpoison_filter_task(struct page *p) { return 0; } 191 #endif 192 193 int hwpoison_filter(struct page *p) 194 { 195 if (!hwpoison_filter_enable) 196 return 0; 197 198 if (hwpoison_filter_dev(p)) 199 return -EINVAL; 200 201 if (hwpoison_filter_flags(p)) 202 return -EINVAL; 203 204 if (hwpoison_filter_task(p)) 205 return -EINVAL; 206 207 return 0; 208 } 209 #else 210 int hwpoison_filter(struct page *p) 211 { 212 return 0; 213 } 214 #endif 215 216 EXPORT_SYMBOL_GPL(hwpoison_filter); 217 218 /* 219 * Kill all processes that have a poisoned page mapped and then isolate 220 * the page. 221 * 222 * General strategy: 223 * Find all processes having the page mapped and kill them. 224 * But we keep a page reference around so that the page is not 225 * actually freed yet. 226 * Then stash the page away 227 * 228 * There's no convenient way to get back to mapped processes 229 * from the VMAs. So do a brute-force search over all 230 * running processes. 231 * 232 * Remember that machine checks are not common (or rather 233 * if they are common you have other problems), so this shouldn't 234 * be a performance issue. 235 * 236 * Also there are some races possible while we get from the 237 * error detection to actually handle it. 238 */ 239 240 struct to_kill { 241 struct list_head nd; 242 struct task_struct *tsk; 243 unsigned long addr; 244 short size_shift; 245 }; 246 247 /* 248 * Send all the processes who have the page mapped a signal. 249 * ``action optional'' if they are not immediately affected by the error 250 * ``action required'' if error happened in current execution context 251 */ 252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 253 { 254 struct task_struct *t = tk->tsk; 255 short addr_lsb = tk->size_shift; 256 int ret = 0; 257 258 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 259 pfn, t->comm, t->pid); 260 261 if (flags & MF_ACTION_REQUIRED) { 262 if (t == current) 263 ret = force_sig_mceerr(BUS_MCEERR_AR, 264 (void __user *)tk->addr, addr_lsb); 265 else 266 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 268 addr_lsb, t); 269 } else { 270 /* 271 * Don't use force here, it's convenient if the signal 272 * can be temporarily blocked. 273 * This could cause a loop when the user sets SIGBUS 274 * to SIG_IGN, but hopefully no one will do that? 275 */ 276 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 277 addr_lsb, t); /* synchronous? */ 278 } 279 if (ret < 0) 280 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 281 t->comm, t->pid, ret); 282 return ret; 283 } 284 285 /* 286 * Unknown page type encountered. Try to check whether it can turn PageLRU by 287 * lru_add_drain_all. 288 */ 289 void shake_page(struct page *p) 290 { 291 if (PageHuge(p)) 292 return; 293 294 if (!PageSlab(p)) { 295 lru_add_drain_all(); 296 if (PageLRU(p) || is_free_buddy_page(p)) 297 return; 298 } 299 300 /* 301 * TODO: Could shrink slab caches here if a lightweight range-based 302 * shrinker will be available. 303 */ 304 } 305 EXPORT_SYMBOL_GPL(shake_page); 306 307 static unsigned long dev_pagemap_mapping_shift(struct page *page, 308 struct vm_area_struct *vma) 309 { 310 unsigned long address = vma_address(page, vma); 311 unsigned long ret = 0; 312 pgd_t *pgd; 313 p4d_t *p4d; 314 pud_t *pud; 315 pmd_t *pmd; 316 pte_t *pte; 317 318 pgd = pgd_offset(vma->vm_mm, address); 319 if (!pgd_present(*pgd)) 320 return 0; 321 p4d = p4d_offset(pgd, address); 322 if (!p4d_present(*p4d)) 323 return 0; 324 pud = pud_offset(p4d, address); 325 if (!pud_present(*pud)) 326 return 0; 327 if (pud_devmap(*pud)) 328 return PUD_SHIFT; 329 pmd = pmd_offset(pud, address); 330 if (!pmd_present(*pmd)) 331 return 0; 332 if (pmd_devmap(*pmd)) 333 return PMD_SHIFT; 334 pte = pte_offset_map(pmd, address); 335 if (pte_present(*pte) && pte_devmap(*pte)) 336 ret = PAGE_SHIFT; 337 pte_unmap(pte); 338 return ret; 339 } 340 341 /* 342 * Failure handling: if we can't find or can't kill a process there's 343 * not much we can do. We just print a message and ignore otherwise. 344 */ 345 346 /* 347 * Schedule a process for later kill. 348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 349 */ 350 static void add_to_kill(struct task_struct *tsk, struct page *p, 351 struct vm_area_struct *vma, 352 struct list_head *to_kill) 353 { 354 struct to_kill *tk; 355 356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 357 if (!tk) { 358 pr_err("Memory failure: Out of memory while machine check handling\n"); 359 return; 360 } 361 362 tk->addr = page_address_in_vma(p, vma); 363 if (is_zone_device_page(p)) 364 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 365 else 366 tk->size_shift = page_shift(compound_head(p)); 367 368 /* 369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 370 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 371 * so "tk->size_shift == 0" effectively checks no mapping on 372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 373 * to a process' address space, it's possible not all N VMAs 374 * contain mappings for the page, but at least one VMA does. 375 * Only deliver SIGBUS with payload derived from the VMA that 376 * has a mapping for the page. 377 */ 378 if (tk->addr == -EFAULT) { 379 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 380 page_to_pfn(p), tsk->comm); 381 } else if (tk->size_shift == 0) { 382 kfree(tk); 383 return; 384 } 385 386 get_task_struct(tsk); 387 tk->tsk = tsk; 388 list_add_tail(&tk->nd, to_kill); 389 } 390 391 /* 392 * Kill the processes that have been collected earlier. 393 * 394 * Only do anything when FORCEKILL is set, otherwise just free the 395 * list (this is used for clean pages which do not need killing) 396 * Also when FAIL is set do a force kill because something went 397 * wrong earlier. 398 */ 399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 400 unsigned long pfn, int flags) 401 { 402 struct to_kill *tk, *next; 403 404 list_for_each_entry_safe (tk, next, to_kill, nd) { 405 if (forcekill) { 406 /* 407 * In case something went wrong with munmapping 408 * make sure the process doesn't catch the 409 * signal and then access the memory. Just kill it. 410 */ 411 if (fail || tk->addr == -EFAULT) { 412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 413 pfn, tk->tsk->comm, tk->tsk->pid); 414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 415 tk->tsk, PIDTYPE_PID); 416 } 417 418 /* 419 * In theory the process could have mapped 420 * something else on the address in-between. We could 421 * check for that, but we need to tell the 422 * process anyways. 423 */ 424 else if (kill_proc(tk, pfn, flags) < 0) 425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 426 pfn, tk->tsk->comm, tk->tsk->pid); 427 } 428 put_task_struct(tk->tsk); 429 kfree(tk); 430 } 431 } 432 433 /* 434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 435 * on behalf of the thread group. Return task_struct of the (first found) 436 * dedicated thread if found, and return NULL otherwise. 437 * 438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 439 * have to call rcu_read_lock/unlock() in this function. 440 */ 441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 442 { 443 struct task_struct *t; 444 445 for_each_thread(tsk, t) { 446 if (t->flags & PF_MCE_PROCESS) { 447 if (t->flags & PF_MCE_EARLY) 448 return t; 449 } else { 450 if (sysctl_memory_failure_early_kill) 451 return t; 452 } 453 } 454 return NULL; 455 } 456 457 /* 458 * Determine whether a given process is "early kill" process which expects 459 * to be signaled when some page under the process is hwpoisoned. 460 * Return task_struct of the dedicated thread (main thread unless explicitly 461 * specified) if the process is "early kill" and otherwise returns NULL. 462 * 463 * Note that the above is true for Action Optional case. For Action Required 464 * case, it's only meaningful to the current thread which need to be signaled 465 * with SIGBUS, this error is Action Optional for other non current 466 * processes sharing the same error page,if the process is "early kill", the 467 * task_struct of the dedicated thread will also be returned. 468 */ 469 static struct task_struct *task_early_kill(struct task_struct *tsk, 470 int force_early) 471 { 472 if (!tsk->mm) 473 return NULL; 474 /* 475 * Comparing ->mm here because current task might represent 476 * a subthread, while tsk always points to the main thread. 477 */ 478 if (force_early && tsk->mm == current->mm) 479 return current; 480 481 return find_early_kill_thread(tsk); 482 } 483 484 /* 485 * Collect processes when the error hit an anonymous page. 486 */ 487 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 488 int force_early) 489 { 490 struct vm_area_struct *vma; 491 struct task_struct *tsk; 492 struct anon_vma *av; 493 pgoff_t pgoff; 494 495 av = page_lock_anon_vma_read(page); 496 if (av == NULL) /* Not actually mapped anymore */ 497 return; 498 499 pgoff = page_to_pgoff(page); 500 read_lock(&tasklist_lock); 501 for_each_process (tsk) { 502 struct anon_vma_chain *vmac; 503 struct task_struct *t = task_early_kill(tsk, force_early); 504 505 if (!t) 506 continue; 507 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 508 pgoff, pgoff) { 509 vma = vmac->vma; 510 if (!page_mapped_in_vma(page, vma)) 511 continue; 512 if (vma->vm_mm == t->mm) 513 add_to_kill(t, page, vma, to_kill); 514 } 515 } 516 read_unlock(&tasklist_lock); 517 page_unlock_anon_vma_read(av); 518 } 519 520 /* 521 * Collect processes when the error hit a file mapped page. 522 */ 523 static void collect_procs_file(struct page *page, struct list_head *to_kill, 524 int force_early) 525 { 526 struct vm_area_struct *vma; 527 struct task_struct *tsk; 528 struct address_space *mapping = page->mapping; 529 pgoff_t pgoff; 530 531 i_mmap_lock_read(mapping); 532 read_lock(&tasklist_lock); 533 pgoff = page_to_pgoff(page); 534 for_each_process(tsk) { 535 struct task_struct *t = task_early_kill(tsk, force_early); 536 537 if (!t) 538 continue; 539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 540 pgoff) { 541 /* 542 * Send early kill signal to tasks where a vma covers 543 * the page but the corrupted page is not necessarily 544 * mapped it in its pte. 545 * Assume applications who requested early kill want 546 * to be informed of all such data corruptions. 547 */ 548 if (vma->vm_mm == t->mm) 549 add_to_kill(t, page, vma, to_kill); 550 } 551 } 552 read_unlock(&tasklist_lock); 553 i_mmap_unlock_read(mapping); 554 } 555 556 /* 557 * Collect the processes who have the corrupted page mapped to kill. 558 */ 559 static void collect_procs(struct page *page, struct list_head *tokill, 560 int force_early) 561 { 562 if (!page->mapping) 563 return; 564 565 if (PageAnon(page)) 566 collect_procs_anon(page, tokill, force_early); 567 else 568 collect_procs_file(page, tokill, force_early); 569 } 570 571 struct hwp_walk { 572 struct to_kill tk; 573 unsigned long pfn; 574 int flags; 575 }; 576 577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 578 { 579 tk->addr = addr; 580 tk->size_shift = shift; 581 } 582 583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 584 unsigned long poisoned_pfn, struct to_kill *tk) 585 { 586 unsigned long pfn = 0; 587 588 if (pte_present(pte)) { 589 pfn = pte_pfn(pte); 590 } else { 591 swp_entry_t swp = pte_to_swp_entry(pte); 592 593 if (is_hwpoison_entry(swp)) 594 pfn = hwpoison_entry_to_pfn(swp); 595 } 596 597 if (!pfn || pfn != poisoned_pfn) 598 return 0; 599 600 set_to_kill(tk, addr, shift); 601 return 1; 602 } 603 604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 606 struct hwp_walk *hwp) 607 { 608 pmd_t pmd = *pmdp; 609 unsigned long pfn; 610 unsigned long hwpoison_vaddr; 611 612 if (!pmd_present(pmd)) 613 return 0; 614 pfn = pmd_pfn(pmd); 615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 618 return 1; 619 } 620 return 0; 621 } 622 #else 623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 624 struct hwp_walk *hwp) 625 { 626 return 0; 627 } 628 #endif 629 630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 631 unsigned long end, struct mm_walk *walk) 632 { 633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 634 int ret = 0; 635 pte_t *ptep, *mapped_pte; 636 spinlock_t *ptl; 637 638 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 639 if (ptl) { 640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 641 spin_unlock(ptl); 642 goto out; 643 } 644 645 if (pmd_trans_unstable(pmdp)) 646 goto out; 647 648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 649 addr, &ptl); 650 for (; addr != end; ptep++, addr += PAGE_SIZE) { 651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 652 hwp->pfn, &hwp->tk); 653 if (ret == 1) 654 break; 655 } 656 pte_unmap_unlock(mapped_pte, ptl); 657 out: 658 cond_resched(); 659 return ret; 660 } 661 662 #ifdef CONFIG_HUGETLB_PAGE 663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 664 unsigned long addr, unsigned long end, 665 struct mm_walk *walk) 666 { 667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 668 pte_t pte = huge_ptep_get(ptep); 669 struct hstate *h = hstate_vma(walk->vma); 670 671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 672 hwp->pfn, &hwp->tk); 673 } 674 #else 675 #define hwpoison_hugetlb_range NULL 676 #endif 677 678 static const struct mm_walk_ops hwp_walk_ops = { 679 .pmd_entry = hwpoison_pte_range, 680 .hugetlb_entry = hwpoison_hugetlb_range, 681 }; 682 683 /* 684 * Sends SIGBUS to the current process with error info. 685 * 686 * This function is intended to handle "Action Required" MCEs on already 687 * hardware poisoned pages. They could happen, for example, when 688 * memory_failure() failed to unmap the error page at the first call, or 689 * when multiple local machine checks happened on different CPUs. 690 * 691 * MCE handler currently has no easy access to the error virtual address, 692 * so this function walks page table to find it. The returned virtual address 693 * is proper in most cases, but it could be wrong when the application 694 * process has multiple entries mapping the error page. 695 */ 696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 697 int flags) 698 { 699 int ret; 700 struct hwp_walk priv = { 701 .pfn = pfn, 702 }; 703 priv.tk.tsk = p; 704 705 mmap_read_lock(p->mm); 706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 707 (void *)&priv); 708 if (ret == 1 && priv.tk.addr) 709 kill_proc(&priv.tk, pfn, flags); 710 mmap_read_unlock(p->mm); 711 return ret ? -EFAULT : -EHWPOISON; 712 } 713 714 static const char *action_name[] = { 715 [MF_IGNORED] = "Ignored", 716 [MF_FAILED] = "Failed", 717 [MF_DELAYED] = "Delayed", 718 [MF_RECOVERED] = "Recovered", 719 }; 720 721 static const char * const action_page_types[] = { 722 [MF_MSG_KERNEL] = "reserved kernel page", 723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 724 [MF_MSG_SLAB] = "kernel slab page", 725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 726 [MF_MSG_HUGE] = "huge page", 727 [MF_MSG_FREE_HUGE] = "free huge page", 728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 736 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 737 [MF_MSG_CLEAN_LRU] = "clean LRU page", 738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 739 [MF_MSG_BUDDY] = "free buddy page", 740 [MF_MSG_DAX] = "dax page", 741 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 742 [MF_MSG_UNKNOWN] = "unknown page", 743 }; 744 745 /* 746 * XXX: It is possible that a page is isolated from LRU cache, 747 * and then kept in swap cache or failed to remove from page cache. 748 * The page count will stop it from being freed by unpoison. 749 * Stress tests should be aware of this memory leak problem. 750 */ 751 static int delete_from_lru_cache(struct page *p) 752 { 753 if (!isolate_lru_page(p)) { 754 /* 755 * Clear sensible page flags, so that the buddy system won't 756 * complain when the page is unpoison-and-freed. 757 */ 758 ClearPageActive(p); 759 ClearPageUnevictable(p); 760 761 /* 762 * Poisoned page might never drop its ref count to 0 so we have 763 * to uncharge it manually from its memcg. 764 */ 765 mem_cgroup_uncharge(page_folio(p)); 766 767 /* 768 * drop the page count elevated by isolate_lru_page() 769 */ 770 put_page(p); 771 return 0; 772 } 773 return -EIO; 774 } 775 776 static int truncate_error_page(struct page *p, unsigned long pfn, 777 struct address_space *mapping) 778 { 779 int ret = MF_FAILED; 780 781 if (mapping->a_ops->error_remove_page) { 782 int err = mapping->a_ops->error_remove_page(mapping, p); 783 784 if (err != 0) { 785 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 786 pfn, err); 787 } else if (page_has_private(p) && 788 !try_to_release_page(p, GFP_NOIO)) { 789 pr_info("Memory failure: %#lx: failed to release buffers\n", 790 pfn); 791 } else { 792 ret = MF_RECOVERED; 793 } 794 } else { 795 /* 796 * If the file system doesn't support it just invalidate 797 * This fails on dirty or anything with private pages 798 */ 799 if (invalidate_inode_page(p)) 800 ret = MF_RECOVERED; 801 else 802 pr_info("Memory failure: %#lx: Failed to invalidate\n", 803 pfn); 804 } 805 806 return ret; 807 } 808 809 struct page_state { 810 unsigned long mask; 811 unsigned long res; 812 enum mf_action_page_type type; 813 814 /* Callback ->action() has to unlock the relevant page inside it. */ 815 int (*action)(struct page_state *ps, struct page *p); 816 }; 817 818 /* 819 * Return true if page is still referenced by others, otherwise return 820 * false. 821 * 822 * The extra_pins is true when one extra refcount is expected. 823 */ 824 static bool has_extra_refcount(struct page_state *ps, struct page *p, 825 bool extra_pins) 826 { 827 int count = page_count(p) - 1; 828 829 if (extra_pins) 830 count -= 1; 831 832 if (count > 0) { 833 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 834 page_to_pfn(p), action_page_types[ps->type], count); 835 return true; 836 } 837 838 return false; 839 } 840 841 /* 842 * Error hit kernel page. 843 * Do nothing, try to be lucky and not touch this instead. For a few cases we 844 * could be more sophisticated. 845 */ 846 static int me_kernel(struct page_state *ps, struct page *p) 847 { 848 unlock_page(p); 849 return MF_IGNORED; 850 } 851 852 /* 853 * Page in unknown state. Do nothing. 854 */ 855 static int me_unknown(struct page_state *ps, struct page *p) 856 { 857 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 858 unlock_page(p); 859 return MF_FAILED; 860 } 861 862 /* 863 * Clean (or cleaned) page cache page. 864 */ 865 static int me_pagecache_clean(struct page_state *ps, struct page *p) 866 { 867 int ret; 868 struct address_space *mapping; 869 bool extra_pins; 870 871 delete_from_lru_cache(p); 872 873 /* 874 * For anonymous pages we're done the only reference left 875 * should be the one m_f() holds. 876 */ 877 if (PageAnon(p)) { 878 ret = MF_RECOVERED; 879 goto out; 880 } 881 882 /* 883 * Now truncate the page in the page cache. This is really 884 * more like a "temporary hole punch" 885 * Don't do this for block devices when someone else 886 * has a reference, because it could be file system metadata 887 * and that's not safe to truncate. 888 */ 889 mapping = page_mapping(p); 890 if (!mapping) { 891 /* 892 * Page has been teared down in the meanwhile 893 */ 894 ret = MF_FAILED; 895 goto out; 896 } 897 898 /* 899 * The shmem page is kept in page cache instead of truncating 900 * so is expected to have an extra refcount after error-handling. 901 */ 902 extra_pins = shmem_mapping(mapping); 903 904 /* 905 * Truncation is a bit tricky. Enable it per file system for now. 906 * 907 * Open: to take i_rwsem or not for this? Right now we don't. 908 */ 909 ret = truncate_error_page(p, page_to_pfn(p), mapping); 910 if (has_extra_refcount(ps, p, extra_pins)) 911 ret = MF_FAILED; 912 913 out: 914 unlock_page(p); 915 916 return ret; 917 } 918 919 /* 920 * Dirty pagecache page 921 * Issues: when the error hit a hole page the error is not properly 922 * propagated. 923 */ 924 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 925 { 926 struct address_space *mapping = page_mapping(p); 927 928 SetPageError(p); 929 /* TBD: print more information about the file. */ 930 if (mapping) { 931 /* 932 * IO error will be reported by write(), fsync(), etc. 933 * who check the mapping. 934 * This way the application knows that something went 935 * wrong with its dirty file data. 936 * 937 * There's one open issue: 938 * 939 * The EIO will be only reported on the next IO 940 * operation and then cleared through the IO map. 941 * Normally Linux has two mechanisms to pass IO error 942 * first through the AS_EIO flag in the address space 943 * and then through the PageError flag in the page. 944 * Since we drop pages on memory failure handling the 945 * only mechanism open to use is through AS_AIO. 946 * 947 * This has the disadvantage that it gets cleared on 948 * the first operation that returns an error, while 949 * the PageError bit is more sticky and only cleared 950 * when the page is reread or dropped. If an 951 * application assumes it will always get error on 952 * fsync, but does other operations on the fd before 953 * and the page is dropped between then the error 954 * will not be properly reported. 955 * 956 * This can already happen even without hwpoisoned 957 * pages: first on metadata IO errors (which only 958 * report through AS_EIO) or when the page is dropped 959 * at the wrong time. 960 * 961 * So right now we assume that the application DTRT on 962 * the first EIO, but we're not worse than other parts 963 * of the kernel. 964 */ 965 mapping_set_error(mapping, -EIO); 966 } 967 968 return me_pagecache_clean(ps, p); 969 } 970 971 /* 972 * Clean and dirty swap cache. 973 * 974 * Dirty swap cache page is tricky to handle. The page could live both in page 975 * cache and swap cache(ie. page is freshly swapped in). So it could be 976 * referenced concurrently by 2 types of PTEs: 977 * normal PTEs and swap PTEs. We try to handle them consistently by calling 978 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 979 * and then 980 * - clear dirty bit to prevent IO 981 * - remove from LRU 982 * - but keep in the swap cache, so that when we return to it on 983 * a later page fault, we know the application is accessing 984 * corrupted data and shall be killed (we installed simple 985 * interception code in do_swap_page to catch it). 986 * 987 * Clean swap cache pages can be directly isolated. A later page fault will 988 * bring in the known good data from disk. 989 */ 990 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 991 { 992 int ret; 993 bool extra_pins = false; 994 995 ClearPageDirty(p); 996 /* Trigger EIO in shmem: */ 997 ClearPageUptodate(p); 998 999 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1000 unlock_page(p); 1001 1002 if (ret == MF_DELAYED) 1003 extra_pins = true; 1004 1005 if (has_extra_refcount(ps, p, extra_pins)) 1006 ret = MF_FAILED; 1007 1008 return ret; 1009 } 1010 1011 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1012 { 1013 int ret; 1014 1015 delete_from_swap_cache(p); 1016 1017 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1018 unlock_page(p); 1019 1020 if (has_extra_refcount(ps, p, false)) 1021 ret = MF_FAILED; 1022 1023 return ret; 1024 } 1025 1026 /* 1027 * Huge pages. Needs work. 1028 * Issues: 1029 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1030 * To narrow down kill region to one page, we need to break up pmd. 1031 */ 1032 static int me_huge_page(struct page_state *ps, struct page *p) 1033 { 1034 int res; 1035 struct page *hpage = compound_head(p); 1036 struct address_space *mapping; 1037 1038 if (!PageHuge(hpage)) 1039 return MF_DELAYED; 1040 1041 mapping = page_mapping(hpage); 1042 if (mapping) { 1043 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1044 unlock_page(hpage); 1045 } else { 1046 res = MF_FAILED; 1047 unlock_page(hpage); 1048 /* 1049 * migration entry prevents later access on error anonymous 1050 * hugepage, so we can free and dissolve it into buddy to 1051 * save healthy subpages. 1052 */ 1053 if (PageAnon(hpage)) 1054 put_page(hpage); 1055 if (__page_handle_poison(p)) { 1056 page_ref_inc(p); 1057 res = MF_RECOVERED; 1058 } 1059 } 1060 1061 if (has_extra_refcount(ps, p, false)) 1062 res = MF_FAILED; 1063 1064 return res; 1065 } 1066 1067 /* 1068 * Various page states we can handle. 1069 * 1070 * A page state is defined by its current page->flags bits. 1071 * The table matches them in order and calls the right handler. 1072 * 1073 * This is quite tricky because we can access page at any time 1074 * in its live cycle, so all accesses have to be extremely careful. 1075 * 1076 * This is not complete. More states could be added. 1077 * For any missing state don't attempt recovery. 1078 */ 1079 1080 #define dirty (1UL << PG_dirty) 1081 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1082 #define unevict (1UL << PG_unevictable) 1083 #define mlock (1UL << PG_mlocked) 1084 #define lru (1UL << PG_lru) 1085 #define head (1UL << PG_head) 1086 #define slab (1UL << PG_slab) 1087 #define reserved (1UL << PG_reserved) 1088 1089 static struct page_state error_states[] = { 1090 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1091 /* 1092 * free pages are specially detected outside this table: 1093 * PG_buddy pages only make a small fraction of all free pages. 1094 */ 1095 1096 /* 1097 * Could in theory check if slab page is free or if we can drop 1098 * currently unused objects without touching them. But just 1099 * treat it as standard kernel for now. 1100 */ 1101 { slab, slab, MF_MSG_SLAB, me_kernel }, 1102 1103 { head, head, MF_MSG_HUGE, me_huge_page }, 1104 1105 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1106 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1107 1108 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1109 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1110 1111 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1112 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1113 1114 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1115 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1116 1117 /* 1118 * Catchall entry: must be at end. 1119 */ 1120 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1121 }; 1122 1123 #undef dirty 1124 #undef sc 1125 #undef unevict 1126 #undef mlock 1127 #undef lru 1128 #undef head 1129 #undef slab 1130 #undef reserved 1131 1132 /* 1133 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1134 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1135 */ 1136 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1137 enum mf_result result) 1138 { 1139 trace_memory_failure_event(pfn, type, result); 1140 1141 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1142 pfn, action_page_types[type], action_name[result]); 1143 } 1144 1145 static int page_action(struct page_state *ps, struct page *p, 1146 unsigned long pfn) 1147 { 1148 int result; 1149 1150 /* page p should be unlocked after returning from ps->action(). */ 1151 result = ps->action(ps, p); 1152 1153 action_result(pfn, ps->type, result); 1154 1155 /* Could do more checks here if page looks ok */ 1156 /* 1157 * Could adjust zone counters here to correct for the missing page. 1158 */ 1159 1160 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1161 } 1162 1163 static inline bool PageHWPoisonTakenOff(struct page *page) 1164 { 1165 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1166 } 1167 1168 void SetPageHWPoisonTakenOff(struct page *page) 1169 { 1170 set_page_private(page, MAGIC_HWPOISON); 1171 } 1172 1173 void ClearPageHWPoisonTakenOff(struct page *page) 1174 { 1175 if (PageHWPoison(page)) 1176 set_page_private(page, 0); 1177 } 1178 1179 /* 1180 * Return true if a page type of a given page is supported by hwpoison 1181 * mechanism (while handling could fail), otherwise false. This function 1182 * does not return true for hugetlb or device memory pages, so it's assumed 1183 * to be called only in the context where we never have such pages. 1184 */ 1185 static inline bool HWPoisonHandlable(struct page *page) 1186 { 1187 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page); 1188 } 1189 1190 static int __get_hwpoison_page(struct page *page) 1191 { 1192 struct page *head = compound_head(page); 1193 int ret = 0; 1194 bool hugetlb = false; 1195 1196 ret = get_hwpoison_huge_page(head, &hugetlb); 1197 if (hugetlb) 1198 return ret; 1199 1200 /* 1201 * This check prevents from calling get_hwpoison_unless_zero() 1202 * for any unsupported type of page in order to reduce the risk of 1203 * unexpected races caused by taking a page refcount. 1204 */ 1205 if (!HWPoisonHandlable(head)) 1206 return -EBUSY; 1207 1208 if (get_page_unless_zero(head)) { 1209 if (head == compound_head(page)) 1210 return 1; 1211 1212 pr_info("Memory failure: %#lx cannot catch tail\n", 1213 page_to_pfn(page)); 1214 put_page(head); 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int get_any_page(struct page *p, unsigned long flags) 1221 { 1222 int ret = 0, pass = 0; 1223 bool count_increased = false; 1224 1225 if (flags & MF_COUNT_INCREASED) 1226 count_increased = true; 1227 1228 try_again: 1229 if (!count_increased) { 1230 ret = __get_hwpoison_page(p); 1231 if (!ret) { 1232 if (page_count(p)) { 1233 /* We raced with an allocation, retry. */ 1234 if (pass++ < 3) 1235 goto try_again; 1236 ret = -EBUSY; 1237 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1238 /* We raced with put_page, retry. */ 1239 if (pass++ < 3) 1240 goto try_again; 1241 ret = -EIO; 1242 } 1243 goto out; 1244 } else if (ret == -EBUSY) { 1245 /* 1246 * We raced with (possibly temporary) unhandlable 1247 * page, retry. 1248 */ 1249 if (pass++ < 3) { 1250 shake_page(p); 1251 goto try_again; 1252 } 1253 ret = -EIO; 1254 goto out; 1255 } 1256 } 1257 1258 if (PageHuge(p) || HWPoisonHandlable(p)) { 1259 ret = 1; 1260 } else { 1261 /* 1262 * A page we cannot handle. Check whether we can turn 1263 * it into something we can handle. 1264 */ 1265 if (pass++ < 3) { 1266 put_page(p); 1267 shake_page(p); 1268 count_increased = false; 1269 goto try_again; 1270 } 1271 put_page(p); 1272 ret = -EIO; 1273 } 1274 out: 1275 if (ret == -EIO) 1276 dump_page(p, "hwpoison: unhandlable page"); 1277 1278 return ret; 1279 } 1280 1281 static int __get_unpoison_page(struct page *page) 1282 { 1283 struct page *head = compound_head(page); 1284 int ret = 0; 1285 bool hugetlb = false; 1286 1287 ret = get_hwpoison_huge_page(head, &hugetlb); 1288 if (hugetlb) 1289 return ret; 1290 1291 /* 1292 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1293 * but also isolated from buddy freelist, so need to identify the 1294 * state and have to cancel both operations to unpoison. 1295 */ 1296 if (PageHWPoisonTakenOff(page)) 1297 return -EHWPOISON; 1298 1299 return get_page_unless_zero(page) ? 1 : 0; 1300 } 1301 1302 /** 1303 * get_hwpoison_page() - Get refcount for memory error handling 1304 * @p: Raw error page (hit by memory error) 1305 * @flags: Flags controlling behavior of error handling 1306 * 1307 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1308 * error on it, after checking that the error page is in a well-defined state 1309 * (defined as a page-type we can successfully handle the memory error on it, 1310 * such as LRU page and hugetlb page). 1311 * 1312 * Memory error handling could be triggered at any time on any type of page, 1313 * so it's prone to race with typical memory management lifecycle (like 1314 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1315 * extra care for the error page's state (as done in __get_hwpoison_page()), 1316 * and has some retry logic in get_any_page(). 1317 * 1318 * When called from unpoison_memory(), the caller should already ensure that 1319 * the given page has PG_hwpoison. So it's never reused for other page 1320 * allocations, and __get_unpoison_page() never races with them. 1321 * 1322 * Return: 0 on failure, 1323 * 1 on success for in-use pages in a well-defined state, 1324 * -EIO for pages on which we can not handle memory errors, 1325 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1326 * operations like allocation and free, 1327 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1328 */ 1329 static int get_hwpoison_page(struct page *p, unsigned long flags) 1330 { 1331 int ret; 1332 1333 zone_pcp_disable(page_zone(p)); 1334 if (flags & MF_UNPOISON) 1335 ret = __get_unpoison_page(p); 1336 else 1337 ret = get_any_page(p, flags); 1338 zone_pcp_enable(page_zone(p)); 1339 1340 return ret; 1341 } 1342 1343 /* 1344 * Do all that is necessary to remove user space mappings. Unmap 1345 * the pages and send SIGBUS to the processes if the data was dirty. 1346 */ 1347 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1348 int flags, struct page *hpage) 1349 { 1350 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1351 struct address_space *mapping; 1352 LIST_HEAD(tokill); 1353 bool unmap_success; 1354 int kill = 1, forcekill; 1355 bool mlocked = PageMlocked(hpage); 1356 1357 /* 1358 * Here we are interested only in user-mapped pages, so skip any 1359 * other types of pages. 1360 */ 1361 if (PageReserved(p) || PageSlab(p)) 1362 return true; 1363 if (!(PageLRU(hpage) || PageHuge(p))) 1364 return true; 1365 1366 /* 1367 * This check implies we don't kill processes if their pages 1368 * are in the swap cache early. Those are always late kills. 1369 */ 1370 if (!page_mapped(hpage)) 1371 return true; 1372 1373 if (PageKsm(p)) { 1374 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1375 return false; 1376 } 1377 1378 if (PageSwapCache(p)) { 1379 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1380 pfn); 1381 ttu |= TTU_IGNORE_HWPOISON; 1382 } 1383 1384 /* 1385 * Propagate the dirty bit from PTEs to struct page first, because we 1386 * need this to decide if we should kill or just drop the page. 1387 * XXX: the dirty test could be racy: set_page_dirty() may not always 1388 * be called inside page lock (it's recommended but not enforced). 1389 */ 1390 mapping = page_mapping(hpage); 1391 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1392 mapping_can_writeback(mapping)) { 1393 if (page_mkclean(hpage)) { 1394 SetPageDirty(hpage); 1395 } else { 1396 kill = 0; 1397 ttu |= TTU_IGNORE_HWPOISON; 1398 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1399 pfn); 1400 } 1401 } 1402 1403 /* 1404 * First collect all the processes that have the page 1405 * mapped in dirty form. This has to be done before try_to_unmap, 1406 * because ttu takes the rmap data structures down. 1407 * 1408 * Error handling: We ignore errors here because 1409 * there's nothing that can be done. 1410 */ 1411 if (kill) 1412 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1413 1414 if (!PageHuge(hpage)) { 1415 try_to_unmap(hpage, ttu); 1416 } else { 1417 if (!PageAnon(hpage)) { 1418 /* 1419 * For hugetlb pages in shared mappings, try_to_unmap 1420 * could potentially call huge_pmd_unshare. Because of 1421 * this, take semaphore in write mode here and set 1422 * TTU_RMAP_LOCKED to indicate we have taken the lock 1423 * at this higher level. 1424 */ 1425 mapping = hugetlb_page_mapping_lock_write(hpage); 1426 if (mapping) { 1427 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED); 1428 i_mmap_unlock_write(mapping); 1429 } else 1430 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1431 } else { 1432 try_to_unmap(hpage, ttu); 1433 } 1434 } 1435 1436 unmap_success = !page_mapped(hpage); 1437 if (!unmap_success) 1438 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1439 pfn, page_mapcount(hpage)); 1440 1441 /* 1442 * try_to_unmap() might put mlocked page in lru cache, so call 1443 * shake_page() again to ensure that it's flushed. 1444 */ 1445 if (mlocked) 1446 shake_page(hpage); 1447 1448 /* 1449 * Now that the dirty bit has been propagated to the 1450 * struct page and all unmaps done we can decide if 1451 * killing is needed or not. Only kill when the page 1452 * was dirty or the process is not restartable, 1453 * otherwise the tokill list is merely 1454 * freed. When there was a problem unmapping earlier 1455 * use a more force-full uncatchable kill to prevent 1456 * any accesses to the poisoned memory. 1457 */ 1458 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1459 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1460 1461 return unmap_success; 1462 } 1463 1464 static int identify_page_state(unsigned long pfn, struct page *p, 1465 unsigned long page_flags) 1466 { 1467 struct page_state *ps; 1468 1469 /* 1470 * The first check uses the current page flags which may not have any 1471 * relevant information. The second check with the saved page flags is 1472 * carried out only if the first check can't determine the page status. 1473 */ 1474 for (ps = error_states;; ps++) 1475 if ((p->flags & ps->mask) == ps->res) 1476 break; 1477 1478 page_flags |= (p->flags & (1UL << PG_dirty)); 1479 1480 if (!ps->mask) 1481 for (ps = error_states;; ps++) 1482 if ((page_flags & ps->mask) == ps->res) 1483 break; 1484 return page_action(ps, p, pfn); 1485 } 1486 1487 static int try_to_split_thp_page(struct page *page, const char *msg) 1488 { 1489 lock_page(page); 1490 if (unlikely(split_huge_page(page))) { 1491 unsigned long pfn = page_to_pfn(page); 1492 1493 unlock_page(page); 1494 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1495 put_page(page); 1496 return -EBUSY; 1497 } 1498 unlock_page(page); 1499 1500 return 0; 1501 } 1502 1503 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1504 { 1505 struct page *p = pfn_to_page(pfn); 1506 struct page *head = compound_head(p); 1507 int res; 1508 unsigned long page_flags; 1509 1510 if (TestSetPageHWPoison(head)) { 1511 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1512 pfn); 1513 res = -EHWPOISON; 1514 if (flags & MF_ACTION_REQUIRED) 1515 res = kill_accessing_process(current, page_to_pfn(head), flags); 1516 return res; 1517 } 1518 1519 num_poisoned_pages_inc(); 1520 1521 if (!(flags & MF_COUNT_INCREASED)) { 1522 res = get_hwpoison_page(p, flags); 1523 if (!res) { 1524 lock_page(head); 1525 if (hwpoison_filter(p)) { 1526 if (TestClearPageHWPoison(head)) 1527 num_poisoned_pages_dec(); 1528 unlock_page(head); 1529 return 0; 1530 } 1531 unlock_page(head); 1532 res = MF_FAILED; 1533 if (__page_handle_poison(p)) { 1534 page_ref_inc(p); 1535 res = MF_RECOVERED; 1536 } 1537 action_result(pfn, MF_MSG_FREE_HUGE, res); 1538 return res == MF_RECOVERED ? 0 : -EBUSY; 1539 } else if (res < 0) { 1540 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1541 return -EBUSY; 1542 } 1543 } 1544 1545 lock_page(head); 1546 page_flags = head->flags; 1547 1548 /* 1549 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1550 * simply disable it. In order to make it work properly, we need 1551 * make sure that: 1552 * - conversion of a pud that maps an error hugetlb into hwpoison 1553 * entry properly works, and 1554 * - other mm code walking over page table is aware of pud-aligned 1555 * hwpoison entries. 1556 */ 1557 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1558 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1559 res = -EBUSY; 1560 goto out; 1561 } 1562 1563 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1564 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1565 res = -EBUSY; 1566 goto out; 1567 } 1568 1569 return identify_page_state(pfn, p, page_flags); 1570 out: 1571 unlock_page(head); 1572 return res; 1573 } 1574 1575 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1576 struct dev_pagemap *pgmap) 1577 { 1578 struct page *page = pfn_to_page(pfn); 1579 unsigned long size = 0; 1580 struct to_kill *tk; 1581 LIST_HEAD(tokill); 1582 int rc = -EBUSY; 1583 loff_t start; 1584 dax_entry_t cookie; 1585 1586 if (flags & MF_COUNT_INCREASED) 1587 /* 1588 * Drop the extra refcount in case we come from madvise(). 1589 */ 1590 put_page(page); 1591 1592 /* device metadata space is not recoverable */ 1593 if (!pgmap_pfn_valid(pgmap, pfn)) { 1594 rc = -ENXIO; 1595 goto out; 1596 } 1597 1598 /* 1599 * Pages instantiated by device-dax (not filesystem-dax) 1600 * may be compound pages. 1601 */ 1602 page = compound_head(page); 1603 1604 /* 1605 * Prevent the inode from being freed while we are interrogating 1606 * the address_space, typically this would be handled by 1607 * lock_page(), but dax pages do not use the page lock. This 1608 * also prevents changes to the mapping of this pfn until 1609 * poison signaling is complete. 1610 */ 1611 cookie = dax_lock_page(page); 1612 if (!cookie) 1613 goto out; 1614 1615 if (hwpoison_filter(page)) { 1616 rc = 0; 1617 goto unlock; 1618 } 1619 1620 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1621 /* 1622 * TODO: Handle HMM pages which may need coordination 1623 * with device-side memory. 1624 */ 1625 goto unlock; 1626 } 1627 1628 /* 1629 * Use this flag as an indication that the dax page has been 1630 * remapped UC to prevent speculative consumption of poison. 1631 */ 1632 SetPageHWPoison(page); 1633 1634 /* 1635 * Unlike System-RAM there is no possibility to swap in a 1636 * different physical page at a given virtual address, so all 1637 * userspace consumption of ZONE_DEVICE memory necessitates 1638 * SIGBUS (i.e. MF_MUST_KILL) 1639 */ 1640 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1641 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1642 1643 list_for_each_entry(tk, &tokill, nd) 1644 if (tk->size_shift) 1645 size = max(size, 1UL << tk->size_shift); 1646 if (size) { 1647 /* 1648 * Unmap the largest mapping to avoid breaking up 1649 * device-dax mappings which are constant size. The 1650 * actual size of the mapping being torn down is 1651 * communicated in siginfo, see kill_proc() 1652 */ 1653 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1654 unmap_mapping_range(page->mapping, start, size, 0); 1655 } 1656 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags); 1657 rc = 0; 1658 unlock: 1659 dax_unlock_page(page, cookie); 1660 out: 1661 /* drop pgmap ref acquired in caller */ 1662 put_dev_pagemap(pgmap); 1663 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1664 return rc; 1665 } 1666 1667 static DEFINE_MUTEX(mf_mutex); 1668 1669 /** 1670 * memory_failure - Handle memory failure of a page. 1671 * @pfn: Page Number of the corrupted page 1672 * @flags: fine tune action taken 1673 * 1674 * This function is called by the low level machine check code 1675 * of an architecture when it detects hardware memory corruption 1676 * of a page. It tries its best to recover, which includes 1677 * dropping pages, killing processes etc. 1678 * 1679 * The function is primarily of use for corruptions that 1680 * happen outside the current execution context (e.g. when 1681 * detected by a background scrubber) 1682 * 1683 * Must run in process context (e.g. a work queue) with interrupts 1684 * enabled and no spinlocks hold. 1685 */ 1686 int memory_failure(unsigned long pfn, int flags) 1687 { 1688 struct page *p; 1689 struct page *hpage; 1690 struct page *orig_head; 1691 struct dev_pagemap *pgmap; 1692 int res = 0; 1693 unsigned long page_flags; 1694 bool retry = true; 1695 1696 if (!sysctl_memory_failure_recovery) 1697 panic("Memory failure on page %lx", pfn); 1698 1699 mutex_lock(&mf_mutex); 1700 1701 p = pfn_to_online_page(pfn); 1702 if (!p) { 1703 res = arch_memory_failure(pfn, flags); 1704 if (res == 0) 1705 goto unlock_mutex; 1706 1707 if (pfn_valid(pfn)) { 1708 pgmap = get_dev_pagemap(pfn, NULL); 1709 if (pgmap) { 1710 res = memory_failure_dev_pagemap(pfn, flags, 1711 pgmap); 1712 goto unlock_mutex; 1713 } 1714 } 1715 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1716 pfn); 1717 res = -ENXIO; 1718 goto unlock_mutex; 1719 } 1720 1721 try_again: 1722 if (PageHuge(p)) { 1723 res = memory_failure_hugetlb(pfn, flags); 1724 goto unlock_mutex; 1725 } 1726 1727 if (TestSetPageHWPoison(p)) { 1728 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1729 pfn); 1730 res = -EHWPOISON; 1731 if (flags & MF_ACTION_REQUIRED) 1732 res = kill_accessing_process(current, pfn, flags); 1733 goto unlock_mutex; 1734 } 1735 1736 orig_head = hpage = compound_head(p); 1737 num_poisoned_pages_inc(); 1738 1739 /* 1740 * We need/can do nothing about count=0 pages. 1741 * 1) it's a free page, and therefore in safe hand: 1742 * prep_new_page() will be the gate keeper. 1743 * 2) it's part of a non-compound high order page. 1744 * Implies some kernel user: cannot stop them from 1745 * R/W the page; let's pray that the page has been 1746 * used and will be freed some time later. 1747 * In fact it's dangerous to directly bump up page count from 0, 1748 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1749 */ 1750 if (!(flags & MF_COUNT_INCREASED)) { 1751 res = get_hwpoison_page(p, flags); 1752 if (!res) { 1753 if (is_free_buddy_page(p)) { 1754 if (take_page_off_buddy(p)) { 1755 page_ref_inc(p); 1756 res = MF_RECOVERED; 1757 } else { 1758 /* We lost the race, try again */ 1759 if (retry) { 1760 ClearPageHWPoison(p); 1761 num_poisoned_pages_dec(); 1762 retry = false; 1763 goto try_again; 1764 } 1765 res = MF_FAILED; 1766 } 1767 action_result(pfn, MF_MSG_BUDDY, res); 1768 res = res == MF_RECOVERED ? 0 : -EBUSY; 1769 } else { 1770 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1771 res = -EBUSY; 1772 } 1773 goto unlock_mutex; 1774 } else if (res < 0) { 1775 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1776 res = -EBUSY; 1777 goto unlock_mutex; 1778 } 1779 } 1780 1781 if (PageTransHuge(hpage)) { 1782 /* 1783 * The flag must be set after the refcount is bumped 1784 * otherwise it may race with THP split. 1785 * And the flag can't be set in get_hwpoison_page() since 1786 * it is called by soft offline too and it is just called 1787 * for !MF_COUNT_INCREASE. So here seems to be the best 1788 * place. 1789 * 1790 * Don't need care about the above error handling paths for 1791 * get_hwpoison_page() since they handle either free page 1792 * or unhandlable page. The refcount is bumped iff the 1793 * page is a valid handlable page. 1794 */ 1795 SetPageHasHWPoisoned(hpage); 1796 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1797 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1798 res = -EBUSY; 1799 goto unlock_mutex; 1800 } 1801 VM_BUG_ON_PAGE(!page_count(p), p); 1802 } 1803 1804 /* 1805 * We ignore non-LRU pages for good reasons. 1806 * - PG_locked is only well defined for LRU pages and a few others 1807 * - to avoid races with __SetPageLocked() 1808 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1809 * The check (unnecessarily) ignores LRU pages being isolated and 1810 * walked by the page reclaim code, however that's not a big loss. 1811 */ 1812 shake_page(p); 1813 1814 lock_page(p); 1815 1816 /* 1817 * The page could have changed compound pages during the locking. 1818 * If this happens just bail out. 1819 */ 1820 if (PageCompound(p) && compound_head(p) != orig_head) { 1821 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1822 res = -EBUSY; 1823 goto unlock_page; 1824 } 1825 1826 /* 1827 * We use page flags to determine what action should be taken, but 1828 * the flags can be modified by the error containment action. One 1829 * example is an mlocked page, where PG_mlocked is cleared by 1830 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1831 * correctly, we save a copy of the page flags at this time. 1832 */ 1833 page_flags = p->flags; 1834 1835 if (hwpoison_filter(p)) { 1836 if (TestClearPageHWPoison(p)) 1837 num_poisoned_pages_dec(); 1838 unlock_page(p); 1839 put_page(p); 1840 goto unlock_mutex; 1841 } 1842 1843 /* 1844 * __munlock_pagevec may clear a writeback page's LRU flag without 1845 * page_lock. We need wait writeback completion for this page or it 1846 * may trigger vfs BUG while evict inode. 1847 */ 1848 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1849 goto identify_page_state; 1850 1851 /* 1852 * It's very difficult to mess with pages currently under IO 1853 * and in many cases impossible, so we just avoid it here. 1854 */ 1855 wait_on_page_writeback(p); 1856 1857 /* 1858 * Now take care of user space mappings. 1859 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1860 */ 1861 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1862 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1863 res = -EBUSY; 1864 goto unlock_page; 1865 } 1866 1867 /* 1868 * Torn down by someone else? 1869 */ 1870 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1871 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1872 res = -EBUSY; 1873 goto unlock_page; 1874 } 1875 1876 identify_page_state: 1877 res = identify_page_state(pfn, p, page_flags); 1878 mutex_unlock(&mf_mutex); 1879 return res; 1880 unlock_page: 1881 unlock_page(p); 1882 unlock_mutex: 1883 mutex_unlock(&mf_mutex); 1884 return res; 1885 } 1886 EXPORT_SYMBOL_GPL(memory_failure); 1887 1888 #define MEMORY_FAILURE_FIFO_ORDER 4 1889 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1890 1891 struct memory_failure_entry { 1892 unsigned long pfn; 1893 int flags; 1894 }; 1895 1896 struct memory_failure_cpu { 1897 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1898 MEMORY_FAILURE_FIFO_SIZE); 1899 spinlock_t lock; 1900 struct work_struct work; 1901 }; 1902 1903 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1904 1905 /** 1906 * memory_failure_queue - Schedule handling memory failure of a page. 1907 * @pfn: Page Number of the corrupted page 1908 * @flags: Flags for memory failure handling 1909 * 1910 * This function is called by the low level hardware error handler 1911 * when it detects hardware memory corruption of a page. It schedules 1912 * the recovering of error page, including dropping pages, killing 1913 * processes etc. 1914 * 1915 * The function is primarily of use for corruptions that 1916 * happen outside the current execution context (e.g. when 1917 * detected by a background scrubber) 1918 * 1919 * Can run in IRQ context. 1920 */ 1921 void memory_failure_queue(unsigned long pfn, int flags) 1922 { 1923 struct memory_failure_cpu *mf_cpu; 1924 unsigned long proc_flags; 1925 struct memory_failure_entry entry = { 1926 .pfn = pfn, 1927 .flags = flags, 1928 }; 1929 1930 mf_cpu = &get_cpu_var(memory_failure_cpu); 1931 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1932 if (kfifo_put(&mf_cpu->fifo, entry)) 1933 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1934 else 1935 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1936 pfn); 1937 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1938 put_cpu_var(memory_failure_cpu); 1939 } 1940 EXPORT_SYMBOL_GPL(memory_failure_queue); 1941 1942 static void memory_failure_work_func(struct work_struct *work) 1943 { 1944 struct memory_failure_cpu *mf_cpu; 1945 struct memory_failure_entry entry = { 0, }; 1946 unsigned long proc_flags; 1947 int gotten; 1948 1949 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1950 for (;;) { 1951 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1952 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1953 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1954 if (!gotten) 1955 break; 1956 if (entry.flags & MF_SOFT_OFFLINE) 1957 soft_offline_page(entry.pfn, entry.flags); 1958 else 1959 memory_failure(entry.pfn, entry.flags); 1960 } 1961 } 1962 1963 /* 1964 * Process memory_failure work queued on the specified CPU. 1965 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1966 */ 1967 void memory_failure_queue_kick(int cpu) 1968 { 1969 struct memory_failure_cpu *mf_cpu; 1970 1971 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1972 cancel_work_sync(&mf_cpu->work); 1973 memory_failure_work_func(&mf_cpu->work); 1974 } 1975 1976 static int __init memory_failure_init(void) 1977 { 1978 struct memory_failure_cpu *mf_cpu; 1979 int cpu; 1980 1981 for_each_possible_cpu(cpu) { 1982 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1983 spin_lock_init(&mf_cpu->lock); 1984 INIT_KFIFO(mf_cpu->fifo); 1985 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1986 } 1987 1988 return 0; 1989 } 1990 core_initcall(memory_failure_init); 1991 1992 #define unpoison_pr_info(fmt, pfn, rs) \ 1993 ({ \ 1994 if (__ratelimit(rs)) \ 1995 pr_info(fmt, pfn); \ 1996 }) 1997 1998 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p) 1999 { 2000 if (TestClearPageHWPoison(p)) { 2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2002 page_to_pfn(p), rs); 2003 num_poisoned_pages_dec(); 2004 return 1; 2005 } 2006 return 0; 2007 } 2008 2009 static inline int unpoison_taken_off_page(struct ratelimit_state *rs, 2010 struct page *p) 2011 { 2012 if (put_page_back_buddy(p)) { 2013 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2014 page_to_pfn(p), rs); 2015 return 0; 2016 } 2017 return -EBUSY; 2018 } 2019 2020 /** 2021 * unpoison_memory - Unpoison a previously poisoned page 2022 * @pfn: Page number of the to be unpoisoned page 2023 * 2024 * Software-unpoison a page that has been poisoned by 2025 * memory_failure() earlier. 2026 * 2027 * This is only done on the software-level, so it only works 2028 * for linux injected failures, not real hardware failures 2029 * 2030 * Returns 0 for success, otherwise -errno. 2031 */ 2032 int unpoison_memory(unsigned long pfn) 2033 { 2034 struct page *page; 2035 struct page *p; 2036 int ret = -EBUSY; 2037 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2038 DEFAULT_RATELIMIT_BURST); 2039 2040 if (!pfn_valid(pfn)) 2041 return -ENXIO; 2042 2043 p = pfn_to_page(pfn); 2044 page = compound_head(p); 2045 2046 mutex_lock(&mf_mutex); 2047 2048 if (!PageHWPoison(p)) { 2049 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2050 pfn, &unpoison_rs); 2051 goto unlock_mutex; 2052 } 2053 2054 if (page_count(page) > 1) { 2055 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2056 pfn, &unpoison_rs); 2057 goto unlock_mutex; 2058 } 2059 2060 if (page_mapped(page)) { 2061 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2062 pfn, &unpoison_rs); 2063 goto unlock_mutex; 2064 } 2065 2066 if (page_mapping(page)) { 2067 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2068 pfn, &unpoison_rs); 2069 goto unlock_mutex; 2070 } 2071 2072 if (PageSlab(page) || PageTable(page)) 2073 goto unlock_mutex; 2074 2075 ret = get_hwpoison_page(p, MF_UNPOISON); 2076 if (!ret) { 2077 if (clear_page_hwpoison(&unpoison_rs, page)) 2078 ret = 0; 2079 else 2080 ret = -EBUSY; 2081 } else if (ret < 0) { 2082 if (ret == -EHWPOISON) { 2083 ret = unpoison_taken_off_page(&unpoison_rs, p); 2084 } else 2085 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2086 pfn, &unpoison_rs); 2087 } else { 2088 int freeit = clear_page_hwpoison(&unpoison_rs, p); 2089 2090 put_page(page); 2091 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2092 put_page(page); 2093 ret = 0; 2094 } 2095 } 2096 2097 unlock_mutex: 2098 mutex_unlock(&mf_mutex); 2099 return ret; 2100 } 2101 EXPORT_SYMBOL(unpoison_memory); 2102 2103 static bool isolate_page(struct page *page, struct list_head *pagelist) 2104 { 2105 bool isolated = false; 2106 bool lru = PageLRU(page); 2107 2108 if (PageHuge(page)) { 2109 isolated = isolate_huge_page(page, pagelist); 2110 } else { 2111 if (lru) 2112 isolated = !isolate_lru_page(page); 2113 else 2114 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2115 2116 if (isolated) 2117 list_add(&page->lru, pagelist); 2118 } 2119 2120 if (isolated && lru) 2121 inc_node_page_state(page, NR_ISOLATED_ANON + 2122 page_is_file_lru(page)); 2123 2124 /* 2125 * If we succeed to isolate the page, we grabbed another refcount on 2126 * the page, so we can safely drop the one we got from get_any_pages(). 2127 * If we failed to isolate the page, it means that we cannot go further 2128 * and we will return an error, so drop the reference we got from 2129 * get_any_pages() as well. 2130 */ 2131 put_page(page); 2132 return isolated; 2133 } 2134 2135 /* 2136 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2137 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2138 * If the page is mapped, it migrates the contents over. 2139 */ 2140 static int __soft_offline_page(struct page *page) 2141 { 2142 int ret = 0; 2143 unsigned long pfn = page_to_pfn(page); 2144 struct page *hpage = compound_head(page); 2145 char const *msg_page[] = {"page", "hugepage"}; 2146 bool huge = PageHuge(page); 2147 LIST_HEAD(pagelist); 2148 struct migration_target_control mtc = { 2149 .nid = NUMA_NO_NODE, 2150 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2151 }; 2152 2153 /* 2154 * Check PageHWPoison again inside page lock because PageHWPoison 2155 * is set by memory_failure() outside page lock. Note that 2156 * memory_failure() also double-checks PageHWPoison inside page lock, 2157 * so there's no race between soft_offline_page() and memory_failure(). 2158 */ 2159 lock_page(page); 2160 if (!PageHuge(page)) 2161 wait_on_page_writeback(page); 2162 if (PageHWPoison(page)) { 2163 unlock_page(page); 2164 put_page(page); 2165 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2166 return 0; 2167 } 2168 2169 if (!PageHuge(page)) 2170 /* 2171 * Try to invalidate first. This should work for 2172 * non dirty unmapped page cache pages. 2173 */ 2174 ret = invalidate_inode_page(page); 2175 unlock_page(page); 2176 2177 /* 2178 * RED-PEN would be better to keep it isolated here, but we 2179 * would need to fix isolation locking first. 2180 */ 2181 if (ret) { 2182 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2183 page_handle_poison(page, false, true); 2184 return 0; 2185 } 2186 2187 if (isolate_page(hpage, &pagelist)) { 2188 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2189 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2190 if (!ret) { 2191 bool release = !huge; 2192 2193 if (!page_handle_poison(page, huge, release)) 2194 ret = -EBUSY; 2195 } else { 2196 if (!list_empty(&pagelist)) 2197 putback_movable_pages(&pagelist); 2198 2199 pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n", 2200 pfn, msg_page[huge], ret, &page->flags); 2201 if (ret > 0) 2202 ret = -EBUSY; 2203 } 2204 } else { 2205 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2206 pfn, msg_page[huge], page_count(page), &page->flags); 2207 ret = -EBUSY; 2208 } 2209 return ret; 2210 } 2211 2212 static int soft_offline_in_use_page(struct page *page) 2213 { 2214 struct page *hpage = compound_head(page); 2215 2216 if (!PageHuge(page) && PageTransHuge(hpage)) 2217 if (try_to_split_thp_page(page, "soft offline") < 0) 2218 return -EBUSY; 2219 return __soft_offline_page(page); 2220 } 2221 2222 static int soft_offline_free_page(struct page *page) 2223 { 2224 int rc = 0; 2225 2226 if (!page_handle_poison(page, true, false)) 2227 rc = -EBUSY; 2228 2229 return rc; 2230 } 2231 2232 static void put_ref_page(struct page *page) 2233 { 2234 if (page) 2235 put_page(page); 2236 } 2237 2238 /** 2239 * soft_offline_page - Soft offline a page. 2240 * @pfn: pfn to soft-offline 2241 * @flags: flags. Same as memory_failure(). 2242 * 2243 * Returns 0 on success, otherwise negated errno. 2244 * 2245 * Soft offline a page, by migration or invalidation, 2246 * without killing anything. This is for the case when 2247 * a page is not corrupted yet (so it's still valid to access), 2248 * but has had a number of corrected errors and is better taken 2249 * out. 2250 * 2251 * The actual policy on when to do that is maintained by 2252 * user space. 2253 * 2254 * This should never impact any application or cause data loss, 2255 * however it might take some time. 2256 * 2257 * This is not a 100% solution for all memory, but tries to be 2258 * ``good enough'' for the majority of memory. 2259 */ 2260 int soft_offline_page(unsigned long pfn, int flags) 2261 { 2262 int ret; 2263 bool try_again = true; 2264 struct page *page, *ref_page = NULL; 2265 2266 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2267 2268 if (!pfn_valid(pfn)) 2269 return -ENXIO; 2270 if (flags & MF_COUNT_INCREASED) 2271 ref_page = pfn_to_page(pfn); 2272 2273 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2274 page = pfn_to_online_page(pfn); 2275 if (!page) { 2276 put_ref_page(ref_page); 2277 return -EIO; 2278 } 2279 2280 mutex_lock(&mf_mutex); 2281 2282 if (PageHWPoison(page)) { 2283 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2284 put_ref_page(ref_page); 2285 mutex_unlock(&mf_mutex); 2286 return 0; 2287 } 2288 2289 retry: 2290 get_online_mems(); 2291 ret = get_hwpoison_page(page, flags); 2292 put_online_mems(); 2293 2294 if (ret > 0) { 2295 ret = soft_offline_in_use_page(page); 2296 } else if (ret == 0) { 2297 if (soft_offline_free_page(page) && try_again) { 2298 try_again = false; 2299 flags &= ~MF_COUNT_INCREASED; 2300 goto retry; 2301 } 2302 } 2303 2304 mutex_unlock(&mf_mutex); 2305 2306 return ret; 2307 } 2308