1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 69 { 70 if (hugepage_or_freepage) { 71 /* 72 * Doing this check for free pages is also fine since dissolve_free_huge_page 73 * returns 0 for non-hugetlb pages as well. 74 */ 75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page)) 76 /* 77 * We could fail to take off the target page from buddy 78 * for example due to racy page allocation, but that's 79 * acceptable because soft-offlined page is not broken 80 * and if someone really want to use it, they should 81 * take it. 82 */ 83 return false; 84 } 85 86 SetPageHWPoison(page); 87 if (release) 88 put_page(page); 89 page_ref_inc(page); 90 num_poisoned_pages_inc(); 91 92 return true; 93 } 94 95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 96 97 u32 hwpoison_filter_enable = 0; 98 u32 hwpoison_filter_dev_major = ~0U; 99 u32 hwpoison_filter_dev_minor = ~0U; 100 u64 hwpoison_filter_flags_mask; 101 u64 hwpoison_filter_flags_value; 102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 107 108 static int hwpoison_filter_dev(struct page *p) 109 { 110 struct address_space *mapping; 111 dev_t dev; 112 113 if (hwpoison_filter_dev_major == ~0U && 114 hwpoison_filter_dev_minor == ~0U) 115 return 0; 116 117 /* 118 * page_mapping() does not accept slab pages. 119 */ 120 if (PageSlab(p)) 121 return -EINVAL; 122 123 mapping = page_mapping(p); 124 if (mapping == NULL || mapping->host == NULL) 125 return -EINVAL; 126 127 dev = mapping->host->i_sb->s_dev; 128 if (hwpoison_filter_dev_major != ~0U && 129 hwpoison_filter_dev_major != MAJOR(dev)) 130 return -EINVAL; 131 if (hwpoison_filter_dev_minor != ~0U && 132 hwpoison_filter_dev_minor != MINOR(dev)) 133 return -EINVAL; 134 135 return 0; 136 } 137 138 static int hwpoison_filter_flags(struct page *p) 139 { 140 if (!hwpoison_filter_flags_mask) 141 return 0; 142 143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 144 hwpoison_filter_flags_value) 145 return 0; 146 else 147 return -EINVAL; 148 } 149 150 /* 151 * This allows stress tests to limit test scope to a collection of tasks 152 * by putting them under some memcg. This prevents killing unrelated/important 153 * processes such as /sbin/init. Note that the target task may share clean 154 * pages with init (eg. libc text), which is harmless. If the target task 155 * share _dirty_ pages with another task B, the test scheme must make sure B 156 * is also included in the memcg. At last, due to race conditions this filter 157 * can only guarantee that the page either belongs to the memcg tasks, or is 158 * a freed page. 159 */ 160 #ifdef CONFIG_MEMCG 161 u64 hwpoison_filter_memcg; 162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 163 static int hwpoison_filter_task(struct page *p) 164 { 165 if (!hwpoison_filter_memcg) 166 return 0; 167 168 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 169 return -EINVAL; 170 171 return 0; 172 } 173 #else 174 static int hwpoison_filter_task(struct page *p) { return 0; } 175 #endif 176 177 int hwpoison_filter(struct page *p) 178 { 179 if (!hwpoison_filter_enable) 180 return 0; 181 182 if (hwpoison_filter_dev(p)) 183 return -EINVAL; 184 185 if (hwpoison_filter_flags(p)) 186 return -EINVAL; 187 188 if (hwpoison_filter_task(p)) 189 return -EINVAL; 190 191 return 0; 192 } 193 #else 194 int hwpoison_filter(struct page *p) 195 { 196 return 0; 197 } 198 #endif 199 200 EXPORT_SYMBOL_GPL(hwpoison_filter); 201 202 /* 203 * Kill all processes that have a poisoned page mapped and then isolate 204 * the page. 205 * 206 * General strategy: 207 * Find all processes having the page mapped and kill them. 208 * But we keep a page reference around so that the page is not 209 * actually freed yet. 210 * Then stash the page away 211 * 212 * There's no convenient way to get back to mapped processes 213 * from the VMAs. So do a brute-force search over all 214 * running processes. 215 * 216 * Remember that machine checks are not common (or rather 217 * if they are common you have other problems), so this shouldn't 218 * be a performance issue. 219 * 220 * Also there are some races possible while we get from the 221 * error detection to actually handle it. 222 */ 223 224 struct to_kill { 225 struct list_head nd; 226 struct task_struct *tsk; 227 unsigned long addr; 228 short size_shift; 229 }; 230 231 /* 232 * Send all the processes who have the page mapped a signal. 233 * ``action optional'' if they are not immediately affected by the error 234 * ``action required'' if error happened in current execution context 235 */ 236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 237 { 238 struct task_struct *t = tk->tsk; 239 short addr_lsb = tk->size_shift; 240 int ret = 0; 241 242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 243 pfn, t->comm, t->pid); 244 245 if (flags & MF_ACTION_REQUIRED) { 246 if (t == current) 247 ret = force_sig_mceerr(BUS_MCEERR_AR, 248 (void __user *)tk->addr, addr_lsb); 249 else 250 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 251 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 252 addr_lsb, t); 253 } else { 254 /* 255 * Don't use force here, it's convenient if the signal 256 * can be temporarily blocked. 257 * This could cause a loop when the user sets SIGBUS 258 * to SIG_IGN, but hopefully no one will do that? 259 */ 260 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 261 addr_lsb, t); /* synchronous? */ 262 } 263 if (ret < 0) 264 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 265 t->comm, t->pid, ret); 266 return ret; 267 } 268 269 /* 270 * Unknown page type encountered. Try to check whether it can turn PageLRU by 271 * lru_add_drain_all, or a free page by reclaiming slabs when possible. 272 */ 273 void shake_page(struct page *p, int access) 274 { 275 if (PageHuge(p)) 276 return; 277 278 if (!PageSlab(p)) { 279 lru_add_drain_all(); 280 if (PageLRU(p) || is_free_buddy_page(p)) 281 return; 282 } 283 284 /* 285 * Only call shrink_node_slabs here (which would also shrink 286 * other caches) if access is not potentially fatal. 287 */ 288 if (access) 289 drop_slab_node(page_to_nid(p)); 290 } 291 EXPORT_SYMBOL_GPL(shake_page); 292 293 static unsigned long dev_pagemap_mapping_shift(struct page *page, 294 struct vm_area_struct *vma) 295 { 296 unsigned long address = vma_address(page, vma); 297 pgd_t *pgd; 298 p4d_t *p4d; 299 pud_t *pud; 300 pmd_t *pmd; 301 pte_t *pte; 302 303 pgd = pgd_offset(vma->vm_mm, address); 304 if (!pgd_present(*pgd)) 305 return 0; 306 p4d = p4d_offset(pgd, address); 307 if (!p4d_present(*p4d)) 308 return 0; 309 pud = pud_offset(p4d, address); 310 if (!pud_present(*pud)) 311 return 0; 312 if (pud_devmap(*pud)) 313 return PUD_SHIFT; 314 pmd = pmd_offset(pud, address); 315 if (!pmd_present(*pmd)) 316 return 0; 317 if (pmd_devmap(*pmd)) 318 return PMD_SHIFT; 319 pte = pte_offset_map(pmd, address); 320 if (!pte_present(*pte)) 321 return 0; 322 if (pte_devmap(*pte)) 323 return PAGE_SHIFT; 324 return 0; 325 } 326 327 /* 328 * Failure handling: if we can't find or can't kill a process there's 329 * not much we can do. We just print a message and ignore otherwise. 330 */ 331 332 /* 333 * Schedule a process for later kill. 334 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 335 */ 336 static void add_to_kill(struct task_struct *tsk, struct page *p, 337 struct vm_area_struct *vma, 338 struct list_head *to_kill) 339 { 340 struct to_kill *tk; 341 342 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 343 if (!tk) { 344 pr_err("Memory failure: Out of memory while machine check handling\n"); 345 return; 346 } 347 348 tk->addr = page_address_in_vma(p, vma); 349 if (is_zone_device_page(p)) 350 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 351 else 352 tk->size_shift = page_shift(compound_head(p)); 353 354 /* 355 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 356 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 357 * so "tk->size_shift == 0" effectively checks no mapping on 358 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 359 * to a process' address space, it's possible not all N VMAs 360 * contain mappings for the page, but at least one VMA does. 361 * Only deliver SIGBUS with payload derived from the VMA that 362 * has a mapping for the page. 363 */ 364 if (tk->addr == -EFAULT) { 365 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 366 page_to_pfn(p), tsk->comm); 367 } else if (tk->size_shift == 0) { 368 kfree(tk); 369 return; 370 } 371 372 get_task_struct(tsk); 373 tk->tsk = tsk; 374 list_add_tail(&tk->nd, to_kill); 375 } 376 377 /* 378 * Kill the processes that have been collected earlier. 379 * 380 * Only do anything when DOIT is set, otherwise just free the list 381 * (this is used for clean pages which do not need killing) 382 * Also when FAIL is set do a force kill because something went 383 * wrong earlier. 384 */ 385 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 386 unsigned long pfn, int flags) 387 { 388 struct to_kill *tk, *next; 389 390 list_for_each_entry_safe (tk, next, to_kill, nd) { 391 if (forcekill) { 392 /* 393 * In case something went wrong with munmapping 394 * make sure the process doesn't catch the 395 * signal and then access the memory. Just kill it. 396 */ 397 if (fail || tk->addr == -EFAULT) { 398 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 399 pfn, tk->tsk->comm, tk->tsk->pid); 400 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 401 tk->tsk, PIDTYPE_PID); 402 } 403 404 /* 405 * In theory the process could have mapped 406 * something else on the address in-between. We could 407 * check for that, but we need to tell the 408 * process anyways. 409 */ 410 else if (kill_proc(tk, pfn, flags) < 0) 411 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 412 pfn, tk->tsk->comm, tk->tsk->pid); 413 } 414 put_task_struct(tk->tsk); 415 kfree(tk); 416 } 417 } 418 419 /* 420 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 421 * on behalf of the thread group. Return task_struct of the (first found) 422 * dedicated thread if found, and return NULL otherwise. 423 * 424 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 425 * have to call rcu_read_lock/unlock() in this function. 426 */ 427 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 428 { 429 struct task_struct *t; 430 431 for_each_thread(tsk, t) { 432 if (t->flags & PF_MCE_PROCESS) { 433 if (t->flags & PF_MCE_EARLY) 434 return t; 435 } else { 436 if (sysctl_memory_failure_early_kill) 437 return t; 438 } 439 } 440 return NULL; 441 } 442 443 /* 444 * Determine whether a given process is "early kill" process which expects 445 * to be signaled when some page under the process is hwpoisoned. 446 * Return task_struct of the dedicated thread (main thread unless explicitly 447 * specified) if the process is "early kill" and otherwise returns NULL. 448 * 449 * Note that the above is true for Action Optional case. For Action Required 450 * case, it's only meaningful to the current thread which need to be signaled 451 * with SIGBUS, this error is Action Optional for other non current 452 * processes sharing the same error page,if the process is "early kill", the 453 * task_struct of the dedicated thread will also be returned. 454 */ 455 static struct task_struct *task_early_kill(struct task_struct *tsk, 456 int force_early) 457 { 458 if (!tsk->mm) 459 return NULL; 460 /* 461 * Comparing ->mm here because current task might represent 462 * a subthread, while tsk always points to the main thread. 463 */ 464 if (force_early && tsk->mm == current->mm) 465 return current; 466 467 return find_early_kill_thread(tsk); 468 } 469 470 /* 471 * Collect processes when the error hit an anonymous page. 472 */ 473 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 474 int force_early) 475 { 476 struct vm_area_struct *vma; 477 struct task_struct *tsk; 478 struct anon_vma *av; 479 pgoff_t pgoff; 480 481 av = page_lock_anon_vma_read(page); 482 if (av == NULL) /* Not actually mapped anymore */ 483 return; 484 485 pgoff = page_to_pgoff(page); 486 read_lock(&tasklist_lock); 487 for_each_process (tsk) { 488 struct anon_vma_chain *vmac; 489 struct task_struct *t = task_early_kill(tsk, force_early); 490 491 if (!t) 492 continue; 493 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 494 pgoff, pgoff) { 495 vma = vmac->vma; 496 if (!page_mapped_in_vma(page, vma)) 497 continue; 498 if (vma->vm_mm == t->mm) 499 add_to_kill(t, page, vma, to_kill); 500 } 501 } 502 read_unlock(&tasklist_lock); 503 page_unlock_anon_vma_read(av); 504 } 505 506 /* 507 * Collect processes when the error hit a file mapped page. 508 */ 509 static void collect_procs_file(struct page *page, struct list_head *to_kill, 510 int force_early) 511 { 512 struct vm_area_struct *vma; 513 struct task_struct *tsk; 514 struct address_space *mapping = page->mapping; 515 pgoff_t pgoff; 516 517 i_mmap_lock_read(mapping); 518 read_lock(&tasklist_lock); 519 pgoff = page_to_pgoff(page); 520 for_each_process(tsk) { 521 struct task_struct *t = task_early_kill(tsk, force_early); 522 523 if (!t) 524 continue; 525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 526 pgoff) { 527 /* 528 * Send early kill signal to tasks where a vma covers 529 * the page but the corrupted page is not necessarily 530 * mapped it in its pte. 531 * Assume applications who requested early kill want 532 * to be informed of all such data corruptions. 533 */ 534 if (vma->vm_mm == t->mm) 535 add_to_kill(t, page, vma, to_kill); 536 } 537 } 538 read_unlock(&tasklist_lock); 539 i_mmap_unlock_read(mapping); 540 } 541 542 /* 543 * Collect the processes who have the corrupted page mapped to kill. 544 */ 545 static void collect_procs(struct page *page, struct list_head *tokill, 546 int force_early) 547 { 548 if (!page->mapping) 549 return; 550 551 if (PageAnon(page)) 552 collect_procs_anon(page, tokill, force_early); 553 else 554 collect_procs_file(page, tokill, force_early); 555 } 556 557 static const char *action_name[] = { 558 [MF_IGNORED] = "Ignored", 559 [MF_FAILED] = "Failed", 560 [MF_DELAYED] = "Delayed", 561 [MF_RECOVERED] = "Recovered", 562 }; 563 564 static const char * const action_page_types[] = { 565 [MF_MSG_KERNEL] = "reserved kernel page", 566 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 567 [MF_MSG_SLAB] = "kernel slab page", 568 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 569 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 570 [MF_MSG_HUGE] = "huge page", 571 [MF_MSG_FREE_HUGE] = "free huge page", 572 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 573 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 574 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 575 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 576 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 577 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 578 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 579 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 580 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 581 [MF_MSG_CLEAN_LRU] = "clean LRU page", 582 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 583 [MF_MSG_BUDDY] = "free buddy page", 584 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 585 [MF_MSG_DAX] = "dax page", 586 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 587 [MF_MSG_UNKNOWN] = "unknown page", 588 }; 589 590 /* 591 * XXX: It is possible that a page is isolated from LRU cache, 592 * and then kept in swap cache or failed to remove from page cache. 593 * The page count will stop it from being freed by unpoison. 594 * Stress tests should be aware of this memory leak problem. 595 */ 596 static int delete_from_lru_cache(struct page *p) 597 { 598 if (!isolate_lru_page(p)) { 599 /* 600 * Clear sensible page flags, so that the buddy system won't 601 * complain when the page is unpoison-and-freed. 602 */ 603 ClearPageActive(p); 604 ClearPageUnevictable(p); 605 606 /* 607 * Poisoned page might never drop its ref count to 0 so we have 608 * to uncharge it manually from its memcg. 609 */ 610 mem_cgroup_uncharge(p); 611 612 /* 613 * drop the page count elevated by isolate_lru_page() 614 */ 615 put_page(p); 616 return 0; 617 } 618 return -EIO; 619 } 620 621 static int truncate_error_page(struct page *p, unsigned long pfn, 622 struct address_space *mapping) 623 { 624 int ret = MF_FAILED; 625 626 if (mapping->a_ops->error_remove_page) { 627 int err = mapping->a_ops->error_remove_page(mapping, p); 628 629 if (err != 0) { 630 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 631 pfn, err); 632 } else if (page_has_private(p) && 633 !try_to_release_page(p, GFP_NOIO)) { 634 pr_info("Memory failure: %#lx: failed to release buffers\n", 635 pfn); 636 } else { 637 ret = MF_RECOVERED; 638 } 639 } else { 640 /* 641 * If the file system doesn't support it just invalidate 642 * This fails on dirty or anything with private pages 643 */ 644 if (invalidate_inode_page(p)) 645 ret = MF_RECOVERED; 646 else 647 pr_info("Memory failure: %#lx: Failed to invalidate\n", 648 pfn); 649 } 650 651 return ret; 652 } 653 654 /* 655 * Error hit kernel page. 656 * Do nothing, try to be lucky and not touch this instead. For a few cases we 657 * could be more sophisticated. 658 */ 659 static int me_kernel(struct page *p, unsigned long pfn) 660 { 661 return MF_IGNORED; 662 } 663 664 /* 665 * Page in unknown state. Do nothing. 666 */ 667 static int me_unknown(struct page *p, unsigned long pfn) 668 { 669 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 670 return MF_FAILED; 671 } 672 673 /* 674 * Clean (or cleaned) page cache page. 675 */ 676 static int me_pagecache_clean(struct page *p, unsigned long pfn) 677 { 678 struct address_space *mapping; 679 680 delete_from_lru_cache(p); 681 682 /* 683 * For anonymous pages we're done the only reference left 684 * should be the one m_f() holds. 685 */ 686 if (PageAnon(p)) 687 return MF_RECOVERED; 688 689 /* 690 * Now truncate the page in the page cache. This is really 691 * more like a "temporary hole punch" 692 * Don't do this for block devices when someone else 693 * has a reference, because it could be file system metadata 694 * and that's not safe to truncate. 695 */ 696 mapping = page_mapping(p); 697 if (!mapping) { 698 /* 699 * Page has been teared down in the meanwhile 700 */ 701 return MF_FAILED; 702 } 703 704 /* 705 * Truncation is a bit tricky. Enable it per file system for now. 706 * 707 * Open: to take i_mutex or not for this? Right now we don't. 708 */ 709 return truncate_error_page(p, pfn, mapping); 710 } 711 712 /* 713 * Dirty pagecache page 714 * Issues: when the error hit a hole page the error is not properly 715 * propagated. 716 */ 717 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 718 { 719 struct address_space *mapping = page_mapping(p); 720 721 SetPageError(p); 722 /* TBD: print more information about the file. */ 723 if (mapping) { 724 /* 725 * IO error will be reported by write(), fsync(), etc. 726 * who check the mapping. 727 * This way the application knows that something went 728 * wrong with its dirty file data. 729 * 730 * There's one open issue: 731 * 732 * The EIO will be only reported on the next IO 733 * operation and then cleared through the IO map. 734 * Normally Linux has two mechanisms to pass IO error 735 * first through the AS_EIO flag in the address space 736 * and then through the PageError flag in the page. 737 * Since we drop pages on memory failure handling the 738 * only mechanism open to use is through AS_AIO. 739 * 740 * This has the disadvantage that it gets cleared on 741 * the first operation that returns an error, while 742 * the PageError bit is more sticky and only cleared 743 * when the page is reread or dropped. If an 744 * application assumes it will always get error on 745 * fsync, but does other operations on the fd before 746 * and the page is dropped between then the error 747 * will not be properly reported. 748 * 749 * This can already happen even without hwpoisoned 750 * pages: first on metadata IO errors (which only 751 * report through AS_EIO) or when the page is dropped 752 * at the wrong time. 753 * 754 * So right now we assume that the application DTRT on 755 * the first EIO, but we're not worse than other parts 756 * of the kernel. 757 */ 758 mapping_set_error(mapping, -EIO); 759 } 760 761 return me_pagecache_clean(p, pfn); 762 } 763 764 /* 765 * Clean and dirty swap cache. 766 * 767 * Dirty swap cache page is tricky to handle. The page could live both in page 768 * cache and swap cache(ie. page is freshly swapped in). So it could be 769 * referenced concurrently by 2 types of PTEs: 770 * normal PTEs and swap PTEs. We try to handle them consistently by calling 771 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 772 * and then 773 * - clear dirty bit to prevent IO 774 * - remove from LRU 775 * - but keep in the swap cache, so that when we return to it on 776 * a later page fault, we know the application is accessing 777 * corrupted data and shall be killed (we installed simple 778 * interception code in do_swap_page to catch it). 779 * 780 * Clean swap cache pages can be directly isolated. A later page fault will 781 * bring in the known good data from disk. 782 */ 783 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 784 { 785 ClearPageDirty(p); 786 /* Trigger EIO in shmem: */ 787 ClearPageUptodate(p); 788 789 if (!delete_from_lru_cache(p)) 790 return MF_DELAYED; 791 else 792 return MF_FAILED; 793 } 794 795 static int me_swapcache_clean(struct page *p, unsigned long pfn) 796 { 797 delete_from_swap_cache(p); 798 799 if (!delete_from_lru_cache(p)) 800 return MF_RECOVERED; 801 else 802 return MF_FAILED; 803 } 804 805 /* 806 * Huge pages. Needs work. 807 * Issues: 808 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 809 * To narrow down kill region to one page, we need to break up pmd. 810 */ 811 static int me_huge_page(struct page *p, unsigned long pfn) 812 { 813 int res; 814 struct page *hpage = compound_head(p); 815 struct address_space *mapping; 816 817 if (!PageHuge(hpage)) 818 return MF_DELAYED; 819 820 mapping = page_mapping(hpage); 821 if (mapping) { 822 res = truncate_error_page(hpage, pfn, mapping); 823 } else { 824 res = MF_FAILED; 825 unlock_page(hpage); 826 /* 827 * migration entry prevents later access on error anonymous 828 * hugepage, so we can free and dissolve it into buddy to 829 * save healthy subpages. 830 */ 831 if (PageAnon(hpage)) 832 put_page(hpage); 833 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 834 page_ref_inc(p); 835 res = MF_RECOVERED; 836 } 837 lock_page(hpage); 838 } 839 840 return res; 841 } 842 843 /* 844 * Various page states we can handle. 845 * 846 * A page state is defined by its current page->flags bits. 847 * The table matches them in order and calls the right handler. 848 * 849 * This is quite tricky because we can access page at any time 850 * in its live cycle, so all accesses have to be extremely careful. 851 * 852 * This is not complete. More states could be added. 853 * For any missing state don't attempt recovery. 854 */ 855 856 #define dirty (1UL << PG_dirty) 857 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 858 #define unevict (1UL << PG_unevictable) 859 #define mlock (1UL << PG_mlocked) 860 #define lru (1UL << PG_lru) 861 #define head (1UL << PG_head) 862 #define slab (1UL << PG_slab) 863 #define reserved (1UL << PG_reserved) 864 865 static struct page_state { 866 unsigned long mask; 867 unsigned long res; 868 enum mf_action_page_type type; 869 int (*action)(struct page *p, unsigned long pfn); 870 } error_states[] = { 871 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 872 /* 873 * free pages are specially detected outside this table: 874 * PG_buddy pages only make a small fraction of all free pages. 875 */ 876 877 /* 878 * Could in theory check if slab page is free or if we can drop 879 * currently unused objects without touching them. But just 880 * treat it as standard kernel for now. 881 */ 882 { slab, slab, MF_MSG_SLAB, me_kernel }, 883 884 { head, head, MF_MSG_HUGE, me_huge_page }, 885 886 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 887 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 888 889 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 890 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 891 892 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 893 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 894 895 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 896 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 897 898 /* 899 * Catchall entry: must be at end. 900 */ 901 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 902 }; 903 904 #undef dirty 905 #undef sc 906 #undef unevict 907 #undef mlock 908 #undef lru 909 #undef head 910 #undef slab 911 #undef reserved 912 913 /* 914 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 915 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 916 */ 917 static void action_result(unsigned long pfn, enum mf_action_page_type type, 918 enum mf_result result) 919 { 920 trace_memory_failure_event(pfn, type, result); 921 922 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 923 pfn, action_page_types[type], action_name[result]); 924 } 925 926 static int page_action(struct page_state *ps, struct page *p, 927 unsigned long pfn) 928 { 929 int result; 930 int count; 931 932 result = ps->action(p, pfn); 933 934 count = page_count(p) - 1; 935 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 936 count--; 937 if (count > 0) { 938 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 939 pfn, action_page_types[ps->type], count); 940 result = MF_FAILED; 941 } 942 action_result(pfn, ps->type, result); 943 944 /* Could do more checks here if page looks ok */ 945 /* 946 * Could adjust zone counters here to correct for the missing page. 947 */ 948 949 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 950 } 951 952 /* 953 * Return true if a page type of a given page is supported by hwpoison 954 * mechanism (while handling could fail), otherwise false. This function 955 * does not return true for hugetlb or device memory pages, so it's assumed 956 * to be called only in the context where we never have such pages. 957 */ 958 static inline bool HWPoisonHandlable(struct page *page) 959 { 960 return PageLRU(page) || __PageMovable(page); 961 } 962 963 /** 964 * __get_hwpoison_page() - Get refcount for memory error handling: 965 * @page: raw error page (hit by memory error) 966 * 967 * Return: return 0 if failed to grab the refcount, otherwise true (some 968 * non-zero value.) 969 */ 970 static int __get_hwpoison_page(struct page *page) 971 { 972 struct page *head = compound_head(page); 973 int ret = 0; 974 bool hugetlb = false; 975 976 ret = get_hwpoison_huge_page(head, &hugetlb); 977 if (hugetlb) 978 return ret; 979 980 /* 981 * This check prevents from calling get_hwpoison_unless_zero() 982 * for any unsupported type of page in order to reduce the risk of 983 * unexpected races caused by taking a page refcount. 984 */ 985 if (!HWPoisonHandlable(head)) 986 return 0; 987 988 if (PageTransHuge(head)) { 989 /* 990 * Non anonymous thp exists only in allocation/free time. We 991 * can't handle such a case correctly, so let's give it up. 992 * This should be better than triggering BUG_ON when kernel 993 * tries to touch the "partially handled" page. 994 */ 995 if (!PageAnon(head)) { 996 pr_err("Memory failure: %#lx: non anonymous thp\n", 997 page_to_pfn(page)); 998 return 0; 999 } 1000 } 1001 1002 if (get_page_unless_zero(head)) { 1003 if (head == compound_head(page)) 1004 return 1; 1005 1006 pr_info("Memory failure: %#lx cannot catch tail\n", 1007 page_to_pfn(page)); 1008 put_page(head); 1009 } 1010 1011 return 0; 1012 } 1013 1014 /* 1015 * Safely get reference count of an arbitrary page. 1016 * 1017 * Returns 0 for a free page, 1 for an in-use page, 1018 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an 1019 * allocation. 1020 * We only incremented refcount in case the page was already in-use and it 1021 * is a known type we can handle. 1022 */ 1023 static int get_any_page(struct page *p, unsigned long flags) 1024 { 1025 int ret = 0, pass = 0; 1026 bool count_increased = false; 1027 1028 if (flags & MF_COUNT_INCREASED) 1029 count_increased = true; 1030 1031 try_again: 1032 if (!count_increased && !__get_hwpoison_page(p)) { 1033 if (page_count(p)) { 1034 /* We raced with an allocation, retry. */ 1035 if (pass++ < 3) 1036 goto try_again; 1037 ret = -EBUSY; 1038 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1039 /* We raced with put_page, retry. */ 1040 if (pass++ < 3) 1041 goto try_again; 1042 ret = -EIO; 1043 } 1044 } else { 1045 if (PageHuge(p) || HWPoisonHandlable(p)) { 1046 ret = 1; 1047 } else { 1048 /* 1049 * A page we cannot handle. Check whether we can turn 1050 * it into something we can handle. 1051 */ 1052 if (pass++ < 3) { 1053 put_page(p); 1054 shake_page(p, 1); 1055 count_increased = false; 1056 goto try_again; 1057 } 1058 put_page(p); 1059 ret = -EIO; 1060 } 1061 } 1062 1063 return ret; 1064 } 1065 1066 static int get_hwpoison_page(struct page *p, unsigned long flags, 1067 enum mf_flags ctxt) 1068 { 1069 int ret; 1070 1071 zone_pcp_disable(page_zone(p)); 1072 if (ctxt == MF_SOFT_OFFLINE) 1073 ret = get_any_page(p, flags); 1074 else 1075 ret = __get_hwpoison_page(p); 1076 zone_pcp_enable(page_zone(p)); 1077 1078 return ret; 1079 } 1080 1081 /* 1082 * Do all that is necessary to remove user space mappings. Unmap 1083 * the pages and send SIGBUS to the processes if the data was dirty. 1084 */ 1085 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1086 int flags, struct page **hpagep) 1087 { 1088 enum ttu_flags ttu = TTU_IGNORE_MLOCK; 1089 struct address_space *mapping; 1090 LIST_HEAD(tokill); 1091 bool unmap_success = true; 1092 int kill = 1, forcekill; 1093 struct page *hpage = *hpagep; 1094 bool mlocked = PageMlocked(hpage); 1095 1096 /* 1097 * Here we are interested only in user-mapped pages, so skip any 1098 * other types of pages. 1099 */ 1100 if (PageReserved(p) || PageSlab(p)) 1101 return true; 1102 if (!(PageLRU(hpage) || PageHuge(p))) 1103 return true; 1104 1105 /* 1106 * This check implies we don't kill processes if their pages 1107 * are in the swap cache early. Those are always late kills. 1108 */ 1109 if (!page_mapped(hpage)) 1110 return true; 1111 1112 if (PageKsm(p)) { 1113 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1114 return false; 1115 } 1116 1117 if (PageSwapCache(p)) { 1118 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1119 pfn); 1120 ttu |= TTU_IGNORE_HWPOISON; 1121 } 1122 1123 /* 1124 * Propagate the dirty bit from PTEs to struct page first, because we 1125 * need this to decide if we should kill or just drop the page. 1126 * XXX: the dirty test could be racy: set_page_dirty() may not always 1127 * be called inside page lock (it's recommended but not enforced). 1128 */ 1129 mapping = page_mapping(hpage); 1130 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1131 mapping_can_writeback(mapping)) { 1132 if (page_mkclean(hpage)) { 1133 SetPageDirty(hpage); 1134 } else { 1135 kill = 0; 1136 ttu |= TTU_IGNORE_HWPOISON; 1137 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1138 pfn); 1139 } 1140 } 1141 1142 /* 1143 * First collect all the processes that have the page 1144 * mapped in dirty form. This has to be done before try_to_unmap, 1145 * because ttu takes the rmap data structures down. 1146 * 1147 * Error handling: We ignore errors here because 1148 * there's nothing that can be done. 1149 */ 1150 if (kill) 1151 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1152 1153 if (!PageHuge(hpage)) { 1154 unmap_success = try_to_unmap(hpage, ttu); 1155 } else { 1156 if (!PageAnon(hpage)) { 1157 /* 1158 * For hugetlb pages in shared mappings, try_to_unmap 1159 * could potentially call huge_pmd_unshare. Because of 1160 * this, take semaphore in write mode here and set 1161 * TTU_RMAP_LOCKED to indicate we have taken the lock 1162 * at this higer level. 1163 */ 1164 mapping = hugetlb_page_mapping_lock_write(hpage); 1165 if (mapping) { 1166 unmap_success = try_to_unmap(hpage, 1167 ttu|TTU_RMAP_LOCKED); 1168 i_mmap_unlock_write(mapping); 1169 } else { 1170 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1171 unmap_success = false; 1172 } 1173 } else { 1174 unmap_success = try_to_unmap(hpage, ttu); 1175 } 1176 } 1177 if (!unmap_success) 1178 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1179 pfn, page_mapcount(hpage)); 1180 1181 /* 1182 * try_to_unmap() might put mlocked page in lru cache, so call 1183 * shake_page() again to ensure that it's flushed. 1184 */ 1185 if (mlocked) 1186 shake_page(hpage, 0); 1187 1188 /* 1189 * Now that the dirty bit has been propagated to the 1190 * struct page and all unmaps done we can decide if 1191 * killing is needed or not. Only kill when the page 1192 * was dirty or the process is not restartable, 1193 * otherwise the tokill list is merely 1194 * freed. When there was a problem unmapping earlier 1195 * use a more force-full uncatchable kill to prevent 1196 * any accesses to the poisoned memory. 1197 */ 1198 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1199 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1200 1201 return unmap_success; 1202 } 1203 1204 static int identify_page_state(unsigned long pfn, struct page *p, 1205 unsigned long page_flags) 1206 { 1207 struct page_state *ps; 1208 1209 /* 1210 * The first check uses the current page flags which may not have any 1211 * relevant information. The second check with the saved page flags is 1212 * carried out only if the first check can't determine the page status. 1213 */ 1214 for (ps = error_states;; ps++) 1215 if ((p->flags & ps->mask) == ps->res) 1216 break; 1217 1218 page_flags |= (p->flags & (1UL << PG_dirty)); 1219 1220 if (!ps->mask) 1221 for (ps = error_states;; ps++) 1222 if ((page_flags & ps->mask) == ps->res) 1223 break; 1224 return page_action(ps, p, pfn); 1225 } 1226 1227 static int try_to_split_thp_page(struct page *page, const char *msg) 1228 { 1229 lock_page(page); 1230 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1231 unsigned long pfn = page_to_pfn(page); 1232 1233 unlock_page(page); 1234 if (!PageAnon(page)) 1235 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn); 1236 else 1237 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1238 put_page(page); 1239 return -EBUSY; 1240 } 1241 unlock_page(page); 1242 1243 return 0; 1244 } 1245 1246 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1247 { 1248 struct page *p = pfn_to_page(pfn); 1249 struct page *head = compound_head(p); 1250 int res; 1251 unsigned long page_flags; 1252 1253 if (TestSetPageHWPoison(head)) { 1254 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1255 pfn); 1256 return 0; 1257 } 1258 1259 num_poisoned_pages_inc(); 1260 1261 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1262 /* 1263 * Check "filter hit" and "race with other subpage." 1264 */ 1265 lock_page(head); 1266 if (PageHWPoison(head)) { 1267 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1268 || (p != head && TestSetPageHWPoison(head))) { 1269 num_poisoned_pages_dec(); 1270 unlock_page(head); 1271 return 0; 1272 } 1273 } 1274 unlock_page(head); 1275 res = MF_FAILED; 1276 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 1277 page_ref_inc(p); 1278 res = MF_RECOVERED; 1279 } 1280 action_result(pfn, MF_MSG_FREE_HUGE, res); 1281 return res == MF_RECOVERED ? 0 : -EBUSY; 1282 } 1283 1284 lock_page(head); 1285 page_flags = head->flags; 1286 1287 if (!PageHWPoison(head)) { 1288 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1289 num_poisoned_pages_dec(); 1290 unlock_page(head); 1291 put_page(head); 1292 return 0; 1293 } 1294 1295 /* 1296 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1297 * simply disable it. In order to make it work properly, we need 1298 * make sure that: 1299 * - conversion of a pud that maps an error hugetlb into hwpoison 1300 * entry properly works, and 1301 * - other mm code walking over page table is aware of pud-aligned 1302 * hwpoison entries. 1303 */ 1304 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1305 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1306 res = -EBUSY; 1307 goto out; 1308 } 1309 1310 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1311 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1312 res = -EBUSY; 1313 goto out; 1314 } 1315 1316 res = identify_page_state(pfn, p, page_flags); 1317 out: 1318 unlock_page(head); 1319 return res; 1320 } 1321 1322 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1323 struct dev_pagemap *pgmap) 1324 { 1325 struct page *page = pfn_to_page(pfn); 1326 const bool unmap_success = true; 1327 unsigned long size = 0; 1328 struct to_kill *tk; 1329 LIST_HEAD(tokill); 1330 int rc = -EBUSY; 1331 loff_t start; 1332 dax_entry_t cookie; 1333 1334 if (flags & MF_COUNT_INCREASED) 1335 /* 1336 * Drop the extra refcount in case we come from madvise(). 1337 */ 1338 put_page(page); 1339 1340 /* device metadata space is not recoverable */ 1341 if (!pgmap_pfn_valid(pgmap, pfn)) { 1342 rc = -ENXIO; 1343 goto out; 1344 } 1345 1346 /* 1347 * Prevent the inode from being freed while we are interrogating 1348 * the address_space, typically this would be handled by 1349 * lock_page(), but dax pages do not use the page lock. This 1350 * also prevents changes to the mapping of this pfn until 1351 * poison signaling is complete. 1352 */ 1353 cookie = dax_lock_page(page); 1354 if (!cookie) 1355 goto out; 1356 1357 if (hwpoison_filter(page)) { 1358 rc = 0; 1359 goto unlock; 1360 } 1361 1362 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1363 /* 1364 * TODO: Handle HMM pages which may need coordination 1365 * with device-side memory. 1366 */ 1367 goto unlock; 1368 } 1369 1370 /* 1371 * Use this flag as an indication that the dax page has been 1372 * remapped UC to prevent speculative consumption of poison. 1373 */ 1374 SetPageHWPoison(page); 1375 1376 /* 1377 * Unlike System-RAM there is no possibility to swap in a 1378 * different physical page at a given virtual address, so all 1379 * userspace consumption of ZONE_DEVICE memory necessitates 1380 * SIGBUS (i.e. MF_MUST_KILL) 1381 */ 1382 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1383 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1384 1385 list_for_each_entry(tk, &tokill, nd) 1386 if (tk->size_shift) 1387 size = max(size, 1UL << tk->size_shift); 1388 if (size) { 1389 /* 1390 * Unmap the largest mapping to avoid breaking up 1391 * device-dax mappings which are constant size. The 1392 * actual size of the mapping being torn down is 1393 * communicated in siginfo, see kill_proc() 1394 */ 1395 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1396 unmap_mapping_range(page->mapping, start, size, 0); 1397 } 1398 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1399 rc = 0; 1400 unlock: 1401 dax_unlock_page(page, cookie); 1402 out: 1403 /* drop pgmap ref acquired in caller */ 1404 put_dev_pagemap(pgmap); 1405 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1406 return rc; 1407 } 1408 1409 /** 1410 * memory_failure - Handle memory failure of a page. 1411 * @pfn: Page Number of the corrupted page 1412 * @flags: fine tune action taken 1413 * 1414 * This function is called by the low level machine check code 1415 * of an architecture when it detects hardware memory corruption 1416 * of a page. It tries its best to recover, which includes 1417 * dropping pages, killing processes etc. 1418 * 1419 * The function is primarily of use for corruptions that 1420 * happen outside the current execution context (e.g. when 1421 * detected by a background scrubber) 1422 * 1423 * Must run in process context (e.g. a work queue) with interrupts 1424 * enabled and no spinlocks hold. 1425 */ 1426 int memory_failure(unsigned long pfn, int flags) 1427 { 1428 struct page *p; 1429 struct page *hpage; 1430 struct page *orig_head; 1431 struct dev_pagemap *pgmap; 1432 int res; 1433 unsigned long page_flags; 1434 bool retry = true; 1435 1436 if (!sysctl_memory_failure_recovery) 1437 panic("Memory failure on page %lx", pfn); 1438 1439 p = pfn_to_online_page(pfn); 1440 if (!p) { 1441 if (pfn_valid(pfn)) { 1442 pgmap = get_dev_pagemap(pfn, NULL); 1443 if (pgmap) 1444 return memory_failure_dev_pagemap(pfn, flags, 1445 pgmap); 1446 } 1447 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1448 pfn); 1449 return -ENXIO; 1450 } 1451 1452 try_again: 1453 if (PageHuge(p)) 1454 return memory_failure_hugetlb(pfn, flags); 1455 if (TestSetPageHWPoison(p)) { 1456 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1457 pfn); 1458 return 0; 1459 } 1460 1461 orig_head = hpage = compound_head(p); 1462 num_poisoned_pages_inc(); 1463 1464 /* 1465 * We need/can do nothing about count=0 pages. 1466 * 1) it's a free page, and therefore in safe hand: 1467 * prep_new_page() will be the gate keeper. 1468 * 2) it's part of a non-compound high order page. 1469 * Implies some kernel user: cannot stop them from 1470 * R/W the page; let's pray that the page has been 1471 * used and will be freed some time later. 1472 * In fact it's dangerous to directly bump up page count from 0, 1473 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1474 */ 1475 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1476 if (is_free_buddy_page(p)) { 1477 if (take_page_off_buddy(p)) { 1478 page_ref_inc(p); 1479 res = MF_RECOVERED; 1480 } else { 1481 /* We lost the race, try again */ 1482 if (retry) { 1483 ClearPageHWPoison(p); 1484 num_poisoned_pages_dec(); 1485 retry = false; 1486 goto try_again; 1487 } 1488 res = MF_FAILED; 1489 } 1490 action_result(pfn, MF_MSG_BUDDY, res); 1491 return res == MF_RECOVERED ? 0 : -EBUSY; 1492 } else { 1493 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1494 return -EBUSY; 1495 } 1496 } 1497 1498 if (PageTransHuge(hpage)) { 1499 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1500 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1501 return -EBUSY; 1502 } 1503 VM_BUG_ON_PAGE(!page_count(p), p); 1504 } 1505 1506 /* 1507 * We ignore non-LRU pages for good reasons. 1508 * - PG_locked is only well defined for LRU pages and a few others 1509 * - to avoid races with __SetPageLocked() 1510 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1511 * The check (unnecessarily) ignores LRU pages being isolated and 1512 * walked by the page reclaim code, however that's not a big loss. 1513 */ 1514 shake_page(p, 0); 1515 1516 lock_page(p); 1517 1518 /* 1519 * The page could have changed compound pages during the locking. 1520 * If this happens just bail out. 1521 */ 1522 if (PageCompound(p) && compound_head(p) != orig_head) { 1523 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1524 res = -EBUSY; 1525 goto out; 1526 } 1527 1528 /* 1529 * We use page flags to determine what action should be taken, but 1530 * the flags can be modified by the error containment action. One 1531 * example is an mlocked page, where PG_mlocked is cleared by 1532 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1533 * correctly, we save a copy of the page flags at this time. 1534 */ 1535 page_flags = p->flags; 1536 1537 /* 1538 * unpoison always clear PG_hwpoison inside page lock 1539 */ 1540 if (!PageHWPoison(p)) { 1541 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1542 num_poisoned_pages_dec(); 1543 unlock_page(p); 1544 put_page(p); 1545 return 0; 1546 } 1547 if (hwpoison_filter(p)) { 1548 if (TestClearPageHWPoison(p)) 1549 num_poisoned_pages_dec(); 1550 unlock_page(p); 1551 put_page(p); 1552 return 0; 1553 } 1554 1555 /* 1556 * __munlock_pagevec may clear a writeback page's LRU flag without 1557 * page_lock. We need wait writeback completion for this page or it 1558 * may trigger vfs BUG while evict inode. 1559 */ 1560 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1561 goto identify_page_state; 1562 1563 /* 1564 * It's very difficult to mess with pages currently under IO 1565 * and in many cases impossible, so we just avoid it here. 1566 */ 1567 wait_on_page_writeback(p); 1568 1569 /* 1570 * Now take care of user space mappings. 1571 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1572 */ 1573 if (!hwpoison_user_mappings(p, pfn, flags, &p)) { 1574 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1575 res = -EBUSY; 1576 goto out; 1577 } 1578 1579 /* 1580 * Torn down by someone else? 1581 */ 1582 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1583 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1584 res = -EBUSY; 1585 goto out; 1586 } 1587 1588 identify_page_state: 1589 res = identify_page_state(pfn, p, page_flags); 1590 out: 1591 unlock_page(p); 1592 return res; 1593 } 1594 EXPORT_SYMBOL_GPL(memory_failure); 1595 1596 #define MEMORY_FAILURE_FIFO_ORDER 4 1597 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1598 1599 struct memory_failure_entry { 1600 unsigned long pfn; 1601 int flags; 1602 }; 1603 1604 struct memory_failure_cpu { 1605 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1606 MEMORY_FAILURE_FIFO_SIZE); 1607 spinlock_t lock; 1608 struct work_struct work; 1609 }; 1610 1611 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1612 1613 /** 1614 * memory_failure_queue - Schedule handling memory failure of a page. 1615 * @pfn: Page Number of the corrupted page 1616 * @flags: Flags for memory failure handling 1617 * 1618 * This function is called by the low level hardware error handler 1619 * when it detects hardware memory corruption of a page. It schedules 1620 * the recovering of error page, including dropping pages, killing 1621 * processes etc. 1622 * 1623 * The function is primarily of use for corruptions that 1624 * happen outside the current execution context (e.g. when 1625 * detected by a background scrubber) 1626 * 1627 * Can run in IRQ context. 1628 */ 1629 void memory_failure_queue(unsigned long pfn, int flags) 1630 { 1631 struct memory_failure_cpu *mf_cpu; 1632 unsigned long proc_flags; 1633 struct memory_failure_entry entry = { 1634 .pfn = pfn, 1635 .flags = flags, 1636 }; 1637 1638 mf_cpu = &get_cpu_var(memory_failure_cpu); 1639 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1640 if (kfifo_put(&mf_cpu->fifo, entry)) 1641 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1642 else 1643 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1644 pfn); 1645 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1646 put_cpu_var(memory_failure_cpu); 1647 } 1648 EXPORT_SYMBOL_GPL(memory_failure_queue); 1649 1650 static void memory_failure_work_func(struct work_struct *work) 1651 { 1652 struct memory_failure_cpu *mf_cpu; 1653 struct memory_failure_entry entry = { 0, }; 1654 unsigned long proc_flags; 1655 int gotten; 1656 1657 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1658 for (;;) { 1659 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1660 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1661 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1662 if (!gotten) 1663 break; 1664 if (entry.flags & MF_SOFT_OFFLINE) 1665 soft_offline_page(entry.pfn, entry.flags); 1666 else 1667 memory_failure(entry.pfn, entry.flags); 1668 } 1669 } 1670 1671 /* 1672 * Process memory_failure work queued on the specified CPU. 1673 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1674 */ 1675 void memory_failure_queue_kick(int cpu) 1676 { 1677 struct memory_failure_cpu *mf_cpu; 1678 1679 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1680 cancel_work_sync(&mf_cpu->work); 1681 memory_failure_work_func(&mf_cpu->work); 1682 } 1683 1684 static int __init memory_failure_init(void) 1685 { 1686 struct memory_failure_cpu *mf_cpu; 1687 int cpu; 1688 1689 for_each_possible_cpu(cpu) { 1690 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1691 spin_lock_init(&mf_cpu->lock); 1692 INIT_KFIFO(mf_cpu->fifo); 1693 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1694 } 1695 1696 return 0; 1697 } 1698 core_initcall(memory_failure_init); 1699 1700 #define unpoison_pr_info(fmt, pfn, rs) \ 1701 ({ \ 1702 if (__ratelimit(rs)) \ 1703 pr_info(fmt, pfn); \ 1704 }) 1705 1706 /** 1707 * unpoison_memory - Unpoison a previously poisoned page 1708 * @pfn: Page number of the to be unpoisoned page 1709 * 1710 * Software-unpoison a page that has been poisoned by 1711 * memory_failure() earlier. 1712 * 1713 * This is only done on the software-level, so it only works 1714 * for linux injected failures, not real hardware failures 1715 * 1716 * Returns 0 for success, otherwise -errno. 1717 */ 1718 int unpoison_memory(unsigned long pfn) 1719 { 1720 struct page *page; 1721 struct page *p; 1722 int freeit = 0; 1723 unsigned long flags = 0; 1724 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1725 DEFAULT_RATELIMIT_BURST); 1726 1727 if (!pfn_valid(pfn)) 1728 return -ENXIO; 1729 1730 p = pfn_to_page(pfn); 1731 page = compound_head(p); 1732 1733 if (!PageHWPoison(p)) { 1734 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1735 pfn, &unpoison_rs); 1736 return 0; 1737 } 1738 1739 if (page_count(page) > 1) { 1740 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1741 pfn, &unpoison_rs); 1742 return 0; 1743 } 1744 1745 if (page_mapped(page)) { 1746 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1747 pfn, &unpoison_rs); 1748 return 0; 1749 } 1750 1751 if (page_mapping(page)) { 1752 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1753 pfn, &unpoison_rs); 1754 return 0; 1755 } 1756 1757 /* 1758 * unpoison_memory() can encounter thp only when the thp is being 1759 * worked by memory_failure() and the page lock is not held yet. 1760 * In such case, we yield to memory_failure() and make unpoison fail. 1761 */ 1762 if (!PageHuge(page) && PageTransHuge(page)) { 1763 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1764 pfn, &unpoison_rs); 1765 return 0; 1766 } 1767 1768 if (!get_hwpoison_page(p, flags, 0)) { 1769 if (TestClearPageHWPoison(p)) 1770 num_poisoned_pages_dec(); 1771 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1772 pfn, &unpoison_rs); 1773 return 0; 1774 } 1775 1776 lock_page(page); 1777 /* 1778 * This test is racy because PG_hwpoison is set outside of page lock. 1779 * That's acceptable because that won't trigger kernel panic. Instead, 1780 * the PG_hwpoison page will be caught and isolated on the entrance to 1781 * the free buddy page pool. 1782 */ 1783 if (TestClearPageHWPoison(page)) { 1784 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1785 pfn, &unpoison_rs); 1786 num_poisoned_pages_dec(); 1787 freeit = 1; 1788 } 1789 unlock_page(page); 1790 1791 put_page(page); 1792 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1793 put_page(page); 1794 1795 return 0; 1796 } 1797 EXPORT_SYMBOL(unpoison_memory); 1798 1799 static bool isolate_page(struct page *page, struct list_head *pagelist) 1800 { 1801 bool isolated = false; 1802 bool lru = PageLRU(page); 1803 1804 if (PageHuge(page)) { 1805 isolated = isolate_huge_page(page, pagelist); 1806 } else { 1807 if (lru) 1808 isolated = !isolate_lru_page(page); 1809 else 1810 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1811 1812 if (isolated) 1813 list_add(&page->lru, pagelist); 1814 } 1815 1816 if (isolated && lru) 1817 inc_node_page_state(page, NR_ISOLATED_ANON + 1818 page_is_file_lru(page)); 1819 1820 /* 1821 * If we succeed to isolate the page, we grabbed another refcount on 1822 * the page, so we can safely drop the one we got from get_any_pages(). 1823 * If we failed to isolate the page, it means that we cannot go further 1824 * and we will return an error, so drop the reference we got from 1825 * get_any_pages() as well. 1826 */ 1827 put_page(page); 1828 return isolated; 1829 } 1830 1831 /* 1832 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 1833 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 1834 * If the page is mapped, it migrates the contents over. 1835 */ 1836 static int __soft_offline_page(struct page *page) 1837 { 1838 int ret = 0; 1839 unsigned long pfn = page_to_pfn(page); 1840 struct page *hpage = compound_head(page); 1841 char const *msg_page[] = {"page", "hugepage"}; 1842 bool huge = PageHuge(page); 1843 LIST_HEAD(pagelist); 1844 struct migration_target_control mtc = { 1845 .nid = NUMA_NO_NODE, 1846 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1847 }; 1848 1849 /* 1850 * Check PageHWPoison again inside page lock because PageHWPoison 1851 * is set by memory_failure() outside page lock. Note that 1852 * memory_failure() also double-checks PageHWPoison inside page lock, 1853 * so there's no race between soft_offline_page() and memory_failure(). 1854 */ 1855 lock_page(page); 1856 if (!PageHuge(page)) 1857 wait_on_page_writeback(page); 1858 if (PageHWPoison(page)) { 1859 unlock_page(page); 1860 put_page(page); 1861 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1862 return 0; 1863 } 1864 1865 if (!PageHuge(page)) 1866 /* 1867 * Try to invalidate first. This should work for 1868 * non dirty unmapped page cache pages. 1869 */ 1870 ret = invalidate_inode_page(page); 1871 unlock_page(page); 1872 1873 /* 1874 * RED-PEN would be better to keep it isolated here, but we 1875 * would need to fix isolation locking first. 1876 */ 1877 if (ret) { 1878 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1879 page_handle_poison(page, false, true); 1880 return 0; 1881 } 1882 1883 if (isolate_page(hpage, &pagelist)) { 1884 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 1885 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE); 1886 if (!ret) { 1887 bool release = !huge; 1888 1889 if (!page_handle_poison(page, huge, release)) 1890 ret = -EBUSY; 1891 } else { 1892 if (!list_empty(&pagelist)) 1893 putback_movable_pages(&pagelist); 1894 1895 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n", 1896 pfn, msg_page[huge], ret, page->flags, &page->flags); 1897 if (ret > 0) 1898 ret = -EBUSY; 1899 } 1900 } else { 1901 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n", 1902 pfn, msg_page[huge], page_count(page), page->flags, &page->flags); 1903 ret = -EBUSY; 1904 } 1905 return ret; 1906 } 1907 1908 static int soft_offline_in_use_page(struct page *page) 1909 { 1910 struct page *hpage = compound_head(page); 1911 1912 if (!PageHuge(page) && PageTransHuge(hpage)) 1913 if (try_to_split_thp_page(page, "soft offline") < 0) 1914 return -EBUSY; 1915 return __soft_offline_page(page); 1916 } 1917 1918 static int soft_offline_free_page(struct page *page) 1919 { 1920 int rc = 0; 1921 1922 if (!page_handle_poison(page, true, false)) 1923 rc = -EBUSY; 1924 1925 return rc; 1926 } 1927 1928 static void put_ref_page(struct page *page) 1929 { 1930 if (page) 1931 put_page(page); 1932 } 1933 1934 /** 1935 * soft_offline_page - Soft offline a page. 1936 * @pfn: pfn to soft-offline 1937 * @flags: flags. Same as memory_failure(). 1938 * 1939 * Returns 0 on success, otherwise negated errno. 1940 * 1941 * Soft offline a page, by migration or invalidation, 1942 * without killing anything. This is for the case when 1943 * a page is not corrupted yet (so it's still valid to access), 1944 * but has had a number of corrected errors and is better taken 1945 * out. 1946 * 1947 * The actual policy on when to do that is maintained by 1948 * user space. 1949 * 1950 * This should never impact any application or cause data loss, 1951 * however it might take some time. 1952 * 1953 * This is not a 100% solution for all memory, but tries to be 1954 * ``good enough'' for the majority of memory. 1955 */ 1956 int soft_offline_page(unsigned long pfn, int flags) 1957 { 1958 int ret; 1959 bool try_again = true; 1960 struct page *page, *ref_page = NULL; 1961 1962 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 1963 1964 if (!pfn_valid(pfn)) 1965 return -ENXIO; 1966 if (flags & MF_COUNT_INCREASED) 1967 ref_page = pfn_to_page(pfn); 1968 1969 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1970 page = pfn_to_online_page(pfn); 1971 if (!page) { 1972 put_ref_page(ref_page); 1973 return -EIO; 1974 } 1975 1976 if (PageHWPoison(page)) { 1977 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 1978 put_ref_page(ref_page); 1979 return 0; 1980 } 1981 1982 retry: 1983 get_online_mems(); 1984 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE); 1985 put_online_mems(); 1986 1987 if (ret > 0) { 1988 ret = soft_offline_in_use_page(page); 1989 } else if (ret == 0) { 1990 if (soft_offline_free_page(page) && try_again) { 1991 try_again = false; 1992 goto retry; 1993 } 1994 } else if (ret == -EIO) { 1995 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n", 1996 __func__, pfn, page->flags, &page->flags); 1997 } 1998 1999 return ret; 2000 } 2001