xref: /openbmc/linux/mm/memory-failure.c (revision b85f82f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68 
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70 
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 inline void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 /*
126  * Return values:
127  *   1:   the page is dissolved (if needed) and taken off from buddy,
128  *   0:   the page is dissolved (if needed) and not taken off from buddy,
129  *   < 0: failed to dissolve.
130  */
131 static int __page_handle_poison(struct page *page)
132 {
133 	int ret;
134 
135 	zone_pcp_disable(page_zone(page));
136 	ret = dissolve_free_huge_page(page);
137 	if (!ret)
138 		ret = take_page_off_buddy(page);
139 	zone_pcp_enable(page_zone(page));
140 
141 	return ret;
142 }
143 
144 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
145 {
146 	if (hugepage_or_freepage) {
147 		/*
148 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
149 		 * returns 0 for non-hugetlb pages as well.
150 		 */
151 		if (__page_handle_poison(page) <= 0)
152 			/*
153 			 * We could fail to take off the target page from buddy
154 			 * for example due to racy page allocation, but that's
155 			 * acceptable because soft-offlined page is not broken
156 			 * and if someone really want to use it, they should
157 			 * take it.
158 			 */
159 			return false;
160 	}
161 
162 	SetPageHWPoison(page);
163 	if (release)
164 		put_page(page);
165 	page_ref_inc(page);
166 	num_poisoned_pages_inc(page_to_pfn(page));
167 
168 	return true;
169 }
170 
171 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
172 
173 u32 hwpoison_filter_enable = 0;
174 u32 hwpoison_filter_dev_major = ~0U;
175 u32 hwpoison_filter_dev_minor = ~0U;
176 u64 hwpoison_filter_flags_mask;
177 u64 hwpoison_filter_flags_value;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
179 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
180 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
181 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
182 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
183 
184 static int hwpoison_filter_dev(struct page *p)
185 {
186 	struct address_space *mapping;
187 	dev_t dev;
188 
189 	if (hwpoison_filter_dev_major == ~0U &&
190 	    hwpoison_filter_dev_minor == ~0U)
191 		return 0;
192 
193 	mapping = page_mapping(p);
194 	if (mapping == NULL || mapping->host == NULL)
195 		return -EINVAL;
196 
197 	dev = mapping->host->i_sb->s_dev;
198 	if (hwpoison_filter_dev_major != ~0U &&
199 	    hwpoison_filter_dev_major != MAJOR(dev))
200 		return -EINVAL;
201 	if (hwpoison_filter_dev_minor != ~0U &&
202 	    hwpoison_filter_dev_minor != MINOR(dev))
203 		return -EINVAL;
204 
205 	return 0;
206 }
207 
208 static int hwpoison_filter_flags(struct page *p)
209 {
210 	if (!hwpoison_filter_flags_mask)
211 		return 0;
212 
213 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
214 				    hwpoison_filter_flags_value)
215 		return 0;
216 	else
217 		return -EINVAL;
218 }
219 
220 /*
221  * This allows stress tests to limit test scope to a collection of tasks
222  * by putting them under some memcg. This prevents killing unrelated/important
223  * processes such as /sbin/init. Note that the target task may share clean
224  * pages with init (eg. libc text), which is harmless. If the target task
225  * share _dirty_ pages with another task B, the test scheme must make sure B
226  * is also included in the memcg. At last, due to race conditions this filter
227  * can only guarantee that the page either belongs to the memcg tasks, or is
228  * a freed page.
229  */
230 #ifdef CONFIG_MEMCG
231 u64 hwpoison_filter_memcg;
232 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
233 static int hwpoison_filter_task(struct page *p)
234 {
235 	if (!hwpoison_filter_memcg)
236 		return 0;
237 
238 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 #else
244 static int hwpoison_filter_task(struct page *p) { return 0; }
245 #endif
246 
247 int hwpoison_filter(struct page *p)
248 {
249 	if (!hwpoison_filter_enable)
250 		return 0;
251 
252 	if (hwpoison_filter_dev(p))
253 		return -EINVAL;
254 
255 	if (hwpoison_filter_flags(p))
256 		return -EINVAL;
257 
258 	if (hwpoison_filter_task(p))
259 		return -EINVAL;
260 
261 	return 0;
262 }
263 #else
264 int hwpoison_filter(struct page *p)
265 {
266 	return 0;
267 }
268 #endif
269 
270 EXPORT_SYMBOL_GPL(hwpoison_filter);
271 
272 /*
273  * Kill all processes that have a poisoned page mapped and then isolate
274  * the page.
275  *
276  * General strategy:
277  * Find all processes having the page mapped and kill them.
278  * But we keep a page reference around so that the page is not
279  * actually freed yet.
280  * Then stash the page away
281  *
282  * There's no convenient way to get back to mapped processes
283  * from the VMAs. So do a brute-force search over all
284  * running processes.
285  *
286  * Remember that machine checks are not common (or rather
287  * if they are common you have other problems), so this shouldn't
288  * be a performance issue.
289  *
290  * Also there are some races possible while we get from the
291  * error detection to actually handle it.
292  */
293 
294 struct to_kill {
295 	struct list_head nd;
296 	struct task_struct *tsk;
297 	unsigned long addr;
298 	short size_shift;
299 };
300 
301 /*
302  * Send all the processes who have the page mapped a signal.
303  * ``action optional'' if they are not immediately affected by the error
304  * ``action required'' if error happened in current execution context
305  */
306 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
307 {
308 	struct task_struct *t = tk->tsk;
309 	short addr_lsb = tk->size_shift;
310 	int ret = 0;
311 
312 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
313 			pfn, t->comm, t->pid);
314 
315 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
316 		ret = force_sig_mceerr(BUS_MCEERR_AR,
317 				 (void __user *)tk->addr, addr_lsb);
318 	else
319 		/*
320 		 * Signal other processes sharing the page if they have
321 		 * PF_MCE_EARLY set.
322 		 * Don't use force here, it's convenient if the signal
323 		 * can be temporarily blocked.
324 		 * This could cause a loop when the user sets SIGBUS
325 		 * to SIG_IGN, but hopefully no one will do that?
326 		 */
327 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
328 				      addr_lsb, t);
329 	if (ret < 0)
330 		pr_info("Error sending signal to %s:%d: %d\n",
331 			t->comm, t->pid, ret);
332 	return ret;
333 }
334 
335 /*
336  * Unknown page type encountered. Try to check whether it can turn PageLRU by
337  * lru_add_drain_all.
338  */
339 void shake_page(struct page *p)
340 {
341 	if (PageHuge(p))
342 		return;
343 
344 	if (!PageSlab(p)) {
345 		lru_add_drain_all();
346 		if (PageLRU(p) || is_free_buddy_page(p))
347 			return;
348 	}
349 
350 	/*
351 	 * TODO: Could shrink slab caches here if a lightweight range-based
352 	 * shrinker will be available.
353 	 */
354 }
355 EXPORT_SYMBOL_GPL(shake_page);
356 
357 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
358 		unsigned long address)
359 {
360 	unsigned long ret = 0;
361 	pgd_t *pgd;
362 	p4d_t *p4d;
363 	pud_t *pud;
364 	pmd_t *pmd;
365 	pte_t *pte;
366 
367 	VM_BUG_ON_VMA(address == -EFAULT, vma);
368 	pgd = pgd_offset(vma->vm_mm, address);
369 	if (!pgd_present(*pgd))
370 		return 0;
371 	p4d = p4d_offset(pgd, address);
372 	if (!p4d_present(*p4d))
373 		return 0;
374 	pud = pud_offset(p4d, address);
375 	if (!pud_present(*pud))
376 		return 0;
377 	if (pud_devmap(*pud))
378 		return PUD_SHIFT;
379 	pmd = pmd_offset(pud, address);
380 	if (!pmd_present(*pmd))
381 		return 0;
382 	if (pmd_devmap(*pmd))
383 		return PMD_SHIFT;
384 	pte = pte_offset_map(pmd, address);
385 	if (pte_present(*pte) && pte_devmap(*pte))
386 		ret = PAGE_SHIFT;
387 	pte_unmap(pte);
388 	return ret;
389 }
390 
391 /*
392  * Failure handling: if we can't find or can't kill a process there's
393  * not much we can do.	We just print a message and ignore otherwise.
394  */
395 
396 #define FSDAX_INVALID_PGOFF ULONG_MAX
397 
398 /*
399  * Schedule a process for later kill.
400  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
401  *
402  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
403  * filesystem with a memory failure handler has claimed the
404  * memory_failure event. In all other cases, page->index and
405  * page->mapping are sufficient for mapping the page back to its
406  * corresponding user virtual address.
407  */
408 static void add_to_kill(struct task_struct *tsk, struct page *p,
409 			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
410 			struct list_head *to_kill)
411 {
412 	struct to_kill *tk;
413 
414 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
415 	if (!tk) {
416 		pr_err("Out of memory while machine check handling\n");
417 		return;
418 	}
419 
420 	tk->addr = page_address_in_vma(p, vma);
421 	if (is_zone_device_page(p)) {
422 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
423 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
424 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
425 	} else
426 		tk->size_shift = page_shift(compound_head(p));
427 
428 	/*
429 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
430 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
431 	 * so "tk->size_shift == 0" effectively checks no mapping on
432 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
433 	 * to a process' address space, it's possible not all N VMAs
434 	 * contain mappings for the page, but at least one VMA does.
435 	 * Only deliver SIGBUS with payload derived from the VMA that
436 	 * has a mapping for the page.
437 	 */
438 	if (tk->addr == -EFAULT) {
439 		pr_info("Unable to find user space address %lx in %s\n",
440 			page_to_pfn(p), tsk->comm);
441 	} else if (tk->size_shift == 0) {
442 		kfree(tk);
443 		return;
444 	}
445 
446 	get_task_struct(tsk);
447 	tk->tsk = tsk;
448 	list_add_tail(&tk->nd, to_kill);
449 }
450 
451 /*
452  * Kill the processes that have been collected earlier.
453  *
454  * Only do anything when FORCEKILL is set, otherwise just free the
455  * list (this is used for clean pages which do not need killing)
456  * Also when FAIL is set do a force kill because something went
457  * wrong earlier.
458  */
459 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
460 		unsigned long pfn, int flags)
461 {
462 	struct to_kill *tk, *next;
463 
464 	list_for_each_entry_safe(tk, next, to_kill, nd) {
465 		if (forcekill) {
466 			/*
467 			 * In case something went wrong with munmapping
468 			 * make sure the process doesn't catch the
469 			 * signal and then access the memory. Just kill it.
470 			 */
471 			if (fail || tk->addr == -EFAULT) {
472 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
473 				       pfn, tk->tsk->comm, tk->tsk->pid);
474 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
475 						 tk->tsk, PIDTYPE_PID);
476 			}
477 
478 			/*
479 			 * In theory the process could have mapped
480 			 * something else on the address in-between. We could
481 			 * check for that, but we need to tell the
482 			 * process anyways.
483 			 */
484 			else if (kill_proc(tk, pfn, flags) < 0)
485 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
486 				       pfn, tk->tsk->comm, tk->tsk->pid);
487 		}
488 		list_del(&tk->nd);
489 		put_task_struct(tk->tsk);
490 		kfree(tk);
491 	}
492 }
493 
494 /*
495  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
496  * on behalf of the thread group. Return task_struct of the (first found)
497  * dedicated thread if found, and return NULL otherwise.
498  *
499  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
500  * have to call rcu_read_lock/unlock() in this function.
501  */
502 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
503 {
504 	struct task_struct *t;
505 
506 	for_each_thread(tsk, t) {
507 		if (t->flags & PF_MCE_PROCESS) {
508 			if (t->flags & PF_MCE_EARLY)
509 				return t;
510 		} else {
511 			if (sysctl_memory_failure_early_kill)
512 				return t;
513 		}
514 	}
515 	return NULL;
516 }
517 
518 /*
519  * Determine whether a given process is "early kill" process which expects
520  * to be signaled when some page under the process is hwpoisoned.
521  * Return task_struct of the dedicated thread (main thread unless explicitly
522  * specified) if the process is "early kill" and otherwise returns NULL.
523  *
524  * Note that the above is true for Action Optional case. For Action Required
525  * case, it's only meaningful to the current thread which need to be signaled
526  * with SIGBUS, this error is Action Optional for other non current
527  * processes sharing the same error page,if the process is "early kill", the
528  * task_struct of the dedicated thread will also be returned.
529  */
530 static struct task_struct *task_early_kill(struct task_struct *tsk,
531 					   int force_early)
532 {
533 	if (!tsk->mm)
534 		return NULL;
535 	/*
536 	 * Comparing ->mm here because current task might represent
537 	 * a subthread, while tsk always points to the main thread.
538 	 */
539 	if (force_early && tsk->mm == current->mm)
540 		return current;
541 
542 	return find_early_kill_thread(tsk);
543 }
544 
545 /*
546  * Collect processes when the error hit an anonymous page.
547  */
548 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
549 				int force_early)
550 {
551 	struct folio *folio = page_folio(page);
552 	struct vm_area_struct *vma;
553 	struct task_struct *tsk;
554 	struct anon_vma *av;
555 	pgoff_t pgoff;
556 
557 	av = folio_lock_anon_vma_read(folio, NULL);
558 	if (av == NULL)	/* Not actually mapped anymore */
559 		return;
560 
561 	pgoff = page_to_pgoff(page);
562 	read_lock(&tasklist_lock);
563 	for_each_process (tsk) {
564 		struct anon_vma_chain *vmac;
565 		struct task_struct *t = task_early_kill(tsk, force_early);
566 
567 		if (!t)
568 			continue;
569 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
570 					       pgoff, pgoff) {
571 			vma = vmac->vma;
572 			if (vma->vm_mm != t->mm)
573 				continue;
574 			if (!page_mapped_in_vma(page, vma))
575 				continue;
576 			add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
577 		}
578 	}
579 	read_unlock(&tasklist_lock);
580 	anon_vma_unlock_read(av);
581 }
582 
583 /*
584  * Collect processes when the error hit a file mapped page.
585  */
586 static void collect_procs_file(struct page *page, struct list_head *to_kill,
587 				int force_early)
588 {
589 	struct vm_area_struct *vma;
590 	struct task_struct *tsk;
591 	struct address_space *mapping = page->mapping;
592 	pgoff_t pgoff;
593 
594 	i_mmap_lock_read(mapping);
595 	read_lock(&tasklist_lock);
596 	pgoff = page_to_pgoff(page);
597 	for_each_process(tsk) {
598 		struct task_struct *t = task_early_kill(tsk, force_early);
599 
600 		if (!t)
601 			continue;
602 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
603 				      pgoff) {
604 			/*
605 			 * Send early kill signal to tasks where a vma covers
606 			 * the page but the corrupted page is not necessarily
607 			 * mapped it in its pte.
608 			 * Assume applications who requested early kill want
609 			 * to be informed of all such data corruptions.
610 			 */
611 			if (vma->vm_mm == t->mm)
612 				add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
613 					    to_kill);
614 		}
615 	}
616 	read_unlock(&tasklist_lock);
617 	i_mmap_unlock_read(mapping);
618 }
619 
620 #ifdef CONFIG_FS_DAX
621 /*
622  * Collect processes when the error hit a fsdax page.
623  */
624 static void collect_procs_fsdax(struct page *page,
625 		struct address_space *mapping, pgoff_t pgoff,
626 		struct list_head *to_kill)
627 {
628 	struct vm_area_struct *vma;
629 	struct task_struct *tsk;
630 
631 	i_mmap_lock_read(mapping);
632 	read_lock(&tasklist_lock);
633 	for_each_process(tsk) {
634 		struct task_struct *t = task_early_kill(tsk, true);
635 
636 		if (!t)
637 			continue;
638 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
639 			if (vma->vm_mm == t->mm)
640 				add_to_kill(t, page, pgoff, vma, to_kill);
641 		}
642 	}
643 	read_unlock(&tasklist_lock);
644 	i_mmap_unlock_read(mapping);
645 }
646 #endif /* CONFIG_FS_DAX */
647 
648 /*
649  * Collect the processes who have the corrupted page mapped to kill.
650  */
651 static void collect_procs(struct page *page, struct list_head *tokill,
652 				int force_early)
653 {
654 	if (!page->mapping)
655 		return;
656 
657 	if (PageAnon(page))
658 		collect_procs_anon(page, tokill, force_early);
659 	else
660 		collect_procs_file(page, tokill, force_early);
661 }
662 
663 struct hwp_walk {
664 	struct to_kill tk;
665 	unsigned long pfn;
666 	int flags;
667 };
668 
669 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
670 {
671 	tk->addr = addr;
672 	tk->size_shift = shift;
673 }
674 
675 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
676 				unsigned long poisoned_pfn, struct to_kill *tk)
677 {
678 	unsigned long pfn = 0;
679 
680 	if (pte_present(pte)) {
681 		pfn = pte_pfn(pte);
682 	} else {
683 		swp_entry_t swp = pte_to_swp_entry(pte);
684 
685 		if (is_hwpoison_entry(swp))
686 			pfn = swp_offset_pfn(swp);
687 	}
688 
689 	if (!pfn || pfn != poisoned_pfn)
690 		return 0;
691 
692 	set_to_kill(tk, addr, shift);
693 	return 1;
694 }
695 
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
698 				      struct hwp_walk *hwp)
699 {
700 	pmd_t pmd = *pmdp;
701 	unsigned long pfn;
702 	unsigned long hwpoison_vaddr;
703 
704 	if (!pmd_present(pmd))
705 		return 0;
706 	pfn = pmd_pfn(pmd);
707 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
708 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
709 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
710 		return 1;
711 	}
712 	return 0;
713 }
714 #else
715 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
716 				      struct hwp_walk *hwp)
717 {
718 	return 0;
719 }
720 #endif
721 
722 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
723 			      unsigned long end, struct mm_walk *walk)
724 {
725 	struct hwp_walk *hwp = walk->private;
726 	int ret = 0;
727 	pte_t *ptep, *mapped_pte;
728 	spinlock_t *ptl;
729 
730 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
731 	if (ptl) {
732 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
733 		spin_unlock(ptl);
734 		goto out;
735 	}
736 
737 	if (pmd_trans_unstable(pmdp))
738 		goto out;
739 
740 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
741 						addr, &ptl);
742 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
743 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
744 					     hwp->pfn, &hwp->tk);
745 		if (ret == 1)
746 			break;
747 	}
748 	pte_unmap_unlock(mapped_pte, ptl);
749 out:
750 	cond_resched();
751 	return ret;
752 }
753 
754 #ifdef CONFIG_HUGETLB_PAGE
755 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
756 			    unsigned long addr, unsigned long end,
757 			    struct mm_walk *walk)
758 {
759 	struct hwp_walk *hwp = walk->private;
760 	pte_t pte = huge_ptep_get(ptep);
761 	struct hstate *h = hstate_vma(walk->vma);
762 
763 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
764 				      hwp->pfn, &hwp->tk);
765 }
766 #else
767 #define hwpoison_hugetlb_range	NULL
768 #endif
769 
770 static const struct mm_walk_ops hwp_walk_ops = {
771 	.pmd_entry = hwpoison_pte_range,
772 	.hugetlb_entry = hwpoison_hugetlb_range,
773 };
774 
775 /*
776  * Sends SIGBUS to the current process with error info.
777  *
778  * This function is intended to handle "Action Required" MCEs on already
779  * hardware poisoned pages. They could happen, for example, when
780  * memory_failure() failed to unmap the error page at the first call, or
781  * when multiple local machine checks happened on different CPUs.
782  *
783  * MCE handler currently has no easy access to the error virtual address,
784  * so this function walks page table to find it. The returned virtual address
785  * is proper in most cases, but it could be wrong when the application
786  * process has multiple entries mapping the error page.
787  */
788 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
789 				  int flags)
790 {
791 	int ret;
792 	struct hwp_walk priv = {
793 		.pfn = pfn,
794 	};
795 	priv.tk.tsk = p;
796 
797 	if (!p->mm)
798 		return -EFAULT;
799 
800 	mmap_read_lock(p->mm);
801 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
802 			      (void *)&priv);
803 	if (ret == 1 && priv.tk.addr)
804 		kill_proc(&priv.tk, pfn, flags);
805 	else
806 		ret = 0;
807 	mmap_read_unlock(p->mm);
808 	return ret > 0 ? -EHWPOISON : -EFAULT;
809 }
810 
811 static const char *action_name[] = {
812 	[MF_IGNORED] = "Ignored",
813 	[MF_FAILED] = "Failed",
814 	[MF_DELAYED] = "Delayed",
815 	[MF_RECOVERED] = "Recovered",
816 };
817 
818 static const char * const action_page_types[] = {
819 	[MF_MSG_KERNEL]			= "reserved kernel page",
820 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
821 	[MF_MSG_SLAB]			= "kernel slab page",
822 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
823 	[MF_MSG_HUGE]			= "huge page",
824 	[MF_MSG_FREE_HUGE]		= "free huge page",
825 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
826 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
827 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
828 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
829 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
830 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
831 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
832 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
833 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
834 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
835 	[MF_MSG_BUDDY]			= "free buddy page",
836 	[MF_MSG_DAX]			= "dax page",
837 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
838 	[MF_MSG_UNKNOWN]		= "unknown page",
839 };
840 
841 /*
842  * XXX: It is possible that a page is isolated from LRU cache,
843  * and then kept in swap cache or failed to remove from page cache.
844  * The page count will stop it from being freed by unpoison.
845  * Stress tests should be aware of this memory leak problem.
846  */
847 static int delete_from_lru_cache(struct page *p)
848 {
849 	if (isolate_lru_page(p)) {
850 		/*
851 		 * Clear sensible page flags, so that the buddy system won't
852 		 * complain when the page is unpoison-and-freed.
853 		 */
854 		ClearPageActive(p);
855 		ClearPageUnevictable(p);
856 
857 		/*
858 		 * Poisoned page might never drop its ref count to 0 so we have
859 		 * to uncharge it manually from its memcg.
860 		 */
861 		mem_cgroup_uncharge(page_folio(p));
862 
863 		/*
864 		 * drop the page count elevated by isolate_lru_page()
865 		 */
866 		put_page(p);
867 		return 0;
868 	}
869 	return -EIO;
870 }
871 
872 static int truncate_error_page(struct page *p, unsigned long pfn,
873 				struct address_space *mapping)
874 {
875 	int ret = MF_FAILED;
876 
877 	if (mapping->a_ops->error_remove_page) {
878 		struct folio *folio = page_folio(p);
879 		int err = mapping->a_ops->error_remove_page(mapping, p);
880 
881 		if (err != 0) {
882 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
883 		} else if (folio_has_private(folio) &&
884 			   !filemap_release_folio(folio, GFP_NOIO)) {
885 			pr_info("%#lx: failed to release buffers\n", pfn);
886 		} else {
887 			ret = MF_RECOVERED;
888 		}
889 	} else {
890 		/*
891 		 * If the file system doesn't support it just invalidate
892 		 * This fails on dirty or anything with private pages
893 		 */
894 		if (invalidate_inode_page(p))
895 			ret = MF_RECOVERED;
896 		else
897 			pr_info("%#lx: Failed to invalidate\n",	pfn);
898 	}
899 
900 	return ret;
901 }
902 
903 struct page_state {
904 	unsigned long mask;
905 	unsigned long res;
906 	enum mf_action_page_type type;
907 
908 	/* Callback ->action() has to unlock the relevant page inside it. */
909 	int (*action)(struct page_state *ps, struct page *p);
910 };
911 
912 /*
913  * Return true if page is still referenced by others, otherwise return
914  * false.
915  *
916  * The extra_pins is true when one extra refcount is expected.
917  */
918 static bool has_extra_refcount(struct page_state *ps, struct page *p,
919 			       bool extra_pins)
920 {
921 	int count = page_count(p) - 1;
922 
923 	if (extra_pins)
924 		count -= 1;
925 
926 	if (count > 0) {
927 		pr_err("%#lx: %s still referenced by %d users\n",
928 		       page_to_pfn(p), action_page_types[ps->type], count);
929 		return true;
930 	}
931 
932 	return false;
933 }
934 
935 /*
936  * Error hit kernel page.
937  * Do nothing, try to be lucky and not touch this instead. For a few cases we
938  * could be more sophisticated.
939  */
940 static int me_kernel(struct page_state *ps, struct page *p)
941 {
942 	unlock_page(p);
943 	return MF_IGNORED;
944 }
945 
946 /*
947  * Page in unknown state. Do nothing.
948  */
949 static int me_unknown(struct page_state *ps, struct page *p)
950 {
951 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
952 	unlock_page(p);
953 	return MF_FAILED;
954 }
955 
956 /*
957  * Clean (or cleaned) page cache page.
958  */
959 static int me_pagecache_clean(struct page_state *ps, struct page *p)
960 {
961 	int ret;
962 	struct address_space *mapping;
963 	bool extra_pins;
964 
965 	delete_from_lru_cache(p);
966 
967 	/*
968 	 * For anonymous pages we're done the only reference left
969 	 * should be the one m_f() holds.
970 	 */
971 	if (PageAnon(p)) {
972 		ret = MF_RECOVERED;
973 		goto out;
974 	}
975 
976 	/*
977 	 * Now truncate the page in the page cache. This is really
978 	 * more like a "temporary hole punch"
979 	 * Don't do this for block devices when someone else
980 	 * has a reference, because it could be file system metadata
981 	 * and that's not safe to truncate.
982 	 */
983 	mapping = page_mapping(p);
984 	if (!mapping) {
985 		/*
986 		 * Page has been teared down in the meanwhile
987 		 */
988 		ret = MF_FAILED;
989 		goto out;
990 	}
991 
992 	/*
993 	 * The shmem page is kept in page cache instead of truncating
994 	 * so is expected to have an extra refcount after error-handling.
995 	 */
996 	extra_pins = shmem_mapping(mapping);
997 
998 	/*
999 	 * Truncation is a bit tricky. Enable it per file system for now.
1000 	 *
1001 	 * Open: to take i_rwsem or not for this? Right now we don't.
1002 	 */
1003 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1004 	if (has_extra_refcount(ps, p, extra_pins))
1005 		ret = MF_FAILED;
1006 
1007 out:
1008 	unlock_page(p);
1009 
1010 	return ret;
1011 }
1012 
1013 /*
1014  * Dirty pagecache page
1015  * Issues: when the error hit a hole page the error is not properly
1016  * propagated.
1017  */
1018 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1019 {
1020 	struct address_space *mapping = page_mapping(p);
1021 
1022 	SetPageError(p);
1023 	/* TBD: print more information about the file. */
1024 	if (mapping) {
1025 		/*
1026 		 * IO error will be reported by write(), fsync(), etc.
1027 		 * who check the mapping.
1028 		 * This way the application knows that something went
1029 		 * wrong with its dirty file data.
1030 		 *
1031 		 * There's one open issue:
1032 		 *
1033 		 * The EIO will be only reported on the next IO
1034 		 * operation and then cleared through the IO map.
1035 		 * Normally Linux has two mechanisms to pass IO error
1036 		 * first through the AS_EIO flag in the address space
1037 		 * and then through the PageError flag in the page.
1038 		 * Since we drop pages on memory failure handling the
1039 		 * only mechanism open to use is through AS_AIO.
1040 		 *
1041 		 * This has the disadvantage that it gets cleared on
1042 		 * the first operation that returns an error, while
1043 		 * the PageError bit is more sticky and only cleared
1044 		 * when the page is reread or dropped.  If an
1045 		 * application assumes it will always get error on
1046 		 * fsync, but does other operations on the fd before
1047 		 * and the page is dropped between then the error
1048 		 * will not be properly reported.
1049 		 *
1050 		 * This can already happen even without hwpoisoned
1051 		 * pages: first on metadata IO errors (which only
1052 		 * report through AS_EIO) or when the page is dropped
1053 		 * at the wrong time.
1054 		 *
1055 		 * So right now we assume that the application DTRT on
1056 		 * the first EIO, but we're not worse than other parts
1057 		 * of the kernel.
1058 		 */
1059 		mapping_set_error(mapping, -EIO);
1060 	}
1061 
1062 	return me_pagecache_clean(ps, p);
1063 }
1064 
1065 /*
1066  * Clean and dirty swap cache.
1067  *
1068  * Dirty swap cache page is tricky to handle. The page could live both in page
1069  * cache and swap cache(ie. page is freshly swapped in). So it could be
1070  * referenced concurrently by 2 types of PTEs:
1071  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1072  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1073  * and then
1074  *      - clear dirty bit to prevent IO
1075  *      - remove from LRU
1076  *      - but keep in the swap cache, so that when we return to it on
1077  *        a later page fault, we know the application is accessing
1078  *        corrupted data and shall be killed (we installed simple
1079  *        interception code in do_swap_page to catch it).
1080  *
1081  * Clean swap cache pages can be directly isolated. A later page fault will
1082  * bring in the known good data from disk.
1083  */
1084 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1085 {
1086 	int ret;
1087 	bool extra_pins = false;
1088 
1089 	ClearPageDirty(p);
1090 	/* Trigger EIO in shmem: */
1091 	ClearPageUptodate(p);
1092 
1093 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1094 	unlock_page(p);
1095 
1096 	if (ret == MF_DELAYED)
1097 		extra_pins = true;
1098 
1099 	if (has_extra_refcount(ps, p, extra_pins))
1100 		ret = MF_FAILED;
1101 
1102 	return ret;
1103 }
1104 
1105 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1106 {
1107 	struct folio *folio = page_folio(p);
1108 	int ret;
1109 
1110 	delete_from_swap_cache(folio);
1111 
1112 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1113 	folio_unlock(folio);
1114 
1115 	if (has_extra_refcount(ps, p, false))
1116 		ret = MF_FAILED;
1117 
1118 	return ret;
1119 }
1120 
1121 /*
1122  * Huge pages. Needs work.
1123  * Issues:
1124  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1125  *   To narrow down kill region to one page, we need to break up pmd.
1126  */
1127 static int me_huge_page(struct page_state *ps, struct page *p)
1128 {
1129 	int res;
1130 	struct page *hpage = compound_head(p);
1131 	struct address_space *mapping;
1132 	bool extra_pins = false;
1133 
1134 	if (!PageHuge(hpage))
1135 		return MF_DELAYED;
1136 
1137 	mapping = page_mapping(hpage);
1138 	if (mapping) {
1139 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1140 		/* The page is kept in page cache. */
1141 		extra_pins = true;
1142 		unlock_page(hpage);
1143 	} else {
1144 		unlock_page(hpage);
1145 		/*
1146 		 * migration entry prevents later access on error hugepage,
1147 		 * so we can free and dissolve it into buddy to save healthy
1148 		 * subpages.
1149 		 */
1150 		put_page(hpage);
1151 		if (__page_handle_poison(p) >= 0) {
1152 			page_ref_inc(p);
1153 			res = MF_RECOVERED;
1154 		} else {
1155 			res = MF_FAILED;
1156 		}
1157 	}
1158 
1159 	if (has_extra_refcount(ps, p, extra_pins))
1160 		res = MF_FAILED;
1161 
1162 	return res;
1163 }
1164 
1165 /*
1166  * Various page states we can handle.
1167  *
1168  * A page state is defined by its current page->flags bits.
1169  * The table matches them in order and calls the right handler.
1170  *
1171  * This is quite tricky because we can access page at any time
1172  * in its live cycle, so all accesses have to be extremely careful.
1173  *
1174  * This is not complete. More states could be added.
1175  * For any missing state don't attempt recovery.
1176  */
1177 
1178 #define dirty		(1UL << PG_dirty)
1179 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1180 #define unevict		(1UL << PG_unevictable)
1181 #define mlock		(1UL << PG_mlocked)
1182 #define lru		(1UL << PG_lru)
1183 #define head		(1UL << PG_head)
1184 #define slab		(1UL << PG_slab)
1185 #define reserved	(1UL << PG_reserved)
1186 
1187 static struct page_state error_states[] = {
1188 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1189 	/*
1190 	 * free pages are specially detected outside this table:
1191 	 * PG_buddy pages only make a small fraction of all free pages.
1192 	 */
1193 
1194 	/*
1195 	 * Could in theory check if slab page is free or if we can drop
1196 	 * currently unused objects without touching them. But just
1197 	 * treat it as standard kernel for now.
1198 	 */
1199 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1200 
1201 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1202 
1203 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1204 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1205 
1206 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1207 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1208 
1209 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1210 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1211 
1212 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1213 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1214 
1215 	/*
1216 	 * Catchall entry: must be at end.
1217 	 */
1218 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1219 };
1220 
1221 #undef dirty
1222 #undef sc
1223 #undef unevict
1224 #undef mlock
1225 #undef lru
1226 #undef head
1227 #undef slab
1228 #undef reserved
1229 
1230 static void update_per_node_mf_stats(unsigned long pfn,
1231 				     enum mf_result result)
1232 {
1233 	int nid = MAX_NUMNODES;
1234 	struct memory_failure_stats *mf_stats = NULL;
1235 
1236 	nid = pfn_to_nid(pfn);
1237 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1238 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1239 		return;
1240 	}
1241 
1242 	mf_stats = &NODE_DATA(nid)->mf_stats;
1243 	switch (result) {
1244 	case MF_IGNORED:
1245 		++mf_stats->ignored;
1246 		break;
1247 	case MF_FAILED:
1248 		++mf_stats->failed;
1249 		break;
1250 	case MF_DELAYED:
1251 		++mf_stats->delayed;
1252 		break;
1253 	case MF_RECOVERED:
1254 		++mf_stats->recovered;
1255 		break;
1256 	default:
1257 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1258 		break;
1259 	}
1260 	++mf_stats->total;
1261 }
1262 
1263 /*
1264  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1265  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1266  */
1267 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1268 			 enum mf_result result)
1269 {
1270 	trace_memory_failure_event(pfn, type, result);
1271 
1272 	num_poisoned_pages_inc(pfn);
1273 
1274 	update_per_node_mf_stats(pfn, result);
1275 
1276 	pr_err("%#lx: recovery action for %s: %s\n",
1277 		pfn, action_page_types[type], action_name[result]);
1278 
1279 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1280 }
1281 
1282 static int page_action(struct page_state *ps, struct page *p,
1283 			unsigned long pfn)
1284 {
1285 	int result;
1286 
1287 	/* page p should be unlocked after returning from ps->action().  */
1288 	result = ps->action(ps, p);
1289 
1290 	/* Could do more checks here if page looks ok */
1291 	/*
1292 	 * Could adjust zone counters here to correct for the missing page.
1293 	 */
1294 
1295 	return action_result(pfn, ps->type, result);
1296 }
1297 
1298 static inline bool PageHWPoisonTakenOff(struct page *page)
1299 {
1300 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1301 }
1302 
1303 void SetPageHWPoisonTakenOff(struct page *page)
1304 {
1305 	set_page_private(page, MAGIC_HWPOISON);
1306 }
1307 
1308 void ClearPageHWPoisonTakenOff(struct page *page)
1309 {
1310 	if (PageHWPoison(page))
1311 		set_page_private(page, 0);
1312 }
1313 
1314 /*
1315  * Return true if a page type of a given page is supported by hwpoison
1316  * mechanism (while handling could fail), otherwise false.  This function
1317  * does not return true for hugetlb or device memory pages, so it's assumed
1318  * to be called only in the context where we never have such pages.
1319  */
1320 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1321 {
1322 	/* Soft offline could migrate non-LRU movable pages */
1323 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1324 		return true;
1325 
1326 	return PageLRU(page) || is_free_buddy_page(page);
1327 }
1328 
1329 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1330 {
1331 	struct folio *folio = page_folio(page);
1332 	int ret = 0;
1333 	bool hugetlb = false;
1334 
1335 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1336 	if (hugetlb)
1337 		return ret;
1338 
1339 	/*
1340 	 * This check prevents from calling folio_try_get() for any
1341 	 * unsupported type of folio in order to reduce the risk of unexpected
1342 	 * races caused by taking a folio refcount.
1343 	 */
1344 	if (!HWPoisonHandlable(&folio->page, flags))
1345 		return -EBUSY;
1346 
1347 	if (folio_try_get(folio)) {
1348 		if (folio == page_folio(page))
1349 			return 1;
1350 
1351 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1352 		folio_put(folio);
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static int get_any_page(struct page *p, unsigned long flags)
1359 {
1360 	int ret = 0, pass = 0;
1361 	bool count_increased = false;
1362 
1363 	if (flags & MF_COUNT_INCREASED)
1364 		count_increased = true;
1365 
1366 try_again:
1367 	if (!count_increased) {
1368 		ret = __get_hwpoison_page(p, flags);
1369 		if (!ret) {
1370 			if (page_count(p)) {
1371 				/* We raced with an allocation, retry. */
1372 				if (pass++ < 3)
1373 					goto try_again;
1374 				ret = -EBUSY;
1375 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1376 				/* We raced with put_page, retry. */
1377 				if (pass++ < 3)
1378 					goto try_again;
1379 				ret = -EIO;
1380 			}
1381 			goto out;
1382 		} else if (ret == -EBUSY) {
1383 			/*
1384 			 * We raced with (possibly temporary) unhandlable
1385 			 * page, retry.
1386 			 */
1387 			if (pass++ < 3) {
1388 				shake_page(p);
1389 				goto try_again;
1390 			}
1391 			ret = -EIO;
1392 			goto out;
1393 		}
1394 	}
1395 
1396 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1397 		ret = 1;
1398 	} else {
1399 		/*
1400 		 * A page we cannot handle. Check whether we can turn
1401 		 * it into something we can handle.
1402 		 */
1403 		if (pass++ < 3) {
1404 			put_page(p);
1405 			shake_page(p);
1406 			count_increased = false;
1407 			goto try_again;
1408 		}
1409 		put_page(p);
1410 		ret = -EIO;
1411 	}
1412 out:
1413 	if (ret == -EIO)
1414 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1415 
1416 	return ret;
1417 }
1418 
1419 static int __get_unpoison_page(struct page *page)
1420 {
1421 	struct folio *folio = page_folio(page);
1422 	int ret = 0;
1423 	bool hugetlb = false;
1424 
1425 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1426 	if (hugetlb)
1427 		return ret;
1428 
1429 	/*
1430 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1431 	 * but also isolated from buddy freelist, so need to identify the
1432 	 * state and have to cancel both operations to unpoison.
1433 	 */
1434 	if (PageHWPoisonTakenOff(page))
1435 		return -EHWPOISON;
1436 
1437 	return get_page_unless_zero(page) ? 1 : 0;
1438 }
1439 
1440 /**
1441  * get_hwpoison_page() - Get refcount for memory error handling
1442  * @p:		Raw error page (hit by memory error)
1443  * @flags:	Flags controlling behavior of error handling
1444  *
1445  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1446  * error on it, after checking that the error page is in a well-defined state
1447  * (defined as a page-type we can successfully handle the memory error on it,
1448  * such as LRU page and hugetlb page).
1449  *
1450  * Memory error handling could be triggered at any time on any type of page,
1451  * so it's prone to race with typical memory management lifecycle (like
1452  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1453  * extra care for the error page's state (as done in __get_hwpoison_page()),
1454  * and has some retry logic in get_any_page().
1455  *
1456  * When called from unpoison_memory(), the caller should already ensure that
1457  * the given page has PG_hwpoison. So it's never reused for other page
1458  * allocations, and __get_unpoison_page() never races with them.
1459  *
1460  * Return: 0 on failure,
1461  *         1 on success for in-use pages in a well-defined state,
1462  *         -EIO for pages on which we can not handle memory errors,
1463  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1464  *         operations like allocation and free,
1465  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1466  */
1467 static int get_hwpoison_page(struct page *p, unsigned long flags)
1468 {
1469 	int ret;
1470 
1471 	zone_pcp_disable(page_zone(p));
1472 	if (flags & MF_UNPOISON)
1473 		ret = __get_unpoison_page(p);
1474 	else
1475 		ret = get_any_page(p, flags);
1476 	zone_pcp_enable(page_zone(p));
1477 
1478 	return ret;
1479 }
1480 
1481 /*
1482  * Do all that is necessary to remove user space mappings. Unmap
1483  * the pages and send SIGBUS to the processes if the data was dirty.
1484  */
1485 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1486 				  int flags, struct page *hpage)
1487 {
1488 	struct folio *folio = page_folio(hpage);
1489 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1490 	struct address_space *mapping;
1491 	LIST_HEAD(tokill);
1492 	bool unmap_success;
1493 	int forcekill;
1494 	bool mlocked = PageMlocked(hpage);
1495 
1496 	/*
1497 	 * Here we are interested only in user-mapped pages, so skip any
1498 	 * other types of pages.
1499 	 */
1500 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1501 		return true;
1502 	if (!(PageLRU(hpage) || PageHuge(p)))
1503 		return true;
1504 
1505 	/*
1506 	 * This check implies we don't kill processes if their pages
1507 	 * are in the swap cache early. Those are always late kills.
1508 	 */
1509 	if (!page_mapped(hpage))
1510 		return true;
1511 
1512 	if (PageKsm(p)) {
1513 		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1514 		return false;
1515 	}
1516 
1517 	if (PageSwapCache(p)) {
1518 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1519 		ttu &= ~TTU_HWPOISON;
1520 	}
1521 
1522 	/*
1523 	 * Propagate the dirty bit from PTEs to struct page first, because we
1524 	 * need this to decide if we should kill or just drop the page.
1525 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1526 	 * be called inside page lock (it's recommended but not enforced).
1527 	 */
1528 	mapping = page_mapping(hpage);
1529 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1530 	    mapping_can_writeback(mapping)) {
1531 		if (page_mkclean(hpage)) {
1532 			SetPageDirty(hpage);
1533 		} else {
1534 			ttu &= ~TTU_HWPOISON;
1535 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1536 				pfn);
1537 		}
1538 	}
1539 
1540 	/*
1541 	 * First collect all the processes that have the page
1542 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1543 	 * because ttu takes the rmap data structures down.
1544 	 */
1545 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1546 
1547 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1548 		/*
1549 		 * For hugetlb pages in shared mappings, try_to_unmap
1550 		 * could potentially call huge_pmd_unshare.  Because of
1551 		 * this, take semaphore in write mode here and set
1552 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1553 		 * at this higher level.
1554 		 */
1555 		mapping = hugetlb_page_mapping_lock_write(hpage);
1556 		if (mapping) {
1557 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1558 			i_mmap_unlock_write(mapping);
1559 		} else
1560 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1561 	} else {
1562 		try_to_unmap(folio, ttu);
1563 	}
1564 
1565 	unmap_success = !page_mapped(hpage);
1566 	if (!unmap_success)
1567 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1568 		       pfn, page_mapcount(hpage));
1569 
1570 	/*
1571 	 * try_to_unmap() might put mlocked page in lru cache, so call
1572 	 * shake_page() again to ensure that it's flushed.
1573 	 */
1574 	if (mlocked)
1575 		shake_page(hpage);
1576 
1577 	/*
1578 	 * Now that the dirty bit has been propagated to the
1579 	 * struct page and all unmaps done we can decide if
1580 	 * killing is needed or not.  Only kill when the page
1581 	 * was dirty or the process is not restartable,
1582 	 * otherwise the tokill list is merely
1583 	 * freed.  When there was a problem unmapping earlier
1584 	 * use a more force-full uncatchable kill to prevent
1585 	 * any accesses to the poisoned memory.
1586 	 */
1587 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1588 		    !unmap_success;
1589 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1590 
1591 	return unmap_success;
1592 }
1593 
1594 static int identify_page_state(unsigned long pfn, struct page *p,
1595 				unsigned long page_flags)
1596 {
1597 	struct page_state *ps;
1598 
1599 	/*
1600 	 * The first check uses the current page flags which may not have any
1601 	 * relevant information. The second check with the saved page flags is
1602 	 * carried out only if the first check can't determine the page status.
1603 	 */
1604 	for (ps = error_states;; ps++)
1605 		if ((p->flags & ps->mask) == ps->res)
1606 			break;
1607 
1608 	page_flags |= (p->flags & (1UL << PG_dirty));
1609 
1610 	if (!ps->mask)
1611 		for (ps = error_states;; ps++)
1612 			if ((page_flags & ps->mask) == ps->res)
1613 				break;
1614 	return page_action(ps, p, pfn);
1615 }
1616 
1617 static int try_to_split_thp_page(struct page *page)
1618 {
1619 	int ret;
1620 
1621 	lock_page(page);
1622 	ret = split_huge_page(page);
1623 	unlock_page(page);
1624 
1625 	if (unlikely(ret))
1626 		put_page(page);
1627 
1628 	return ret;
1629 }
1630 
1631 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1632 		struct address_space *mapping, pgoff_t index, int flags)
1633 {
1634 	struct to_kill *tk;
1635 	unsigned long size = 0;
1636 
1637 	list_for_each_entry(tk, to_kill, nd)
1638 		if (tk->size_shift)
1639 			size = max(size, 1UL << tk->size_shift);
1640 
1641 	if (size) {
1642 		/*
1643 		 * Unmap the largest mapping to avoid breaking up device-dax
1644 		 * mappings which are constant size. The actual size of the
1645 		 * mapping being torn down is communicated in siginfo, see
1646 		 * kill_proc()
1647 		 */
1648 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1649 
1650 		unmap_mapping_range(mapping, start, size, 0);
1651 	}
1652 
1653 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1654 }
1655 
1656 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1657 		struct dev_pagemap *pgmap)
1658 {
1659 	struct page *page = pfn_to_page(pfn);
1660 	LIST_HEAD(to_kill);
1661 	dax_entry_t cookie;
1662 	int rc = 0;
1663 
1664 	/*
1665 	 * Pages instantiated by device-dax (not filesystem-dax)
1666 	 * may be compound pages.
1667 	 */
1668 	page = compound_head(page);
1669 
1670 	/*
1671 	 * Prevent the inode from being freed while we are interrogating
1672 	 * the address_space, typically this would be handled by
1673 	 * lock_page(), but dax pages do not use the page lock. This
1674 	 * also prevents changes to the mapping of this pfn until
1675 	 * poison signaling is complete.
1676 	 */
1677 	cookie = dax_lock_page(page);
1678 	if (!cookie)
1679 		return -EBUSY;
1680 
1681 	if (hwpoison_filter(page)) {
1682 		rc = -EOPNOTSUPP;
1683 		goto unlock;
1684 	}
1685 
1686 	switch (pgmap->type) {
1687 	case MEMORY_DEVICE_PRIVATE:
1688 	case MEMORY_DEVICE_COHERENT:
1689 		/*
1690 		 * TODO: Handle device pages which may need coordination
1691 		 * with device-side memory.
1692 		 */
1693 		rc = -ENXIO;
1694 		goto unlock;
1695 	default:
1696 		break;
1697 	}
1698 
1699 	/*
1700 	 * Use this flag as an indication that the dax page has been
1701 	 * remapped UC to prevent speculative consumption of poison.
1702 	 */
1703 	SetPageHWPoison(page);
1704 
1705 	/*
1706 	 * Unlike System-RAM there is no possibility to swap in a
1707 	 * different physical page at a given virtual address, so all
1708 	 * userspace consumption of ZONE_DEVICE memory necessitates
1709 	 * SIGBUS (i.e. MF_MUST_KILL)
1710 	 */
1711 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1712 	collect_procs(page, &to_kill, true);
1713 
1714 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1715 unlock:
1716 	dax_unlock_page(page, cookie);
1717 	return rc;
1718 }
1719 
1720 #ifdef CONFIG_FS_DAX
1721 /**
1722  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1723  * @mapping:	address_space of the file in use
1724  * @index:	start pgoff of the range within the file
1725  * @count:	length of the range, in unit of PAGE_SIZE
1726  * @mf_flags:	memory failure flags
1727  */
1728 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1729 		unsigned long count, int mf_flags)
1730 {
1731 	LIST_HEAD(to_kill);
1732 	dax_entry_t cookie;
1733 	struct page *page;
1734 	size_t end = index + count;
1735 
1736 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1737 
1738 	for (; index < end; index++) {
1739 		page = NULL;
1740 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1741 		if (!cookie)
1742 			return -EBUSY;
1743 		if (!page)
1744 			goto unlock;
1745 
1746 		SetPageHWPoison(page);
1747 
1748 		collect_procs_fsdax(page, mapping, index, &to_kill);
1749 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1750 				index, mf_flags);
1751 unlock:
1752 		dax_unlock_mapping_entry(mapping, index, cookie);
1753 	}
1754 	return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1757 #endif /* CONFIG_FS_DAX */
1758 
1759 #ifdef CONFIG_HUGETLB_PAGE
1760 /*
1761  * Struct raw_hwp_page represents information about "raw error page",
1762  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1763  */
1764 struct raw_hwp_page {
1765 	struct llist_node node;
1766 	struct page *page;
1767 };
1768 
1769 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1770 {
1771 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1772 }
1773 
1774 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1775 {
1776 	struct llist_head *head;
1777 	struct llist_node *t, *tnode;
1778 	unsigned long count = 0;
1779 
1780 	head = raw_hwp_list_head(folio);
1781 	llist_for_each_safe(tnode, t, head->first) {
1782 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1783 
1784 		if (move_flag)
1785 			SetPageHWPoison(p->page);
1786 		else
1787 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1788 		kfree(p);
1789 		count++;
1790 	}
1791 	llist_del_all(head);
1792 	return count;
1793 }
1794 
1795 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1796 {
1797 	struct llist_head *head;
1798 	struct raw_hwp_page *raw_hwp;
1799 	struct llist_node *t, *tnode;
1800 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1801 
1802 	/*
1803 	 * Once the hwpoison hugepage has lost reliable raw error info,
1804 	 * there is little meaning to keep additional error info precisely,
1805 	 * so skip to add additional raw error info.
1806 	 */
1807 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1808 		return -EHWPOISON;
1809 	head = raw_hwp_list_head(folio);
1810 	llist_for_each_safe(tnode, t, head->first) {
1811 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1812 
1813 		if (p->page == page)
1814 			return -EHWPOISON;
1815 	}
1816 
1817 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1818 	if (raw_hwp) {
1819 		raw_hwp->page = page;
1820 		llist_add(&raw_hwp->node, head);
1821 		/* the first error event will be counted in action_result(). */
1822 		if (ret)
1823 			num_poisoned_pages_inc(page_to_pfn(page));
1824 	} else {
1825 		/*
1826 		 * Failed to save raw error info.  We no longer trace all
1827 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1828 		 * this hwpoisoned hugepage.
1829 		 */
1830 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1831 		/*
1832 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1833 		 * used any more, so free it.
1834 		 */
1835 		__folio_free_raw_hwp(folio, false);
1836 	}
1837 	return ret;
1838 }
1839 
1840 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1841 {
1842 	/*
1843 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1844 	 * pages for tail pages are required but they don't exist.
1845 	 */
1846 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1847 		return 0;
1848 
1849 	/*
1850 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1851 	 * definition.
1852 	 */
1853 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1854 		return 0;
1855 
1856 	return __folio_free_raw_hwp(folio, move_flag);
1857 }
1858 
1859 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1860 {
1861 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1862 		return;
1863 	folio_clear_hwpoison(folio);
1864 	folio_free_raw_hwp(folio, true);
1865 }
1866 
1867 /*
1868  * Called from hugetlb code with hugetlb_lock held.
1869  *
1870  * Return values:
1871  *   0             - free hugepage
1872  *   1             - in-use hugepage
1873  *   2             - not a hugepage
1874  *   -EBUSY        - the hugepage is busy (try to retry)
1875  *   -EHWPOISON    - the hugepage is already hwpoisoned
1876  */
1877 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1878 				 bool *migratable_cleared)
1879 {
1880 	struct page *page = pfn_to_page(pfn);
1881 	struct folio *folio = page_folio(page);
1882 	int ret = 2;	/* fallback to normal page handling */
1883 	bool count_increased = false;
1884 
1885 	if (!folio_test_hugetlb(folio))
1886 		goto out;
1887 
1888 	if (flags & MF_COUNT_INCREASED) {
1889 		ret = 1;
1890 		count_increased = true;
1891 	} else if (folio_test_hugetlb_freed(folio)) {
1892 		ret = 0;
1893 	} else if (folio_test_hugetlb_migratable(folio)) {
1894 		ret = folio_try_get(folio);
1895 		if (ret)
1896 			count_increased = true;
1897 	} else {
1898 		ret = -EBUSY;
1899 		if (!(flags & MF_NO_RETRY))
1900 			goto out;
1901 	}
1902 
1903 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1904 		ret = -EHWPOISON;
1905 		goto out;
1906 	}
1907 
1908 	/*
1909 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1910 	 * from being migrated by memory hotremove.
1911 	 */
1912 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1913 		folio_clear_hugetlb_migratable(folio);
1914 		*migratable_cleared = true;
1915 	}
1916 
1917 	return ret;
1918 out:
1919 	if (count_increased)
1920 		folio_put(folio);
1921 	return ret;
1922 }
1923 
1924 /*
1925  * Taking refcount of hugetlb pages needs extra care about race conditions
1926  * with basic operations like hugepage allocation/free/demotion.
1927  * So some of prechecks for hwpoison (pinning, and testing/setting
1928  * PageHWPoison) should be done in single hugetlb_lock range.
1929  */
1930 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1931 {
1932 	int res;
1933 	struct page *p = pfn_to_page(pfn);
1934 	struct folio *folio;
1935 	unsigned long page_flags;
1936 	bool migratable_cleared = false;
1937 
1938 	*hugetlb = 1;
1939 retry:
1940 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1941 	if (res == 2) { /* fallback to normal page handling */
1942 		*hugetlb = 0;
1943 		return 0;
1944 	} else if (res == -EHWPOISON) {
1945 		pr_err("%#lx: already hardware poisoned\n", pfn);
1946 		if (flags & MF_ACTION_REQUIRED) {
1947 			folio = page_folio(p);
1948 			res = kill_accessing_process(current, folio_pfn(folio), flags);
1949 		}
1950 		return res;
1951 	} else if (res == -EBUSY) {
1952 		if (!(flags & MF_NO_RETRY)) {
1953 			flags |= MF_NO_RETRY;
1954 			goto retry;
1955 		}
1956 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1957 	}
1958 
1959 	folio = page_folio(p);
1960 	folio_lock(folio);
1961 
1962 	if (hwpoison_filter(p)) {
1963 		folio_clear_hugetlb_hwpoison(folio);
1964 		if (migratable_cleared)
1965 			folio_set_hugetlb_migratable(folio);
1966 		folio_unlock(folio);
1967 		if (res == 1)
1968 			folio_put(folio);
1969 		return -EOPNOTSUPP;
1970 	}
1971 
1972 	/*
1973 	 * Handling free hugepage.  The possible race with hugepage allocation
1974 	 * or demotion can be prevented by PageHWPoison flag.
1975 	 */
1976 	if (res == 0) {
1977 		folio_unlock(folio);
1978 		if (__page_handle_poison(p) >= 0) {
1979 			page_ref_inc(p);
1980 			res = MF_RECOVERED;
1981 		} else {
1982 			res = MF_FAILED;
1983 		}
1984 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
1985 	}
1986 
1987 	page_flags = folio->flags;
1988 
1989 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
1990 		folio_unlock(folio);
1991 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1992 	}
1993 
1994 	return identify_page_state(pfn, p, page_flags);
1995 }
1996 
1997 #else
1998 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1999 {
2000 	return 0;
2001 }
2002 
2003 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2004 {
2005 	return 0;
2006 }
2007 #endif	/* CONFIG_HUGETLB_PAGE */
2008 
2009 /* Drop the extra refcount in case we come from madvise() */
2010 static void put_ref_page(unsigned long pfn, int flags)
2011 {
2012 	struct page *page;
2013 
2014 	if (!(flags & MF_COUNT_INCREASED))
2015 		return;
2016 
2017 	page = pfn_to_page(pfn);
2018 	if (page)
2019 		put_page(page);
2020 }
2021 
2022 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2023 		struct dev_pagemap *pgmap)
2024 {
2025 	int rc = -ENXIO;
2026 
2027 	put_ref_page(pfn, flags);
2028 
2029 	/* device metadata space is not recoverable */
2030 	if (!pgmap_pfn_valid(pgmap, pfn))
2031 		goto out;
2032 
2033 	/*
2034 	 * Call driver's implementation to handle the memory failure, otherwise
2035 	 * fall back to generic handler.
2036 	 */
2037 	if (pgmap_has_memory_failure(pgmap)) {
2038 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2039 		/*
2040 		 * Fall back to generic handler too if operation is not
2041 		 * supported inside the driver/device/filesystem.
2042 		 */
2043 		if (rc != -EOPNOTSUPP)
2044 			goto out;
2045 	}
2046 
2047 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2048 out:
2049 	/* drop pgmap ref acquired in caller */
2050 	put_dev_pagemap(pgmap);
2051 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2052 	return rc;
2053 }
2054 
2055 static DEFINE_MUTEX(mf_mutex);
2056 
2057 /**
2058  * memory_failure - Handle memory failure of a page.
2059  * @pfn: Page Number of the corrupted page
2060  * @flags: fine tune action taken
2061  *
2062  * This function is called by the low level machine check code
2063  * of an architecture when it detects hardware memory corruption
2064  * of a page. It tries its best to recover, which includes
2065  * dropping pages, killing processes etc.
2066  *
2067  * The function is primarily of use for corruptions that
2068  * happen outside the current execution context (e.g. when
2069  * detected by a background scrubber)
2070  *
2071  * Must run in process context (e.g. a work queue) with interrupts
2072  * enabled and no spinlocks hold.
2073  *
2074  * Return: 0 for successfully handled the memory error,
2075  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2076  *         < 0(except -EOPNOTSUPP) on failure.
2077  */
2078 int memory_failure(unsigned long pfn, int flags)
2079 {
2080 	struct page *p;
2081 	struct page *hpage;
2082 	struct dev_pagemap *pgmap;
2083 	int res = 0;
2084 	unsigned long page_flags;
2085 	bool retry = true;
2086 	int hugetlb = 0;
2087 
2088 	if (!sysctl_memory_failure_recovery)
2089 		panic("Memory failure on page %lx", pfn);
2090 
2091 	mutex_lock(&mf_mutex);
2092 
2093 	if (!(flags & MF_SW_SIMULATED))
2094 		hw_memory_failure = true;
2095 
2096 	p = pfn_to_online_page(pfn);
2097 	if (!p) {
2098 		res = arch_memory_failure(pfn, flags);
2099 		if (res == 0)
2100 			goto unlock_mutex;
2101 
2102 		if (pfn_valid(pfn)) {
2103 			pgmap = get_dev_pagemap(pfn, NULL);
2104 			if (pgmap) {
2105 				res = memory_failure_dev_pagemap(pfn, flags,
2106 								 pgmap);
2107 				goto unlock_mutex;
2108 			}
2109 		}
2110 		pr_err("%#lx: memory outside kernel control\n", pfn);
2111 		res = -ENXIO;
2112 		goto unlock_mutex;
2113 	}
2114 
2115 try_again:
2116 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2117 	if (hugetlb)
2118 		goto unlock_mutex;
2119 
2120 	if (TestSetPageHWPoison(p)) {
2121 		pr_err("%#lx: already hardware poisoned\n", pfn);
2122 		res = -EHWPOISON;
2123 		if (flags & MF_ACTION_REQUIRED)
2124 			res = kill_accessing_process(current, pfn, flags);
2125 		if (flags & MF_COUNT_INCREASED)
2126 			put_page(p);
2127 		goto unlock_mutex;
2128 	}
2129 
2130 	hpage = compound_head(p);
2131 
2132 	/*
2133 	 * We need/can do nothing about count=0 pages.
2134 	 * 1) it's a free page, and therefore in safe hand:
2135 	 *    check_new_page() will be the gate keeper.
2136 	 * 2) it's part of a non-compound high order page.
2137 	 *    Implies some kernel user: cannot stop them from
2138 	 *    R/W the page; let's pray that the page has been
2139 	 *    used and will be freed some time later.
2140 	 * In fact it's dangerous to directly bump up page count from 0,
2141 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2142 	 */
2143 	if (!(flags & MF_COUNT_INCREASED)) {
2144 		res = get_hwpoison_page(p, flags);
2145 		if (!res) {
2146 			if (is_free_buddy_page(p)) {
2147 				if (take_page_off_buddy(p)) {
2148 					page_ref_inc(p);
2149 					res = MF_RECOVERED;
2150 				} else {
2151 					/* We lost the race, try again */
2152 					if (retry) {
2153 						ClearPageHWPoison(p);
2154 						retry = false;
2155 						goto try_again;
2156 					}
2157 					res = MF_FAILED;
2158 				}
2159 				res = action_result(pfn, MF_MSG_BUDDY, res);
2160 			} else {
2161 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2162 			}
2163 			goto unlock_mutex;
2164 		} else if (res < 0) {
2165 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2166 			goto unlock_mutex;
2167 		}
2168 	}
2169 
2170 	if (PageTransHuge(hpage)) {
2171 		/*
2172 		 * The flag must be set after the refcount is bumped
2173 		 * otherwise it may race with THP split.
2174 		 * And the flag can't be set in get_hwpoison_page() since
2175 		 * it is called by soft offline too and it is just called
2176 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2177 		 * place.
2178 		 *
2179 		 * Don't need care about the above error handling paths for
2180 		 * get_hwpoison_page() since they handle either free page
2181 		 * or unhandlable page.  The refcount is bumped iff the
2182 		 * page is a valid handlable page.
2183 		 */
2184 		SetPageHasHWPoisoned(hpage);
2185 		if (try_to_split_thp_page(p) < 0) {
2186 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2187 			goto unlock_mutex;
2188 		}
2189 		VM_BUG_ON_PAGE(!page_count(p), p);
2190 	}
2191 
2192 	/*
2193 	 * We ignore non-LRU pages for good reasons.
2194 	 * - PG_locked is only well defined for LRU pages and a few others
2195 	 * - to avoid races with __SetPageLocked()
2196 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2197 	 * The check (unnecessarily) ignores LRU pages being isolated and
2198 	 * walked by the page reclaim code, however that's not a big loss.
2199 	 */
2200 	shake_page(p);
2201 
2202 	lock_page(p);
2203 
2204 	/*
2205 	 * We're only intended to deal with the non-Compound page here.
2206 	 * However, the page could have changed compound pages due to
2207 	 * race window. If this happens, we could try again to hopefully
2208 	 * handle the page next round.
2209 	 */
2210 	if (PageCompound(p)) {
2211 		if (retry) {
2212 			ClearPageHWPoison(p);
2213 			unlock_page(p);
2214 			put_page(p);
2215 			flags &= ~MF_COUNT_INCREASED;
2216 			retry = false;
2217 			goto try_again;
2218 		}
2219 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2220 		goto unlock_page;
2221 	}
2222 
2223 	/*
2224 	 * We use page flags to determine what action should be taken, but
2225 	 * the flags can be modified by the error containment action.  One
2226 	 * example is an mlocked page, where PG_mlocked is cleared by
2227 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2228 	 * correctly, we save a copy of the page flags at this time.
2229 	 */
2230 	page_flags = p->flags;
2231 
2232 	if (hwpoison_filter(p)) {
2233 		ClearPageHWPoison(p);
2234 		unlock_page(p);
2235 		put_page(p);
2236 		res = -EOPNOTSUPP;
2237 		goto unlock_mutex;
2238 	}
2239 
2240 	/*
2241 	 * __munlock_folio() may clear a writeback page's LRU flag without
2242 	 * page_lock. We need wait writeback completion for this page or it
2243 	 * may trigger vfs BUG while evict inode.
2244 	 */
2245 	if (!PageLRU(p) && !PageWriteback(p))
2246 		goto identify_page_state;
2247 
2248 	/*
2249 	 * It's very difficult to mess with pages currently under IO
2250 	 * and in many cases impossible, so we just avoid it here.
2251 	 */
2252 	wait_on_page_writeback(p);
2253 
2254 	/*
2255 	 * Now take care of user space mappings.
2256 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2257 	 */
2258 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2259 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2260 		goto unlock_page;
2261 	}
2262 
2263 	/*
2264 	 * Torn down by someone else?
2265 	 */
2266 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2267 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2268 		goto unlock_page;
2269 	}
2270 
2271 identify_page_state:
2272 	res = identify_page_state(pfn, p, page_flags);
2273 	mutex_unlock(&mf_mutex);
2274 	return res;
2275 unlock_page:
2276 	unlock_page(p);
2277 unlock_mutex:
2278 	mutex_unlock(&mf_mutex);
2279 	return res;
2280 }
2281 EXPORT_SYMBOL_GPL(memory_failure);
2282 
2283 #define MEMORY_FAILURE_FIFO_ORDER	4
2284 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2285 
2286 struct memory_failure_entry {
2287 	unsigned long pfn;
2288 	int flags;
2289 };
2290 
2291 struct memory_failure_cpu {
2292 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2293 		      MEMORY_FAILURE_FIFO_SIZE);
2294 	spinlock_t lock;
2295 	struct work_struct work;
2296 };
2297 
2298 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2299 
2300 /**
2301  * memory_failure_queue - Schedule handling memory failure of a page.
2302  * @pfn: Page Number of the corrupted page
2303  * @flags: Flags for memory failure handling
2304  *
2305  * This function is called by the low level hardware error handler
2306  * when it detects hardware memory corruption of a page. It schedules
2307  * the recovering of error page, including dropping pages, killing
2308  * processes etc.
2309  *
2310  * The function is primarily of use for corruptions that
2311  * happen outside the current execution context (e.g. when
2312  * detected by a background scrubber)
2313  *
2314  * Can run in IRQ context.
2315  */
2316 void memory_failure_queue(unsigned long pfn, int flags)
2317 {
2318 	struct memory_failure_cpu *mf_cpu;
2319 	unsigned long proc_flags;
2320 	struct memory_failure_entry entry = {
2321 		.pfn =		pfn,
2322 		.flags =	flags,
2323 	};
2324 
2325 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2326 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2327 	if (kfifo_put(&mf_cpu->fifo, entry))
2328 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2329 	else
2330 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2331 		       pfn);
2332 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2333 	put_cpu_var(memory_failure_cpu);
2334 }
2335 EXPORT_SYMBOL_GPL(memory_failure_queue);
2336 
2337 static void memory_failure_work_func(struct work_struct *work)
2338 {
2339 	struct memory_failure_cpu *mf_cpu;
2340 	struct memory_failure_entry entry = { 0, };
2341 	unsigned long proc_flags;
2342 	int gotten;
2343 
2344 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2345 	for (;;) {
2346 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2347 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2348 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2349 		if (!gotten)
2350 			break;
2351 		if (entry.flags & MF_SOFT_OFFLINE)
2352 			soft_offline_page(entry.pfn, entry.flags);
2353 		else
2354 			memory_failure(entry.pfn, entry.flags);
2355 	}
2356 }
2357 
2358 /*
2359  * Process memory_failure work queued on the specified CPU.
2360  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2361  */
2362 void memory_failure_queue_kick(int cpu)
2363 {
2364 	struct memory_failure_cpu *mf_cpu;
2365 
2366 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2367 	cancel_work_sync(&mf_cpu->work);
2368 	memory_failure_work_func(&mf_cpu->work);
2369 }
2370 
2371 static int __init memory_failure_init(void)
2372 {
2373 	struct memory_failure_cpu *mf_cpu;
2374 	int cpu;
2375 
2376 	for_each_possible_cpu(cpu) {
2377 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2378 		spin_lock_init(&mf_cpu->lock);
2379 		INIT_KFIFO(mf_cpu->fifo);
2380 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2381 	}
2382 
2383 	return 0;
2384 }
2385 core_initcall(memory_failure_init);
2386 
2387 #undef pr_fmt
2388 #define pr_fmt(fmt)	"" fmt
2389 #define unpoison_pr_info(fmt, pfn, rs)			\
2390 ({							\
2391 	if (__ratelimit(rs))				\
2392 		pr_info(fmt, pfn);			\
2393 })
2394 
2395 /**
2396  * unpoison_memory - Unpoison a previously poisoned page
2397  * @pfn: Page number of the to be unpoisoned page
2398  *
2399  * Software-unpoison a page that has been poisoned by
2400  * memory_failure() earlier.
2401  *
2402  * This is only done on the software-level, so it only works
2403  * for linux injected failures, not real hardware failures
2404  *
2405  * Returns 0 for success, otherwise -errno.
2406  */
2407 int unpoison_memory(unsigned long pfn)
2408 {
2409 	struct folio *folio;
2410 	struct page *p;
2411 	int ret = -EBUSY;
2412 	unsigned long count = 1;
2413 	bool huge = false;
2414 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2415 					DEFAULT_RATELIMIT_BURST);
2416 
2417 	if (!pfn_valid(pfn))
2418 		return -ENXIO;
2419 
2420 	p = pfn_to_page(pfn);
2421 	folio = page_folio(p);
2422 
2423 	mutex_lock(&mf_mutex);
2424 
2425 	if (hw_memory_failure) {
2426 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2427 				 pfn, &unpoison_rs);
2428 		ret = -EOPNOTSUPP;
2429 		goto unlock_mutex;
2430 	}
2431 
2432 	if (!folio_test_hwpoison(folio)) {
2433 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2434 				 pfn, &unpoison_rs);
2435 		goto unlock_mutex;
2436 	}
2437 
2438 	if (folio_ref_count(folio) > 1) {
2439 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2440 				 pfn, &unpoison_rs);
2441 		goto unlock_mutex;
2442 	}
2443 
2444 	if (folio_mapped(folio)) {
2445 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2446 				 pfn, &unpoison_rs);
2447 		goto unlock_mutex;
2448 	}
2449 
2450 	if (folio_mapping(folio)) {
2451 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2452 				 pfn, &unpoison_rs);
2453 		goto unlock_mutex;
2454 	}
2455 
2456 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2457 		goto unlock_mutex;
2458 
2459 	ret = get_hwpoison_page(p, MF_UNPOISON);
2460 	if (!ret) {
2461 		if (PageHuge(p)) {
2462 			huge = true;
2463 			count = folio_free_raw_hwp(folio, false);
2464 			if (count == 0) {
2465 				ret = -EBUSY;
2466 				goto unlock_mutex;
2467 			}
2468 		}
2469 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2470 	} else if (ret < 0) {
2471 		if (ret == -EHWPOISON) {
2472 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2473 		} else
2474 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2475 					 pfn, &unpoison_rs);
2476 	} else {
2477 		if (PageHuge(p)) {
2478 			huge = true;
2479 			count = folio_free_raw_hwp(folio, false);
2480 			if (count == 0) {
2481 				ret = -EBUSY;
2482 				folio_put(folio);
2483 				goto unlock_mutex;
2484 			}
2485 		}
2486 
2487 		folio_put(folio);
2488 		if (TestClearPageHWPoison(p)) {
2489 			folio_put(folio);
2490 			ret = 0;
2491 		}
2492 	}
2493 
2494 unlock_mutex:
2495 	mutex_unlock(&mf_mutex);
2496 	if (!ret) {
2497 		if (!huge)
2498 			num_poisoned_pages_sub(pfn, 1);
2499 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2500 				 page_to_pfn(p), &unpoison_rs);
2501 	}
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(unpoison_memory);
2505 
2506 static bool isolate_page(struct page *page, struct list_head *pagelist)
2507 {
2508 	bool isolated = false;
2509 
2510 	if (PageHuge(page)) {
2511 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2512 	} else {
2513 		bool lru = !__PageMovable(page);
2514 
2515 		if (lru)
2516 			isolated = isolate_lru_page(page);
2517 		else
2518 			isolated = isolate_movable_page(page,
2519 							ISOLATE_UNEVICTABLE);
2520 
2521 		if (isolated) {
2522 			list_add(&page->lru, pagelist);
2523 			if (lru)
2524 				inc_node_page_state(page, NR_ISOLATED_ANON +
2525 						    page_is_file_lru(page));
2526 		}
2527 	}
2528 
2529 	/*
2530 	 * If we succeed to isolate the page, we grabbed another refcount on
2531 	 * the page, so we can safely drop the one we got from get_any_pages().
2532 	 * If we failed to isolate the page, it means that we cannot go further
2533 	 * and we will return an error, so drop the reference we got from
2534 	 * get_any_pages() as well.
2535 	 */
2536 	put_page(page);
2537 	return isolated;
2538 }
2539 
2540 /*
2541  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2542  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2543  * If the page is mapped, it migrates the contents over.
2544  */
2545 static int soft_offline_in_use_page(struct page *page)
2546 {
2547 	long ret = 0;
2548 	unsigned long pfn = page_to_pfn(page);
2549 	struct page *hpage = compound_head(page);
2550 	char const *msg_page[] = {"page", "hugepage"};
2551 	bool huge = PageHuge(page);
2552 	LIST_HEAD(pagelist);
2553 	struct migration_target_control mtc = {
2554 		.nid = NUMA_NO_NODE,
2555 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2556 	};
2557 
2558 	if (!huge && PageTransHuge(hpage)) {
2559 		if (try_to_split_thp_page(page)) {
2560 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2561 			return -EBUSY;
2562 		}
2563 		hpage = page;
2564 	}
2565 
2566 	lock_page(page);
2567 	if (!PageHuge(page))
2568 		wait_on_page_writeback(page);
2569 	if (PageHWPoison(page)) {
2570 		unlock_page(page);
2571 		put_page(page);
2572 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2573 		return 0;
2574 	}
2575 
2576 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2577 		/*
2578 		 * Try to invalidate first. This should work for
2579 		 * non dirty unmapped page cache pages.
2580 		 */
2581 		ret = invalidate_inode_page(page);
2582 	unlock_page(page);
2583 
2584 	if (ret) {
2585 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2586 		page_handle_poison(page, false, true);
2587 		return 0;
2588 	}
2589 
2590 	if (isolate_page(hpage, &pagelist)) {
2591 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2592 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2593 		if (!ret) {
2594 			bool release = !huge;
2595 
2596 			if (!page_handle_poison(page, huge, release))
2597 				ret = -EBUSY;
2598 		} else {
2599 			if (!list_empty(&pagelist))
2600 				putback_movable_pages(&pagelist);
2601 
2602 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2603 				pfn, msg_page[huge], ret, &page->flags);
2604 			if (ret > 0)
2605 				ret = -EBUSY;
2606 		}
2607 	} else {
2608 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2609 			pfn, msg_page[huge], page_count(page), &page->flags);
2610 		ret = -EBUSY;
2611 	}
2612 	return ret;
2613 }
2614 
2615 /**
2616  * soft_offline_page - Soft offline a page.
2617  * @pfn: pfn to soft-offline
2618  * @flags: flags. Same as memory_failure().
2619  *
2620  * Returns 0 on success
2621  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2622  *         < 0 otherwise negated errno.
2623  *
2624  * Soft offline a page, by migration or invalidation,
2625  * without killing anything. This is for the case when
2626  * a page is not corrupted yet (so it's still valid to access),
2627  * but has had a number of corrected errors and is better taken
2628  * out.
2629  *
2630  * The actual policy on when to do that is maintained by
2631  * user space.
2632  *
2633  * This should never impact any application or cause data loss,
2634  * however it might take some time.
2635  *
2636  * This is not a 100% solution for all memory, but tries to be
2637  * ``good enough'' for the majority of memory.
2638  */
2639 int soft_offline_page(unsigned long pfn, int flags)
2640 {
2641 	int ret;
2642 	bool try_again = true;
2643 	struct page *page;
2644 
2645 	if (!pfn_valid(pfn)) {
2646 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2647 		return -ENXIO;
2648 	}
2649 
2650 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2651 	page = pfn_to_online_page(pfn);
2652 	if (!page) {
2653 		put_ref_page(pfn, flags);
2654 		return -EIO;
2655 	}
2656 
2657 	mutex_lock(&mf_mutex);
2658 
2659 	if (PageHWPoison(page)) {
2660 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2661 		put_ref_page(pfn, flags);
2662 		mutex_unlock(&mf_mutex);
2663 		return 0;
2664 	}
2665 
2666 retry:
2667 	get_online_mems();
2668 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2669 	put_online_mems();
2670 
2671 	if (hwpoison_filter(page)) {
2672 		if (ret > 0)
2673 			put_page(page);
2674 
2675 		mutex_unlock(&mf_mutex);
2676 		return -EOPNOTSUPP;
2677 	}
2678 
2679 	if (ret > 0) {
2680 		ret = soft_offline_in_use_page(page);
2681 	} else if (ret == 0) {
2682 		if (!page_handle_poison(page, true, false) && try_again) {
2683 			try_again = false;
2684 			flags &= ~MF_COUNT_INCREASED;
2685 			goto retry;
2686 		}
2687 	}
2688 
2689 	mutex_unlock(&mf_mutex);
2690 
2691 	return ret;
2692 }
2693