xref: /openbmc/linux/mm/memory-failure.c (revision b732539e)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	short addr_lsb;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
190 
191 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
193 				       addr_lsb, current);
194 	} else {
195 		/*
196 		 * Don't use force here, it's convenient if the signal
197 		 * can be temporarily blocked.
198 		 * This could cause a loop when the user sets SIGBUS
199 		 * to SIG_IGN, but hopefully no one will do that?
200 		 */
201 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
202 				      addr_lsb, t);  /* synchronous? */
203 	}
204 	if (ret < 0)
205 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 			t->comm, t->pid, ret);
207 	return ret;
208 }
209 
210 /*
211  * When a unknown page type is encountered drain as many buffers as possible
212  * in the hope to turn the page into a LRU or free page, which we can handle.
213  */
214 void shake_page(struct page *p, int access)
215 {
216 	if (PageHuge(p))
217 		return;
218 
219 	if (!PageSlab(p)) {
220 		lru_add_drain_all();
221 		if (PageLRU(p))
222 			return;
223 		drain_all_pages(page_zone(p));
224 		if (PageLRU(p) || is_free_buddy_page(p))
225 			return;
226 	}
227 
228 	/*
229 	 * Only call shrink_node_slabs here (which would also shrink
230 	 * other caches) if access is not potentially fatal.
231 	 */
232 	if (access)
233 		drop_slab_node(page_to_nid(p));
234 }
235 EXPORT_SYMBOL_GPL(shake_page);
236 
237 /*
238  * Kill all processes that have a poisoned page mapped and then isolate
239  * the page.
240  *
241  * General strategy:
242  * Find all processes having the page mapped and kill them.
243  * But we keep a page reference around so that the page is not
244  * actually freed yet.
245  * Then stash the page away
246  *
247  * There's no convenient way to get back to mapped processes
248  * from the VMAs. So do a brute-force search over all
249  * running processes.
250  *
251  * Remember that machine checks are not common (or rather
252  * if they are common you have other problems), so this shouldn't
253  * be a performance issue.
254  *
255  * Also there are some races possible while we get from the
256  * error detection to actually handle it.
257  */
258 
259 struct to_kill {
260 	struct list_head nd;
261 	struct task_struct *tsk;
262 	unsigned long addr;
263 	char addr_valid;
264 };
265 
266 /*
267  * Failure handling: if we can't find or can't kill a process there's
268  * not much we can do.	We just print a message and ignore otherwise.
269  */
270 
271 /*
272  * Schedule a process for later kill.
273  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274  * TBD would GFP_NOIO be enough?
275  */
276 static void add_to_kill(struct task_struct *tsk, struct page *p,
277 		       struct vm_area_struct *vma,
278 		       struct list_head *to_kill,
279 		       struct to_kill **tkc)
280 {
281 	struct to_kill *tk;
282 
283 	if (*tkc) {
284 		tk = *tkc;
285 		*tkc = NULL;
286 	} else {
287 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
288 		if (!tk) {
289 			pr_err("Memory failure: Out of memory while machine check handling\n");
290 			return;
291 		}
292 	}
293 	tk->addr = page_address_in_vma(p, vma);
294 	tk->addr_valid = 1;
295 
296 	/*
297 	 * In theory we don't have to kill when the page was
298 	 * munmaped. But it could be also a mremap. Since that's
299 	 * likely very rare kill anyways just out of paranoia, but use
300 	 * a SIGKILL because the error is not contained anymore.
301 	 */
302 	if (tk->addr == -EFAULT) {
303 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 			page_to_pfn(p), tsk->comm);
305 		tk->addr_valid = 0;
306 	}
307 	get_task_struct(tsk);
308 	tk->tsk = tsk;
309 	list_add_tail(&tk->nd, to_kill);
310 }
311 
312 /*
313  * Kill the processes that have been collected earlier.
314  *
315  * Only do anything when DOIT is set, otherwise just free the list
316  * (this is used for clean pages which do not need killing)
317  * Also when FAIL is set do a force kill because something went
318  * wrong earlier.
319  */
320 static void kill_procs(struct list_head *to_kill, int forcekill,
321 			  bool fail, struct page *page, unsigned long pfn,
322 			  int flags)
323 {
324 	struct to_kill *tk, *next;
325 
326 	list_for_each_entry_safe (tk, next, to_kill, nd) {
327 		if (forcekill) {
328 			/*
329 			 * In case something went wrong with munmapping
330 			 * make sure the process doesn't catch the
331 			 * signal and then access the memory. Just kill it.
332 			 */
333 			if (fail || tk->addr_valid == 0) {
334 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 				       pfn, tk->tsk->comm, tk->tsk->pid);
336 				force_sig(SIGKILL, tk->tsk);
337 			}
338 
339 			/*
340 			 * In theory the process could have mapped
341 			 * something else on the address in-between. We could
342 			 * check for that, but we need to tell the
343 			 * process anyways.
344 			 */
345 			else if (kill_proc(tk->tsk, tk->addr,
346 					      pfn, page, flags) < 0)
347 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 				       pfn, tk->tsk->comm, tk->tsk->pid);
349 		}
350 		put_task_struct(tk->tsk);
351 		kfree(tk);
352 	}
353 }
354 
355 /*
356  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357  * on behalf of the thread group. Return task_struct of the (first found)
358  * dedicated thread if found, and return NULL otherwise.
359  *
360  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361  * have to call rcu_read_lock/unlock() in this function.
362  */
363 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
364 {
365 	struct task_struct *t;
366 
367 	for_each_thread(tsk, t)
368 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
369 			return t;
370 	return NULL;
371 }
372 
373 /*
374  * Determine whether a given process is "early kill" process which expects
375  * to be signaled when some page under the process is hwpoisoned.
376  * Return task_struct of the dedicated thread (main thread unless explicitly
377  * specified) if the process is "early kill," and otherwise returns NULL.
378  */
379 static struct task_struct *task_early_kill(struct task_struct *tsk,
380 					   int force_early)
381 {
382 	struct task_struct *t;
383 	if (!tsk->mm)
384 		return NULL;
385 	if (force_early)
386 		return tsk;
387 	t = find_early_kill_thread(tsk);
388 	if (t)
389 		return t;
390 	if (sysctl_memory_failure_early_kill)
391 		return tsk;
392 	return NULL;
393 }
394 
395 /*
396  * Collect processes when the error hit an anonymous page.
397  */
398 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399 			      struct to_kill **tkc, int force_early)
400 {
401 	struct vm_area_struct *vma;
402 	struct task_struct *tsk;
403 	struct anon_vma *av;
404 	pgoff_t pgoff;
405 
406 	av = page_lock_anon_vma_read(page);
407 	if (av == NULL)	/* Not actually mapped anymore */
408 		return;
409 
410 	pgoff = page_to_pgoff(page);
411 	read_lock(&tasklist_lock);
412 	for_each_process (tsk) {
413 		struct anon_vma_chain *vmac;
414 		struct task_struct *t = task_early_kill(tsk, force_early);
415 
416 		if (!t)
417 			continue;
418 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 					       pgoff, pgoff) {
420 			vma = vmac->vma;
421 			if (!page_mapped_in_vma(page, vma))
422 				continue;
423 			if (vma->vm_mm == t->mm)
424 				add_to_kill(t, page, vma, to_kill, tkc);
425 		}
426 	}
427 	read_unlock(&tasklist_lock);
428 	page_unlock_anon_vma_read(av);
429 }
430 
431 /*
432  * Collect processes when the error hit a file mapped page.
433  */
434 static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 			      struct to_kill **tkc, int force_early)
436 {
437 	struct vm_area_struct *vma;
438 	struct task_struct *tsk;
439 	struct address_space *mapping = page->mapping;
440 
441 	i_mmap_lock_read(mapping);
442 	read_lock(&tasklist_lock);
443 	for_each_process(tsk) {
444 		pgoff_t pgoff = page_to_pgoff(page);
445 		struct task_struct *t = task_early_kill(tsk, force_early);
446 
447 		if (!t)
448 			continue;
449 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 				      pgoff) {
451 			/*
452 			 * Send early kill signal to tasks where a vma covers
453 			 * the page but the corrupted page is not necessarily
454 			 * mapped it in its pte.
455 			 * Assume applications who requested early kill want
456 			 * to be informed of all such data corruptions.
457 			 */
458 			if (vma->vm_mm == t->mm)
459 				add_to_kill(t, page, vma, to_kill, tkc);
460 		}
461 	}
462 	read_unlock(&tasklist_lock);
463 	i_mmap_unlock_read(mapping);
464 }
465 
466 /*
467  * Collect the processes who have the corrupted page mapped to kill.
468  * This is done in two steps for locking reasons.
469  * First preallocate one tokill structure outside the spin locks,
470  * so that we can kill at least one process reasonably reliable.
471  */
472 static void collect_procs(struct page *page, struct list_head *tokill,
473 				int force_early)
474 {
475 	struct to_kill *tk;
476 
477 	if (!page->mapping)
478 		return;
479 
480 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 	if (!tk)
482 		return;
483 	if (PageAnon(page))
484 		collect_procs_anon(page, tokill, &tk, force_early);
485 	else
486 		collect_procs_file(page, tokill, &tk, force_early);
487 	kfree(tk);
488 }
489 
490 static const char *action_name[] = {
491 	[MF_IGNORED] = "Ignored",
492 	[MF_FAILED] = "Failed",
493 	[MF_DELAYED] = "Delayed",
494 	[MF_RECOVERED] = "Recovered",
495 };
496 
497 static const char * const action_page_types[] = {
498 	[MF_MSG_KERNEL]			= "reserved kernel page",
499 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
500 	[MF_MSG_SLAB]			= "kernel slab page",
501 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
502 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
503 	[MF_MSG_HUGE]			= "huge page",
504 	[MF_MSG_FREE_HUGE]		= "free huge page",
505 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
506 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
507 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
508 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
509 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
510 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
511 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
512 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
513 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
514 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
515 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
516 	[MF_MSG_BUDDY]			= "free buddy page",
517 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
518 	[MF_MSG_UNKNOWN]		= "unknown page",
519 };
520 
521 /*
522  * XXX: It is possible that a page is isolated from LRU cache,
523  * and then kept in swap cache or failed to remove from page cache.
524  * The page count will stop it from being freed by unpoison.
525  * Stress tests should be aware of this memory leak problem.
526  */
527 static int delete_from_lru_cache(struct page *p)
528 {
529 	if (!isolate_lru_page(p)) {
530 		/*
531 		 * Clear sensible page flags, so that the buddy system won't
532 		 * complain when the page is unpoison-and-freed.
533 		 */
534 		ClearPageActive(p);
535 		ClearPageUnevictable(p);
536 
537 		/*
538 		 * Poisoned page might never drop its ref count to 0 so we have
539 		 * to uncharge it manually from its memcg.
540 		 */
541 		mem_cgroup_uncharge(p);
542 
543 		/*
544 		 * drop the page count elevated by isolate_lru_page()
545 		 */
546 		put_page(p);
547 		return 0;
548 	}
549 	return -EIO;
550 }
551 
552 static int truncate_error_page(struct page *p, unsigned long pfn,
553 				struct address_space *mapping)
554 {
555 	int ret = MF_FAILED;
556 
557 	if (mapping->a_ops->error_remove_page) {
558 		int err = mapping->a_ops->error_remove_page(mapping, p);
559 
560 		if (err != 0) {
561 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
562 				pfn, err);
563 		} else if (page_has_private(p) &&
564 			   !try_to_release_page(p, GFP_NOIO)) {
565 			pr_info("Memory failure: %#lx: failed to release buffers\n",
566 				pfn);
567 		} else {
568 			ret = MF_RECOVERED;
569 		}
570 	} else {
571 		/*
572 		 * If the file system doesn't support it just invalidate
573 		 * This fails on dirty or anything with private pages
574 		 */
575 		if (invalidate_inode_page(p))
576 			ret = MF_RECOVERED;
577 		else
578 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
579 				pfn);
580 	}
581 
582 	return ret;
583 }
584 
585 /*
586  * Error hit kernel page.
587  * Do nothing, try to be lucky and not touch this instead. For a few cases we
588  * could be more sophisticated.
589  */
590 static int me_kernel(struct page *p, unsigned long pfn)
591 {
592 	return MF_IGNORED;
593 }
594 
595 /*
596  * Page in unknown state. Do nothing.
597  */
598 static int me_unknown(struct page *p, unsigned long pfn)
599 {
600 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
601 	return MF_FAILED;
602 }
603 
604 /*
605  * Clean (or cleaned) page cache page.
606  */
607 static int me_pagecache_clean(struct page *p, unsigned long pfn)
608 {
609 	struct address_space *mapping;
610 
611 	delete_from_lru_cache(p);
612 
613 	/*
614 	 * For anonymous pages we're done the only reference left
615 	 * should be the one m_f() holds.
616 	 */
617 	if (PageAnon(p))
618 		return MF_RECOVERED;
619 
620 	/*
621 	 * Now truncate the page in the page cache. This is really
622 	 * more like a "temporary hole punch"
623 	 * Don't do this for block devices when someone else
624 	 * has a reference, because it could be file system metadata
625 	 * and that's not safe to truncate.
626 	 */
627 	mapping = page_mapping(p);
628 	if (!mapping) {
629 		/*
630 		 * Page has been teared down in the meanwhile
631 		 */
632 		return MF_FAILED;
633 	}
634 
635 	/*
636 	 * Truncation is a bit tricky. Enable it per file system for now.
637 	 *
638 	 * Open: to take i_mutex or not for this? Right now we don't.
639 	 */
640 	return truncate_error_page(p, pfn, mapping);
641 }
642 
643 /*
644  * Dirty pagecache page
645  * Issues: when the error hit a hole page the error is not properly
646  * propagated.
647  */
648 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649 {
650 	struct address_space *mapping = page_mapping(p);
651 
652 	SetPageError(p);
653 	/* TBD: print more information about the file. */
654 	if (mapping) {
655 		/*
656 		 * IO error will be reported by write(), fsync(), etc.
657 		 * who check the mapping.
658 		 * This way the application knows that something went
659 		 * wrong with its dirty file data.
660 		 *
661 		 * There's one open issue:
662 		 *
663 		 * The EIO will be only reported on the next IO
664 		 * operation and then cleared through the IO map.
665 		 * Normally Linux has two mechanisms to pass IO error
666 		 * first through the AS_EIO flag in the address space
667 		 * and then through the PageError flag in the page.
668 		 * Since we drop pages on memory failure handling the
669 		 * only mechanism open to use is through AS_AIO.
670 		 *
671 		 * This has the disadvantage that it gets cleared on
672 		 * the first operation that returns an error, while
673 		 * the PageError bit is more sticky and only cleared
674 		 * when the page is reread or dropped.  If an
675 		 * application assumes it will always get error on
676 		 * fsync, but does other operations on the fd before
677 		 * and the page is dropped between then the error
678 		 * will not be properly reported.
679 		 *
680 		 * This can already happen even without hwpoisoned
681 		 * pages: first on metadata IO errors (which only
682 		 * report through AS_EIO) or when the page is dropped
683 		 * at the wrong time.
684 		 *
685 		 * So right now we assume that the application DTRT on
686 		 * the first EIO, but we're not worse than other parts
687 		 * of the kernel.
688 		 */
689 		mapping_set_error(mapping, -EIO);
690 	}
691 
692 	return me_pagecache_clean(p, pfn);
693 }
694 
695 /*
696  * Clean and dirty swap cache.
697  *
698  * Dirty swap cache page is tricky to handle. The page could live both in page
699  * cache and swap cache(ie. page is freshly swapped in). So it could be
700  * referenced concurrently by 2 types of PTEs:
701  * normal PTEs and swap PTEs. We try to handle them consistently by calling
702  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703  * and then
704  *      - clear dirty bit to prevent IO
705  *      - remove from LRU
706  *      - but keep in the swap cache, so that when we return to it on
707  *        a later page fault, we know the application is accessing
708  *        corrupted data and shall be killed (we installed simple
709  *        interception code in do_swap_page to catch it).
710  *
711  * Clean swap cache pages can be directly isolated. A later page fault will
712  * bring in the known good data from disk.
713  */
714 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715 {
716 	ClearPageDirty(p);
717 	/* Trigger EIO in shmem: */
718 	ClearPageUptodate(p);
719 
720 	if (!delete_from_lru_cache(p))
721 		return MF_DELAYED;
722 	else
723 		return MF_FAILED;
724 }
725 
726 static int me_swapcache_clean(struct page *p, unsigned long pfn)
727 {
728 	delete_from_swap_cache(p);
729 
730 	if (!delete_from_lru_cache(p))
731 		return MF_RECOVERED;
732 	else
733 		return MF_FAILED;
734 }
735 
736 /*
737  * Huge pages. Needs work.
738  * Issues:
739  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740  *   To narrow down kill region to one page, we need to break up pmd.
741  */
742 static int me_huge_page(struct page *p, unsigned long pfn)
743 {
744 	int res = 0;
745 	struct page *hpage = compound_head(p);
746 	struct address_space *mapping;
747 
748 	if (!PageHuge(hpage))
749 		return MF_DELAYED;
750 
751 	mapping = page_mapping(hpage);
752 	if (mapping) {
753 		res = truncate_error_page(hpage, pfn, mapping);
754 	} else {
755 		unlock_page(hpage);
756 		/*
757 		 * migration entry prevents later access on error anonymous
758 		 * hugepage, so we can free and dissolve it into buddy to
759 		 * save healthy subpages.
760 		 */
761 		if (PageAnon(hpage))
762 			put_page(hpage);
763 		dissolve_free_huge_page(p);
764 		res = MF_RECOVERED;
765 		lock_page(hpage);
766 	}
767 
768 	return res;
769 }
770 
771 /*
772  * Various page states we can handle.
773  *
774  * A page state is defined by its current page->flags bits.
775  * The table matches them in order and calls the right handler.
776  *
777  * This is quite tricky because we can access page at any time
778  * in its live cycle, so all accesses have to be extremely careful.
779  *
780  * This is not complete. More states could be added.
781  * For any missing state don't attempt recovery.
782  */
783 
784 #define dirty		(1UL << PG_dirty)
785 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
786 #define unevict		(1UL << PG_unevictable)
787 #define mlock		(1UL << PG_mlocked)
788 #define writeback	(1UL << PG_writeback)
789 #define lru		(1UL << PG_lru)
790 #define head		(1UL << PG_head)
791 #define slab		(1UL << PG_slab)
792 #define reserved	(1UL << PG_reserved)
793 
794 static struct page_state {
795 	unsigned long mask;
796 	unsigned long res;
797 	enum mf_action_page_type type;
798 	int (*action)(struct page *p, unsigned long pfn);
799 } error_states[] = {
800 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
801 	/*
802 	 * free pages are specially detected outside this table:
803 	 * PG_buddy pages only make a small fraction of all free pages.
804 	 */
805 
806 	/*
807 	 * Could in theory check if slab page is free or if we can drop
808 	 * currently unused objects without touching them. But just
809 	 * treat it as standard kernel for now.
810 	 */
811 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
812 
813 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
814 
815 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
816 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
817 
818 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
819 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
820 
821 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
822 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
823 
824 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
825 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
826 
827 	/*
828 	 * Catchall entry: must be at end.
829 	 */
830 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
831 };
832 
833 #undef dirty
834 #undef sc
835 #undef unevict
836 #undef mlock
837 #undef writeback
838 #undef lru
839 #undef head
840 #undef slab
841 #undef reserved
842 
843 /*
844  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
845  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
846  */
847 static void action_result(unsigned long pfn, enum mf_action_page_type type,
848 			  enum mf_result result)
849 {
850 	trace_memory_failure_event(pfn, type, result);
851 
852 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
853 		pfn, action_page_types[type], action_name[result]);
854 }
855 
856 static int page_action(struct page_state *ps, struct page *p,
857 			unsigned long pfn)
858 {
859 	int result;
860 	int count;
861 
862 	result = ps->action(p, pfn);
863 
864 	count = page_count(p) - 1;
865 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
866 		count--;
867 	if (count > 0) {
868 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
869 		       pfn, action_page_types[ps->type], count);
870 		result = MF_FAILED;
871 	}
872 	action_result(pfn, ps->type, result);
873 
874 	/* Could do more checks here if page looks ok */
875 	/*
876 	 * Could adjust zone counters here to correct for the missing page.
877 	 */
878 
879 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
880 }
881 
882 /**
883  * get_hwpoison_page() - Get refcount for memory error handling:
884  * @page:	raw error page (hit by memory error)
885  *
886  * Return: return 0 if failed to grab the refcount, otherwise true (some
887  * non-zero value.)
888  */
889 int get_hwpoison_page(struct page *page)
890 {
891 	struct page *head = compound_head(page);
892 
893 	if (!PageHuge(head) && PageTransHuge(head)) {
894 		/*
895 		 * Non anonymous thp exists only in allocation/free time. We
896 		 * can't handle such a case correctly, so let's give it up.
897 		 * This should be better than triggering BUG_ON when kernel
898 		 * tries to touch the "partially handled" page.
899 		 */
900 		if (!PageAnon(head)) {
901 			pr_err("Memory failure: %#lx: non anonymous thp\n",
902 				page_to_pfn(page));
903 			return 0;
904 		}
905 	}
906 
907 	if (get_page_unless_zero(head)) {
908 		if (head == compound_head(page))
909 			return 1;
910 
911 		pr_info("Memory failure: %#lx cannot catch tail\n",
912 			page_to_pfn(page));
913 		put_page(head);
914 	}
915 
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(get_hwpoison_page);
919 
920 /*
921  * Do all that is necessary to remove user space mappings. Unmap
922  * the pages and send SIGBUS to the processes if the data was dirty.
923  */
924 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
925 				  int flags, struct page **hpagep)
926 {
927 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
928 	struct address_space *mapping;
929 	LIST_HEAD(tokill);
930 	bool unmap_success;
931 	int kill = 1, forcekill;
932 	struct page *hpage = *hpagep;
933 	bool mlocked = PageMlocked(hpage);
934 
935 	/*
936 	 * Here we are interested only in user-mapped pages, so skip any
937 	 * other types of pages.
938 	 */
939 	if (PageReserved(p) || PageSlab(p))
940 		return true;
941 	if (!(PageLRU(hpage) || PageHuge(p)))
942 		return true;
943 
944 	/*
945 	 * This check implies we don't kill processes if their pages
946 	 * are in the swap cache early. Those are always late kills.
947 	 */
948 	if (!page_mapped(hpage))
949 		return true;
950 
951 	if (PageKsm(p)) {
952 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
953 		return false;
954 	}
955 
956 	if (PageSwapCache(p)) {
957 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
958 			pfn);
959 		ttu |= TTU_IGNORE_HWPOISON;
960 	}
961 
962 	/*
963 	 * Propagate the dirty bit from PTEs to struct page first, because we
964 	 * need this to decide if we should kill or just drop the page.
965 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
966 	 * be called inside page lock (it's recommended but not enforced).
967 	 */
968 	mapping = page_mapping(hpage);
969 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
970 	    mapping_cap_writeback_dirty(mapping)) {
971 		if (page_mkclean(hpage)) {
972 			SetPageDirty(hpage);
973 		} else {
974 			kill = 0;
975 			ttu |= TTU_IGNORE_HWPOISON;
976 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
977 				pfn);
978 		}
979 	}
980 
981 	/*
982 	 * First collect all the processes that have the page
983 	 * mapped in dirty form.  This has to be done before try_to_unmap,
984 	 * because ttu takes the rmap data structures down.
985 	 *
986 	 * Error handling: We ignore errors here because
987 	 * there's nothing that can be done.
988 	 */
989 	if (kill)
990 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
991 
992 	unmap_success = try_to_unmap(hpage, ttu);
993 	if (!unmap_success)
994 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
995 		       pfn, page_mapcount(hpage));
996 
997 	/*
998 	 * try_to_unmap() might put mlocked page in lru cache, so call
999 	 * shake_page() again to ensure that it's flushed.
1000 	 */
1001 	if (mlocked)
1002 		shake_page(hpage, 0);
1003 
1004 	/*
1005 	 * Now that the dirty bit has been propagated to the
1006 	 * struct page and all unmaps done we can decide if
1007 	 * killing is needed or not.  Only kill when the page
1008 	 * was dirty or the process is not restartable,
1009 	 * otherwise the tokill list is merely
1010 	 * freed.  When there was a problem unmapping earlier
1011 	 * use a more force-full uncatchable kill to prevent
1012 	 * any accesses to the poisoned memory.
1013 	 */
1014 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015 	kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1016 
1017 	return unmap_success;
1018 }
1019 
1020 static int identify_page_state(unsigned long pfn, struct page *p,
1021 				unsigned long page_flags)
1022 {
1023 	struct page_state *ps;
1024 
1025 	/*
1026 	 * The first check uses the current page flags which may not have any
1027 	 * relevant information. The second check with the saved page flags is
1028 	 * carried out only if the first check can't determine the page status.
1029 	 */
1030 	for (ps = error_states;; ps++)
1031 		if ((p->flags & ps->mask) == ps->res)
1032 			break;
1033 
1034 	page_flags |= (p->flags & (1UL << PG_dirty));
1035 
1036 	if (!ps->mask)
1037 		for (ps = error_states;; ps++)
1038 			if ((page_flags & ps->mask) == ps->res)
1039 				break;
1040 	return page_action(ps, p, pfn);
1041 }
1042 
1043 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044 {
1045 	struct page *p = pfn_to_page(pfn);
1046 	struct page *head = compound_head(p);
1047 	int res;
1048 	unsigned long page_flags;
1049 
1050 	if (TestSetPageHWPoison(head)) {
1051 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 		       pfn);
1053 		return 0;
1054 	}
1055 
1056 	num_poisoned_pages_inc();
1057 
1058 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1059 		/*
1060 		 * Check "filter hit" and "race with other subpage."
1061 		 */
1062 		lock_page(head);
1063 		if (PageHWPoison(head)) {
1064 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065 			    || (p != head && TestSetPageHWPoison(head))) {
1066 				num_poisoned_pages_dec();
1067 				unlock_page(head);
1068 				return 0;
1069 			}
1070 		}
1071 		unlock_page(head);
1072 		dissolve_free_huge_page(p);
1073 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1074 		return 0;
1075 	}
1076 
1077 	lock_page(head);
1078 	page_flags = head->flags;
1079 
1080 	if (!PageHWPoison(head)) {
1081 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082 		num_poisoned_pages_dec();
1083 		unlock_page(head);
1084 		put_hwpoison_page(head);
1085 		return 0;
1086 	}
1087 
1088 	/*
1089 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090 	 * simply disable it. In order to make it work properly, we need
1091 	 * make sure that:
1092 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1093 	 *    entry properly works, and
1094 	 *  - other mm code walking over page table is aware of pud-aligned
1095 	 *    hwpoison entries.
1096 	 */
1097 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099 		res = -EBUSY;
1100 		goto out;
1101 	}
1102 
1103 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105 		res = -EBUSY;
1106 		goto out;
1107 	}
1108 
1109 	res = identify_page_state(pfn, p, page_flags);
1110 out:
1111 	unlock_page(head);
1112 	return res;
1113 }
1114 
1115 /**
1116  * memory_failure - Handle memory failure of a page.
1117  * @pfn: Page Number of the corrupted page
1118  * @flags: fine tune action taken
1119  *
1120  * This function is called by the low level machine check code
1121  * of an architecture when it detects hardware memory corruption
1122  * of a page. It tries its best to recover, which includes
1123  * dropping pages, killing processes etc.
1124  *
1125  * The function is primarily of use for corruptions that
1126  * happen outside the current execution context (e.g. when
1127  * detected by a background scrubber)
1128  *
1129  * Must run in process context (e.g. a work queue) with interrupts
1130  * enabled and no spinlocks hold.
1131  */
1132 int memory_failure(unsigned long pfn, int flags)
1133 {
1134 	struct page *p;
1135 	struct page *hpage;
1136 	struct page *orig_head;
1137 	int res;
1138 	unsigned long page_flags;
1139 
1140 	if (!sysctl_memory_failure_recovery)
1141 		panic("Memory failure on page %lx", pfn);
1142 
1143 	if (!pfn_valid(pfn)) {
1144 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145 			pfn);
1146 		return -ENXIO;
1147 	}
1148 
1149 	p = pfn_to_page(pfn);
1150 	if (PageHuge(p))
1151 		return memory_failure_hugetlb(pfn, flags);
1152 	if (TestSetPageHWPoison(p)) {
1153 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154 			pfn);
1155 		return 0;
1156 	}
1157 
1158 	orig_head = hpage = compound_head(p);
1159 	num_poisoned_pages_inc();
1160 
1161 	/*
1162 	 * We need/can do nothing about count=0 pages.
1163 	 * 1) it's a free page, and therefore in safe hand:
1164 	 *    prep_new_page() will be the gate keeper.
1165 	 * 2) it's part of a non-compound high order page.
1166 	 *    Implies some kernel user: cannot stop them from
1167 	 *    R/W the page; let's pray that the page has been
1168 	 *    used and will be freed some time later.
1169 	 * In fact it's dangerous to directly bump up page count from 0,
1170 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171 	 */
1172 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173 		if (is_free_buddy_page(p)) {
1174 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175 			return 0;
1176 		} else {
1177 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178 			return -EBUSY;
1179 		}
1180 	}
1181 
1182 	if (PageTransHuge(hpage)) {
1183 		lock_page(p);
1184 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185 			unlock_page(p);
1186 			if (!PageAnon(p))
1187 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1188 					pfn);
1189 			else
1190 				pr_err("Memory failure: %#lx: thp split failed\n",
1191 					pfn);
1192 			if (TestClearPageHWPoison(p))
1193 				num_poisoned_pages_dec();
1194 			put_hwpoison_page(p);
1195 			return -EBUSY;
1196 		}
1197 		unlock_page(p);
1198 		VM_BUG_ON_PAGE(!page_count(p), p);
1199 		hpage = compound_head(p);
1200 	}
1201 
1202 	/*
1203 	 * We ignore non-LRU pages for good reasons.
1204 	 * - PG_locked is only well defined for LRU pages and a few others
1205 	 * - to avoid races with __SetPageLocked()
1206 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207 	 * The check (unnecessarily) ignores LRU pages being isolated and
1208 	 * walked by the page reclaim code, however that's not a big loss.
1209 	 */
1210 	shake_page(p, 0);
1211 	/* shake_page could have turned it free. */
1212 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1213 		if (flags & MF_COUNT_INCREASED)
1214 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215 		else
1216 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217 		return 0;
1218 	}
1219 
1220 	lock_page(p);
1221 
1222 	/*
1223 	 * The page could have changed compound pages during the locking.
1224 	 * If this happens just bail out.
1225 	 */
1226 	if (PageCompound(p) && compound_head(p) != orig_head) {
1227 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228 		res = -EBUSY;
1229 		goto out;
1230 	}
1231 
1232 	/*
1233 	 * We use page flags to determine what action should be taken, but
1234 	 * the flags can be modified by the error containment action.  One
1235 	 * example is an mlocked page, where PG_mlocked is cleared by
1236 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237 	 * correctly, we save a copy of the page flags at this time.
1238 	 */
1239 	if (PageHuge(p))
1240 		page_flags = hpage->flags;
1241 	else
1242 		page_flags = p->flags;
1243 
1244 	/*
1245 	 * unpoison always clear PG_hwpoison inside page lock
1246 	 */
1247 	if (!PageHWPoison(p)) {
1248 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249 		num_poisoned_pages_dec();
1250 		unlock_page(p);
1251 		put_hwpoison_page(p);
1252 		return 0;
1253 	}
1254 	if (hwpoison_filter(p)) {
1255 		if (TestClearPageHWPoison(p))
1256 			num_poisoned_pages_dec();
1257 		unlock_page(p);
1258 		put_hwpoison_page(p);
1259 		return 0;
1260 	}
1261 
1262 	if (!PageTransTail(p) && !PageLRU(p))
1263 		goto identify_page_state;
1264 
1265 	/*
1266 	 * It's very difficult to mess with pages currently under IO
1267 	 * and in many cases impossible, so we just avoid it here.
1268 	 */
1269 	wait_on_page_writeback(p);
1270 
1271 	/*
1272 	 * Now take care of user space mappings.
1273 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274 	 *
1275 	 * When the raw error page is thp tail page, hpage points to the raw
1276 	 * page after thp split.
1277 	 */
1278 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280 		res = -EBUSY;
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * Torn down by someone else?
1286 	 */
1287 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289 		res = -EBUSY;
1290 		goto out;
1291 	}
1292 
1293 identify_page_state:
1294 	res = identify_page_state(pfn, p, page_flags);
1295 out:
1296 	unlock_page(p);
1297 	return res;
1298 }
1299 EXPORT_SYMBOL_GPL(memory_failure);
1300 
1301 #define MEMORY_FAILURE_FIFO_ORDER	4
1302 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1303 
1304 struct memory_failure_entry {
1305 	unsigned long pfn;
1306 	int flags;
1307 };
1308 
1309 struct memory_failure_cpu {
1310 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311 		      MEMORY_FAILURE_FIFO_SIZE);
1312 	spinlock_t lock;
1313 	struct work_struct work;
1314 };
1315 
1316 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317 
1318 /**
1319  * memory_failure_queue - Schedule handling memory failure of a page.
1320  * @pfn: Page Number of the corrupted page
1321  * @flags: Flags for memory failure handling
1322  *
1323  * This function is called by the low level hardware error handler
1324  * when it detects hardware memory corruption of a page. It schedules
1325  * the recovering of error page, including dropping pages, killing
1326  * processes etc.
1327  *
1328  * The function is primarily of use for corruptions that
1329  * happen outside the current execution context (e.g. when
1330  * detected by a background scrubber)
1331  *
1332  * Can run in IRQ context.
1333  */
1334 void memory_failure_queue(unsigned long pfn, int flags)
1335 {
1336 	struct memory_failure_cpu *mf_cpu;
1337 	unsigned long proc_flags;
1338 	struct memory_failure_entry entry = {
1339 		.pfn =		pfn,
1340 		.flags =	flags,
1341 	};
1342 
1343 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1344 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 	if (kfifo_put(&mf_cpu->fifo, entry))
1346 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347 	else
1348 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349 		       pfn);
1350 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 	put_cpu_var(memory_failure_cpu);
1352 }
1353 EXPORT_SYMBOL_GPL(memory_failure_queue);
1354 
1355 static void memory_failure_work_func(struct work_struct *work)
1356 {
1357 	struct memory_failure_cpu *mf_cpu;
1358 	struct memory_failure_entry entry = { 0, };
1359 	unsigned long proc_flags;
1360 	int gotten;
1361 
1362 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363 	for (;;) {
1364 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367 		if (!gotten)
1368 			break;
1369 		if (entry.flags & MF_SOFT_OFFLINE)
1370 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371 		else
1372 			memory_failure(entry.pfn, entry.flags);
1373 	}
1374 }
1375 
1376 static int __init memory_failure_init(void)
1377 {
1378 	struct memory_failure_cpu *mf_cpu;
1379 	int cpu;
1380 
1381 	for_each_possible_cpu(cpu) {
1382 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383 		spin_lock_init(&mf_cpu->lock);
1384 		INIT_KFIFO(mf_cpu->fifo);
1385 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386 	}
1387 
1388 	return 0;
1389 }
1390 core_initcall(memory_failure_init);
1391 
1392 #define unpoison_pr_info(fmt, pfn, rs)			\
1393 ({							\
1394 	if (__ratelimit(rs))				\
1395 		pr_info(fmt, pfn);			\
1396 })
1397 
1398 /**
1399  * unpoison_memory - Unpoison a previously poisoned page
1400  * @pfn: Page number of the to be unpoisoned page
1401  *
1402  * Software-unpoison a page that has been poisoned by
1403  * memory_failure() earlier.
1404  *
1405  * This is only done on the software-level, so it only works
1406  * for linux injected failures, not real hardware failures
1407  *
1408  * Returns 0 for success, otherwise -errno.
1409  */
1410 int unpoison_memory(unsigned long pfn)
1411 {
1412 	struct page *page;
1413 	struct page *p;
1414 	int freeit = 0;
1415 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416 					DEFAULT_RATELIMIT_BURST);
1417 
1418 	if (!pfn_valid(pfn))
1419 		return -ENXIO;
1420 
1421 	p = pfn_to_page(pfn);
1422 	page = compound_head(p);
1423 
1424 	if (!PageHWPoison(p)) {
1425 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426 				 pfn, &unpoison_rs);
1427 		return 0;
1428 	}
1429 
1430 	if (page_count(page) > 1) {
1431 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432 				 pfn, &unpoison_rs);
1433 		return 0;
1434 	}
1435 
1436 	if (page_mapped(page)) {
1437 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438 				 pfn, &unpoison_rs);
1439 		return 0;
1440 	}
1441 
1442 	if (page_mapping(page)) {
1443 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444 				 pfn, &unpoison_rs);
1445 		return 0;
1446 	}
1447 
1448 	/*
1449 	 * unpoison_memory() can encounter thp only when the thp is being
1450 	 * worked by memory_failure() and the page lock is not held yet.
1451 	 * In such case, we yield to memory_failure() and make unpoison fail.
1452 	 */
1453 	if (!PageHuge(page) && PageTransHuge(page)) {
1454 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455 				 pfn, &unpoison_rs);
1456 		return 0;
1457 	}
1458 
1459 	if (!get_hwpoison_page(p)) {
1460 		if (TestClearPageHWPoison(p))
1461 			num_poisoned_pages_dec();
1462 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463 				 pfn, &unpoison_rs);
1464 		return 0;
1465 	}
1466 
1467 	lock_page(page);
1468 	/*
1469 	 * This test is racy because PG_hwpoison is set outside of page lock.
1470 	 * That's acceptable because that won't trigger kernel panic. Instead,
1471 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1472 	 * the free buddy page pool.
1473 	 */
1474 	if (TestClearPageHWPoison(page)) {
1475 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476 				 pfn, &unpoison_rs);
1477 		num_poisoned_pages_dec();
1478 		freeit = 1;
1479 	}
1480 	unlock_page(page);
1481 
1482 	put_hwpoison_page(page);
1483 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484 		put_hwpoison_page(page);
1485 
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(unpoison_memory);
1489 
1490 static struct page *new_page(struct page *p, unsigned long private)
1491 {
1492 	int nid = page_to_nid(p);
1493 
1494 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495 }
1496 
1497 /*
1498  * Safely get reference count of an arbitrary page.
1499  * Returns 0 for a free page, -EIO for a zero refcount page
1500  * that is not free, and 1 for any other page type.
1501  * For 1 the page is returned with increased page count, otherwise not.
1502  */
1503 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504 {
1505 	int ret;
1506 
1507 	if (flags & MF_COUNT_INCREASED)
1508 		return 1;
1509 
1510 	/*
1511 	 * When the target page is a free hugepage, just remove it
1512 	 * from free hugepage list.
1513 	 */
1514 	if (!get_hwpoison_page(p)) {
1515 		if (PageHuge(p)) {
1516 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517 			ret = 0;
1518 		} else if (is_free_buddy_page(p)) {
1519 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520 			ret = 0;
1521 		} else {
1522 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523 				__func__, pfn, p->flags);
1524 			ret = -EIO;
1525 		}
1526 	} else {
1527 		/* Not a free page */
1528 		ret = 1;
1529 	}
1530 	return ret;
1531 }
1532 
1533 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534 {
1535 	int ret = __get_any_page(page, pfn, flags);
1536 
1537 	if (ret == 1 && !PageHuge(page) &&
1538 	    !PageLRU(page) && !__PageMovable(page)) {
1539 		/*
1540 		 * Try to free it.
1541 		 */
1542 		put_hwpoison_page(page);
1543 		shake_page(page, 1);
1544 
1545 		/*
1546 		 * Did it turn free?
1547 		 */
1548 		ret = __get_any_page(page, pfn, 0);
1549 		if (ret == 1 && !PageLRU(page)) {
1550 			/* Drop page reference which is from __get_any_page() */
1551 			put_hwpoison_page(page);
1552 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553 				pfn, page->flags, &page->flags);
1554 			return -EIO;
1555 		}
1556 	}
1557 	return ret;
1558 }
1559 
1560 static int soft_offline_huge_page(struct page *page, int flags)
1561 {
1562 	int ret;
1563 	unsigned long pfn = page_to_pfn(page);
1564 	struct page *hpage = compound_head(page);
1565 	LIST_HEAD(pagelist);
1566 
1567 	/*
1568 	 * This double-check of PageHWPoison is to avoid the race with
1569 	 * memory_failure(). See also comment in __soft_offline_page().
1570 	 */
1571 	lock_page(hpage);
1572 	if (PageHWPoison(hpage)) {
1573 		unlock_page(hpage);
1574 		put_hwpoison_page(hpage);
1575 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576 		return -EBUSY;
1577 	}
1578 	unlock_page(hpage);
1579 
1580 	ret = isolate_huge_page(hpage, &pagelist);
1581 	/*
1582 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1583 	 * so need to drop one here.
1584 	 */
1585 	put_hwpoison_page(hpage);
1586 	if (!ret) {
1587 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588 		return -EBUSY;
1589 	}
1590 
1591 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593 	if (ret) {
1594 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595 			pfn, ret, page->flags, &page->flags);
1596 		if (!list_empty(&pagelist))
1597 			putback_movable_pages(&pagelist);
1598 		if (ret > 0)
1599 			ret = -EIO;
1600 	} else {
1601 		if (PageHuge(page))
1602 			dissolve_free_huge_page(page);
1603 	}
1604 	return ret;
1605 }
1606 
1607 static int __soft_offline_page(struct page *page, int flags)
1608 {
1609 	int ret;
1610 	unsigned long pfn = page_to_pfn(page);
1611 
1612 	/*
1613 	 * Check PageHWPoison again inside page lock because PageHWPoison
1614 	 * is set by memory_failure() outside page lock. Note that
1615 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1616 	 * so there's no race between soft_offline_page() and memory_failure().
1617 	 */
1618 	lock_page(page);
1619 	wait_on_page_writeback(page);
1620 	if (PageHWPoison(page)) {
1621 		unlock_page(page);
1622 		put_hwpoison_page(page);
1623 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624 		return -EBUSY;
1625 	}
1626 	/*
1627 	 * Try to invalidate first. This should work for
1628 	 * non dirty unmapped page cache pages.
1629 	 */
1630 	ret = invalidate_inode_page(page);
1631 	unlock_page(page);
1632 	/*
1633 	 * RED-PEN would be better to keep it isolated here, but we
1634 	 * would need to fix isolation locking first.
1635 	 */
1636 	if (ret == 1) {
1637 		put_hwpoison_page(page);
1638 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639 		SetPageHWPoison(page);
1640 		num_poisoned_pages_inc();
1641 		return 0;
1642 	}
1643 
1644 	/*
1645 	 * Simple invalidation didn't work.
1646 	 * Try to migrate to a new page instead. migrate.c
1647 	 * handles a large number of cases for us.
1648 	 */
1649 	if (PageLRU(page))
1650 		ret = isolate_lru_page(page);
1651 	else
1652 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653 	/*
1654 	 * Drop page reference which is came from get_any_page()
1655 	 * successful isolate_lru_page() already took another one.
1656 	 */
1657 	put_hwpoison_page(page);
1658 	if (!ret) {
1659 		LIST_HEAD(pagelist);
1660 		/*
1661 		 * After isolated lru page, the PageLRU will be cleared,
1662 		 * so use !__PageMovable instead for LRU page's mapping
1663 		 * cannot have PAGE_MAPPING_MOVABLE.
1664 		 */
1665 		if (!__PageMovable(page))
1666 			inc_node_page_state(page, NR_ISOLATED_ANON +
1667 						page_is_file_cache(page));
1668 		list_add(&page->lru, &pagelist);
1669 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 		if (ret) {
1672 			if (!list_empty(&pagelist))
1673 				putback_movable_pages(&pagelist);
1674 
1675 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676 				pfn, ret, page->flags, &page->flags);
1677 			if (ret > 0)
1678 				ret = -EIO;
1679 		}
1680 	} else {
1681 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682 			pfn, ret, page_count(page), page->flags, &page->flags);
1683 	}
1684 	return ret;
1685 }
1686 
1687 static int soft_offline_in_use_page(struct page *page, int flags)
1688 {
1689 	int ret;
1690 	struct page *hpage = compound_head(page);
1691 
1692 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 		lock_page(hpage);
1694 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695 			unlock_page(hpage);
1696 			if (!PageAnon(hpage))
1697 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698 			else
1699 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700 			put_hwpoison_page(hpage);
1701 			return -EBUSY;
1702 		}
1703 		unlock_page(hpage);
1704 		get_hwpoison_page(page);
1705 		put_hwpoison_page(hpage);
1706 	}
1707 
1708 	if (PageHuge(page))
1709 		ret = soft_offline_huge_page(page, flags);
1710 	else
1711 		ret = __soft_offline_page(page, flags);
1712 
1713 	return ret;
1714 }
1715 
1716 static void soft_offline_free_page(struct page *page)
1717 {
1718 	struct page *head = compound_head(page);
1719 
1720 	if (!TestSetPageHWPoison(head)) {
1721 		num_poisoned_pages_inc();
1722 		if (PageHuge(head))
1723 			dissolve_free_huge_page(page);
1724 	}
1725 }
1726 
1727 /**
1728  * soft_offline_page - Soft offline a page.
1729  * @page: page to offline
1730  * @flags: flags. Same as memory_failure().
1731  *
1732  * Returns 0 on success, otherwise negated errno.
1733  *
1734  * Soft offline a page, by migration or invalidation,
1735  * without killing anything. This is for the case when
1736  * a page is not corrupted yet (so it's still valid to access),
1737  * but has had a number of corrected errors and is better taken
1738  * out.
1739  *
1740  * The actual policy on when to do that is maintained by
1741  * user space.
1742  *
1743  * This should never impact any application or cause data loss,
1744  * however it might take some time.
1745  *
1746  * This is not a 100% solution for all memory, but tries to be
1747  * ``good enough'' for the majority of memory.
1748  */
1749 int soft_offline_page(struct page *page, int flags)
1750 {
1751 	int ret;
1752 	unsigned long pfn = page_to_pfn(page);
1753 
1754 	if (PageHWPoison(page)) {
1755 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756 		if (flags & MF_COUNT_INCREASED)
1757 			put_hwpoison_page(page);
1758 		return -EBUSY;
1759 	}
1760 
1761 	get_online_mems();
1762 	ret = get_any_page(page, pfn, flags);
1763 	put_online_mems();
1764 
1765 	if (ret > 0)
1766 		ret = soft_offline_in_use_page(page, flags);
1767 	else if (ret == 0)
1768 		soft_offline_free_page(page);
1769 
1770 	return ret;
1771 }
1772