1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 /* root_mem_cgroup has NULL dentries */ 149 if (!css->cgroup->dentry) 150 return -EINVAL; 151 152 ino = css->cgroup->dentry->d_inode->i_ino; 153 css_put(css); 154 155 if (ino != hwpoison_filter_memcg) 156 return -EINVAL; 157 158 return 0; 159 } 160 #else 161 static int hwpoison_filter_task(struct page *p) { return 0; } 162 #endif 163 164 int hwpoison_filter(struct page *p) 165 { 166 if (!hwpoison_filter_enable) 167 return 0; 168 169 if (hwpoison_filter_dev(p)) 170 return -EINVAL; 171 172 if (hwpoison_filter_flags(p)) 173 return -EINVAL; 174 175 if (hwpoison_filter_task(p)) 176 return -EINVAL; 177 178 return 0; 179 } 180 #else 181 int hwpoison_filter(struct page *p) 182 { 183 return 0; 184 } 185 #endif 186 187 EXPORT_SYMBOL_GPL(hwpoison_filter); 188 189 /* 190 * Send all the processes who have the page mapped a signal. 191 * ``action optional'' if they are not immediately affected by the error 192 * ``action required'' if error happened in current execution context 193 */ 194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 195 unsigned long pfn, struct page *page, int flags) 196 { 197 struct siginfo si; 198 int ret; 199 200 printk(KERN_ERR 201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 202 pfn, t->comm, t->pid); 203 si.si_signo = SIGBUS; 204 si.si_errno = 0; 205 si.si_addr = (void *)addr; 206 #ifdef __ARCH_SI_TRAPNO 207 si.si_trapno = trapno; 208 #endif 209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; 210 211 if ((flags & MF_ACTION_REQUIRED) && t == current) { 212 si.si_code = BUS_MCEERR_AR; 213 ret = force_sig_info(SIGBUS, &si, t); 214 } else { 215 /* 216 * Don't use force here, it's convenient if the signal 217 * can be temporarily blocked. 218 * This could cause a loop when the user sets SIGBUS 219 * to SIG_IGN, but hopefully no one will do that? 220 */ 221 si.si_code = BUS_MCEERR_AO; 222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 223 } 224 if (ret < 0) 225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 226 t->comm, t->pid, ret); 227 return ret; 228 } 229 230 /* 231 * When a unknown page type is encountered drain as many buffers as possible 232 * in the hope to turn the page into a LRU or free page, which we can handle. 233 */ 234 void shake_page(struct page *p, int access) 235 { 236 if (!PageSlab(p)) { 237 lru_add_drain_all(); 238 if (PageLRU(p)) 239 return; 240 drain_all_pages(); 241 if (PageLRU(p) || is_free_buddy_page(p)) 242 return; 243 } 244 245 /* 246 * Only call shrink_slab here (which would also shrink other caches) if 247 * access is not potentially fatal. 248 */ 249 if (access) { 250 int nr; 251 do { 252 struct shrink_control shrink = { 253 .gfp_mask = GFP_KERNEL, 254 }; 255 256 nr = shrink_slab(&shrink, 1000, 1000); 257 if (page_count(p) == 1) 258 break; 259 } while (nr > 10); 260 } 261 } 262 EXPORT_SYMBOL_GPL(shake_page); 263 264 /* 265 * Kill all processes that have a poisoned page mapped and then isolate 266 * the page. 267 * 268 * General strategy: 269 * Find all processes having the page mapped and kill them. 270 * But we keep a page reference around so that the page is not 271 * actually freed yet. 272 * Then stash the page away 273 * 274 * There's no convenient way to get back to mapped processes 275 * from the VMAs. So do a brute-force search over all 276 * running processes. 277 * 278 * Remember that machine checks are not common (or rather 279 * if they are common you have other problems), so this shouldn't 280 * be a performance issue. 281 * 282 * Also there are some races possible while we get from the 283 * error detection to actually handle it. 284 */ 285 286 struct to_kill { 287 struct list_head nd; 288 struct task_struct *tsk; 289 unsigned long addr; 290 char addr_valid; 291 }; 292 293 /* 294 * Failure handling: if we can't find or can't kill a process there's 295 * not much we can do. We just print a message and ignore otherwise. 296 */ 297 298 /* 299 * Schedule a process for later kill. 300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 301 * TBD would GFP_NOIO be enough? 302 */ 303 static void add_to_kill(struct task_struct *tsk, struct page *p, 304 struct vm_area_struct *vma, 305 struct list_head *to_kill, 306 struct to_kill **tkc) 307 { 308 struct to_kill *tk; 309 310 if (*tkc) { 311 tk = *tkc; 312 *tkc = NULL; 313 } else { 314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 315 if (!tk) { 316 printk(KERN_ERR 317 "MCE: Out of memory while machine check handling\n"); 318 return; 319 } 320 } 321 tk->addr = page_address_in_vma(p, vma); 322 tk->addr_valid = 1; 323 324 /* 325 * In theory we don't have to kill when the page was 326 * munmaped. But it could be also a mremap. Since that's 327 * likely very rare kill anyways just out of paranoia, but use 328 * a SIGKILL because the error is not contained anymore. 329 */ 330 if (tk->addr == -EFAULT) { 331 pr_info("MCE: Unable to find user space address %lx in %s\n", 332 page_to_pfn(p), tsk->comm); 333 tk->addr_valid = 0; 334 } 335 get_task_struct(tsk); 336 tk->tsk = tsk; 337 list_add_tail(&tk->nd, to_kill); 338 } 339 340 /* 341 * Kill the processes that have been collected earlier. 342 * 343 * Only do anything when DOIT is set, otherwise just free the list 344 * (this is used for clean pages which do not need killing) 345 * Also when FAIL is set do a force kill because something went 346 * wrong earlier. 347 */ 348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 349 int fail, struct page *page, unsigned long pfn, 350 int flags) 351 { 352 struct to_kill *tk, *next; 353 354 list_for_each_entry_safe (tk, next, to_kill, nd) { 355 if (forcekill) { 356 /* 357 * In case something went wrong with munmapping 358 * make sure the process doesn't catch the 359 * signal and then access the memory. Just kill it. 360 */ 361 if (fail || tk->addr_valid == 0) { 362 printk(KERN_ERR 363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 364 pfn, tk->tsk->comm, tk->tsk->pid); 365 force_sig(SIGKILL, tk->tsk); 366 } 367 368 /* 369 * In theory the process could have mapped 370 * something else on the address in-between. We could 371 * check for that, but we need to tell the 372 * process anyways. 373 */ 374 else if (kill_proc(tk->tsk, tk->addr, trapno, 375 pfn, page, flags) < 0) 376 printk(KERN_ERR 377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 378 pfn, tk->tsk->comm, tk->tsk->pid); 379 } 380 put_task_struct(tk->tsk); 381 kfree(tk); 382 } 383 } 384 385 static int task_early_kill(struct task_struct *tsk) 386 { 387 if (!tsk->mm) 388 return 0; 389 if (tsk->flags & PF_MCE_PROCESS) 390 return !!(tsk->flags & PF_MCE_EARLY); 391 return sysctl_memory_failure_early_kill; 392 } 393 394 /* 395 * Collect processes when the error hit an anonymous page. 396 */ 397 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 398 struct to_kill **tkc) 399 { 400 struct vm_area_struct *vma; 401 struct task_struct *tsk; 402 struct anon_vma *av; 403 pgoff_t pgoff; 404 405 av = page_lock_anon_vma_read(page); 406 if (av == NULL) /* Not actually mapped anymore */ 407 return; 408 409 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 410 read_lock(&tasklist_lock); 411 for_each_process (tsk) { 412 struct anon_vma_chain *vmac; 413 414 if (!task_early_kill(tsk)) 415 continue; 416 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 417 pgoff, pgoff) { 418 vma = vmac->vma; 419 if (!page_mapped_in_vma(page, vma)) 420 continue; 421 if (vma->vm_mm == tsk->mm) 422 add_to_kill(tsk, page, vma, to_kill, tkc); 423 } 424 } 425 read_unlock(&tasklist_lock); 426 page_unlock_anon_vma_read(av); 427 } 428 429 /* 430 * Collect processes when the error hit a file mapped page. 431 */ 432 static void collect_procs_file(struct page *page, struct list_head *to_kill, 433 struct to_kill **tkc) 434 { 435 struct vm_area_struct *vma; 436 struct task_struct *tsk; 437 struct address_space *mapping = page->mapping; 438 439 mutex_lock(&mapping->i_mmap_mutex); 440 read_lock(&tasklist_lock); 441 for_each_process(tsk) { 442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 443 444 if (!task_early_kill(tsk)) 445 continue; 446 447 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 448 pgoff) { 449 /* 450 * Send early kill signal to tasks where a vma covers 451 * the page but the corrupted page is not necessarily 452 * mapped it in its pte. 453 * Assume applications who requested early kill want 454 * to be informed of all such data corruptions. 455 */ 456 if (vma->vm_mm == tsk->mm) 457 add_to_kill(tsk, page, vma, to_kill, tkc); 458 } 459 } 460 read_unlock(&tasklist_lock); 461 mutex_unlock(&mapping->i_mmap_mutex); 462 } 463 464 /* 465 * Collect the processes who have the corrupted page mapped to kill. 466 * This is done in two steps for locking reasons. 467 * First preallocate one tokill structure outside the spin locks, 468 * so that we can kill at least one process reasonably reliable. 469 */ 470 static void collect_procs(struct page *page, struct list_head *tokill) 471 { 472 struct to_kill *tk; 473 474 if (!page->mapping) 475 return; 476 477 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 478 if (!tk) 479 return; 480 if (PageAnon(page)) 481 collect_procs_anon(page, tokill, &tk); 482 else 483 collect_procs_file(page, tokill, &tk); 484 kfree(tk); 485 } 486 487 /* 488 * Error handlers for various types of pages. 489 */ 490 491 enum outcome { 492 IGNORED, /* Error: cannot be handled */ 493 FAILED, /* Error: handling failed */ 494 DELAYED, /* Will be handled later */ 495 RECOVERED, /* Successfully recovered */ 496 }; 497 498 static const char *action_name[] = { 499 [IGNORED] = "Ignored", 500 [FAILED] = "Failed", 501 [DELAYED] = "Delayed", 502 [RECOVERED] = "Recovered", 503 }; 504 505 /* 506 * XXX: It is possible that a page is isolated from LRU cache, 507 * and then kept in swap cache or failed to remove from page cache. 508 * The page count will stop it from being freed by unpoison. 509 * Stress tests should be aware of this memory leak problem. 510 */ 511 static int delete_from_lru_cache(struct page *p) 512 { 513 if (!isolate_lru_page(p)) { 514 /* 515 * Clear sensible page flags, so that the buddy system won't 516 * complain when the page is unpoison-and-freed. 517 */ 518 ClearPageActive(p); 519 ClearPageUnevictable(p); 520 /* 521 * drop the page count elevated by isolate_lru_page() 522 */ 523 page_cache_release(p); 524 return 0; 525 } 526 return -EIO; 527 } 528 529 /* 530 * Error hit kernel page. 531 * Do nothing, try to be lucky and not touch this instead. For a few cases we 532 * could be more sophisticated. 533 */ 534 static int me_kernel(struct page *p, unsigned long pfn) 535 { 536 return IGNORED; 537 } 538 539 /* 540 * Page in unknown state. Do nothing. 541 */ 542 static int me_unknown(struct page *p, unsigned long pfn) 543 { 544 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 545 return FAILED; 546 } 547 548 /* 549 * Clean (or cleaned) page cache page. 550 */ 551 static int me_pagecache_clean(struct page *p, unsigned long pfn) 552 { 553 int err; 554 int ret = FAILED; 555 struct address_space *mapping; 556 557 delete_from_lru_cache(p); 558 559 /* 560 * For anonymous pages we're done the only reference left 561 * should be the one m_f() holds. 562 */ 563 if (PageAnon(p)) 564 return RECOVERED; 565 566 /* 567 * Now truncate the page in the page cache. This is really 568 * more like a "temporary hole punch" 569 * Don't do this for block devices when someone else 570 * has a reference, because it could be file system metadata 571 * and that's not safe to truncate. 572 */ 573 mapping = page_mapping(p); 574 if (!mapping) { 575 /* 576 * Page has been teared down in the meanwhile 577 */ 578 return FAILED; 579 } 580 581 /* 582 * Truncation is a bit tricky. Enable it per file system for now. 583 * 584 * Open: to take i_mutex or not for this? Right now we don't. 585 */ 586 if (mapping->a_ops->error_remove_page) { 587 err = mapping->a_ops->error_remove_page(mapping, p); 588 if (err != 0) { 589 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 590 pfn, err); 591 } else if (page_has_private(p) && 592 !try_to_release_page(p, GFP_NOIO)) { 593 pr_info("MCE %#lx: failed to release buffers\n", pfn); 594 } else { 595 ret = RECOVERED; 596 } 597 } else { 598 /* 599 * If the file system doesn't support it just invalidate 600 * This fails on dirty or anything with private pages 601 */ 602 if (invalidate_inode_page(p)) 603 ret = RECOVERED; 604 else 605 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 606 pfn); 607 } 608 return ret; 609 } 610 611 /* 612 * Dirty cache page page 613 * Issues: when the error hit a hole page the error is not properly 614 * propagated. 615 */ 616 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 617 { 618 struct address_space *mapping = page_mapping(p); 619 620 SetPageError(p); 621 /* TBD: print more information about the file. */ 622 if (mapping) { 623 /* 624 * IO error will be reported by write(), fsync(), etc. 625 * who check the mapping. 626 * This way the application knows that something went 627 * wrong with its dirty file data. 628 * 629 * There's one open issue: 630 * 631 * The EIO will be only reported on the next IO 632 * operation and then cleared through the IO map. 633 * Normally Linux has two mechanisms to pass IO error 634 * first through the AS_EIO flag in the address space 635 * and then through the PageError flag in the page. 636 * Since we drop pages on memory failure handling the 637 * only mechanism open to use is through AS_AIO. 638 * 639 * This has the disadvantage that it gets cleared on 640 * the first operation that returns an error, while 641 * the PageError bit is more sticky and only cleared 642 * when the page is reread or dropped. If an 643 * application assumes it will always get error on 644 * fsync, but does other operations on the fd before 645 * and the page is dropped between then the error 646 * will not be properly reported. 647 * 648 * This can already happen even without hwpoisoned 649 * pages: first on metadata IO errors (which only 650 * report through AS_EIO) or when the page is dropped 651 * at the wrong time. 652 * 653 * So right now we assume that the application DTRT on 654 * the first EIO, but we're not worse than other parts 655 * of the kernel. 656 */ 657 mapping_set_error(mapping, EIO); 658 } 659 660 return me_pagecache_clean(p, pfn); 661 } 662 663 /* 664 * Clean and dirty swap cache. 665 * 666 * Dirty swap cache page is tricky to handle. The page could live both in page 667 * cache and swap cache(ie. page is freshly swapped in). So it could be 668 * referenced concurrently by 2 types of PTEs: 669 * normal PTEs and swap PTEs. We try to handle them consistently by calling 670 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 671 * and then 672 * - clear dirty bit to prevent IO 673 * - remove from LRU 674 * - but keep in the swap cache, so that when we return to it on 675 * a later page fault, we know the application is accessing 676 * corrupted data and shall be killed (we installed simple 677 * interception code in do_swap_page to catch it). 678 * 679 * Clean swap cache pages can be directly isolated. A later page fault will 680 * bring in the known good data from disk. 681 */ 682 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 683 { 684 ClearPageDirty(p); 685 /* Trigger EIO in shmem: */ 686 ClearPageUptodate(p); 687 688 if (!delete_from_lru_cache(p)) 689 return DELAYED; 690 else 691 return FAILED; 692 } 693 694 static int me_swapcache_clean(struct page *p, unsigned long pfn) 695 { 696 delete_from_swap_cache(p); 697 698 if (!delete_from_lru_cache(p)) 699 return RECOVERED; 700 else 701 return FAILED; 702 } 703 704 /* 705 * Huge pages. Needs work. 706 * Issues: 707 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 708 * To narrow down kill region to one page, we need to break up pmd. 709 */ 710 static int me_huge_page(struct page *p, unsigned long pfn) 711 { 712 int res = 0; 713 struct page *hpage = compound_head(p); 714 /* 715 * We can safely recover from error on free or reserved (i.e. 716 * not in-use) hugepage by dequeuing it from freelist. 717 * To check whether a hugepage is in-use or not, we can't use 718 * page->lru because it can be used in other hugepage operations, 719 * such as __unmap_hugepage_range() and gather_surplus_pages(). 720 * So instead we use page_mapping() and PageAnon(). 721 * We assume that this function is called with page lock held, 722 * so there is no race between isolation and mapping/unmapping. 723 */ 724 if (!(page_mapping(hpage) || PageAnon(hpage))) { 725 res = dequeue_hwpoisoned_huge_page(hpage); 726 if (!res) 727 return RECOVERED; 728 } 729 return DELAYED; 730 } 731 732 /* 733 * Various page states we can handle. 734 * 735 * A page state is defined by its current page->flags bits. 736 * The table matches them in order and calls the right handler. 737 * 738 * This is quite tricky because we can access page at any time 739 * in its live cycle, so all accesses have to be extremely careful. 740 * 741 * This is not complete. More states could be added. 742 * For any missing state don't attempt recovery. 743 */ 744 745 #define dirty (1UL << PG_dirty) 746 #define sc (1UL << PG_swapcache) 747 #define unevict (1UL << PG_unevictable) 748 #define mlock (1UL << PG_mlocked) 749 #define writeback (1UL << PG_writeback) 750 #define lru (1UL << PG_lru) 751 #define swapbacked (1UL << PG_swapbacked) 752 #define head (1UL << PG_head) 753 #define tail (1UL << PG_tail) 754 #define compound (1UL << PG_compound) 755 #define slab (1UL << PG_slab) 756 #define reserved (1UL << PG_reserved) 757 758 static struct page_state { 759 unsigned long mask; 760 unsigned long res; 761 char *msg; 762 int (*action)(struct page *p, unsigned long pfn); 763 } error_states[] = { 764 { reserved, reserved, "reserved kernel", me_kernel }, 765 /* 766 * free pages are specially detected outside this table: 767 * PG_buddy pages only make a small fraction of all free pages. 768 */ 769 770 /* 771 * Could in theory check if slab page is free or if we can drop 772 * currently unused objects without touching them. But just 773 * treat it as standard kernel for now. 774 */ 775 { slab, slab, "kernel slab", me_kernel }, 776 777 #ifdef CONFIG_PAGEFLAGS_EXTENDED 778 { head, head, "huge", me_huge_page }, 779 { tail, tail, "huge", me_huge_page }, 780 #else 781 { compound, compound, "huge", me_huge_page }, 782 #endif 783 784 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 785 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 786 787 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 788 { unevict, unevict, "clean unevictable LRU", me_pagecache_clean }, 789 790 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 791 { mlock, mlock, "clean mlocked LRU", me_pagecache_clean }, 792 793 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 794 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 795 796 /* 797 * Catchall entry: must be at end. 798 */ 799 { 0, 0, "unknown page state", me_unknown }, 800 }; 801 802 #undef dirty 803 #undef sc 804 #undef unevict 805 #undef mlock 806 #undef writeback 807 #undef lru 808 #undef swapbacked 809 #undef head 810 #undef tail 811 #undef compound 812 #undef slab 813 #undef reserved 814 815 /* 816 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 817 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 818 */ 819 static void action_result(unsigned long pfn, char *msg, int result) 820 { 821 pr_err("MCE %#lx: %s page recovery: %s\n", 822 pfn, msg, action_name[result]); 823 } 824 825 static int page_action(struct page_state *ps, struct page *p, 826 unsigned long pfn) 827 { 828 int result; 829 int count; 830 831 result = ps->action(p, pfn); 832 action_result(pfn, ps->msg, result); 833 834 count = page_count(p) - 1; 835 if (ps->action == me_swapcache_dirty && result == DELAYED) 836 count--; 837 if (count != 0) { 838 printk(KERN_ERR 839 "MCE %#lx: %s page still referenced by %d users\n", 840 pfn, ps->msg, count); 841 result = FAILED; 842 } 843 844 /* Could do more checks here if page looks ok */ 845 /* 846 * Could adjust zone counters here to correct for the missing page. 847 */ 848 849 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 850 } 851 852 /* 853 * Do all that is necessary to remove user space mappings. Unmap 854 * the pages and send SIGBUS to the processes if the data was dirty. 855 */ 856 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 857 int trapno, int flags) 858 { 859 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 860 struct address_space *mapping; 861 LIST_HEAD(tokill); 862 int ret; 863 int kill = 1, forcekill; 864 struct page *hpage = compound_head(p); 865 struct page *ppage; 866 867 if (PageReserved(p) || PageSlab(p)) 868 return SWAP_SUCCESS; 869 870 /* 871 * This check implies we don't kill processes if their pages 872 * are in the swap cache early. Those are always late kills. 873 */ 874 if (!page_mapped(hpage)) 875 return SWAP_SUCCESS; 876 877 if (PageKsm(p)) 878 return SWAP_FAIL; 879 880 if (PageSwapCache(p)) { 881 printk(KERN_ERR 882 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 883 ttu |= TTU_IGNORE_HWPOISON; 884 } 885 886 /* 887 * Propagate the dirty bit from PTEs to struct page first, because we 888 * need this to decide if we should kill or just drop the page. 889 * XXX: the dirty test could be racy: set_page_dirty() may not always 890 * be called inside page lock (it's recommended but not enforced). 891 */ 892 mapping = page_mapping(hpage); 893 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 894 mapping_cap_writeback_dirty(mapping)) { 895 if (page_mkclean(hpage)) { 896 SetPageDirty(hpage); 897 } else { 898 kill = 0; 899 ttu |= TTU_IGNORE_HWPOISON; 900 printk(KERN_INFO 901 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 902 pfn); 903 } 904 } 905 906 /* 907 * ppage: poisoned page 908 * if p is regular page(4k page) 909 * ppage == real poisoned page; 910 * else p is hugetlb or THP, ppage == head page. 911 */ 912 ppage = hpage; 913 914 if (PageTransHuge(hpage)) { 915 /* 916 * Verify that this isn't a hugetlbfs head page, the check for 917 * PageAnon is just for avoid tripping a split_huge_page 918 * internal debug check, as split_huge_page refuses to deal with 919 * anything that isn't an anon page. PageAnon can't go away fro 920 * under us because we hold a refcount on the hpage, without a 921 * refcount on the hpage. split_huge_page can't be safely called 922 * in the first place, having a refcount on the tail isn't 923 * enough * to be safe. 924 */ 925 if (!PageHuge(hpage) && PageAnon(hpage)) { 926 if (unlikely(split_huge_page(hpage))) { 927 /* 928 * FIXME: if splitting THP is failed, it is 929 * better to stop the following operation rather 930 * than causing panic by unmapping. System might 931 * survive if the page is freed later. 932 */ 933 printk(KERN_INFO 934 "MCE %#lx: failed to split THP\n", pfn); 935 936 BUG_ON(!PageHWPoison(p)); 937 return SWAP_FAIL; 938 } 939 /* THP is split, so ppage should be the real poisoned page. */ 940 ppage = p; 941 } 942 } 943 944 /* 945 * First collect all the processes that have the page 946 * mapped in dirty form. This has to be done before try_to_unmap, 947 * because ttu takes the rmap data structures down. 948 * 949 * Error handling: We ignore errors here because 950 * there's nothing that can be done. 951 */ 952 if (kill) 953 collect_procs(ppage, &tokill); 954 955 if (hpage != ppage) 956 lock_page(ppage); 957 958 ret = try_to_unmap(ppage, ttu); 959 if (ret != SWAP_SUCCESS) 960 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 961 pfn, page_mapcount(ppage)); 962 963 if (hpage != ppage) 964 unlock_page(ppage); 965 966 /* 967 * Now that the dirty bit has been propagated to the 968 * struct page and all unmaps done we can decide if 969 * killing is needed or not. Only kill when the page 970 * was dirty or the process is not restartable, 971 * otherwise the tokill list is merely 972 * freed. When there was a problem unmapping earlier 973 * use a more force-full uncatchable kill to prevent 974 * any accesses to the poisoned memory. 975 */ 976 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 977 kill_procs(&tokill, forcekill, trapno, 978 ret != SWAP_SUCCESS, p, pfn, flags); 979 980 return ret; 981 } 982 983 static void set_page_hwpoison_huge_page(struct page *hpage) 984 { 985 int i; 986 int nr_pages = 1 << compound_trans_order(hpage); 987 for (i = 0; i < nr_pages; i++) 988 SetPageHWPoison(hpage + i); 989 } 990 991 static void clear_page_hwpoison_huge_page(struct page *hpage) 992 { 993 int i; 994 int nr_pages = 1 << compound_trans_order(hpage); 995 for (i = 0; i < nr_pages; i++) 996 ClearPageHWPoison(hpage + i); 997 } 998 999 /** 1000 * memory_failure - Handle memory failure of a page. 1001 * @pfn: Page Number of the corrupted page 1002 * @trapno: Trap number reported in the signal to user space. 1003 * @flags: fine tune action taken 1004 * 1005 * This function is called by the low level machine check code 1006 * of an architecture when it detects hardware memory corruption 1007 * of a page. It tries its best to recover, which includes 1008 * dropping pages, killing processes etc. 1009 * 1010 * The function is primarily of use for corruptions that 1011 * happen outside the current execution context (e.g. when 1012 * detected by a background scrubber) 1013 * 1014 * Must run in process context (e.g. a work queue) with interrupts 1015 * enabled and no spinlocks hold. 1016 */ 1017 int memory_failure(unsigned long pfn, int trapno, int flags) 1018 { 1019 struct page_state *ps; 1020 struct page *p; 1021 struct page *hpage; 1022 int res; 1023 unsigned int nr_pages; 1024 1025 if (!sysctl_memory_failure_recovery) 1026 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1027 1028 if (!pfn_valid(pfn)) { 1029 printk(KERN_ERR 1030 "MCE %#lx: memory outside kernel control\n", 1031 pfn); 1032 return -ENXIO; 1033 } 1034 1035 p = pfn_to_page(pfn); 1036 hpage = compound_head(p); 1037 if (TestSetPageHWPoison(p)) { 1038 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1039 return 0; 1040 } 1041 1042 nr_pages = 1 << compound_trans_order(hpage); 1043 atomic_long_add(nr_pages, &mce_bad_pages); 1044 1045 /* 1046 * We need/can do nothing about count=0 pages. 1047 * 1) it's a free page, and therefore in safe hand: 1048 * prep_new_page() will be the gate keeper. 1049 * 2) it's a free hugepage, which is also safe: 1050 * an affected hugepage will be dequeued from hugepage freelist, 1051 * so there's no concern about reusing it ever after. 1052 * 3) it's part of a non-compound high order page. 1053 * Implies some kernel user: cannot stop them from 1054 * R/W the page; let's pray that the page has been 1055 * used and will be freed some time later. 1056 * In fact it's dangerous to directly bump up page count from 0, 1057 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1058 */ 1059 if (!(flags & MF_COUNT_INCREASED) && 1060 !get_page_unless_zero(hpage)) { 1061 if (is_free_buddy_page(p)) { 1062 action_result(pfn, "free buddy", DELAYED); 1063 return 0; 1064 } else if (PageHuge(hpage)) { 1065 /* 1066 * Check "just unpoisoned", "filter hit", and 1067 * "race with other subpage." 1068 */ 1069 lock_page(hpage); 1070 if (!PageHWPoison(hpage) 1071 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1072 || (p != hpage && TestSetPageHWPoison(hpage))) { 1073 atomic_long_sub(nr_pages, &mce_bad_pages); 1074 return 0; 1075 } 1076 set_page_hwpoison_huge_page(hpage); 1077 res = dequeue_hwpoisoned_huge_page(hpage); 1078 action_result(pfn, "free huge", 1079 res ? IGNORED : DELAYED); 1080 unlock_page(hpage); 1081 return res; 1082 } else { 1083 action_result(pfn, "high order kernel", IGNORED); 1084 return -EBUSY; 1085 } 1086 } 1087 1088 /* 1089 * We ignore non-LRU pages for good reasons. 1090 * - PG_locked is only well defined for LRU pages and a few others 1091 * - to avoid races with __set_page_locked() 1092 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1093 * The check (unnecessarily) ignores LRU pages being isolated and 1094 * walked by the page reclaim code, however that's not a big loss. 1095 */ 1096 if (!PageHuge(p) && !PageTransTail(p)) { 1097 if (!PageLRU(p)) 1098 shake_page(p, 0); 1099 if (!PageLRU(p)) { 1100 /* 1101 * shake_page could have turned it free. 1102 */ 1103 if (is_free_buddy_page(p)) { 1104 action_result(pfn, "free buddy, 2nd try", 1105 DELAYED); 1106 return 0; 1107 } 1108 action_result(pfn, "non LRU", IGNORED); 1109 put_page(p); 1110 return -EBUSY; 1111 } 1112 } 1113 1114 /* 1115 * Lock the page and wait for writeback to finish. 1116 * It's very difficult to mess with pages currently under IO 1117 * and in many cases impossible, so we just avoid it here. 1118 */ 1119 lock_page(hpage); 1120 1121 /* 1122 * unpoison always clear PG_hwpoison inside page lock 1123 */ 1124 if (!PageHWPoison(p)) { 1125 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1126 res = 0; 1127 goto out; 1128 } 1129 if (hwpoison_filter(p)) { 1130 if (TestClearPageHWPoison(p)) 1131 atomic_long_sub(nr_pages, &mce_bad_pages); 1132 unlock_page(hpage); 1133 put_page(hpage); 1134 return 0; 1135 } 1136 1137 /* 1138 * For error on the tail page, we should set PG_hwpoison 1139 * on the head page to show that the hugepage is hwpoisoned 1140 */ 1141 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1142 action_result(pfn, "hugepage already hardware poisoned", 1143 IGNORED); 1144 unlock_page(hpage); 1145 put_page(hpage); 1146 return 0; 1147 } 1148 /* 1149 * Set PG_hwpoison on all pages in an error hugepage, 1150 * because containment is done in hugepage unit for now. 1151 * Since we have done TestSetPageHWPoison() for the head page with 1152 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1153 */ 1154 if (PageHuge(p)) 1155 set_page_hwpoison_huge_page(hpage); 1156 1157 wait_on_page_writeback(p); 1158 1159 /* 1160 * Now take care of user space mappings. 1161 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1162 */ 1163 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) { 1164 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1165 res = -EBUSY; 1166 goto out; 1167 } 1168 1169 /* 1170 * Torn down by someone else? 1171 */ 1172 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1173 action_result(pfn, "already truncated LRU", IGNORED); 1174 res = -EBUSY; 1175 goto out; 1176 } 1177 1178 res = -EBUSY; 1179 for (ps = error_states;; ps++) { 1180 if ((p->flags & ps->mask) == ps->res) { 1181 res = page_action(ps, p, pfn); 1182 break; 1183 } 1184 } 1185 out: 1186 unlock_page(hpage); 1187 return res; 1188 } 1189 EXPORT_SYMBOL_GPL(memory_failure); 1190 1191 #define MEMORY_FAILURE_FIFO_ORDER 4 1192 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1193 1194 struct memory_failure_entry { 1195 unsigned long pfn; 1196 int trapno; 1197 int flags; 1198 }; 1199 1200 struct memory_failure_cpu { 1201 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1202 MEMORY_FAILURE_FIFO_SIZE); 1203 spinlock_t lock; 1204 struct work_struct work; 1205 }; 1206 1207 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1208 1209 /** 1210 * memory_failure_queue - Schedule handling memory failure of a page. 1211 * @pfn: Page Number of the corrupted page 1212 * @trapno: Trap number reported in the signal to user space. 1213 * @flags: Flags for memory failure handling 1214 * 1215 * This function is called by the low level hardware error handler 1216 * when it detects hardware memory corruption of a page. It schedules 1217 * the recovering of error page, including dropping pages, killing 1218 * processes etc. 1219 * 1220 * The function is primarily of use for corruptions that 1221 * happen outside the current execution context (e.g. when 1222 * detected by a background scrubber) 1223 * 1224 * Can run in IRQ context. 1225 */ 1226 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1227 { 1228 struct memory_failure_cpu *mf_cpu; 1229 unsigned long proc_flags; 1230 struct memory_failure_entry entry = { 1231 .pfn = pfn, 1232 .trapno = trapno, 1233 .flags = flags, 1234 }; 1235 1236 mf_cpu = &get_cpu_var(memory_failure_cpu); 1237 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1238 if (kfifo_put(&mf_cpu->fifo, &entry)) 1239 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1240 else 1241 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n", 1242 pfn); 1243 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1244 put_cpu_var(memory_failure_cpu); 1245 } 1246 EXPORT_SYMBOL_GPL(memory_failure_queue); 1247 1248 static void memory_failure_work_func(struct work_struct *work) 1249 { 1250 struct memory_failure_cpu *mf_cpu; 1251 struct memory_failure_entry entry = { 0, }; 1252 unsigned long proc_flags; 1253 int gotten; 1254 1255 mf_cpu = &__get_cpu_var(memory_failure_cpu); 1256 for (;;) { 1257 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1258 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1259 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1260 if (!gotten) 1261 break; 1262 memory_failure(entry.pfn, entry.trapno, entry.flags); 1263 } 1264 } 1265 1266 static int __init memory_failure_init(void) 1267 { 1268 struct memory_failure_cpu *mf_cpu; 1269 int cpu; 1270 1271 for_each_possible_cpu(cpu) { 1272 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1273 spin_lock_init(&mf_cpu->lock); 1274 INIT_KFIFO(mf_cpu->fifo); 1275 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1276 } 1277 1278 return 0; 1279 } 1280 core_initcall(memory_failure_init); 1281 1282 /** 1283 * unpoison_memory - Unpoison a previously poisoned page 1284 * @pfn: Page number of the to be unpoisoned page 1285 * 1286 * Software-unpoison a page that has been poisoned by 1287 * memory_failure() earlier. 1288 * 1289 * This is only done on the software-level, so it only works 1290 * for linux injected failures, not real hardware failures 1291 * 1292 * Returns 0 for success, otherwise -errno. 1293 */ 1294 int unpoison_memory(unsigned long pfn) 1295 { 1296 struct page *page; 1297 struct page *p; 1298 int freeit = 0; 1299 unsigned int nr_pages; 1300 1301 if (!pfn_valid(pfn)) 1302 return -ENXIO; 1303 1304 p = pfn_to_page(pfn); 1305 page = compound_head(p); 1306 1307 if (!PageHWPoison(p)) { 1308 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1309 return 0; 1310 } 1311 1312 nr_pages = 1 << compound_trans_order(page); 1313 1314 if (!get_page_unless_zero(page)) { 1315 /* 1316 * Since HWPoisoned hugepage should have non-zero refcount, 1317 * race between memory failure and unpoison seems to happen. 1318 * In such case unpoison fails and memory failure runs 1319 * to the end. 1320 */ 1321 if (PageHuge(page)) { 1322 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1323 return 0; 1324 } 1325 if (TestClearPageHWPoison(p)) 1326 atomic_long_sub(nr_pages, &mce_bad_pages); 1327 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1328 return 0; 1329 } 1330 1331 lock_page(page); 1332 /* 1333 * This test is racy because PG_hwpoison is set outside of page lock. 1334 * That's acceptable because that won't trigger kernel panic. Instead, 1335 * the PG_hwpoison page will be caught and isolated on the entrance to 1336 * the free buddy page pool. 1337 */ 1338 if (TestClearPageHWPoison(page)) { 1339 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1340 atomic_long_sub(nr_pages, &mce_bad_pages); 1341 freeit = 1; 1342 if (PageHuge(page)) 1343 clear_page_hwpoison_huge_page(page); 1344 } 1345 unlock_page(page); 1346 1347 put_page(page); 1348 if (freeit) 1349 put_page(page); 1350 1351 return 0; 1352 } 1353 EXPORT_SYMBOL(unpoison_memory); 1354 1355 static struct page *new_page(struct page *p, unsigned long private, int **x) 1356 { 1357 int nid = page_to_nid(p); 1358 if (PageHuge(p)) 1359 return alloc_huge_page_node(page_hstate(compound_head(p)), 1360 nid); 1361 else 1362 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1363 } 1364 1365 /* 1366 * Safely get reference count of an arbitrary page. 1367 * Returns 0 for a free page, -EIO for a zero refcount page 1368 * that is not free, and 1 for any other page type. 1369 * For 1 the page is returned with increased page count, otherwise not. 1370 */ 1371 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1372 { 1373 int ret; 1374 1375 if (flags & MF_COUNT_INCREASED) 1376 return 1; 1377 1378 /* 1379 * The lock_memory_hotplug prevents a race with memory hotplug. 1380 * This is a big hammer, a better would be nicer. 1381 */ 1382 lock_memory_hotplug(); 1383 1384 /* 1385 * Isolate the page, so that it doesn't get reallocated if it 1386 * was free. 1387 */ 1388 set_migratetype_isolate(p, true); 1389 /* 1390 * When the target page is a free hugepage, just remove it 1391 * from free hugepage list. 1392 */ 1393 if (!get_page_unless_zero(compound_head(p))) { 1394 if (PageHuge(p)) { 1395 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1396 ret = dequeue_hwpoisoned_huge_page(compound_head(p)); 1397 } else if (is_free_buddy_page(p)) { 1398 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1399 /* Set hwpoison bit while page is still isolated */ 1400 SetPageHWPoison(p); 1401 ret = 0; 1402 } else { 1403 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1404 __func__, pfn, p->flags); 1405 ret = -EIO; 1406 } 1407 } else { 1408 /* Not a free page */ 1409 ret = 1; 1410 } 1411 unset_migratetype_isolate(p, MIGRATE_MOVABLE); 1412 unlock_memory_hotplug(); 1413 return ret; 1414 } 1415 1416 static int soft_offline_huge_page(struct page *page, int flags) 1417 { 1418 int ret; 1419 unsigned long pfn = page_to_pfn(page); 1420 struct page *hpage = compound_head(page); 1421 1422 ret = get_any_page(page, pfn, flags); 1423 if (ret < 0) 1424 return ret; 1425 if (ret == 0) 1426 goto done; 1427 1428 if (PageHWPoison(hpage)) { 1429 put_page(hpage); 1430 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1431 return -EBUSY; 1432 } 1433 1434 /* Keep page count to indicate a given hugepage is isolated. */ 1435 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false, 1436 MIGRATE_SYNC); 1437 put_page(hpage); 1438 if (ret) { 1439 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1440 pfn, ret, page->flags); 1441 return ret; 1442 } 1443 done: 1444 if (!PageHWPoison(hpage)) 1445 atomic_long_add(1 << compound_trans_order(hpage), 1446 &mce_bad_pages); 1447 set_page_hwpoison_huge_page(hpage); 1448 dequeue_hwpoisoned_huge_page(hpage); 1449 /* keep elevated page count for bad page */ 1450 return ret; 1451 } 1452 1453 /** 1454 * soft_offline_page - Soft offline a page. 1455 * @page: page to offline 1456 * @flags: flags. Same as memory_failure(). 1457 * 1458 * Returns 0 on success, otherwise negated errno. 1459 * 1460 * Soft offline a page, by migration or invalidation, 1461 * without killing anything. This is for the case when 1462 * a page is not corrupted yet (so it's still valid to access), 1463 * but has had a number of corrected errors and is better taken 1464 * out. 1465 * 1466 * The actual policy on when to do that is maintained by 1467 * user space. 1468 * 1469 * This should never impact any application or cause data loss, 1470 * however it might take some time. 1471 * 1472 * This is not a 100% solution for all memory, but tries to be 1473 * ``good enough'' for the majority of memory. 1474 */ 1475 int soft_offline_page(struct page *page, int flags) 1476 { 1477 int ret; 1478 unsigned long pfn = page_to_pfn(page); 1479 struct page *hpage = compound_trans_head(page); 1480 1481 if (PageHuge(page)) 1482 return soft_offline_huge_page(page, flags); 1483 if (PageTransHuge(hpage)) { 1484 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1485 pr_info("soft offline: %#lx: failed to split THP\n", 1486 pfn); 1487 return -EBUSY; 1488 } 1489 } 1490 1491 ret = get_any_page(page, pfn, flags); 1492 if (ret < 0) 1493 return ret; 1494 if (ret == 0) 1495 goto done; 1496 1497 /* 1498 * Page cache page we can handle? 1499 */ 1500 if (!PageLRU(page)) { 1501 /* 1502 * Try to free it. 1503 */ 1504 put_page(page); 1505 shake_page(page, 1); 1506 1507 /* 1508 * Did it turn free? 1509 */ 1510 ret = get_any_page(page, pfn, 0); 1511 if (ret < 0) 1512 return ret; 1513 if (ret == 0) 1514 goto done; 1515 } 1516 if (!PageLRU(page)) { 1517 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1518 pfn, page->flags); 1519 return -EIO; 1520 } 1521 1522 lock_page(page); 1523 wait_on_page_writeback(page); 1524 1525 /* 1526 * Synchronized using the page lock with memory_failure() 1527 */ 1528 if (PageHWPoison(page)) { 1529 unlock_page(page); 1530 put_page(page); 1531 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1532 return -EBUSY; 1533 } 1534 1535 /* 1536 * Try to invalidate first. This should work for 1537 * non dirty unmapped page cache pages. 1538 */ 1539 ret = invalidate_inode_page(page); 1540 unlock_page(page); 1541 /* 1542 * RED-PEN would be better to keep it isolated here, but we 1543 * would need to fix isolation locking first. 1544 */ 1545 if (ret == 1) { 1546 put_page(page); 1547 ret = 0; 1548 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1549 goto done; 1550 } 1551 1552 /* 1553 * Simple invalidation didn't work. 1554 * Try to migrate to a new page instead. migrate.c 1555 * handles a large number of cases for us. 1556 */ 1557 ret = isolate_lru_page(page); 1558 /* 1559 * Drop page reference which is came from get_any_page() 1560 * successful isolate_lru_page() already took another one. 1561 */ 1562 put_page(page); 1563 if (!ret) { 1564 LIST_HEAD(pagelist); 1565 inc_zone_page_state(page, NR_ISOLATED_ANON + 1566 page_is_file_cache(page)); 1567 list_add(&page->lru, &pagelist); 1568 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1569 false, MIGRATE_SYNC, 1570 MR_MEMORY_FAILURE); 1571 if (ret) { 1572 putback_lru_pages(&pagelist); 1573 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1574 pfn, ret, page->flags); 1575 if (ret > 0) 1576 ret = -EIO; 1577 } 1578 } else { 1579 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1580 pfn, ret, page_count(page), page->flags); 1581 } 1582 if (ret) 1583 return ret; 1584 1585 done: 1586 atomic_long_add(1, &mce_bad_pages); 1587 SetPageHWPoison(page); 1588 /* keep elevated page count for bad page */ 1589 return ret; 1590 } 1591