xref: /openbmc/linux/mm/memory-failure.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (!ino || ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t == current) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, t);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages();
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_slab here (which would also shrink other caches) if
243 	 * access is not potentially fatal.
244 	 */
245 	if (access) {
246 		int nr;
247 		int nid = page_to_nid(p);
248 		do {
249 			struct shrink_control shrink = {
250 				.gfp_mask = GFP_KERNEL,
251 			};
252 			node_set(nid, shrink.nodes_to_scan);
253 
254 			nr = shrink_slab(&shrink, 1000, 1000);
255 			if (page_count(p) == 1)
256 				break;
257 		} while (nr > 10);
258 	}
259 }
260 EXPORT_SYMBOL_GPL(shake_page);
261 
262 /*
263  * Kill all processes that have a poisoned page mapped and then isolate
264  * the page.
265  *
266  * General strategy:
267  * Find all processes having the page mapped and kill them.
268  * But we keep a page reference around so that the page is not
269  * actually freed yet.
270  * Then stash the page away
271  *
272  * There's no convenient way to get back to mapped processes
273  * from the VMAs. So do a brute-force search over all
274  * running processes.
275  *
276  * Remember that machine checks are not common (or rather
277  * if they are common you have other problems), so this shouldn't
278  * be a performance issue.
279  *
280  * Also there are some races possible while we get from the
281  * error detection to actually handle it.
282  */
283 
284 struct to_kill {
285 	struct list_head nd;
286 	struct task_struct *tsk;
287 	unsigned long addr;
288 	char addr_valid;
289 };
290 
291 /*
292  * Failure handling: if we can't find or can't kill a process there's
293  * not much we can do.	We just print a message and ignore otherwise.
294  */
295 
296 /*
297  * Schedule a process for later kill.
298  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299  * TBD would GFP_NOIO be enough?
300  */
301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 		       struct vm_area_struct *vma,
303 		       struct list_head *to_kill,
304 		       struct to_kill **tkc)
305 {
306 	struct to_kill *tk;
307 
308 	if (*tkc) {
309 		tk = *tkc;
310 		*tkc = NULL;
311 	} else {
312 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 		if (!tk) {
314 			printk(KERN_ERR
315 		"MCE: Out of memory while machine check handling\n");
316 			return;
317 		}
318 	}
319 	tk->addr = page_address_in_vma(p, vma);
320 	tk->addr_valid = 1;
321 
322 	/*
323 	 * In theory we don't have to kill when the page was
324 	 * munmaped. But it could be also a mremap. Since that's
325 	 * likely very rare kill anyways just out of paranoia, but use
326 	 * a SIGKILL because the error is not contained anymore.
327 	 */
328 	if (tk->addr == -EFAULT) {
329 		pr_info("MCE: Unable to find user space address %lx in %s\n",
330 			page_to_pfn(p), tsk->comm);
331 		tk->addr_valid = 0;
332 	}
333 	get_task_struct(tsk);
334 	tk->tsk = tsk;
335 	list_add_tail(&tk->nd, to_kill);
336 }
337 
338 /*
339  * Kill the processes that have been collected earlier.
340  *
341  * Only do anything when DOIT is set, otherwise just free the list
342  * (this is used for clean pages which do not need killing)
343  * Also when FAIL is set do a force kill because something went
344  * wrong earlier.
345  */
346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 			  int fail, struct page *page, unsigned long pfn,
348 			  int flags)
349 {
350 	struct to_kill *tk, *next;
351 
352 	list_for_each_entry_safe (tk, next, to_kill, nd) {
353 		if (forcekill) {
354 			/*
355 			 * In case something went wrong with munmapping
356 			 * make sure the process doesn't catch the
357 			 * signal and then access the memory. Just kill it.
358 			 */
359 			if (fail || tk->addr_valid == 0) {
360 				printk(KERN_ERR
361 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 					pfn, tk->tsk->comm, tk->tsk->pid);
363 				force_sig(SIGKILL, tk->tsk);
364 			}
365 
366 			/*
367 			 * In theory the process could have mapped
368 			 * something else on the address in-between. We could
369 			 * check for that, but we need to tell the
370 			 * process anyways.
371 			 */
372 			else if (kill_proc(tk->tsk, tk->addr, trapno,
373 					      pfn, page, flags) < 0)
374 				printk(KERN_ERR
375 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 					pfn, tk->tsk->comm, tk->tsk->pid);
377 		}
378 		put_task_struct(tk->tsk);
379 		kfree(tk);
380 	}
381 }
382 
383 static int task_early_kill(struct task_struct *tsk)
384 {
385 	if (!tsk->mm)
386 		return 0;
387 	if (tsk->flags & PF_MCE_PROCESS)
388 		return !!(tsk->flags & PF_MCE_EARLY);
389 	return sysctl_memory_failure_early_kill;
390 }
391 
392 /*
393  * Collect processes when the error hit an anonymous page.
394  */
395 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
396 			      struct to_kill **tkc)
397 {
398 	struct vm_area_struct *vma;
399 	struct task_struct *tsk;
400 	struct anon_vma *av;
401 	pgoff_t pgoff;
402 
403 	av = page_lock_anon_vma_read(page);
404 	if (av == NULL)	/* Not actually mapped anymore */
405 		return;
406 
407 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
408 	read_lock(&tasklist_lock);
409 	for_each_process (tsk) {
410 		struct anon_vma_chain *vmac;
411 
412 		if (!task_early_kill(tsk))
413 			continue;
414 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
415 					       pgoff, pgoff) {
416 			vma = vmac->vma;
417 			if (!page_mapped_in_vma(page, vma))
418 				continue;
419 			if (vma->vm_mm == tsk->mm)
420 				add_to_kill(tsk, page, vma, to_kill, tkc);
421 		}
422 	}
423 	read_unlock(&tasklist_lock);
424 	page_unlock_anon_vma_read(av);
425 }
426 
427 /*
428  * Collect processes when the error hit a file mapped page.
429  */
430 static void collect_procs_file(struct page *page, struct list_head *to_kill,
431 			      struct to_kill **tkc)
432 {
433 	struct vm_area_struct *vma;
434 	struct task_struct *tsk;
435 	struct address_space *mapping = page->mapping;
436 
437 	mutex_lock(&mapping->i_mmap_mutex);
438 	read_lock(&tasklist_lock);
439 	for_each_process(tsk) {
440 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441 
442 		if (!task_early_kill(tsk))
443 			continue;
444 
445 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
446 				      pgoff) {
447 			/*
448 			 * Send early kill signal to tasks where a vma covers
449 			 * the page but the corrupted page is not necessarily
450 			 * mapped it in its pte.
451 			 * Assume applications who requested early kill want
452 			 * to be informed of all such data corruptions.
453 			 */
454 			if (vma->vm_mm == tsk->mm)
455 				add_to_kill(tsk, page, vma, to_kill, tkc);
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	mutex_unlock(&mapping->i_mmap_mutex);
460 }
461 
462 /*
463  * Collect the processes who have the corrupted page mapped to kill.
464  * This is done in two steps for locking reasons.
465  * First preallocate one tokill structure outside the spin locks,
466  * so that we can kill at least one process reasonably reliable.
467  */
468 static void collect_procs(struct page *page, struct list_head *tokill)
469 {
470 	struct to_kill *tk;
471 
472 	if (!page->mapping)
473 		return;
474 
475 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 	if (!tk)
477 		return;
478 	if (PageAnon(page))
479 		collect_procs_anon(page, tokill, &tk);
480 	else
481 		collect_procs_file(page, tokill, &tk);
482 	kfree(tk);
483 }
484 
485 /*
486  * Error handlers for various types of pages.
487  */
488 
489 enum outcome {
490 	IGNORED,	/* Error: cannot be handled */
491 	FAILED,		/* Error: handling failed */
492 	DELAYED,	/* Will be handled later */
493 	RECOVERED,	/* Successfully recovered */
494 };
495 
496 static const char *action_name[] = {
497 	[IGNORED] = "Ignored",
498 	[FAILED] = "Failed",
499 	[DELAYED] = "Delayed",
500 	[RECOVERED] = "Recovered",
501 };
502 
503 /*
504  * XXX: It is possible that a page is isolated from LRU cache,
505  * and then kept in swap cache or failed to remove from page cache.
506  * The page count will stop it from being freed by unpoison.
507  * Stress tests should be aware of this memory leak problem.
508  */
509 static int delete_from_lru_cache(struct page *p)
510 {
511 	if (!isolate_lru_page(p)) {
512 		/*
513 		 * Clear sensible page flags, so that the buddy system won't
514 		 * complain when the page is unpoison-and-freed.
515 		 */
516 		ClearPageActive(p);
517 		ClearPageUnevictable(p);
518 		/*
519 		 * drop the page count elevated by isolate_lru_page()
520 		 */
521 		page_cache_release(p);
522 		return 0;
523 	}
524 	return -EIO;
525 }
526 
527 /*
528  * Error hit kernel page.
529  * Do nothing, try to be lucky and not touch this instead. For a few cases we
530  * could be more sophisticated.
531  */
532 static int me_kernel(struct page *p, unsigned long pfn)
533 {
534 	return IGNORED;
535 }
536 
537 /*
538  * Page in unknown state. Do nothing.
539  */
540 static int me_unknown(struct page *p, unsigned long pfn)
541 {
542 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 	return FAILED;
544 }
545 
546 /*
547  * Clean (or cleaned) page cache page.
548  */
549 static int me_pagecache_clean(struct page *p, unsigned long pfn)
550 {
551 	int err;
552 	int ret = FAILED;
553 	struct address_space *mapping;
554 
555 	delete_from_lru_cache(p);
556 
557 	/*
558 	 * For anonymous pages we're done the only reference left
559 	 * should be the one m_f() holds.
560 	 */
561 	if (PageAnon(p))
562 		return RECOVERED;
563 
564 	/*
565 	 * Now truncate the page in the page cache. This is really
566 	 * more like a "temporary hole punch"
567 	 * Don't do this for block devices when someone else
568 	 * has a reference, because it could be file system metadata
569 	 * and that's not safe to truncate.
570 	 */
571 	mapping = page_mapping(p);
572 	if (!mapping) {
573 		/*
574 		 * Page has been teared down in the meanwhile
575 		 */
576 		return FAILED;
577 	}
578 
579 	/*
580 	 * Truncation is a bit tricky. Enable it per file system for now.
581 	 *
582 	 * Open: to take i_mutex or not for this? Right now we don't.
583 	 */
584 	if (mapping->a_ops->error_remove_page) {
585 		err = mapping->a_ops->error_remove_page(mapping, p);
586 		if (err != 0) {
587 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 					pfn, err);
589 		} else if (page_has_private(p) &&
590 				!try_to_release_page(p, GFP_NOIO)) {
591 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
592 		} else {
593 			ret = RECOVERED;
594 		}
595 	} else {
596 		/*
597 		 * If the file system doesn't support it just invalidate
598 		 * This fails on dirty or anything with private pages
599 		 */
600 		if (invalidate_inode_page(p))
601 			ret = RECOVERED;
602 		else
603 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 				pfn);
605 	}
606 	return ret;
607 }
608 
609 /*
610  * Dirty pagecache page
611  * Issues: when the error hit a hole page the error is not properly
612  * propagated.
613  */
614 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615 {
616 	struct address_space *mapping = page_mapping(p);
617 
618 	SetPageError(p);
619 	/* TBD: print more information about the file. */
620 	if (mapping) {
621 		/*
622 		 * IO error will be reported by write(), fsync(), etc.
623 		 * who check the mapping.
624 		 * This way the application knows that something went
625 		 * wrong with its dirty file data.
626 		 *
627 		 * There's one open issue:
628 		 *
629 		 * The EIO will be only reported on the next IO
630 		 * operation and then cleared through the IO map.
631 		 * Normally Linux has two mechanisms to pass IO error
632 		 * first through the AS_EIO flag in the address space
633 		 * and then through the PageError flag in the page.
634 		 * Since we drop pages on memory failure handling the
635 		 * only mechanism open to use is through AS_AIO.
636 		 *
637 		 * This has the disadvantage that it gets cleared on
638 		 * the first operation that returns an error, while
639 		 * the PageError bit is more sticky and only cleared
640 		 * when the page is reread or dropped.  If an
641 		 * application assumes it will always get error on
642 		 * fsync, but does other operations on the fd before
643 		 * and the page is dropped between then the error
644 		 * will not be properly reported.
645 		 *
646 		 * This can already happen even without hwpoisoned
647 		 * pages: first on metadata IO errors (which only
648 		 * report through AS_EIO) or when the page is dropped
649 		 * at the wrong time.
650 		 *
651 		 * So right now we assume that the application DTRT on
652 		 * the first EIO, but we're not worse than other parts
653 		 * of the kernel.
654 		 */
655 		mapping_set_error(mapping, EIO);
656 	}
657 
658 	return me_pagecache_clean(p, pfn);
659 }
660 
661 /*
662  * Clean and dirty swap cache.
663  *
664  * Dirty swap cache page is tricky to handle. The page could live both in page
665  * cache and swap cache(ie. page is freshly swapped in). So it could be
666  * referenced concurrently by 2 types of PTEs:
667  * normal PTEs and swap PTEs. We try to handle them consistently by calling
668  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669  * and then
670  *      - clear dirty bit to prevent IO
671  *      - remove from LRU
672  *      - but keep in the swap cache, so that when we return to it on
673  *        a later page fault, we know the application is accessing
674  *        corrupted data and shall be killed (we installed simple
675  *        interception code in do_swap_page to catch it).
676  *
677  * Clean swap cache pages can be directly isolated. A later page fault will
678  * bring in the known good data from disk.
679  */
680 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681 {
682 	ClearPageDirty(p);
683 	/* Trigger EIO in shmem: */
684 	ClearPageUptodate(p);
685 
686 	if (!delete_from_lru_cache(p))
687 		return DELAYED;
688 	else
689 		return FAILED;
690 }
691 
692 static int me_swapcache_clean(struct page *p, unsigned long pfn)
693 {
694 	delete_from_swap_cache(p);
695 
696 	if (!delete_from_lru_cache(p))
697 		return RECOVERED;
698 	else
699 		return FAILED;
700 }
701 
702 /*
703  * Huge pages. Needs work.
704  * Issues:
705  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706  *   To narrow down kill region to one page, we need to break up pmd.
707  */
708 static int me_huge_page(struct page *p, unsigned long pfn)
709 {
710 	int res = 0;
711 	struct page *hpage = compound_head(p);
712 	/*
713 	 * We can safely recover from error on free or reserved (i.e.
714 	 * not in-use) hugepage by dequeuing it from freelist.
715 	 * To check whether a hugepage is in-use or not, we can't use
716 	 * page->lru because it can be used in other hugepage operations,
717 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 	 * So instead we use page_mapping() and PageAnon().
719 	 * We assume that this function is called with page lock held,
720 	 * so there is no race between isolation and mapping/unmapping.
721 	 */
722 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
723 		res = dequeue_hwpoisoned_huge_page(hpage);
724 		if (!res)
725 			return RECOVERED;
726 	}
727 	return DELAYED;
728 }
729 
730 /*
731  * Various page states we can handle.
732  *
733  * A page state is defined by its current page->flags bits.
734  * The table matches them in order and calls the right handler.
735  *
736  * This is quite tricky because we can access page at any time
737  * in its live cycle, so all accesses have to be extremely careful.
738  *
739  * This is not complete. More states could be added.
740  * For any missing state don't attempt recovery.
741  */
742 
743 #define dirty		(1UL << PG_dirty)
744 #define sc		(1UL << PG_swapcache)
745 #define unevict		(1UL << PG_unevictable)
746 #define mlock		(1UL << PG_mlocked)
747 #define writeback	(1UL << PG_writeback)
748 #define lru		(1UL << PG_lru)
749 #define swapbacked	(1UL << PG_swapbacked)
750 #define head		(1UL << PG_head)
751 #define tail		(1UL << PG_tail)
752 #define compound	(1UL << PG_compound)
753 #define slab		(1UL << PG_slab)
754 #define reserved	(1UL << PG_reserved)
755 
756 static struct page_state {
757 	unsigned long mask;
758 	unsigned long res;
759 	char *msg;
760 	int (*action)(struct page *p, unsigned long pfn);
761 } error_states[] = {
762 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
763 	/*
764 	 * free pages are specially detected outside this table:
765 	 * PG_buddy pages only make a small fraction of all free pages.
766 	 */
767 
768 	/*
769 	 * Could in theory check if slab page is free or if we can drop
770 	 * currently unused objects without touching them. But just
771 	 * treat it as standard kernel for now.
772 	 */
773 	{ slab,		slab,		"kernel slab",	me_kernel },
774 
775 #ifdef CONFIG_PAGEFLAGS_EXTENDED
776 	{ head,		head,		"huge",		me_huge_page },
777 	{ tail,		tail,		"huge",		me_huge_page },
778 #else
779 	{ compound,	compound,	"huge",		me_huge_page },
780 #endif
781 
782 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
783 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
784 
785 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
786 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
787 
788 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
789 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
790 
791 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
792 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
793 
794 	/*
795 	 * Catchall entry: must be at end.
796 	 */
797 	{ 0,		0,		"unknown page state",	me_unknown },
798 };
799 
800 #undef dirty
801 #undef sc
802 #undef unevict
803 #undef mlock
804 #undef writeback
805 #undef lru
806 #undef swapbacked
807 #undef head
808 #undef tail
809 #undef compound
810 #undef slab
811 #undef reserved
812 
813 /*
814  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
815  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
816  */
817 static void action_result(unsigned long pfn, char *msg, int result)
818 {
819 	pr_err("MCE %#lx: %s page recovery: %s\n",
820 		pfn, msg, action_name[result]);
821 }
822 
823 static int page_action(struct page_state *ps, struct page *p,
824 			unsigned long pfn)
825 {
826 	int result;
827 	int count;
828 
829 	result = ps->action(p, pfn);
830 	action_result(pfn, ps->msg, result);
831 
832 	count = page_count(p) - 1;
833 	if (ps->action == me_swapcache_dirty && result == DELAYED)
834 		count--;
835 	if (count != 0) {
836 		printk(KERN_ERR
837 		       "MCE %#lx: %s page still referenced by %d users\n",
838 		       pfn, ps->msg, count);
839 		result = FAILED;
840 	}
841 
842 	/* Could do more checks here if page looks ok */
843 	/*
844 	 * Could adjust zone counters here to correct for the missing page.
845 	 */
846 
847 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848 }
849 
850 /*
851  * Do all that is necessary to remove user space mappings. Unmap
852  * the pages and send SIGBUS to the processes if the data was dirty.
853  */
854 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855 				  int trapno, int flags, struct page **hpagep)
856 {
857 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 	struct address_space *mapping;
859 	LIST_HEAD(tokill);
860 	int ret;
861 	int kill = 1, forcekill;
862 	struct page *hpage = *hpagep;
863 	struct page *ppage;
864 
865 	if (PageReserved(p) || PageSlab(p))
866 		return SWAP_SUCCESS;
867 
868 	/*
869 	 * This check implies we don't kill processes if their pages
870 	 * are in the swap cache early. Those are always late kills.
871 	 */
872 	if (!page_mapped(hpage))
873 		return SWAP_SUCCESS;
874 
875 	if (PageKsm(p))
876 		return SWAP_FAIL;
877 
878 	if (PageSwapCache(p)) {
879 		printk(KERN_ERR
880 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 		ttu |= TTU_IGNORE_HWPOISON;
882 	}
883 
884 	/*
885 	 * Propagate the dirty bit from PTEs to struct page first, because we
886 	 * need this to decide if we should kill or just drop the page.
887 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 	 * be called inside page lock (it's recommended but not enforced).
889 	 */
890 	mapping = page_mapping(hpage);
891 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
892 	    mapping_cap_writeback_dirty(mapping)) {
893 		if (page_mkclean(hpage)) {
894 			SetPageDirty(hpage);
895 		} else {
896 			kill = 0;
897 			ttu |= TTU_IGNORE_HWPOISON;
898 			printk(KERN_INFO
899 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 				pfn);
901 		}
902 	}
903 
904 	/*
905 	 * ppage: poisoned page
906 	 *   if p is regular page(4k page)
907 	 *        ppage == real poisoned page;
908 	 *   else p is hugetlb or THP, ppage == head page.
909 	 */
910 	ppage = hpage;
911 
912 	if (PageTransHuge(hpage)) {
913 		/*
914 		 * Verify that this isn't a hugetlbfs head page, the check for
915 		 * PageAnon is just for avoid tripping a split_huge_page
916 		 * internal debug check, as split_huge_page refuses to deal with
917 		 * anything that isn't an anon page. PageAnon can't go away fro
918 		 * under us because we hold a refcount on the hpage, without a
919 		 * refcount on the hpage. split_huge_page can't be safely called
920 		 * in the first place, having a refcount on the tail isn't
921 		 * enough * to be safe.
922 		 */
923 		if (!PageHuge(hpage) && PageAnon(hpage)) {
924 			if (unlikely(split_huge_page(hpage))) {
925 				/*
926 				 * FIXME: if splitting THP is failed, it is
927 				 * better to stop the following operation rather
928 				 * than causing panic by unmapping. System might
929 				 * survive if the page is freed later.
930 				 */
931 				printk(KERN_INFO
932 					"MCE %#lx: failed to split THP\n", pfn);
933 
934 				BUG_ON(!PageHWPoison(p));
935 				return SWAP_FAIL;
936 			}
937 			/*
938 			 * We pinned the head page for hwpoison handling,
939 			 * now we split the thp and we are interested in
940 			 * the hwpoisoned raw page, so move the refcount
941 			 * to it. Similarly, page lock is shifted.
942 			 */
943 			if (hpage != p) {
944 				if (!(flags & MF_COUNT_INCREASED)) {
945 					put_page(hpage);
946 					get_page(p);
947 				}
948 				lock_page(p);
949 				unlock_page(hpage);
950 				*hpagep = p;
951 			}
952 			/* THP is split, so ppage should be the real poisoned page. */
953 			ppage = p;
954 		}
955 	}
956 
957 	/*
958 	 * First collect all the processes that have the page
959 	 * mapped in dirty form.  This has to be done before try_to_unmap,
960 	 * because ttu takes the rmap data structures down.
961 	 *
962 	 * Error handling: We ignore errors here because
963 	 * there's nothing that can be done.
964 	 */
965 	if (kill)
966 		collect_procs(ppage, &tokill);
967 
968 	ret = try_to_unmap(ppage, ttu);
969 	if (ret != SWAP_SUCCESS)
970 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
971 				pfn, page_mapcount(ppage));
972 
973 	/*
974 	 * Now that the dirty bit has been propagated to the
975 	 * struct page and all unmaps done we can decide if
976 	 * killing is needed or not.  Only kill when the page
977 	 * was dirty or the process is not restartable,
978 	 * otherwise the tokill list is merely
979 	 * freed.  When there was a problem unmapping earlier
980 	 * use a more force-full uncatchable kill to prevent
981 	 * any accesses to the poisoned memory.
982 	 */
983 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
984 	kill_procs(&tokill, forcekill, trapno,
985 		      ret != SWAP_SUCCESS, p, pfn, flags);
986 
987 	return ret;
988 }
989 
990 static void set_page_hwpoison_huge_page(struct page *hpage)
991 {
992 	int i;
993 	int nr_pages = 1 << compound_order(hpage);
994 	for (i = 0; i < nr_pages; i++)
995 		SetPageHWPoison(hpage + i);
996 }
997 
998 static void clear_page_hwpoison_huge_page(struct page *hpage)
999 {
1000 	int i;
1001 	int nr_pages = 1 << compound_order(hpage);
1002 	for (i = 0; i < nr_pages; i++)
1003 		ClearPageHWPoison(hpage + i);
1004 }
1005 
1006 /**
1007  * memory_failure - Handle memory failure of a page.
1008  * @pfn: Page Number of the corrupted page
1009  * @trapno: Trap number reported in the signal to user space.
1010  * @flags: fine tune action taken
1011  *
1012  * This function is called by the low level machine check code
1013  * of an architecture when it detects hardware memory corruption
1014  * of a page. It tries its best to recover, which includes
1015  * dropping pages, killing processes etc.
1016  *
1017  * The function is primarily of use for corruptions that
1018  * happen outside the current execution context (e.g. when
1019  * detected by a background scrubber)
1020  *
1021  * Must run in process context (e.g. a work queue) with interrupts
1022  * enabled and no spinlocks hold.
1023  */
1024 int memory_failure(unsigned long pfn, int trapno, int flags)
1025 {
1026 	struct page_state *ps;
1027 	struct page *p;
1028 	struct page *hpage;
1029 	int res;
1030 	unsigned int nr_pages;
1031 	unsigned long page_flags;
1032 
1033 	if (!sysctl_memory_failure_recovery)
1034 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1035 
1036 	if (!pfn_valid(pfn)) {
1037 		printk(KERN_ERR
1038 		       "MCE %#lx: memory outside kernel control\n",
1039 		       pfn);
1040 		return -ENXIO;
1041 	}
1042 
1043 	p = pfn_to_page(pfn);
1044 	hpage = compound_head(p);
1045 	if (TestSetPageHWPoison(p)) {
1046 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1047 		return 0;
1048 	}
1049 
1050 	/*
1051 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1052 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1053 	 * transparent hugepages, they are supposed to be split and error
1054 	 * measurement is done in normal page units.  So nr_pages should be one
1055 	 * in this case.
1056 	 */
1057 	if (PageHuge(p))
1058 		nr_pages = 1 << compound_order(hpage);
1059 	else /* normal page or thp */
1060 		nr_pages = 1;
1061 	atomic_long_add(nr_pages, &num_poisoned_pages);
1062 
1063 	/*
1064 	 * We need/can do nothing about count=0 pages.
1065 	 * 1) it's a free page, and therefore in safe hand:
1066 	 *    prep_new_page() will be the gate keeper.
1067 	 * 2) it's a free hugepage, which is also safe:
1068 	 *    an affected hugepage will be dequeued from hugepage freelist,
1069 	 *    so there's no concern about reusing it ever after.
1070 	 * 3) it's part of a non-compound high order page.
1071 	 *    Implies some kernel user: cannot stop them from
1072 	 *    R/W the page; let's pray that the page has been
1073 	 *    used and will be freed some time later.
1074 	 * In fact it's dangerous to directly bump up page count from 0,
1075 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1076 	 */
1077 	if (!(flags & MF_COUNT_INCREASED) &&
1078 		!get_page_unless_zero(hpage)) {
1079 		if (is_free_buddy_page(p)) {
1080 			action_result(pfn, "free buddy", DELAYED);
1081 			return 0;
1082 		} else if (PageHuge(hpage)) {
1083 			/*
1084 			 * Check "just unpoisoned", "filter hit", and
1085 			 * "race with other subpage."
1086 			 */
1087 			lock_page(hpage);
1088 			if (!PageHWPoison(hpage)
1089 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1090 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1091 				atomic_long_sub(nr_pages, &num_poisoned_pages);
1092 				return 0;
1093 			}
1094 			set_page_hwpoison_huge_page(hpage);
1095 			res = dequeue_hwpoisoned_huge_page(hpage);
1096 			action_result(pfn, "free huge",
1097 				      res ? IGNORED : DELAYED);
1098 			unlock_page(hpage);
1099 			return res;
1100 		} else {
1101 			action_result(pfn, "high order kernel", IGNORED);
1102 			return -EBUSY;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * We ignore non-LRU pages for good reasons.
1108 	 * - PG_locked is only well defined for LRU pages and a few others
1109 	 * - to avoid races with __set_page_locked()
1110 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1111 	 * The check (unnecessarily) ignores LRU pages being isolated and
1112 	 * walked by the page reclaim code, however that's not a big loss.
1113 	 */
1114 	if (!PageHuge(p) && !PageTransTail(p)) {
1115 		if (!PageLRU(p))
1116 			shake_page(p, 0);
1117 		if (!PageLRU(p)) {
1118 			/*
1119 			 * shake_page could have turned it free.
1120 			 */
1121 			if (is_free_buddy_page(p)) {
1122 				if (flags & MF_COUNT_INCREASED)
1123 					action_result(pfn, "free buddy", DELAYED);
1124 				else
1125 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1126 				return 0;
1127 			}
1128 			action_result(pfn, "non LRU", IGNORED);
1129 			put_page(p);
1130 			return -EBUSY;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Lock the page and wait for writeback to finish.
1136 	 * It's very difficult to mess with pages currently under IO
1137 	 * and in many cases impossible, so we just avoid it here.
1138 	 */
1139 	lock_page(hpage);
1140 
1141 	/*
1142 	 * We use page flags to determine what action should be taken, but
1143 	 * the flags can be modified by the error containment action.  One
1144 	 * example is an mlocked page, where PG_mlocked is cleared by
1145 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1146 	 * correctly, we save a copy of the page flags at this time.
1147 	 */
1148 	page_flags = p->flags;
1149 
1150 	/*
1151 	 * unpoison always clear PG_hwpoison inside page lock
1152 	 */
1153 	if (!PageHWPoison(p)) {
1154 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1155 		res = 0;
1156 		goto out;
1157 	}
1158 	if (hwpoison_filter(p)) {
1159 		if (TestClearPageHWPoison(p))
1160 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1161 		unlock_page(hpage);
1162 		put_page(hpage);
1163 		return 0;
1164 	}
1165 
1166 	/*
1167 	 * For error on the tail page, we should set PG_hwpoison
1168 	 * on the head page to show that the hugepage is hwpoisoned
1169 	 */
1170 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1171 		action_result(pfn, "hugepage already hardware poisoned",
1172 				IGNORED);
1173 		unlock_page(hpage);
1174 		put_page(hpage);
1175 		return 0;
1176 	}
1177 	/*
1178 	 * Set PG_hwpoison on all pages in an error hugepage,
1179 	 * because containment is done in hugepage unit for now.
1180 	 * Since we have done TestSetPageHWPoison() for the head page with
1181 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1182 	 */
1183 	if (PageHuge(p))
1184 		set_page_hwpoison_huge_page(hpage);
1185 
1186 	wait_on_page_writeback(p);
1187 
1188 	/*
1189 	 * Now take care of user space mappings.
1190 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1191 	 *
1192 	 * When the raw error page is thp tail page, hpage points to the raw
1193 	 * page after thp split.
1194 	 */
1195 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1196 	    != SWAP_SUCCESS) {
1197 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1198 		res = -EBUSY;
1199 		goto out;
1200 	}
1201 
1202 	/*
1203 	 * Torn down by someone else?
1204 	 */
1205 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1206 		action_result(pfn, "already truncated LRU", IGNORED);
1207 		res = -EBUSY;
1208 		goto out;
1209 	}
1210 
1211 	res = -EBUSY;
1212 	/*
1213 	 * The first check uses the current page flags which may not have any
1214 	 * relevant information. The second check with the saved page flagss is
1215 	 * carried out only if the first check can't determine the page status.
1216 	 */
1217 	for (ps = error_states;; ps++)
1218 		if ((p->flags & ps->mask) == ps->res)
1219 			break;
1220 
1221 	page_flags |= (p->flags & (1UL << PG_dirty));
1222 
1223 	if (!ps->mask)
1224 		for (ps = error_states;; ps++)
1225 			if ((page_flags & ps->mask) == ps->res)
1226 				break;
1227 	res = page_action(ps, p, pfn);
1228 out:
1229 	unlock_page(hpage);
1230 	return res;
1231 }
1232 EXPORT_SYMBOL_GPL(memory_failure);
1233 
1234 #define MEMORY_FAILURE_FIFO_ORDER	4
1235 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1236 
1237 struct memory_failure_entry {
1238 	unsigned long pfn;
1239 	int trapno;
1240 	int flags;
1241 };
1242 
1243 struct memory_failure_cpu {
1244 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1245 		      MEMORY_FAILURE_FIFO_SIZE);
1246 	spinlock_t lock;
1247 	struct work_struct work;
1248 };
1249 
1250 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1251 
1252 /**
1253  * memory_failure_queue - Schedule handling memory failure of a page.
1254  * @pfn: Page Number of the corrupted page
1255  * @trapno: Trap number reported in the signal to user space.
1256  * @flags: Flags for memory failure handling
1257  *
1258  * This function is called by the low level hardware error handler
1259  * when it detects hardware memory corruption of a page. It schedules
1260  * the recovering of error page, including dropping pages, killing
1261  * processes etc.
1262  *
1263  * The function is primarily of use for corruptions that
1264  * happen outside the current execution context (e.g. when
1265  * detected by a background scrubber)
1266  *
1267  * Can run in IRQ context.
1268  */
1269 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1270 {
1271 	struct memory_failure_cpu *mf_cpu;
1272 	unsigned long proc_flags;
1273 	struct memory_failure_entry entry = {
1274 		.pfn =		pfn,
1275 		.trapno =	trapno,
1276 		.flags =	flags,
1277 	};
1278 
1279 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1280 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1281 	if (kfifo_put(&mf_cpu->fifo, entry))
1282 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1283 	else
1284 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1285 		       pfn);
1286 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1287 	put_cpu_var(memory_failure_cpu);
1288 }
1289 EXPORT_SYMBOL_GPL(memory_failure_queue);
1290 
1291 static void memory_failure_work_func(struct work_struct *work)
1292 {
1293 	struct memory_failure_cpu *mf_cpu;
1294 	struct memory_failure_entry entry = { 0, };
1295 	unsigned long proc_flags;
1296 	int gotten;
1297 
1298 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1299 	for (;;) {
1300 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1301 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1302 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1303 		if (!gotten)
1304 			break;
1305 		if (entry.flags & MF_SOFT_OFFLINE)
1306 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1307 		else
1308 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1309 	}
1310 }
1311 
1312 static int __init memory_failure_init(void)
1313 {
1314 	struct memory_failure_cpu *mf_cpu;
1315 	int cpu;
1316 
1317 	for_each_possible_cpu(cpu) {
1318 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1319 		spin_lock_init(&mf_cpu->lock);
1320 		INIT_KFIFO(mf_cpu->fifo);
1321 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1322 	}
1323 
1324 	return 0;
1325 }
1326 core_initcall(memory_failure_init);
1327 
1328 /**
1329  * unpoison_memory - Unpoison a previously poisoned page
1330  * @pfn: Page number of the to be unpoisoned page
1331  *
1332  * Software-unpoison a page that has been poisoned by
1333  * memory_failure() earlier.
1334  *
1335  * This is only done on the software-level, so it only works
1336  * for linux injected failures, not real hardware failures
1337  *
1338  * Returns 0 for success, otherwise -errno.
1339  */
1340 int unpoison_memory(unsigned long pfn)
1341 {
1342 	struct page *page;
1343 	struct page *p;
1344 	int freeit = 0;
1345 	unsigned int nr_pages;
1346 
1347 	if (!pfn_valid(pfn))
1348 		return -ENXIO;
1349 
1350 	p = pfn_to_page(pfn);
1351 	page = compound_head(p);
1352 
1353 	if (!PageHWPoison(p)) {
1354 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1355 		return 0;
1356 	}
1357 
1358 	/*
1359 	 * unpoison_memory() can encounter thp only when the thp is being
1360 	 * worked by memory_failure() and the page lock is not held yet.
1361 	 * In such case, we yield to memory_failure() and make unpoison fail.
1362 	 */
1363 	if (!PageHuge(page) && PageTransHuge(page)) {
1364 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1365 			return 0;
1366 	}
1367 
1368 	nr_pages = 1 << compound_order(page);
1369 
1370 	if (!get_page_unless_zero(page)) {
1371 		/*
1372 		 * Since HWPoisoned hugepage should have non-zero refcount,
1373 		 * race between memory failure and unpoison seems to happen.
1374 		 * In such case unpoison fails and memory failure runs
1375 		 * to the end.
1376 		 */
1377 		if (PageHuge(page)) {
1378 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1379 			return 0;
1380 		}
1381 		if (TestClearPageHWPoison(p))
1382 			atomic_long_dec(&num_poisoned_pages);
1383 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1384 		return 0;
1385 	}
1386 
1387 	lock_page(page);
1388 	/*
1389 	 * This test is racy because PG_hwpoison is set outside of page lock.
1390 	 * That's acceptable because that won't trigger kernel panic. Instead,
1391 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1392 	 * the free buddy page pool.
1393 	 */
1394 	if (TestClearPageHWPoison(page)) {
1395 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1396 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1397 		freeit = 1;
1398 		if (PageHuge(page))
1399 			clear_page_hwpoison_huge_page(page);
1400 	}
1401 	unlock_page(page);
1402 
1403 	put_page(page);
1404 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1405 		put_page(page);
1406 
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL(unpoison_memory);
1410 
1411 static struct page *new_page(struct page *p, unsigned long private, int **x)
1412 {
1413 	int nid = page_to_nid(p);
1414 	if (PageHuge(p))
1415 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1416 						   nid);
1417 	else
1418 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1419 }
1420 
1421 /*
1422  * Safely get reference count of an arbitrary page.
1423  * Returns 0 for a free page, -EIO for a zero refcount page
1424  * that is not free, and 1 for any other page type.
1425  * For 1 the page is returned with increased page count, otherwise not.
1426  */
1427 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1428 {
1429 	int ret;
1430 
1431 	if (flags & MF_COUNT_INCREASED)
1432 		return 1;
1433 
1434 	/*
1435 	 * When the target page is a free hugepage, just remove it
1436 	 * from free hugepage list.
1437 	 */
1438 	if (!get_page_unless_zero(compound_head(p))) {
1439 		if (PageHuge(p)) {
1440 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1441 			ret = 0;
1442 		} else if (is_free_buddy_page(p)) {
1443 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1444 			ret = 0;
1445 		} else {
1446 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1447 				__func__, pfn, p->flags);
1448 			ret = -EIO;
1449 		}
1450 	} else {
1451 		/* Not a free page */
1452 		ret = 1;
1453 	}
1454 	return ret;
1455 }
1456 
1457 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1458 {
1459 	int ret = __get_any_page(page, pfn, flags);
1460 
1461 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1462 		/*
1463 		 * Try to free it.
1464 		 */
1465 		put_page(page);
1466 		shake_page(page, 1);
1467 
1468 		/*
1469 		 * Did it turn free?
1470 		 */
1471 		ret = __get_any_page(page, pfn, 0);
1472 		if (!PageLRU(page)) {
1473 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1474 				pfn, page->flags);
1475 			return -EIO;
1476 		}
1477 	}
1478 	return ret;
1479 }
1480 
1481 static int soft_offline_huge_page(struct page *page, int flags)
1482 {
1483 	int ret;
1484 	unsigned long pfn = page_to_pfn(page);
1485 	struct page *hpage = compound_head(page);
1486 	LIST_HEAD(pagelist);
1487 
1488 	/*
1489 	 * This double-check of PageHWPoison is to avoid the race with
1490 	 * memory_failure(). See also comment in __soft_offline_page().
1491 	 */
1492 	lock_page(hpage);
1493 	if (PageHWPoison(hpage)) {
1494 		unlock_page(hpage);
1495 		put_page(hpage);
1496 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1497 		return -EBUSY;
1498 	}
1499 	unlock_page(hpage);
1500 
1501 	/* Keep page count to indicate a given hugepage is isolated. */
1502 	list_move(&hpage->lru, &pagelist);
1503 	ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1504 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1505 	if (ret) {
1506 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1507 			pfn, ret, page->flags);
1508 		/*
1509 		 * We know that soft_offline_huge_page() tries to migrate
1510 		 * only one hugepage pointed to by hpage, so we need not
1511 		 * run through the pagelist here.
1512 		 */
1513 		putback_active_hugepage(hpage);
1514 		if (ret > 0)
1515 			ret = -EIO;
1516 	} else {
1517 		/* overcommit hugetlb page will be freed to buddy */
1518 		if (PageHuge(page)) {
1519 			set_page_hwpoison_huge_page(hpage);
1520 			dequeue_hwpoisoned_huge_page(hpage);
1521 			atomic_long_add(1 << compound_order(hpage),
1522 					&num_poisoned_pages);
1523 		} else {
1524 			SetPageHWPoison(page);
1525 			atomic_long_inc(&num_poisoned_pages);
1526 		}
1527 	}
1528 	return ret;
1529 }
1530 
1531 static int __soft_offline_page(struct page *page, int flags)
1532 {
1533 	int ret;
1534 	unsigned long pfn = page_to_pfn(page);
1535 
1536 	/*
1537 	 * Check PageHWPoison again inside page lock because PageHWPoison
1538 	 * is set by memory_failure() outside page lock. Note that
1539 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1540 	 * so there's no race between soft_offline_page() and memory_failure().
1541 	 */
1542 	lock_page(page);
1543 	wait_on_page_writeback(page);
1544 	if (PageHWPoison(page)) {
1545 		unlock_page(page);
1546 		put_page(page);
1547 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1548 		return -EBUSY;
1549 	}
1550 	/*
1551 	 * Try to invalidate first. This should work for
1552 	 * non dirty unmapped page cache pages.
1553 	 */
1554 	ret = invalidate_inode_page(page);
1555 	unlock_page(page);
1556 	/*
1557 	 * RED-PEN would be better to keep it isolated here, but we
1558 	 * would need to fix isolation locking first.
1559 	 */
1560 	if (ret == 1) {
1561 		put_page(page);
1562 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1563 		SetPageHWPoison(page);
1564 		atomic_long_inc(&num_poisoned_pages);
1565 		return 0;
1566 	}
1567 
1568 	/*
1569 	 * Simple invalidation didn't work.
1570 	 * Try to migrate to a new page instead. migrate.c
1571 	 * handles a large number of cases for us.
1572 	 */
1573 	ret = isolate_lru_page(page);
1574 	/*
1575 	 * Drop page reference which is came from get_any_page()
1576 	 * successful isolate_lru_page() already took another one.
1577 	 */
1578 	put_page(page);
1579 	if (!ret) {
1580 		LIST_HEAD(pagelist);
1581 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1582 					page_is_file_cache(page));
1583 		list_add(&page->lru, &pagelist);
1584 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1585 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1586 		if (ret) {
1587 			if (!list_empty(&pagelist)) {
1588 				list_del(&page->lru);
1589 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1590 						page_is_file_cache(page));
1591 				putback_lru_page(page);
1592 			}
1593 
1594 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1595 				pfn, ret, page->flags);
1596 			if (ret > 0)
1597 				ret = -EIO;
1598 		} else {
1599 			/*
1600 			 * After page migration succeeds, the source page can
1601 			 * be trapped in pagevec and actual freeing is delayed.
1602 			 * Freeing code works differently based on PG_hwpoison,
1603 			 * so there's a race. We need to make sure that the
1604 			 * source page should be freed back to buddy before
1605 			 * setting PG_hwpoison.
1606 			 */
1607 			if (!is_free_buddy_page(page))
1608 				lru_add_drain_all();
1609 			if (!is_free_buddy_page(page))
1610 				drain_all_pages();
1611 			SetPageHWPoison(page);
1612 			if (!is_free_buddy_page(page))
1613 				pr_info("soft offline: %#lx: page leaked\n",
1614 					pfn);
1615 			atomic_long_inc(&num_poisoned_pages);
1616 		}
1617 	} else {
1618 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1619 			pfn, ret, page_count(page), page->flags);
1620 	}
1621 	return ret;
1622 }
1623 
1624 /**
1625  * soft_offline_page - Soft offline a page.
1626  * @page: page to offline
1627  * @flags: flags. Same as memory_failure().
1628  *
1629  * Returns 0 on success, otherwise negated errno.
1630  *
1631  * Soft offline a page, by migration or invalidation,
1632  * without killing anything. This is for the case when
1633  * a page is not corrupted yet (so it's still valid to access),
1634  * but has had a number of corrected errors and is better taken
1635  * out.
1636  *
1637  * The actual policy on when to do that is maintained by
1638  * user space.
1639  *
1640  * This should never impact any application or cause data loss,
1641  * however it might take some time.
1642  *
1643  * This is not a 100% solution for all memory, but tries to be
1644  * ``good enough'' for the majority of memory.
1645  */
1646 int soft_offline_page(struct page *page, int flags)
1647 {
1648 	int ret;
1649 	unsigned long pfn = page_to_pfn(page);
1650 	struct page *hpage = compound_head(page);
1651 
1652 	if (PageHWPoison(page)) {
1653 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1654 		return -EBUSY;
1655 	}
1656 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1657 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1658 			pr_info("soft offline: %#lx: failed to split THP\n",
1659 				pfn);
1660 			return -EBUSY;
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1666 	 * This is a big hammer, a better would be nicer.
1667 	 */
1668 	lock_memory_hotplug();
1669 
1670 	/*
1671 	 * Isolate the page, so that it doesn't get reallocated if it
1672 	 * was free. This flag should be kept set until the source page
1673 	 * is freed and PG_hwpoison on it is set.
1674 	 */
1675 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1676 		set_migratetype_isolate(page, true);
1677 
1678 	ret = get_any_page(page, pfn, flags);
1679 	unlock_memory_hotplug();
1680 	if (ret > 0) { /* for in-use pages */
1681 		if (PageHuge(page))
1682 			ret = soft_offline_huge_page(page, flags);
1683 		else
1684 			ret = __soft_offline_page(page, flags);
1685 	} else if (ret == 0) { /* for free pages */
1686 		if (PageHuge(page)) {
1687 			set_page_hwpoison_huge_page(hpage);
1688 			dequeue_hwpoisoned_huge_page(hpage);
1689 			atomic_long_add(1 << compound_order(hpage),
1690 					&num_poisoned_pages);
1691 		} else {
1692 			SetPageHWPoison(page);
1693 			atomic_long_inc(&num_poisoned_pages);
1694 		}
1695 	}
1696 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1697 	return ret;
1698 }
1699