1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 ino = cgroup_ino(css->cgroup); 149 css_put(css); 150 151 if (!ino || ino != hwpoison_filter_memcg) 152 return -EINVAL; 153 154 return 0; 155 } 156 #else 157 static int hwpoison_filter_task(struct page *p) { return 0; } 158 #endif 159 160 int hwpoison_filter(struct page *p) 161 { 162 if (!hwpoison_filter_enable) 163 return 0; 164 165 if (hwpoison_filter_dev(p)) 166 return -EINVAL; 167 168 if (hwpoison_filter_flags(p)) 169 return -EINVAL; 170 171 if (hwpoison_filter_task(p)) 172 return -EINVAL; 173 174 return 0; 175 } 176 #else 177 int hwpoison_filter(struct page *p) 178 { 179 return 0; 180 } 181 #endif 182 183 EXPORT_SYMBOL_GPL(hwpoison_filter); 184 185 /* 186 * Send all the processes who have the page mapped a signal. 187 * ``action optional'' if they are not immediately affected by the error 188 * ``action required'' if error happened in current execution context 189 */ 190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 191 unsigned long pfn, struct page *page, int flags) 192 { 193 struct siginfo si; 194 int ret; 195 196 printk(KERN_ERR 197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 198 pfn, t->comm, t->pid); 199 si.si_signo = SIGBUS; 200 si.si_errno = 0; 201 si.si_addr = (void *)addr; 202 #ifdef __ARCH_SI_TRAPNO 203 si.si_trapno = trapno; 204 #endif 205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 206 207 if ((flags & MF_ACTION_REQUIRED) && t == current) { 208 si.si_code = BUS_MCEERR_AR; 209 ret = force_sig_info(SIGBUS, &si, t); 210 } else { 211 /* 212 * Don't use force here, it's convenient if the signal 213 * can be temporarily blocked. 214 * This could cause a loop when the user sets SIGBUS 215 * to SIG_IGN, but hopefully no one will do that? 216 */ 217 si.si_code = BUS_MCEERR_AO; 218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 219 } 220 if (ret < 0) 221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 222 t->comm, t->pid, ret); 223 return ret; 224 } 225 226 /* 227 * When a unknown page type is encountered drain as many buffers as possible 228 * in the hope to turn the page into a LRU or free page, which we can handle. 229 */ 230 void shake_page(struct page *p, int access) 231 { 232 if (!PageSlab(p)) { 233 lru_add_drain_all(); 234 if (PageLRU(p)) 235 return; 236 drain_all_pages(); 237 if (PageLRU(p) || is_free_buddy_page(p)) 238 return; 239 } 240 241 /* 242 * Only call shrink_slab here (which would also shrink other caches) if 243 * access is not potentially fatal. 244 */ 245 if (access) { 246 int nr; 247 int nid = page_to_nid(p); 248 do { 249 struct shrink_control shrink = { 250 .gfp_mask = GFP_KERNEL, 251 }; 252 node_set(nid, shrink.nodes_to_scan); 253 254 nr = shrink_slab(&shrink, 1000, 1000); 255 if (page_count(p) == 1) 256 break; 257 } while (nr > 10); 258 } 259 } 260 EXPORT_SYMBOL_GPL(shake_page); 261 262 /* 263 * Kill all processes that have a poisoned page mapped and then isolate 264 * the page. 265 * 266 * General strategy: 267 * Find all processes having the page mapped and kill them. 268 * But we keep a page reference around so that the page is not 269 * actually freed yet. 270 * Then stash the page away 271 * 272 * There's no convenient way to get back to mapped processes 273 * from the VMAs. So do a brute-force search over all 274 * running processes. 275 * 276 * Remember that machine checks are not common (or rather 277 * if they are common you have other problems), so this shouldn't 278 * be a performance issue. 279 * 280 * Also there are some races possible while we get from the 281 * error detection to actually handle it. 282 */ 283 284 struct to_kill { 285 struct list_head nd; 286 struct task_struct *tsk; 287 unsigned long addr; 288 char addr_valid; 289 }; 290 291 /* 292 * Failure handling: if we can't find or can't kill a process there's 293 * not much we can do. We just print a message and ignore otherwise. 294 */ 295 296 /* 297 * Schedule a process for later kill. 298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 299 * TBD would GFP_NOIO be enough? 300 */ 301 static void add_to_kill(struct task_struct *tsk, struct page *p, 302 struct vm_area_struct *vma, 303 struct list_head *to_kill, 304 struct to_kill **tkc) 305 { 306 struct to_kill *tk; 307 308 if (*tkc) { 309 tk = *tkc; 310 *tkc = NULL; 311 } else { 312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 313 if (!tk) { 314 printk(KERN_ERR 315 "MCE: Out of memory while machine check handling\n"); 316 return; 317 } 318 } 319 tk->addr = page_address_in_vma(p, vma); 320 tk->addr_valid = 1; 321 322 /* 323 * In theory we don't have to kill when the page was 324 * munmaped. But it could be also a mremap. Since that's 325 * likely very rare kill anyways just out of paranoia, but use 326 * a SIGKILL because the error is not contained anymore. 327 */ 328 if (tk->addr == -EFAULT) { 329 pr_info("MCE: Unable to find user space address %lx in %s\n", 330 page_to_pfn(p), tsk->comm); 331 tk->addr_valid = 0; 332 } 333 get_task_struct(tsk); 334 tk->tsk = tsk; 335 list_add_tail(&tk->nd, to_kill); 336 } 337 338 /* 339 * Kill the processes that have been collected earlier. 340 * 341 * Only do anything when DOIT is set, otherwise just free the list 342 * (this is used for clean pages which do not need killing) 343 * Also when FAIL is set do a force kill because something went 344 * wrong earlier. 345 */ 346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 347 int fail, struct page *page, unsigned long pfn, 348 int flags) 349 { 350 struct to_kill *tk, *next; 351 352 list_for_each_entry_safe (tk, next, to_kill, nd) { 353 if (forcekill) { 354 /* 355 * In case something went wrong with munmapping 356 * make sure the process doesn't catch the 357 * signal and then access the memory. Just kill it. 358 */ 359 if (fail || tk->addr_valid == 0) { 360 printk(KERN_ERR 361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 362 pfn, tk->tsk->comm, tk->tsk->pid); 363 force_sig(SIGKILL, tk->tsk); 364 } 365 366 /* 367 * In theory the process could have mapped 368 * something else on the address in-between. We could 369 * check for that, but we need to tell the 370 * process anyways. 371 */ 372 else if (kill_proc(tk->tsk, tk->addr, trapno, 373 pfn, page, flags) < 0) 374 printk(KERN_ERR 375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 376 pfn, tk->tsk->comm, tk->tsk->pid); 377 } 378 put_task_struct(tk->tsk); 379 kfree(tk); 380 } 381 } 382 383 static int task_early_kill(struct task_struct *tsk) 384 { 385 if (!tsk->mm) 386 return 0; 387 if (tsk->flags & PF_MCE_PROCESS) 388 return !!(tsk->flags & PF_MCE_EARLY); 389 return sysctl_memory_failure_early_kill; 390 } 391 392 /* 393 * Collect processes when the error hit an anonymous page. 394 */ 395 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 396 struct to_kill **tkc) 397 { 398 struct vm_area_struct *vma; 399 struct task_struct *tsk; 400 struct anon_vma *av; 401 pgoff_t pgoff; 402 403 av = page_lock_anon_vma_read(page); 404 if (av == NULL) /* Not actually mapped anymore */ 405 return; 406 407 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 408 read_lock(&tasklist_lock); 409 for_each_process (tsk) { 410 struct anon_vma_chain *vmac; 411 412 if (!task_early_kill(tsk)) 413 continue; 414 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 415 pgoff, pgoff) { 416 vma = vmac->vma; 417 if (!page_mapped_in_vma(page, vma)) 418 continue; 419 if (vma->vm_mm == tsk->mm) 420 add_to_kill(tsk, page, vma, to_kill, tkc); 421 } 422 } 423 read_unlock(&tasklist_lock); 424 page_unlock_anon_vma_read(av); 425 } 426 427 /* 428 * Collect processes when the error hit a file mapped page. 429 */ 430 static void collect_procs_file(struct page *page, struct list_head *to_kill, 431 struct to_kill **tkc) 432 { 433 struct vm_area_struct *vma; 434 struct task_struct *tsk; 435 struct address_space *mapping = page->mapping; 436 437 mutex_lock(&mapping->i_mmap_mutex); 438 read_lock(&tasklist_lock); 439 for_each_process(tsk) { 440 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 441 442 if (!task_early_kill(tsk)) 443 continue; 444 445 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 446 pgoff) { 447 /* 448 * Send early kill signal to tasks where a vma covers 449 * the page but the corrupted page is not necessarily 450 * mapped it in its pte. 451 * Assume applications who requested early kill want 452 * to be informed of all such data corruptions. 453 */ 454 if (vma->vm_mm == tsk->mm) 455 add_to_kill(tsk, page, vma, to_kill, tkc); 456 } 457 } 458 read_unlock(&tasklist_lock); 459 mutex_unlock(&mapping->i_mmap_mutex); 460 } 461 462 /* 463 * Collect the processes who have the corrupted page mapped to kill. 464 * This is done in two steps for locking reasons. 465 * First preallocate one tokill structure outside the spin locks, 466 * so that we can kill at least one process reasonably reliable. 467 */ 468 static void collect_procs(struct page *page, struct list_head *tokill) 469 { 470 struct to_kill *tk; 471 472 if (!page->mapping) 473 return; 474 475 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 476 if (!tk) 477 return; 478 if (PageAnon(page)) 479 collect_procs_anon(page, tokill, &tk); 480 else 481 collect_procs_file(page, tokill, &tk); 482 kfree(tk); 483 } 484 485 /* 486 * Error handlers for various types of pages. 487 */ 488 489 enum outcome { 490 IGNORED, /* Error: cannot be handled */ 491 FAILED, /* Error: handling failed */ 492 DELAYED, /* Will be handled later */ 493 RECOVERED, /* Successfully recovered */ 494 }; 495 496 static const char *action_name[] = { 497 [IGNORED] = "Ignored", 498 [FAILED] = "Failed", 499 [DELAYED] = "Delayed", 500 [RECOVERED] = "Recovered", 501 }; 502 503 /* 504 * XXX: It is possible that a page is isolated from LRU cache, 505 * and then kept in swap cache or failed to remove from page cache. 506 * The page count will stop it from being freed by unpoison. 507 * Stress tests should be aware of this memory leak problem. 508 */ 509 static int delete_from_lru_cache(struct page *p) 510 { 511 if (!isolate_lru_page(p)) { 512 /* 513 * Clear sensible page flags, so that the buddy system won't 514 * complain when the page is unpoison-and-freed. 515 */ 516 ClearPageActive(p); 517 ClearPageUnevictable(p); 518 /* 519 * drop the page count elevated by isolate_lru_page() 520 */ 521 page_cache_release(p); 522 return 0; 523 } 524 return -EIO; 525 } 526 527 /* 528 * Error hit kernel page. 529 * Do nothing, try to be lucky and not touch this instead. For a few cases we 530 * could be more sophisticated. 531 */ 532 static int me_kernel(struct page *p, unsigned long pfn) 533 { 534 return IGNORED; 535 } 536 537 /* 538 * Page in unknown state. Do nothing. 539 */ 540 static int me_unknown(struct page *p, unsigned long pfn) 541 { 542 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 543 return FAILED; 544 } 545 546 /* 547 * Clean (or cleaned) page cache page. 548 */ 549 static int me_pagecache_clean(struct page *p, unsigned long pfn) 550 { 551 int err; 552 int ret = FAILED; 553 struct address_space *mapping; 554 555 delete_from_lru_cache(p); 556 557 /* 558 * For anonymous pages we're done the only reference left 559 * should be the one m_f() holds. 560 */ 561 if (PageAnon(p)) 562 return RECOVERED; 563 564 /* 565 * Now truncate the page in the page cache. This is really 566 * more like a "temporary hole punch" 567 * Don't do this for block devices when someone else 568 * has a reference, because it could be file system metadata 569 * and that's not safe to truncate. 570 */ 571 mapping = page_mapping(p); 572 if (!mapping) { 573 /* 574 * Page has been teared down in the meanwhile 575 */ 576 return FAILED; 577 } 578 579 /* 580 * Truncation is a bit tricky. Enable it per file system for now. 581 * 582 * Open: to take i_mutex or not for this? Right now we don't. 583 */ 584 if (mapping->a_ops->error_remove_page) { 585 err = mapping->a_ops->error_remove_page(mapping, p); 586 if (err != 0) { 587 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 588 pfn, err); 589 } else if (page_has_private(p) && 590 !try_to_release_page(p, GFP_NOIO)) { 591 pr_info("MCE %#lx: failed to release buffers\n", pfn); 592 } else { 593 ret = RECOVERED; 594 } 595 } else { 596 /* 597 * If the file system doesn't support it just invalidate 598 * This fails on dirty or anything with private pages 599 */ 600 if (invalidate_inode_page(p)) 601 ret = RECOVERED; 602 else 603 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 604 pfn); 605 } 606 return ret; 607 } 608 609 /* 610 * Dirty pagecache page 611 * Issues: when the error hit a hole page the error is not properly 612 * propagated. 613 */ 614 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 615 { 616 struct address_space *mapping = page_mapping(p); 617 618 SetPageError(p); 619 /* TBD: print more information about the file. */ 620 if (mapping) { 621 /* 622 * IO error will be reported by write(), fsync(), etc. 623 * who check the mapping. 624 * This way the application knows that something went 625 * wrong with its dirty file data. 626 * 627 * There's one open issue: 628 * 629 * The EIO will be only reported on the next IO 630 * operation and then cleared through the IO map. 631 * Normally Linux has two mechanisms to pass IO error 632 * first through the AS_EIO flag in the address space 633 * and then through the PageError flag in the page. 634 * Since we drop pages on memory failure handling the 635 * only mechanism open to use is through AS_AIO. 636 * 637 * This has the disadvantage that it gets cleared on 638 * the first operation that returns an error, while 639 * the PageError bit is more sticky and only cleared 640 * when the page is reread or dropped. If an 641 * application assumes it will always get error on 642 * fsync, but does other operations on the fd before 643 * and the page is dropped between then the error 644 * will not be properly reported. 645 * 646 * This can already happen even without hwpoisoned 647 * pages: first on metadata IO errors (which only 648 * report through AS_EIO) or when the page is dropped 649 * at the wrong time. 650 * 651 * So right now we assume that the application DTRT on 652 * the first EIO, but we're not worse than other parts 653 * of the kernel. 654 */ 655 mapping_set_error(mapping, EIO); 656 } 657 658 return me_pagecache_clean(p, pfn); 659 } 660 661 /* 662 * Clean and dirty swap cache. 663 * 664 * Dirty swap cache page is tricky to handle. The page could live both in page 665 * cache and swap cache(ie. page is freshly swapped in). So it could be 666 * referenced concurrently by 2 types of PTEs: 667 * normal PTEs and swap PTEs. We try to handle them consistently by calling 668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 669 * and then 670 * - clear dirty bit to prevent IO 671 * - remove from LRU 672 * - but keep in the swap cache, so that when we return to it on 673 * a later page fault, we know the application is accessing 674 * corrupted data and shall be killed (we installed simple 675 * interception code in do_swap_page to catch it). 676 * 677 * Clean swap cache pages can be directly isolated. A later page fault will 678 * bring in the known good data from disk. 679 */ 680 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 681 { 682 ClearPageDirty(p); 683 /* Trigger EIO in shmem: */ 684 ClearPageUptodate(p); 685 686 if (!delete_from_lru_cache(p)) 687 return DELAYED; 688 else 689 return FAILED; 690 } 691 692 static int me_swapcache_clean(struct page *p, unsigned long pfn) 693 { 694 delete_from_swap_cache(p); 695 696 if (!delete_from_lru_cache(p)) 697 return RECOVERED; 698 else 699 return FAILED; 700 } 701 702 /* 703 * Huge pages. Needs work. 704 * Issues: 705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 706 * To narrow down kill region to one page, we need to break up pmd. 707 */ 708 static int me_huge_page(struct page *p, unsigned long pfn) 709 { 710 int res = 0; 711 struct page *hpage = compound_head(p); 712 /* 713 * We can safely recover from error on free or reserved (i.e. 714 * not in-use) hugepage by dequeuing it from freelist. 715 * To check whether a hugepage is in-use or not, we can't use 716 * page->lru because it can be used in other hugepage operations, 717 * such as __unmap_hugepage_range() and gather_surplus_pages(). 718 * So instead we use page_mapping() and PageAnon(). 719 * We assume that this function is called with page lock held, 720 * so there is no race between isolation and mapping/unmapping. 721 */ 722 if (!(page_mapping(hpage) || PageAnon(hpage))) { 723 res = dequeue_hwpoisoned_huge_page(hpage); 724 if (!res) 725 return RECOVERED; 726 } 727 return DELAYED; 728 } 729 730 /* 731 * Various page states we can handle. 732 * 733 * A page state is defined by its current page->flags bits. 734 * The table matches them in order and calls the right handler. 735 * 736 * This is quite tricky because we can access page at any time 737 * in its live cycle, so all accesses have to be extremely careful. 738 * 739 * This is not complete. More states could be added. 740 * For any missing state don't attempt recovery. 741 */ 742 743 #define dirty (1UL << PG_dirty) 744 #define sc (1UL << PG_swapcache) 745 #define unevict (1UL << PG_unevictable) 746 #define mlock (1UL << PG_mlocked) 747 #define writeback (1UL << PG_writeback) 748 #define lru (1UL << PG_lru) 749 #define swapbacked (1UL << PG_swapbacked) 750 #define head (1UL << PG_head) 751 #define tail (1UL << PG_tail) 752 #define compound (1UL << PG_compound) 753 #define slab (1UL << PG_slab) 754 #define reserved (1UL << PG_reserved) 755 756 static struct page_state { 757 unsigned long mask; 758 unsigned long res; 759 char *msg; 760 int (*action)(struct page *p, unsigned long pfn); 761 } error_states[] = { 762 { reserved, reserved, "reserved kernel", me_kernel }, 763 /* 764 * free pages are specially detected outside this table: 765 * PG_buddy pages only make a small fraction of all free pages. 766 */ 767 768 /* 769 * Could in theory check if slab page is free or if we can drop 770 * currently unused objects without touching them. But just 771 * treat it as standard kernel for now. 772 */ 773 { slab, slab, "kernel slab", me_kernel }, 774 775 #ifdef CONFIG_PAGEFLAGS_EXTENDED 776 { head, head, "huge", me_huge_page }, 777 { tail, tail, "huge", me_huge_page }, 778 #else 779 { compound, compound, "huge", me_huge_page }, 780 #endif 781 782 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 783 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 784 785 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 786 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean }, 787 788 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 789 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean }, 790 791 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 792 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 793 794 /* 795 * Catchall entry: must be at end. 796 */ 797 { 0, 0, "unknown page state", me_unknown }, 798 }; 799 800 #undef dirty 801 #undef sc 802 #undef unevict 803 #undef mlock 804 #undef writeback 805 #undef lru 806 #undef swapbacked 807 #undef head 808 #undef tail 809 #undef compound 810 #undef slab 811 #undef reserved 812 813 /* 814 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 815 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 816 */ 817 static void action_result(unsigned long pfn, char *msg, int result) 818 { 819 pr_err("MCE %#lx: %s page recovery: %s\n", 820 pfn, msg, action_name[result]); 821 } 822 823 static int page_action(struct page_state *ps, struct page *p, 824 unsigned long pfn) 825 { 826 int result; 827 int count; 828 829 result = ps->action(p, pfn); 830 action_result(pfn, ps->msg, result); 831 832 count = page_count(p) - 1; 833 if (ps->action == me_swapcache_dirty && result == DELAYED) 834 count--; 835 if (count != 0) { 836 printk(KERN_ERR 837 "MCE %#lx: %s page still referenced by %d users\n", 838 pfn, ps->msg, count); 839 result = FAILED; 840 } 841 842 /* Could do more checks here if page looks ok */ 843 /* 844 * Could adjust zone counters here to correct for the missing page. 845 */ 846 847 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 848 } 849 850 /* 851 * Do all that is necessary to remove user space mappings. Unmap 852 * the pages and send SIGBUS to the processes if the data was dirty. 853 */ 854 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 855 int trapno, int flags, struct page **hpagep) 856 { 857 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 858 struct address_space *mapping; 859 LIST_HEAD(tokill); 860 int ret; 861 int kill = 1, forcekill; 862 struct page *hpage = *hpagep; 863 struct page *ppage; 864 865 if (PageReserved(p) || PageSlab(p)) 866 return SWAP_SUCCESS; 867 868 /* 869 * This check implies we don't kill processes if their pages 870 * are in the swap cache early. Those are always late kills. 871 */ 872 if (!page_mapped(hpage)) 873 return SWAP_SUCCESS; 874 875 if (PageKsm(p)) 876 return SWAP_FAIL; 877 878 if (PageSwapCache(p)) { 879 printk(KERN_ERR 880 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 881 ttu |= TTU_IGNORE_HWPOISON; 882 } 883 884 /* 885 * Propagate the dirty bit from PTEs to struct page first, because we 886 * need this to decide if we should kill or just drop the page. 887 * XXX: the dirty test could be racy: set_page_dirty() may not always 888 * be called inside page lock (it's recommended but not enforced). 889 */ 890 mapping = page_mapping(hpage); 891 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 892 mapping_cap_writeback_dirty(mapping)) { 893 if (page_mkclean(hpage)) { 894 SetPageDirty(hpage); 895 } else { 896 kill = 0; 897 ttu |= TTU_IGNORE_HWPOISON; 898 printk(KERN_INFO 899 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 900 pfn); 901 } 902 } 903 904 /* 905 * ppage: poisoned page 906 * if p is regular page(4k page) 907 * ppage == real poisoned page; 908 * else p is hugetlb or THP, ppage == head page. 909 */ 910 ppage = hpage; 911 912 if (PageTransHuge(hpage)) { 913 /* 914 * Verify that this isn't a hugetlbfs head page, the check for 915 * PageAnon is just for avoid tripping a split_huge_page 916 * internal debug check, as split_huge_page refuses to deal with 917 * anything that isn't an anon page. PageAnon can't go away fro 918 * under us because we hold a refcount on the hpage, without a 919 * refcount on the hpage. split_huge_page can't be safely called 920 * in the first place, having a refcount on the tail isn't 921 * enough * to be safe. 922 */ 923 if (!PageHuge(hpage) && PageAnon(hpage)) { 924 if (unlikely(split_huge_page(hpage))) { 925 /* 926 * FIXME: if splitting THP is failed, it is 927 * better to stop the following operation rather 928 * than causing panic by unmapping. System might 929 * survive if the page is freed later. 930 */ 931 printk(KERN_INFO 932 "MCE %#lx: failed to split THP\n", pfn); 933 934 BUG_ON(!PageHWPoison(p)); 935 return SWAP_FAIL; 936 } 937 /* 938 * We pinned the head page for hwpoison handling, 939 * now we split the thp and we are interested in 940 * the hwpoisoned raw page, so move the refcount 941 * to it. Similarly, page lock is shifted. 942 */ 943 if (hpage != p) { 944 if (!(flags & MF_COUNT_INCREASED)) { 945 put_page(hpage); 946 get_page(p); 947 } 948 lock_page(p); 949 unlock_page(hpage); 950 *hpagep = p; 951 } 952 /* THP is split, so ppage should be the real poisoned page. */ 953 ppage = p; 954 } 955 } 956 957 /* 958 * First collect all the processes that have the page 959 * mapped in dirty form. This has to be done before try_to_unmap, 960 * because ttu takes the rmap data structures down. 961 * 962 * Error handling: We ignore errors here because 963 * there's nothing that can be done. 964 */ 965 if (kill) 966 collect_procs(ppage, &tokill); 967 968 ret = try_to_unmap(ppage, ttu); 969 if (ret != SWAP_SUCCESS) 970 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 971 pfn, page_mapcount(ppage)); 972 973 /* 974 * Now that the dirty bit has been propagated to the 975 * struct page and all unmaps done we can decide if 976 * killing is needed or not. Only kill when the page 977 * was dirty or the process is not restartable, 978 * otherwise the tokill list is merely 979 * freed. When there was a problem unmapping earlier 980 * use a more force-full uncatchable kill to prevent 981 * any accesses to the poisoned memory. 982 */ 983 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 984 kill_procs(&tokill, forcekill, trapno, 985 ret != SWAP_SUCCESS, p, pfn, flags); 986 987 return ret; 988 } 989 990 static void set_page_hwpoison_huge_page(struct page *hpage) 991 { 992 int i; 993 int nr_pages = 1 << compound_order(hpage); 994 for (i = 0; i < nr_pages; i++) 995 SetPageHWPoison(hpage + i); 996 } 997 998 static void clear_page_hwpoison_huge_page(struct page *hpage) 999 { 1000 int i; 1001 int nr_pages = 1 << compound_order(hpage); 1002 for (i = 0; i < nr_pages; i++) 1003 ClearPageHWPoison(hpage + i); 1004 } 1005 1006 /** 1007 * memory_failure - Handle memory failure of a page. 1008 * @pfn: Page Number of the corrupted page 1009 * @trapno: Trap number reported in the signal to user space. 1010 * @flags: fine tune action taken 1011 * 1012 * This function is called by the low level machine check code 1013 * of an architecture when it detects hardware memory corruption 1014 * of a page. It tries its best to recover, which includes 1015 * dropping pages, killing processes etc. 1016 * 1017 * The function is primarily of use for corruptions that 1018 * happen outside the current execution context (e.g. when 1019 * detected by a background scrubber) 1020 * 1021 * Must run in process context (e.g. a work queue) with interrupts 1022 * enabled and no spinlocks hold. 1023 */ 1024 int memory_failure(unsigned long pfn, int trapno, int flags) 1025 { 1026 struct page_state *ps; 1027 struct page *p; 1028 struct page *hpage; 1029 int res; 1030 unsigned int nr_pages; 1031 unsigned long page_flags; 1032 1033 if (!sysctl_memory_failure_recovery) 1034 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1035 1036 if (!pfn_valid(pfn)) { 1037 printk(KERN_ERR 1038 "MCE %#lx: memory outside kernel control\n", 1039 pfn); 1040 return -ENXIO; 1041 } 1042 1043 p = pfn_to_page(pfn); 1044 hpage = compound_head(p); 1045 if (TestSetPageHWPoison(p)) { 1046 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1047 return 0; 1048 } 1049 1050 /* 1051 * Currently errors on hugetlbfs pages are measured in hugepage units, 1052 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1053 * transparent hugepages, they are supposed to be split and error 1054 * measurement is done in normal page units. So nr_pages should be one 1055 * in this case. 1056 */ 1057 if (PageHuge(p)) 1058 nr_pages = 1 << compound_order(hpage); 1059 else /* normal page or thp */ 1060 nr_pages = 1; 1061 atomic_long_add(nr_pages, &num_poisoned_pages); 1062 1063 /* 1064 * We need/can do nothing about count=0 pages. 1065 * 1) it's a free page, and therefore in safe hand: 1066 * prep_new_page() will be the gate keeper. 1067 * 2) it's a free hugepage, which is also safe: 1068 * an affected hugepage will be dequeued from hugepage freelist, 1069 * so there's no concern about reusing it ever after. 1070 * 3) it's part of a non-compound high order page. 1071 * Implies some kernel user: cannot stop them from 1072 * R/W the page; let's pray that the page has been 1073 * used and will be freed some time later. 1074 * In fact it's dangerous to directly bump up page count from 0, 1075 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1076 */ 1077 if (!(flags & MF_COUNT_INCREASED) && 1078 !get_page_unless_zero(hpage)) { 1079 if (is_free_buddy_page(p)) { 1080 action_result(pfn, "free buddy", DELAYED); 1081 return 0; 1082 } else if (PageHuge(hpage)) { 1083 /* 1084 * Check "just unpoisoned", "filter hit", and 1085 * "race with other subpage." 1086 */ 1087 lock_page(hpage); 1088 if (!PageHWPoison(hpage) 1089 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1090 || (p != hpage && TestSetPageHWPoison(hpage))) { 1091 atomic_long_sub(nr_pages, &num_poisoned_pages); 1092 return 0; 1093 } 1094 set_page_hwpoison_huge_page(hpage); 1095 res = dequeue_hwpoisoned_huge_page(hpage); 1096 action_result(pfn, "free huge", 1097 res ? IGNORED : DELAYED); 1098 unlock_page(hpage); 1099 return res; 1100 } else { 1101 action_result(pfn, "high order kernel", IGNORED); 1102 return -EBUSY; 1103 } 1104 } 1105 1106 /* 1107 * We ignore non-LRU pages for good reasons. 1108 * - PG_locked is only well defined for LRU pages and a few others 1109 * - to avoid races with __set_page_locked() 1110 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1111 * The check (unnecessarily) ignores LRU pages being isolated and 1112 * walked by the page reclaim code, however that's not a big loss. 1113 */ 1114 if (!PageHuge(p) && !PageTransTail(p)) { 1115 if (!PageLRU(p)) 1116 shake_page(p, 0); 1117 if (!PageLRU(p)) { 1118 /* 1119 * shake_page could have turned it free. 1120 */ 1121 if (is_free_buddy_page(p)) { 1122 if (flags & MF_COUNT_INCREASED) 1123 action_result(pfn, "free buddy", DELAYED); 1124 else 1125 action_result(pfn, "free buddy, 2nd try", DELAYED); 1126 return 0; 1127 } 1128 action_result(pfn, "non LRU", IGNORED); 1129 put_page(p); 1130 return -EBUSY; 1131 } 1132 } 1133 1134 /* 1135 * Lock the page and wait for writeback to finish. 1136 * It's very difficult to mess with pages currently under IO 1137 * and in many cases impossible, so we just avoid it here. 1138 */ 1139 lock_page(hpage); 1140 1141 /* 1142 * We use page flags to determine what action should be taken, but 1143 * the flags can be modified by the error containment action. One 1144 * example is an mlocked page, where PG_mlocked is cleared by 1145 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1146 * correctly, we save a copy of the page flags at this time. 1147 */ 1148 page_flags = p->flags; 1149 1150 /* 1151 * unpoison always clear PG_hwpoison inside page lock 1152 */ 1153 if (!PageHWPoison(p)) { 1154 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1155 res = 0; 1156 goto out; 1157 } 1158 if (hwpoison_filter(p)) { 1159 if (TestClearPageHWPoison(p)) 1160 atomic_long_sub(nr_pages, &num_poisoned_pages); 1161 unlock_page(hpage); 1162 put_page(hpage); 1163 return 0; 1164 } 1165 1166 /* 1167 * For error on the tail page, we should set PG_hwpoison 1168 * on the head page to show that the hugepage is hwpoisoned 1169 */ 1170 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1171 action_result(pfn, "hugepage already hardware poisoned", 1172 IGNORED); 1173 unlock_page(hpage); 1174 put_page(hpage); 1175 return 0; 1176 } 1177 /* 1178 * Set PG_hwpoison on all pages in an error hugepage, 1179 * because containment is done in hugepage unit for now. 1180 * Since we have done TestSetPageHWPoison() for the head page with 1181 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1182 */ 1183 if (PageHuge(p)) 1184 set_page_hwpoison_huge_page(hpage); 1185 1186 wait_on_page_writeback(p); 1187 1188 /* 1189 * Now take care of user space mappings. 1190 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1191 * 1192 * When the raw error page is thp tail page, hpage points to the raw 1193 * page after thp split. 1194 */ 1195 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1196 != SWAP_SUCCESS) { 1197 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1198 res = -EBUSY; 1199 goto out; 1200 } 1201 1202 /* 1203 * Torn down by someone else? 1204 */ 1205 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1206 action_result(pfn, "already truncated LRU", IGNORED); 1207 res = -EBUSY; 1208 goto out; 1209 } 1210 1211 res = -EBUSY; 1212 /* 1213 * The first check uses the current page flags which may not have any 1214 * relevant information. The second check with the saved page flagss is 1215 * carried out only if the first check can't determine the page status. 1216 */ 1217 for (ps = error_states;; ps++) 1218 if ((p->flags & ps->mask) == ps->res) 1219 break; 1220 1221 page_flags |= (p->flags & (1UL << PG_dirty)); 1222 1223 if (!ps->mask) 1224 for (ps = error_states;; ps++) 1225 if ((page_flags & ps->mask) == ps->res) 1226 break; 1227 res = page_action(ps, p, pfn); 1228 out: 1229 unlock_page(hpage); 1230 return res; 1231 } 1232 EXPORT_SYMBOL_GPL(memory_failure); 1233 1234 #define MEMORY_FAILURE_FIFO_ORDER 4 1235 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1236 1237 struct memory_failure_entry { 1238 unsigned long pfn; 1239 int trapno; 1240 int flags; 1241 }; 1242 1243 struct memory_failure_cpu { 1244 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1245 MEMORY_FAILURE_FIFO_SIZE); 1246 spinlock_t lock; 1247 struct work_struct work; 1248 }; 1249 1250 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1251 1252 /** 1253 * memory_failure_queue - Schedule handling memory failure of a page. 1254 * @pfn: Page Number of the corrupted page 1255 * @trapno: Trap number reported in the signal to user space. 1256 * @flags: Flags for memory failure handling 1257 * 1258 * This function is called by the low level hardware error handler 1259 * when it detects hardware memory corruption of a page. It schedules 1260 * the recovering of error page, including dropping pages, killing 1261 * processes etc. 1262 * 1263 * The function is primarily of use for corruptions that 1264 * happen outside the current execution context (e.g. when 1265 * detected by a background scrubber) 1266 * 1267 * Can run in IRQ context. 1268 */ 1269 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1270 { 1271 struct memory_failure_cpu *mf_cpu; 1272 unsigned long proc_flags; 1273 struct memory_failure_entry entry = { 1274 .pfn = pfn, 1275 .trapno = trapno, 1276 .flags = flags, 1277 }; 1278 1279 mf_cpu = &get_cpu_var(memory_failure_cpu); 1280 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1281 if (kfifo_put(&mf_cpu->fifo, entry)) 1282 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1283 else 1284 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1285 pfn); 1286 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1287 put_cpu_var(memory_failure_cpu); 1288 } 1289 EXPORT_SYMBOL_GPL(memory_failure_queue); 1290 1291 static void memory_failure_work_func(struct work_struct *work) 1292 { 1293 struct memory_failure_cpu *mf_cpu; 1294 struct memory_failure_entry entry = { 0, }; 1295 unsigned long proc_flags; 1296 int gotten; 1297 1298 mf_cpu = &__get_cpu_var(memory_failure_cpu); 1299 for (;;) { 1300 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1301 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1302 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1303 if (!gotten) 1304 break; 1305 if (entry.flags & MF_SOFT_OFFLINE) 1306 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1307 else 1308 memory_failure(entry.pfn, entry.trapno, entry.flags); 1309 } 1310 } 1311 1312 static int __init memory_failure_init(void) 1313 { 1314 struct memory_failure_cpu *mf_cpu; 1315 int cpu; 1316 1317 for_each_possible_cpu(cpu) { 1318 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1319 spin_lock_init(&mf_cpu->lock); 1320 INIT_KFIFO(mf_cpu->fifo); 1321 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1322 } 1323 1324 return 0; 1325 } 1326 core_initcall(memory_failure_init); 1327 1328 /** 1329 * unpoison_memory - Unpoison a previously poisoned page 1330 * @pfn: Page number of the to be unpoisoned page 1331 * 1332 * Software-unpoison a page that has been poisoned by 1333 * memory_failure() earlier. 1334 * 1335 * This is only done on the software-level, so it only works 1336 * for linux injected failures, not real hardware failures 1337 * 1338 * Returns 0 for success, otherwise -errno. 1339 */ 1340 int unpoison_memory(unsigned long pfn) 1341 { 1342 struct page *page; 1343 struct page *p; 1344 int freeit = 0; 1345 unsigned int nr_pages; 1346 1347 if (!pfn_valid(pfn)) 1348 return -ENXIO; 1349 1350 p = pfn_to_page(pfn); 1351 page = compound_head(p); 1352 1353 if (!PageHWPoison(p)) { 1354 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1355 return 0; 1356 } 1357 1358 /* 1359 * unpoison_memory() can encounter thp only when the thp is being 1360 * worked by memory_failure() and the page lock is not held yet. 1361 * In such case, we yield to memory_failure() and make unpoison fail. 1362 */ 1363 if (!PageHuge(page) && PageTransHuge(page)) { 1364 pr_info("MCE: Memory failure is now running on %#lx\n", pfn); 1365 return 0; 1366 } 1367 1368 nr_pages = 1 << compound_order(page); 1369 1370 if (!get_page_unless_zero(page)) { 1371 /* 1372 * Since HWPoisoned hugepage should have non-zero refcount, 1373 * race between memory failure and unpoison seems to happen. 1374 * In such case unpoison fails and memory failure runs 1375 * to the end. 1376 */ 1377 if (PageHuge(page)) { 1378 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1379 return 0; 1380 } 1381 if (TestClearPageHWPoison(p)) 1382 atomic_long_dec(&num_poisoned_pages); 1383 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1384 return 0; 1385 } 1386 1387 lock_page(page); 1388 /* 1389 * This test is racy because PG_hwpoison is set outside of page lock. 1390 * That's acceptable because that won't trigger kernel panic. Instead, 1391 * the PG_hwpoison page will be caught and isolated on the entrance to 1392 * the free buddy page pool. 1393 */ 1394 if (TestClearPageHWPoison(page)) { 1395 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1396 atomic_long_sub(nr_pages, &num_poisoned_pages); 1397 freeit = 1; 1398 if (PageHuge(page)) 1399 clear_page_hwpoison_huge_page(page); 1400 } 1401 unlock_page(page); 1402 1403 put_page(page); 1404 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1405 put_page(page); 1406 1407 return 0; 1408 } 1409 EXPORT_SYMBOL(unpoison_memory); 1410 1411 static struct page *new_page(struct page *p, unsigned long private, int **x) 1412 { 1413 int nid = page_to_nid(p); 1414 if (PageHuge(p)) 1415 return alloc_huge_page_node(page_hstate(compound_head(p)), 1416 nid); 1417 else 1418 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1419 } 1420 1421 /* 1422 * Safely get reference count of an arbitrary page. 1423 * Returns 0 for a free page, -EIO for a zero refcount page 1424 * that is not free, and 1 for any other page type. 1425 * For 1 the page is returned with increased page count, otherwise not. 1426 */ 1427 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1428 { 1429 int ret; 1430 1431 if (flags & MF_COUNT_INCREASED) 1432 return 1; 1433 1434 /* 1435 * When the target page is a free hugepage, just remove it 1436 * from free hugepage list. 1437 */ 1438 if (!get_page_unless_zero(compound_head(p))) { 1439 if (PageHuge(p)) { 1440 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1441 ret = 0; 1442 } else if (is_free_buddy_page(p)) { 1443 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1444 ret = 0; 1445 } else { 1446 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1447 __func__, pfn, p->flags); 1448 ret = -EIO; 1449 } 1450 } else { 1451 /* Not a free page */ 1452 ret = 1; 1453 } 1454 return ret; 1455 } 1456 1457 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1458 { 1459 int ret = __get_any_page(page, pfn, flags); 1460 1461 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1462 /* 1463 * Try to free it. 1464 */ 1465 put_page(page); 1466 shake_page(page, 1); 1467 1468 /* 1469 * Did it turn free? 1470 */ 1471 ret = __get_any_page(page, pfn, 0); 1472 if (!PageLRU(page)) { 1473 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1474 pfn, page->flags); 1475 return -EIO; 1476 } 1477 } 1478 return ret; 1479 } 1480 1481 static int soft_offline_huge_page(struct page *page, int flags) 1482 { 1483 int ret; 1484 unsigned long pfn = page_to_pfn(page); 1485 struct page *hpage = compound_head(page); 1486 LIST_HEAD(pagelist); 1487 1488 /* 1489 * This double-check of PageHWPoison is to avoid the race with 1490 * memory_failure(). See also comment in __soft_offline_page(). 1491 */ 1492 lock_page(hpage); 1493 if (PageHWPoison(hpage)) { 1494 unlock_page(hpage); 1495 put_page(hpage); 1496 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1497 return -EBUSY; 1498 } 1499 unlock_page(hpage); 1500 1501 /* Keep page count to indicate a given hugepage is isolated. */ 1502 list_move(&hpage->lru, &pagelist); 1503 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1504 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1505 if (ret) { 1506 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1507 pfn, ret, page->flags); 1508 /* 1509 * We know that soft_offline_huge_page() tries to migrate 1510 * only one hugepage pointed to by hpage, so we need not 1511 * run through the pagelist here. 1512 */ 1513 putback_active_hugepage(hpage); 1514 if (ret > 0) 1515 ret = -EIO; 1516 } else { 1517 /* overcommit hugetlb page will be freed to buddy */ 1518 if (PageHuge(page)) { 1519 set_page_hwpoison_huge_page(hpage); 1520 dequeue_hwpoisoned_huge_page(hpage); 1521 atomic_long_add(1 << compound_order(hpage), 1522 &num_poisoned_pages); 1523 } else { 1524 SetPageHWPoison(page); 1525 atomic_long_inc(&num_poisoned_pages); 1526 } 1527 } 1528 return ret; 1529 } 1530 1531 static int __soft_offline_page(struct page *page, int flags) 1532 { 1533 int ret; 1534 unsigned long pfn = page_to_pfn(page); 1535 1536 /* 1537 * Check PageHWPoison again inside page lock because PageHWPoison 1538 * is set by memory_failure() outside page lock. Note that 1539 * memory_failure() also double-checks PageHWPoison inside page lock, 1540 * so there's no race between soft_offline_page() and memory_failure(). 1541 */ 1542 lock_page(page); 1543 wait_on_page_writeback(page); 1544 if (PageHWPoison(page)) { 1545 unlock_page(page); 1546 put_page(page); 1547 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1548 return -EBUSY; 1549 } 1550 /* 1551 * Try to invalidate first. This should work for 1552 * non dirty unmapped page cache pages. 1553 */ 1554 ret = invalidate_inode_page(page); 1555 unlock_page(page); 1556 /* 1557 * RED-PEN would be better to keep it isolated here, but we 1558 * would need to fix isolation locking first. 1559 */ 1560 if (ret == 1) { 1561 put_page(page); 1562 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1563 SetPageHWPoison(page); 1564 atomic_long_inc(&num_poisoned_pages); 1565 return 0; 1566 } 1567 1568 /* 1569 * Simple invalidation didn't work. 1570 * Try to migrate to a new page instead. migrate.c 1571 * handles a large number of cases for us. 1572 */ 1573 ret = isolate_lru_page(page); 1574 /* 1575 * Drop page reference which is came from get_any_page() 1576 * successful isolate_lru_page() already took another one. 1577 */ 1578 put_page(page); 1579 if (!ret) { 1580 LIST_HEAD(pagelist); 1581 inc_zone_page_state(page, NR_ISOLATED_ANON + 1582 page_is_file_cache(page)); 1583 list_add(&page->lru, &pagelist); 1584 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1585 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1586 if (ret) { 1587 if (!list_empty(&pagelist)) { 1588 list_del(&page->lru); 1589 dec_zone_page_state(page, NR_ISOLATED_ANON + 1590 page_is_file_cache(page)); 1591 putback_lru_page(page); 1592 } 1593 1594 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1595 pfn, ret, page->flags); 1596 if (ret > 0) 1597 ret = -EIO; 1598 } else { 1599 /* 1600 * After page migration succeeds, the source page can 1601 * be trapped in pagevec and actual freeing is delayed. 1602 * Freeing code works differently based on PG_hwpoison, 1603 * so there's a race. We need to make sure that the 1604 * source page should be freed back to buddy before 1605 * setting PG_hwpoison. 1606 */ 1607 if (!is_free_buddy_page(page)) 1608 lru_add_drain_all(); 1609 if (!is_free_buddy_page(page)) 1610 drain_all_pages(); 1611 SetPageHWPoison(page); 1612 if (!is_free_buddy_page(page)) 1613 pr_info("soft offline: %#lx: page leaked\n", 1614 pfn); 1615 atomic_long_inc(&num_poisoned_pages); 1616 } 1617 } else { 1618 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1619 pfn, ret, page_count(page), page->flags); 1620 } 1621 return ret; 1622 } 1623 1624 /** 1625 * soft_offline_page - Soft offline a page. 1626 * @page: page to offline 1627 * @flags: flags. Same as memory_failure(). 1628 * 1629 * Returns 0 on success, otherwise negated errno. 1630 * 1631 * Soft offline a page, by migration or invalidation, 1632 * without killing anything. This is for the case when 1633 * a page is not corrupted yet (so it's still valid to access), 1634 * but has had a number of corrected errors and is better taken 1635 * out. 1636 * 1637 * The actual policy on when to do that is maintained by 1638 * user space. 1639 * 1640 * This should never impact any application or cause data loss, 1641 * however it might take some time. 1642 * 1643 * This is not a 100% solution for all memory, but tries to be 1644 * ``good enough'' for the majority of memory. 1645 */ 1646 int soft_offline_page(struct page *page, int flags) 1647 { 1648 int ret; 1649 unsigned long pfn = page_to_pfn(page); 1650 struct page *hpage = compound_head(page); 1651 1652 if (PageHWPoison(page)) { 1653 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1654 return -EBUSY; 1655 } 1656 if (!PageHuge(page) && PageTransHuge(hpage)) { 1657 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1658 pr_info("soft offline: %#lx: failed to split THP\n", 1659 pfn); 1660 return -EBUSY; 1661 } 1662 } 1663 1664 /* 1665 * The lock_memory_hotplug prevents a race with memory hotplug. 1666 * This is a big hammer, a better would be nicer. 1667 */ 1668 lock_memory_hotplug(); 1669 1670 /* 1671 * Isolate the page, so that it doesn't get reallocated if it 1672 * was free. This flag should be kept set until the source page 1673 * is freed and PG_hwpoison on it is set. 1674 */ 1675 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 1676 set_migratetype_isolate(page, true); 1677 1678 ret = get_any_page(page, pfn, flags); 1679 unlock_memory_hotplug(); 1680 if (ret > 0) { /* for in-use pages */ 1681 if (PageHuge(page)) 1682 ret = soft_offline_huge_page(page, flags); 1683 else 1684 ret = __soft_offline_page(page, flags); 1685 } else if (ret == 0) { /* for free pages */ 1686 if (PageHuge(page)) { 1687 set_page_hwpoison_huge_page(hpage); 1688 dequeue_hwpoisoned_huge_page(hpage); 1689 atomic_long_add(1 << compound_order(hpage), 1690 &num_poisoned_pages); 1691 } else { 1692 SetPageHWPoison(page); 1693 atomic_long_inc(&num_poisoned_pages); 1694 } 1695 } 1696 unset_migratetype_isolate(page, MIGRATE_MOVABLE); 1697 return ret; 1698 } 1699