1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/page-isolation.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/kfifo.h> 57 #include "internal.h" 58 59 int sysctl_memory_failure_early_kill __read_mostly = 0; 60 61 int sysctl_memory_failure_recovery __read_mostly = 1; 62 63 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 64 65 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 66 67 u32 hwpoison_filter_enable = 0; 68 u32 hwpoison_filter_dev_major = ~0U; 69 u32 hwpoison_filter_dev_minor = ~0U; 70 u64 hwpoison_filter_flags_mask; 71 u64 hwpoison_filter_flags_value; 72 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 73 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 77 78 static int hwpoison_filter_dev(struct page *p) 79 { 80 struct address_space *mapping; 81 dev_t dev; 82 83 if (hwpoison_filter_dev_major == ~0U && 84 hwpoison_filter_dev_minor == ~0U) 85 return 0; 86 87 /* 88 * page_mapping() does not accept slab pages. 89 */ 90 if (PageSlab(p)) 91 return -EINVAL; 92 93 mapping = page_mapping(p); 94 if (mapping == NULL || mapping->host == NULL) 95 return -EINVAL; 96 97 dev = mapping->host->i_sb->s_dev; 98 if (hwpoison_filter_dev_major != ~0U && 99 hwpoison_filter_dev_major != MAJOR(dev)) 100 return -EINVAL; 101 if (hwpoison_filter_dev_minor != ~0U && 102 hwpoison_filter_dev_minor != MINOR(dev)) 103 return -EINVAL; 104 105 return 0; 106 } 107 108 static int hwpoison_filter_flags(struct page *p) 109 { 110 if (!hwpoison_filter_flags_mask) 111 return 0; 112 113 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 114 hwpoison_filter_flags_value) 115 return 0; 116 else 117 return -EINVAL; 118 } 119 120 /* 121 * This allows stress tests to limit test scope to a collection of tasks 122 * by putting them under some memcg. This prevents killing unrelated/important 123 * processes such as /sbin/init. Note that the target task may share clean 124 * pages with init (eg. libc text), which is harmless. If the target task 125 * share _dirty_ pages with another task B, the test scheme must make sure B 126 * is also included in the memcg. At last, due to race conditions this filter 127 * can only guarantee that the page either belongs to the memcg tasks, or is 128 * a freed page. 129 */ 130 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 131 u64 hwpoison_filter_memcg; 132 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 133 static int hwpoison_filter_task(struct page *p) 134 { 135 struct mem_cgroup *mem; 136 struct cgroup_subsys_state *css; 137 unsigned long ino; 138 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 mem = try_get_mem_cgroup_from_page(p); 143 if (!mem) 144 return -EINVAL; 145 146 css = mem_cgroup_css(mem); 147 /* root_mem_cgroup has NULL dentries */ 148 if (!css->cgroup->dentry) 149 return -EINVAL; 150 151 ino = css->cgroup->dentry->d_inode->i_ino; 152 css_put(css); 153 154 if (ino != hwpoison_filter_memcg) 155 return -EINVAL; 156 157 return 0; 158 } 159 #else 160 static int hwpoison_filter_task(struct page *p) { return 0; } 161 #endif 162 163 int hwpoison_filter(struct page *p) 164 { 165 if (!hwpoison_filter_enable) 166 return 0; 167 168 if (hwpoison_filter_dev(p)) 169 return -EINVAL; 170 171 if (hwpoison_filter_flags(p)) 172 return -EINVAL; 173 174 if (hwpoison_filter_task(p)) 175 return -EINVAL; 176 177 return 0; 178 } 179 #else 180 int hwpoison_filter(struct page *p) 181 { 182 return 0; 183 } 184 #endif 185 186 EXPORT_SYMBOL_GPL(hwpoison_filter); 187 188 /* 189 * Send all the processes who have the page mapped an ``action optional'' 190 * signal. 191 */ 192 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 193 unsigned long pfn, struct page *page) 194 { 195 struct siginfo si; 196 int ret; 197 198 printk(KERN_ERR 199 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 200 pfn, t->comm, t->pid); 201 si.si_signo = SIGBUS; 202 si.si_errno = 0; 203 si.si_code = BUS_MCEERR_AO; 204 si.si_addr = (void *)addr; 205 #ifdef __ARCH_SI_TRAPNO 206 si.si_trapno = trapno; 207 #endif 208 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; 209 /* 210 * Don't use force here, it's convenient if the signal 211 * can be temporarily blocked. 212 * This could cause a loop when the user sets SIGBUS 213 * to SIG_IGN, but hopefully no one will do that? 214 */ 215 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 216 if (ret < 0) 217 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 218 t->comm, t->pid, ret); 219 return ret; 220 } 221 222 /* 223 * When a unknown page type is encountered drain as many buffers as possible 224 * in the hope to turn the page into a LRU or free page, which we can handle. 225 */ 226 void shake_page(struct page *p, int access) 227 { 228 if (!PageSlab(p)) { 229 lru_add_drain_all(); 230 if (PageLRU(p)) 231 return; 232 drain_all_pages(); 233 if (PageLRU(p) || is_free_buddy_page(p)) 234 return; 235 } 236 237 /* 238 * Only call shrink_slab here (which would also shrink other caches) if 239 * access is not potentially fatal. 240 */ 241 if (access) { 242 int nr; 243 do { 244 struct shrink_control shrink = { 245 .gfp_mask = GFP_KERNEL, 246 }; 247 248 nr = shrink_slab(&shrink, 1000, 1000); 249 if (page_count(p) == 1) 250 break; 251 } while (nr > 10); 252 } 253 } 254 EXPORT_SYMBOL_GPL(shake_page); 255 256 /* 257 * Kill all processes that have a poisoned page mapped and then isolate 258 * the page. 259 * 260 * General strategy: 261 * Find all processes having the page mapped and kill them. 262 * But we keep a page reference around so that the page is not 263 * actually freed yet. 264 * Then stash the page away 265 * 266 * There's no convenient way to get back to mapped processes 267 * from the VMAs. So do a brute-force search over all 268 * running processes. 269 * 270 * Remember that machine checks are not common (or rather 271 * if they are common you have other problems), so this shouldn't 272 * be a performance issue. 273 * 274 * Also there are some races possible while we get from the 275 * error detection to actually handle it. 276 */ 277 278 struct to_kill { 279 struct list_head nd; 280 struct task_struct *tsk; 281 unsigned long addr; 282 char addr_valid; 283 }; 284 285 /* 286 * Failure handling: if we can't find or can't kill a process there's 287 * not much we can do. We just print a message and ignore otherwise. 288 */ 289 290 /* 291 * Schedule a process for later kill. 292 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 293 * TBD would GFP_NOIO be enough? 294 */ 295 static void add_to_kill(struct task_struct *tsk, struct page *p, 296 struct vm_area_struct *vma, 297 struct list_head *to_kill, 298 struct to_kill **tkc) 299 { 300 struct to_kill *tk; 301 302 if (*tkc) { 303 tk = *tkc; 304 *tkc = NULL; 305 } else { 306 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 307 if (!tk) { 308 printk(KERN_ERR 309 "MCE: Out of memory while machine check handling\n"); 310 return; 311 } 312 } 313 tk->addr = page_address_in_vma(p, vma); 314 tk->addr_valid = 1; 315 316 /* 317 * In theory we don't have to kill when the page was 318 * munmaped. But it could be also a mremap. Since that's 319 * likely very rare kill anyways just out of paranoia, but use 320 * a SIGKILL because the error is not contained anymore. 321 */ 322 if (tk->addr == -EFAULT) { 323 pr_info("MCE: Unable to find user space address %lx in %s\n", 324 page_to_pfn(p), tsk->comm); 325 tk->addr_valid = 0; 326 } 327 get_task_struct(tsk); 328 tk->tsk = tsk; 329 list_add_tail(&tk->nd, to_kill); 330 } 331 332 /* 333 * Kill the processes that have been collected earlier. 334 * 335 * Only do anything when DOIT is set, otherwise just free the list 336 * (this is used for clean pages which do not need killing) 337 * Also when FAIL is set do a force kill because something went 338 * wrong earlier. 339 */ 340 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 341 int fail, struct page *page, unsigned long pfn) 342 { 343 struct to_kill *tk, *next; 344 345 list_for_each_entry_safe (tk, next, to_kill, nd) { 346 if (doit) { 347 /* 348 * In case something went wrong with munmapping 349 * make sure the process doesn't catch the 350 * signal and then access the memory. Just kill it. 351 */ 352 if (fail || tk->addr_valid == 0) { 353 printk(KERN_ERR 354 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 force_sig(SIGKILL, tk->tsk); 357 } 358 359 /* 360 * In theory the process could have mapped 361 * something else on the address in-between. We could 362 * check for that, but we need to tell the 363 * process anyways. 364 */ 365 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 366 pfn, page) < 0) 367 printk(KERN_ERR 368 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 369 pfn, tk->tsk->comm, tk->tsk->pid); 370 } 371 put_task_struct(tk->tsk); 372 kfree(tk); 373 } 374 } 375 376 static int task_early_kill(struct task_struct *tsk) 377 { 378 if (!tsk->mm) 379 return 0; 380 if (tsk->flags & PF_MCE_PROCESS) 381 return !!(tsk->flags & PF_MCE_EARLY); 382 return sysctl_memory_failure_early_kill; 383 } 384 385 /* 386 * Collect processes when the error hit an anonymous page. 387 */ 388 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 389 struct to_kill **tkc) 390 { 391 struct vm_area_struct *vma; 392 struct task_struct *tsk; 393 struct anon_vma *av; 394 395 av = page_lock_anon_vma(page); 396 if (av == NULL) /* Not actually mapped anymore */ 397 return; 398 399 read_lock(&tasklist_lock); 400 for_each_process (tsk) { 401 struct anon_vma_chain *vmac; 402 403 if (!task_early_kill(tsk)) 404 continue; 405 list_for_each_entry(vmac, &av->head, same_anon_vma) { 406 vma = vmac->vma; 407 if (!page_mapped_in_vma(page, vma)) 408 continue; 409 if (vma->vm_mm == tsk->mm) 410 add_to_kill(tsk, page, vma, to_kill, tkc); 411 } 412 } 413 read_unlock(&tasklist_lock); 414 page_unlock_anon_vma(av); 415 } 416 417 /* 418 * Collect processes when the error hit a file mapped page. 419 */ 420 static void collect_procs_file(struct page *page, struct list_head *to_kill, 421 struct to_kill **tkc) 422 { 423 struct vm_area_struct *vma; 424 struct task_struct *tsk; 425 struct prio_tree_iter iter; 426 struct address_space *mapping = page->mapping; 427 428 mutex_lock(&mapping->i_mmap_mutex); 429 read_lock(&tasklist_lock); 430 for_each_process(tsk) { 431 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 432 433 if (!task_early_kill(tsk)) 434 continue; 435 436 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 437 pgoff) { 438 /* 439 * Send early kill signal to tasks where a vma covers 440 * the page but the corrupted page is not necessarily 441 * mapped it in its pte. 442 * Assume applications who requested early kill want 443 * to be informed of all such data corruptions. 444 */ 445 if (vma->vm_mm == tsk->mm) 446 add_to_kill(tsk, page, vma, to_kill, tkc); 447 } 448 } 449 read_unlock(&tasklist_lock); 450 mutex_unlock(&mapping->i_mmap_mutex); 451 } 452 453 /* 454 * Collect the processes who have the corrupted page mapped to kill. 455 * This is done in two steps for locking reasons. 456 * First preallocate one tokill structure outside the spin locks, 457 * so that we can kill at least one process reasonably reliable. 458 */ 459 static void collect_procs(struct page *page, struct list_head *tokill) 460 { 461 struct to_kill *tk; 462 463 if (!page->mapping) 464 return; 465 466 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 467 if (!tk) 468 return; 469 if (PageAnon(page)) 470 collect_procs_anon(page, tokill, &tk); 471 else 472 collect_procs_file(page, tokill, &tk); 473 kfree(tk); 474 } 475 476 /* 477 * Error handlers for various types of pages. 478 */ 479 480 enum outcome { 481 IGNORED, /* Error: cannot be handled */ 482 FAILED, /* Error: handling failed */ 483 DELAYED, /* Will be handled later */ 484 RECOVERED, /* Successfully recovered */ 485 }; 486 487 static const char *action_name[] = { 488 [IGNORED] = "Ignored", 489 [FAILED] = "Failed", 490 [DELAYED] = "Delayed", 491 [RECOVERED] = "Recovered", 492 }; 493 494 /* 495 * XXX: It is possible that a page is isolated from LRU cache, 496 * and then kept in swap cache or failed to remove from page cache. 497 * The page count will stop it from being freed by unpoison. 498 * Stress tests should be aware of this memory leak problem. 499 */ 500 static int delete_from_lru_cache(struct page *p) 501 { 502 if (!isolate_lru_page(p)) { 503 /* 504 * Clear sensible page flags, so that the buddy system won't 505 * complain when the page is unpoison-and-freed. 506 */ 507 ClearPageActive(p); 508 ClearPageUnevictable(p); 509 /* 510 * drop the page count elevated by isolate_lru_page() 511 */ 512 page_cache_release(p); 513 return 0; 514 } 515 return -EIO; 516 } 517 518 /* 519 * Error hit kernel page. 520 * Do nothing, try to be lucky and not touch this instead. For a few cases we 521 * could be more sophisticated. 522 */ 523 static int me_kernel(struct page *p, unsigned long pfn) 524 { 525 return IGNORED; 526 } 527 528 /* 529 * Page in unknown state. Do nothing. 530 */ 531 static int me_unknown(struct page *p, unsigned long pfn) 532 { 533 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 534 return FAILED; 535 } 536 537 /* 538 * Clean (or cleaned) page cache page. 539 */ 540 static int me_pagecache_clean(struct page *p, unsigned long pfn) 541 { 542 int err; 543 int ret = FAILED; 544 struct address_space *mapping; 545 546 delete_from_lru_cache(p); 547 548 /* 549 * For anonymous pages we're done the only reference left 550 * should be the one m_f() holds. 551 */ 552 if (PageAnon(p)) 553 return RECOVERED; 554 555 /* 556 * Now truncate the page in the page cache. This is really 557 * more like a "temporary hole punch" 558 * Don't do this for block devices when someone else 559 * has a reference, because it could be file system metadata 560 * and that's not safe to truncate. 561 */ 562 mapping = page_mapping(p); 563 if (!mapping) { 564 /* 565 * Page has been teared down in the meanwhile 566 */ 567 return FAILED; 568 } 569 570 /* 571 * Truncation is a bit tricky. Enable it per file system for now. 572 * 573 * Open: to take i_mutex or not for this? Right now we don't. 574 */ 575 if (mapping->a_ops->error_remove_page) { 576 err = mapping->a_ops->error_remove_page(mapping, p); 577 if (err != 0) { 578 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 579 pfn, err); 580 } else if (page_has_private(p) && 581 !try_to_release_page(p, GFP_NOIO)) { 582 pr_info("MCE %#lx: failed to release buffers\n", pfn); 583 } else { 584 ret = RECOVERED; 585 } 586 } else { 587 /* 588 * If the file system doesn't support it just invalidate 589 * This fails on dirty or anything with private pages 590 */ 591 if (invalidate_inode_page(p)) 592 ret = RECOVERED; 593 else 594 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 595 pfn); 596 } 597 return ret; 598 } 599 600 /* 601 * Dirty cache page page 602 * Issues: when the error hit a hole page the error is not properly 603 * propagated. 604 */ 605 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 606 { 607 struct address_space *mapping = page_mapping(p); 608 609 SetPageError(p); 610 /* TBD: print more information about the file. */ 611 if (mapping) { 612 /* 613 * IO error will be reported by write(), fsync(), etc. 614 * who check the mapping. 615 * This way the application knows that something went 616 * wrong with its dirty file data. 617 * 618 * There's one open issue: 619 * 620 * The EIO will be only reported on the next IO 621 * operation and then cleared through the IO map. 622 * Normally Linux has two mechanisms to pass IO error 623 * first through the AS_EIO flag in the address space 624 * and then through the PageError flag in the page. 625 * Since we drop pages on memory failure handling the 626 * only mechanism open to use is through AS_AIO. 627 * 628 * This has the disadvantage that it gets cleared on 629 * the first operation that returns an error, while 630 * the PageError bit is more sticky and only cleared 631 * when the page is reread or dropped. If an 632 * application assumes it will always get error on 633 * fsync, but does other operations on the fd before 634 * and the page is dropped between then the error 635 * will not be properly reported. 636 * 637 * This can already happen even without hwpoisoned 638 * pages: first on metadata IO errors (which only 639 * report through AS_EIO) or when the page is dropped 640 * at the wrong time. 641 * 642 * So right now we assume that the application DTRT on 643 * the first EIO, but we're not worse than other parts 644 * of the kernel. 645 */ 646 mapping_set_error(mapping, EIO); 647 } 648 649 return me_pagecache_clean(p, pfn); 650 } 651 652 /* 653 * Clean and dirty swap cache. 654 * 655 * Dirty swap cache page is tricky to handle. The page could live both in page 656 * cache and swap cache(ie. page is freshly swapped in). So it could be 657 * referenced concurrently by 2 types of PTEs: 658 * normal PTEs and swap PTEs. We try to handle them consistently by calling 659 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 660 * and then 661 * - clear dirty bit to prevent IO 662 * - remove from LRU 663 * - but keep in the swap cache, so that when we return to it on 664 * a later page fault, we know the application is accessing 665 * corrupted data and shall be killed (we installed simple 666 * interception code in do_swap_page to catch it). 667 * 668 * Clean swap cache pages can be directly isolated. A later page fault will 669 * bring in the known good data from disk. 670 */ 671 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 672 { 673 ClearPageDirty(p); 674 /* Trigger EIO in shmem: */ 675 ClearPageUptodate(p); 676 677 if (!delete_from_lru_cache(p)) 678 return DELAYED; 679 else 680 return FAILED; 681 } 682 683 static int me_swapcache_clean(struct page *p, unsigned long pfn) 684 { 685 delete_from_swap_cache(p); 686 687 if (!delete_from_lru_cache(p)) 688 return RECOVERED; 689 else 690 return FAILED; 691 } 692 693 /* 694 * Huge pages. Needs work. 695 * Issues: 696 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 697 * To narrow down kill region to one page, we need to break up pmd. 698 */ 699 static int me_huge_page(struct page *p, unsigned long pfn) 700 { 701 int res = 0; 702 struct page *hpage = compound_head(p); 703 /* 704 * We can safely recover from error on free or reserved (i.e. 705 * not in-use) hugepage by dequeuing it from freelist. 706 * To check whether a hugepage is in-use or not, we can't use 707 * page->lru because it can be used in other hugepage operations, 708 * such as __unmap_hugepage_range() and gather_surplus_pages(). 709 * So instead we use page_mapping() and PageAnon(). 710 * We assume that this function is called with page lock held, 711 * so there is no race between isolation and mapping/unmapping. 712 */ 713 if (!(page_mapping(hpage) || PageAnon(hpage))) { 714 res = dequeue_hwpoisoned_huge_page(hpage); 715 if (!res) 716 return RECOVERED; 717 } 718 return DELAYED; 719 } 720 721 /* 722 * Various page states we can handle. 723 * 724 * A page state is defined by its current page->flags bits. 725 * The table matches them in order and calls the right handler. 726 * 727 * This is quite tricky because we can access page at any time 728 * in its live cycle, so all accesses have to be extremely careful. 729 * 730 * This is not complete. More states could be added. 731 * For any missing state don't attempt recovery. 732 */ 733 734 #define dirty (1UL << PG_dirty) 735 #define sc (1UL << PG_swapcache) 736 #define unevict (1UL << PG_unevictable) 737 #define mlock (1UL << PG_mlocked) 738 #define writeback (1UL << PG_writeback) 739 #define lru (1UL << PG_lru) 740 #define swapbacked (1UL << PG_swapbacked) 741 #define head (1UL << PG_head) 742 #define tail (1UL << PG_tail) 743 #define compound (1UL << PG_compound) 744 #define slab (1UL << PG_slab) 745 #define reserved (1UL << PG_reserved) 746 747 static struct page_state { 748 unsigned long mask; 749 unsigned long res; 750 char *msg; 751 int (*action)(struct page *p, unsigned long pfn); 752 } error_states[] = { 753 { reserved, reserved, "reserved kernel", me_kernel }, 754 /* 755 * free pages are specially detected outside this table: 756 * PG_buddy pages only make a small fraction of all free pages. 757 */ 758 759 /* 760 * Could in theory check if slab page is free or if we can drop 761 * currently unused objects without touching them. But just 762 * treat it as standard kernel for now. 763 */ 764 { slab, slab, "kernel slab", me_kernel }, 765 766 #ifdef CONFIG_PAGEFLAGS_EXTENDED 767 { head, head, "huge", me_huge_page }, 768 { tail, tail, "huge", me_huge_page }, 769 #else 770 { compound, compound, "huge", me_huge_page }, 771 #endif 772 773 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 774 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 775 776 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 777 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 778 779 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 780 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 781 782 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 783 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 784 785 /* 786 * Catchall entry: must be at end. 787 */ 788 { 0, 0, "unknown page state", me_unknown }, 789 }; 790 791 #undef dirty 792 #undef sc 793 #undef unevict 794 #undef mlock 795 #undef writeback 796 #undef lru 797 #undef swapbacked 798 #undef head 799 #undef tail 800 #undef compound 801 #undef slab 802 #undef reserved 803 804 static void action_result(unsigned long pfn, char *msg, int result) 805 { 806 struct page *page = pfn_to_page(pfn); 807 808 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 809 pfn, 810 PageDirty(page) ? "dirty " : "", 811 msg, action_name[result]); 812 } 813 814 static int page_action(struct page_state *ps, struct page *p, 815 unsigned long pfn) 816 { 817 int result; 818 int count; 819 820 result = ps->action(p, pfn); 821 action_result(pfn, ps->msg, result); 822 823 count = page_count(p) - 1; 824 if (ps->action == me_swapcache_dirty && result == DELAYED) 825 count--; 826 if (count != 0) { 827 printk(KERN_ERR 828 "MCE %#lx: %s page still referenced by %d users\n", 829 pfn, ps->msg, count); 830 result = FAILED; 831 } 832 833 /* Could do more checks here if page looks ok */ 834 /* 835 * Could adjust zone counters here to correct for the missing page. 836 */ 837 838 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 839 } 840 841 /* 842 * Do all that is necessary to remove user space mappings. Unmap 843 * the pages and send SIGBUS to the processes if the data was dirty. 844 */ 845 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 846 int trapno) 847 { 848 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 849 struct address_space *mapping; 850 LIST_HEAD(tokill); 851 int ret; 852 int kill = 1; 853 struct page *hpage = compound_head(p); 854 struct page *ppage; 855 856 if (PageReserved(p) || PageSlab(p)) 857 return SWAP_SUCCESS; 858 859 /* 860 * This check implies we don't kill processes if their pages 861 * are in the swap cache early. Those are always late kills. 862 */ 863 if (!page_mapped(hpage)) 864 return SWAP_SUCCESS; 865 866 if (PageKsm(p)) 867 return SWAP_FAIL; 868 869 if (PageSwapCache(p)) { 870 printk(KERN_ERR 871 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 872 ttu |= TTU_IGNORE_HWPOISON; 873 } 874 875 /* 876 * Propagate the dirty bit from PTEs to struct page first, because we 877 * need this to decide if we should kill or just drop the page. 878 * XXX: the dirty test could be racy: set_page_dirty() may not always 879 * be called inside page lock (it's recommended but not enforced). 880 */ 881 mapping = page_mapping(hpage); 882 if (!PageDirty(hpage) && mapping && 883 mapping_cap_writeback_dirty(mapping)) { 884 if (page_mkclean(hpage)) { 885 SetPageDirty(hpage); 886 } else { 887 kill = 0; 888 ttu |= TTU_IGNORE_HWPOISON; 889 printk(KERN_INFO 890 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 891 pfn); 892 } 893 } 894 895 /* 896 * ppage: poisoned page 897 * if p is regular page(4k page) 898 * ppage == real poisoned page; 899 * else p is hugetlb or THP, ppage == head page. 900 */ 901 ppage = hpage; 902 903 if (PageTransHuge(hpage)) { 904 /* 905 * Verify that this isn't a hugetlbfs head page, the check for 906 * PageAnon is just for avoid tripping a split_huge_page 907 * internal debug check, as split_huge_page refuses to deal with 908 * anything that isn't an anon page. PageAnon can't go away fro 909 * under us because we hold a refcount on the hpage, without a 910 * refcount on the hpage. split_huge_page can't be safely called 911 * in the first place, having a refcount on the tail isn't 912 * enough * to be safe. 913 */ 914 if (!PageHuge(hpage) && PageAnon(hpage)) { 915 if (unlikely(split_huge_page(hpage))) { 916 /* 917 * FIXME: if splitting THP is failed, it is 918 * better to stop the following operation rather 919 * than causing panic by unmapping. System might 920 * survive if the page is freed later. 921 */ 922 printk(KERN_INFO 923 "MCE %#lx: failed to split THP\n", pfn); 924 925 BUG_ON(!PageHWPoison(p)); 926 return SWAP_FAIL; 927 } 928 /* THP is split, so ppage should be the real poisoned page. */ 929 ppage = p; 930 } 931 } 932 933 /* 934 * First collect all the processes that have the page 935 * mapped in dirty form. This has to be done before try_to_unmap, 936 * because ttu takes the rmap data structures down. 937 * 938 * Error handling: We ignore errors here because 939 * there's nothing that can be done. 940 */ 941 if (kill) 942 collect_procs(ppage, &tokill); 943 944 if (hpage != ppage) 945 lock_page(ppage); 946 947 ret = try_to_unmap(ppage, ttu); 948 if (ret != SWAP_SUCCESS) 949 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 950 pfn, page_mapcount(ppage)); 951 952 if (hpage != ppage) 953 unlock_page(ppage); 954 955 /* 956 * Now that the dirty bit has been propagated to the 957 * struct page and all unmaps done we can decide if 958 * killing is needed or not. Only kill when the page 959 * was dirty, otherwise the tokill list is merely 960 * freed. When there was a problem unmapping earlier 961 * use a more force-full uncatchable kill to prevent 962 * any accesses to the poisoned memory. 963 */ 964 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno, 965 ret != SWAP_SUCCESS, p, pfn); 966 967 return ret; 968 } 969 970 static void set_page_hwpoison_huge_page(struct page *hpage) 971 { 972 int i; 973 int nr_pages = 1 << compound_trans_order(hpage); 974 for (i = 0; i < nr_pages; i++) 975 SetPageHWPoison(hpage + i); 976 } 977 978 static void clear_page_hwpoison_huge_page(struct page *hpage) 979 { 980 int i; 981 int nr_pages = 1 << compound_trans_order(hpage); 982 for (i = 0; i < nr_pages; i++) 983 ClearPageHWPoison(hpage + i); 984 } 985 986 int __memory_failure(unsigned long pfn, int trapno, int flags) 987 { 988 struct page_state *ps; 989 struct page *p; 990 struct page *hpage; 991 int res; 992 unsigned int nr_pages; 993 994 if (!sysctl_memory_failure_recovery) 995 panic("Memory failure from trap %d on page %lx", trapno, pfn); 996 997 if (!pfn_valid(pfn)) { 998 printk(KERN_ERR 999 "MCE %#lx: memory outside kernel control\n", 1000 pfn); 1001 return -ENXIO; 1002 } 1003 1004 p = pfn_to_page(pfn); 1005 hpage = compound_head(p); 1006 if (TestSetPageHWPoison(p)) { 1007 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1008 return 0; 1009 } 1010 1011 nr_pages = 1 << compound_trans_order(hpage); 1012 atomic_long_add(nr_pages, &mce_bad_pages); 1013 1014 /* 1015 * We need/can do nothing about count=0 pages. 1016 * 1) it's a free page, and therefore in safe hand: 1017 * prep_new_page() will be the gate keeper. 1018 * 2) it's a free hugepage, which is also safe: 1019 * an affected hugepage will be dequeued from hugepage freelist, 1020 * so there's no concern about reusing it ever after. 1021 * 3) it's part of a non-compound high order page. 1022 * Implies some kernel user: cannot stop them from 1023 * R/W the page; let's pray that the page has been 1024 * used and will be freed some time later. 1025 * In fact it's dangerous to directly bump up page count from 0, 1026 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1027 */ 1028 if (!(flags & MF_COUNT_INCREASED) && 1029 !get_page_unless_zero(hpage)) { 1030 if (is_free_buddy_page(p)) { 1031 action_result(pfn, "free buddy", DELAYED); 1032 return 0; 1033 } else if (PageHuge(hpage)) { 1034 /* 1035 * Check "just unpoisoned", "filter hit", and 1036 * "race with other subpage." 1037 */ 1038 lock_page(hpage); 1039 if (!PageHWPoison(hpage) 1040 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1041 || (p != hpage && TestSetPageHWPoison(hpage))) { 1042 atomic_long_sub(nr_pages, &mce_bad_pages); 1043 return 0; 1044 } 1045 set_page_hwpoison_huge_page(hpage); 1046 res = dequeue_hwpoisoned_huge_page(hpage); 1047 action_result(pfn, "free huge", 1048 res ? IGNORED : DELAYED); 1049 unlock_page(hpage); 1050 return res; 1051 } else { 1052 action_result(pfn, "high order kernel", IGNORED); 1053 return -EBUSY; 1054 } 1055 } 1056 1057 /* 1058 * We ignore non-LRU pages for good reasons. 1059 * - PG_locked is only well defined for LRU pages and a few others 1060 * - to avoid races with __set_page_locked() 1061 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1062 * The check (unnecessarily) ignores LRU pages being isolated and 1063 * walked by the page reclaim code, however that's not a big loss. 1064 */ 1065 if (!PageHuge(p) && !PageTransCompound(p)) { 1066 if (!PageLRU(p)) 1067 shake_page(p, 0); 1068 if (!PageLRU(p)) { 1069 /* 1070 * shake_page could have turned it free. 1071 */ 1072 if (is_free_buddy_page(p)) { 1073 action_result(pfn, "free buddy, 2nd try", 1074 DELAYED); 1075 return 0; 1076 } 1077 action_result(pfn, "non LRU", IGNORED); 1078 put_page(p); 1079 return -EBUSY; 1080 } 1081 } 1082 1083 /* 1084 * Lock the page and wait for writeback to finish. 1085 * It's very difficult to mess with pages currently under IO 1086 * and in many cases impossible, so we just avoid it here. 1087 */ 1088 lock_page(hpage); 1089 1090 /* 1091 * unpoison always clear PG_hwpoison inside page lock 1092 */ 1093 if (!PageHWPoison(p)) { 1094 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1095 res = 0; 1096 goto out; 1097 } 1098 if (hwpoison_filter(p)) { 1099 if (TestClearPageHWPoison(p)) 1100 atomic_long_sub(nr_pages, &mce_bad_pages); 1101 unlock_page(hpage); 1102 put_page(hpage); 1103 return 0; 1104 } 1105 1106 /* 1107 * For error on the tail page, we should set PG_hwpoison 1108 * on the head page to show that the hugepage is hwpoisoned 1109 */ 1110 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1111 action_result(pfn, "hugepage already hardware poisoned", 1112 IGNORED); 1113 unlock_page(hpage); 1114 put_page(hpage); 1115 return 0; 1116 } 1117 /* 1118 * Set PG_hwpoison on all pages in an error hugepage, 1119 * because containment is done in hugepage unit for now. 1120 * Since we have done TestSetPageHWPoison() for the head page with 1121 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1122 */ 1123 if (PageHuge(p)) 1124 set_page_hwpoison_huge_page(hpage); 1125 1126 wait_on_page_writeback(p); 1127 1128 /* 1129 * Now take care of user space mappings. 1130 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1131 */ 1132 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1133 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1134 res = -EBUSY; 1135 goto out; 1136 } 1137 1138 /* 1139 * Torn down by someone else? 1140 */ 1141 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1142 action_result(pfn, "already truncated LRU", IGNORED); 1143 res = -EBUSY; 1144 goto out; 1145 } 1146 1147 res = -EBUSY; 1148 for (ps = error_states;; ps++) { 1149 if ((p->flags & ps->mask) == ps->res) { 1150 res = page_action(ps, p, pfn); 1151 break; 1152 } 1153 } 1154 out: 1155 unlock_page(hpage); 1156 return res; 1157 } 1158 EXPORT_SYMBOL_GPL(__memory_failure); 1159 1160 /** 1161 * memory_failure - Handle memory failure of a page. 1162 * @pfn: Page Number of the corrupted page 1163 * @trapno: Trap number reported in the signal to user space. 1164 * 1165 * This function is called by the low level machine check code 1166 * of an architecture when it detects hardware memory corruption 1167 * of a page. It tries its best to recover, which includes 1168 * dropping pages, killing processes etc. 1169 * 1170 * The function is primarily of use for corruptions that 1171 * happen outside the current execution context (e.g. when 1172 * detected by a background scrubber) 1173 * 1174 * Must run in process context (e.g. a work queue) with interrupts 1175 * enabled and no spinlocks hold. 1176 */ 1177 void memory_failure(unsigned long pfn, int trapno) 1178 { 1179 __memory_failure(pfn, trapno, 0); 1180 } 1181 1182 #define MEMORY_FAILURE_FIFO_ORDER 4 1183 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1184 1185 struct memory_failure_entry { 1186 unsigned long pfn; 1187 int trapno; 1188 int flags; 1189 }; 1190 1191 struct memory_failure_cpu { 1192 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1193 MEMORY_FAILURE_FIFO_SIZE); 1194 spinlock_t lock; 1195 struct work_struct work; 1196 }; 1197 1198 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1199 1200 /** 1201 * memory_failure_queue - Schedule handling memory failure of a page. 1202 * @pfn: Page Number of the corrupted page 1203 * @trapno: Trap number reported in the signal to user space. 1204 * @flags: Flags for memory failure handling 1205 * 1206 * This function is called by the low level hardware error handler 1207 * when it detects hardware memory corruption of a page. It schedules 1208 * the recovering of error page, including dropping pages, killing 1209 * processes etc. 1210 * 1211 * The function is primarily of use for corruptions that 1212 * happen outside the current execution context (e.g. when 1213 * detected by a background scrubber) 1214 * 1215 * Can run in IRQ context. 1216 */ 1217 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1218 { 1219 struct memory_failure_cpu *mf_cpu; 1220 unsigned long proc_flags; 1221 struct memory_failure_entry entry = { 1222 .pfn = pfn, 1223 .trapno = trapno, 1224 .flags = flags, 1225 }; 1226 1227 mf_cpu = &get_cpu_var(memory_failure_cpu); 1228 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1229 if (kfifo_put(&mf_cpu->fifo, &entry)) 1230 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1231 else 1232 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n", 1233 pfn); 1234 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1235 put_cpu_var(memory_failure_cpu); 1236 } 1237 EXPORT_SYMBOL_GPL(memory_failure_queue); 1238 1239 static void memory_failure_work_func(struct work_struct *work) 1240 { 1241 struct memory_failure_cpu *mf_cpu; 1242 struct memory_failure_entry entry = { 0, }; 1243 unsigned long proc_flags; 1244 int gotten; 1245 1246 mf_cpu = &__get_cpu_var(memory_failure_cpu); 1247 for (;;) { 1248 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1249 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1250 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1251 if (!gotten) 1252 break; 1253 __memory_failure(entry.pfn, entry.trapno, entry.flags); 1254 } 1255 } 1256 1257 static int __init memory_failure_init(void) 1258 { 1259 struct memory_failure_cpu *mf_cpu; 1260 int cpu; 1261 1262 for_each_possible_cpu(cpu) { 1263 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1264 spin_lock_init(&mf_cpu->lock); 1265 INIT_KFIFO(mf_cpu->fifo); 1266 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1267 } 1268 1269 return 0; 1270 } 1271 core_initcall(memory_failure_init); 1272 1273 /** 1274 * unpoison_memory - Unpoison a previously poisoned page 1275 * @pfn: Page number of the to be unpoisoned page 1276 * 1277 * Software-unpoison a page that has been poisoned by 1278 * memory_failure() earlier. 1279 * 1280 * This is only done on the software-level, so it only works 1281 * for linux injected failures, not real hardware failures 1282 * 1283 * Returns 0 for success, otherwise -errno. 1284 */ 1285 int unpoison_memory(unsigned long pfn) 1286 { 1287 struct page *page; 1288 struct page *p; 1289 int freeit = 0; 1290 unsigned int nr_pages; 1291 1292 if (!pfn_valid(pfn)) 1293 return -ENXIO; 1294 1295 p = pfn_to_page(pfn); 1296 page = compound_head(p); 1297 1298 if (!PageHWPoison(p)) { 1299 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1300 return 0; 1301 } 1302 1303 nr_pages = 1 << compound_trans_order(page); 1304 1305 if (!get_page_unless_zero(page)) { 1306 /* 1307 * Since HWPoisoned hugepage should have non-zero refcount, 1308 * race between memory failure and unpoison seems to happen. 1309 * In such case unpoison fails and memory failure runs 1310 * to the end. 1311 */ 1312 if (PageHuge(page)) { 1313 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1314 return 0; 1315 } 1316 if (TestClearPageHWPoison(p)) 1317 atomic_long_sub(nr_pages, &mce_bad_pages); 1318 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1319 return 0; 1320 } 1321 1322 lock_page(page); 1323 /* 1324 * This test is racy because PG_hwpoison is set outside of page lock. 1325 * That's acceptable because that won't trigger kernel panic. Instead, 1326 * the PG_hwpoison page will be caught and isolated on the entrance to 1327 * the free buddy page pool. 1328 */ 1329 if (TestClearPageHWPoison(page)) { 1330 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1331 atomic_long_sub(nr_pages, &mce_bad_pages); 1332 freeit = 1; 1333 if (PageHuge(page)) 1334 clear_page_hwpoison_huge_page(page); 1335 } 1336 unlock_page(page); 1337 1338 put_page(page); 1339 if (freeit) 1340 put_page(page); 1341 1342 return 0; 1343 } 1344 EXPORT_SYMBOL(unpoison_memory); 1345 1346 static struct page *new_page(struct page *p, unsigned long private, int **x) 1347 { 1348 int nid = page_to_nid(p); 1349 if (PageHuge(p)) 1350 return alloc_huge_page_node(page_hstate(compound_head(p)), 1351 nid); 1352 else 1353 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1354 } 1355 1356 /* 1357 * Safely get reference count of an arbitrary page. 1358 * Returns 0 for a free page, -EIO for a zero refcount page 1359 * that is not free, and 1 for any other page type. 1360 * For 1 the page is returned with increased page count, otherwise not. 1361 */ 1362 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1363 { 1364 int ret; 1365 1366 if (flags & MF_COUNT_INCREASED) 1367 return 1; 1368 1369 /* 1370 * The lock_memory_hotplug prevents a race with memory hotplug. 1371 * This is a big hammer, a better would be nicer. 1372 */ 1373 lock_memory_hotplug(); 1374 1375 /* 1376 * Isolate the page, so that it doesn't get reallocated if it 1377 * was free. 1378 */ 1379 set_migratetype_isolate(p); 1380 /* 1381 * When the target page is a free hugepage, just remove it 1382 * from free hugepage list. 1383 */ 1384 if (!get_page_unless_zero(compound_head(p))) { 1385 if (PageHuge(p)) { 1386 pr_info("get_any_page: %#lx free huge page\n", pfn); 1387 ret = dequeue_hwpoisoned_huge_page(compound_head(p)); 1388 } else if (is_free_buddy_page(p)) { 1389 pr_info("get_any_page: %#lx free buddy page\n", pfn); 1390 /* Set hwpoison bit while page is still isolated */ 1391 SetPageHWPoison(p); 1392 ret = 0; 1393 } else { 1394 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1395 pfn, p->flags); 1396 ret = -EIO; 1397 } 1398 } else { 1399 /* Not a free page */ 1400 ret = 1; 1401 } 1402 unset_migratetype_isolate(p); 1403 unlock_memory_hotplug(); 1404 return ret; 1405 } 1406 1407 static int soft_offline_huge_page(struct page *page, int flags) 1408 { 1409 int ret; 1410 unsigned long pfn = page_to_pfn(page); 1411 struct page *hpage = compound_head(page); 1412 LIST_HEAD(pagelist); 1413 1414 ret = get_any_page(page, pfn, flags); 1415 if (ret < 0) 1416 return ret; 1417 if (ret == 0) 1418 goto done; 1419 1420 if (PageHWPoison(hpage)) { 1421 put_page(hpage); 1422 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); 1423 return -EBUSY; 1424 } 1425 1426 /* Keep page count to indicate a given hugepage is isolated. */ 1427 1428 list_add(&hpage->lru, &pagelist); 1429 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0, 1430 true); 1431 if (ret) { 1432 struct page *page1, *page2; 1433 list_for_each_entry_safe(page1, page2, &pagelist, lru) 1434 put_page(page1); 1435 1436 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1437 pfn, ret, page->flags); 1438 if (ret > 0) 1439 ret = -EIO; 1440 return ret; 1441 } 1442 done: 1443 if (!PageHWPoison(hpage)) 1444 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages); 1445 set_page_hwpoison_huge_page(hpage); 1446 dequeue_hwpoisoned_huge_page(hpage); 1447 /* keep elevated page count for bad page */ 1448 return ret; 1449 } 1450 1451 /** 1452 * soft_offline_page - Soft offline a page. 1453 * @page: page to offline 1454 * @flags: flags. Same as memory_failure(). 1455 * 1456 * Returns 0 on success, otherwise negated errno. 1457 * 1458 * Soft offline a page, by migration or invalidation, 1459 * without killing anything. This is for the case when 1460 * a page is not corrupted yet (so it's still valid to access), 1461 * but has had a number of corrected errors and is better taken 1462 * out. 1463 * 1464 * The actual policy on when to do that is maintained by 1465 * user space. 1466 * 1467 * This should never impact any application or cause data loss, 1468 * however it might take some time. 1469 * 1470 * This is not a 100% solution for all memory, but tries to be 1471 * ``good enough'' for the majority of memory. 1472 */ 1473 int soft_offline_page(struct page *page, int flags) 1474 { 1475 int ret; 1476 unsigned long pfn = page_to_pfn(page); 1477 1478 if (PageHuge(page)) 1479 return soft_offline_huge_page(page, flags); 1480 1481 ret = get_any_page(page, pfn, flags); 1482 if (ret < 0) 1483 return ret; 1484 if (ret == 0) 1485 goto done; 1486 1487 /* 1488 * Page cache page we can handle? 1489 */ 1490 if (!PageLRU(page)) { 1491 /* 1492 * Try to free it. 1493 */ 1494 put_page(page); 1495 shake_page(page, 1); 1496 1497 /* 1498 * Did it turn free? 1499 */ 1500 ret = get_any_page(page, pfn, 0); 1501 if (ret < 0) 1502 return ret; 1503 if (ret == 0) 1504 goto done; 1505 } 1506 if (!PageLRU(page)) { 1507 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1508 pfn, page->flags); 1509 return -EIO; 1510 } 1511 1512 lock_page(page); 1513 wait_on_page_writeback(page); 1514 1515 /* 1516 * Synchronized using the page lock with memory_failure() 1517 */ 1518 if (PageHWPoison(page)) { 1519 unlock_page(page); 1520 put_page(page); 1521 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1522 return -EBUSY; 1523 } 1524 1525 /* 1526 * Try to invalidate first. This should work for 1527 * non dirty unmapped page cache pages. 1528 */ 1529 ret = invalidate_inode_page(page); 1530 unlock_page(page); 1531 /* 1532 * RED-PEN would be better to keep it isolated here, but we 1533 * would need to fix isolation locking first. 1534 */ 1535 if (ret == 1) { 1536 put_page(page); 1537 ret = 0; 1538 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1539 goto done; 1540 } 1541 1542 /* 1543 * Simple invalidation didn't work. 1544 * Try to migrate to a new page instead. migrate.c 1545 * handles a large number of cases for us. 1546 */ 1547 ret = isolate_lru_page(page); 1548 /* 1549 * Drop page reference which is came from get_any_page() 1550 * successful isolate_lru_page() already took another one. 1551 */ 1552 put_page(page); 1553 if (!ret) { 1554 LIST_HEAD(pagelist); 1555 inc_zone_page_state(page, NR_ISOLATED_ANON + 1556 page_is_file_cache(page)); 1557 list_add(&page->lru, &pagelist); 1558 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1559 0, true); 1560 if (ret) { 1561 putback_lru_pages(&pagelist); 1562 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1563 pfn, ret, page->flags); 1564 if (ret > 0) 1565 ret = -EIO; 1566 } 1567 } else { 1568 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1569 pfn, ret, page_count(page), page->flags); 1570 } 1571 if (ret) 1572 return ret; 1573 1574 done: 1575 atomic_long_add(1, &mce_bad_pages); 1576 SetPageHWPoison(page); 1577 /* keep elevated page count for bad page */ 1578 return ret; 1579 } 1580