1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/memremap.h> 59 #include <linux/kfifo.h> 60 #include <linux/ratelimit.h> 61 #include <linux/page-isolation.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 72 73 u32 hwpoison_filter_enable = 0; 74 u32 hwpoison_filter_dev_major = ~0U; 75 u32 hwpoison_filter_dev_minor = ~0U; 76 u64 hwpoison_filter_flags_mask; 77 u64 hwpoison_filter_flags_value; 78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 83 84 static int hwpoison_filter_dev(struct page *p) 85 { 86 struct address_space *mapping; 87 dev_t dev; 88 89 if (hwpoison_filter_dev_major == ~0U && 90 hwpoison_filter_dev_minor == ~0U) 91 return 0; 92 93 /* 94 * page_mapping() does not accept slab pages. 95 */ 96 if (PageSlab(p)) 97 return -EINVAL; 98 99 mapping = page_mapping(p); 100 if (mapping == NULL || mapping->host == NULL) 101 return -EINVAL; 102 103 dev = mapping->host->i_sb->s_dev; 104 if (hwpoison_filter_dev_major != ~0U && 105 hwpoison_filter_dev_major != MAJOR(dev)) 106 return -EINVAL; 107 if (hwpoison_filter_dev_minor != ~0U && 108 hwpoison_filter_dev_minor != MINOR(dev)) 109 return -EINVAL; 110 111 return 0; 112 } 113 114 static int hwpoison_filter_flags(struct page *p) 115 { 116 if (!hwpoison_filter_flags_mask) 117 return 0; 118 119 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 120 hwpoison_filter_flags_value) 121 return 0; 122 else 123 return -EINVAL; 124 } 125 126 /* 127 * This allows stress tests to limit test scope to a collection of tasks 128 * by putting them under some memcg. This prevents killing unrelated/important 129 * processes such as /sbin/init. Note that the target task may share clean 130 * pages with init (eg. libc text), which is harmless. If the target task 131 * share _dirty_ pages with another task B, the test scheme must make sure B 132 * is also included in the memcg. At last, due to race conditions this filter 133 * can only guarantee that the page either belongs to the memcg tasks, or is 134 * a freed page. 135 */ 136 #ifdef CONFIG_MEMCG 137 u64 hwpoison_filter_memcg; 138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 139 static int hwpoison_filter_task(struct page *p) 140 { 141 if (!hwpoison_filter_memcg) 142 return 0; 143 144 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 145 return -EINVAL; 146 147 return 0; 148 } 149 #else 150 static int hwpoison_filter_task(struct page *p) { return 0; } 151 #endif 152 153 int hwpoison_filter(struct page *p) 154 { 155 if (!hwpoison_filter_enable) 156 return 0; 157 158 if (hwpoison_filter_dev(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_flags(p)) 162 return -EINVAL; 163 164 if (hwpoison_filter_task(p)) 165 return -EINVAL; 166 167 return 0; 168 } 169 #else 170 int hwpoison_filter(struct page *p) 171 { 172 return 0; 173 } 174 #endif 175 176 EXPORT_SYMBOL_GPL(hwpoison_filter); 177 178 /* 179 * Kill all processes that have a poisoned page mapped and then isolate 180 * the page. 181 * 182 * General strategy: 183 * Find all processes having the page mapped and kill them. 184 * But we keep a page reference around so that the page is not 185 * actually freed yet. 186 * Then stash the page away 187 * 188 * There's no convenient way to get back to mapped processes 189 * from the VMAs. So do a brute-force search over all 190 * running processes. 191 * 192 * Remember that machine checks are not common (or rather 193 * if they are common you have other problems), so this shouldn't 194 * be a performance issue. 195 * 196 * Also there are some races possible while we get from the 197 * error detection to actually handle it. 198 */ 199 200 struct to_kill { 201 struct list_head nd; 202 struct task_struct *tsk; 203 unsigned long addr; 204 short size_shift; 205 char addr_valid; 206 }; 207 208 /* 209 * Send all the processes who have the page mapped a signal. 210 * ``action optional'' if they are not immediately affected by the error 211 * ``action required'' if error happened in current execution context 212 */ 213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 214 { 215 struct task_struct *t = tk->tsk; 216 short addr_lsb = tk->size_shift; 217 int ret; 218 219 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 220 pfn, t->comm, t->pid); 221 222 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 223 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, 224 addr_lsb, current); 225 } else { 226 /* 227 * Don't use force here, it's convenient if the signal 228 * can be temporarily blocked. 229 * This could cause a loop when the user sets SIGBUS 230 * to SIG_IGN, but hopefully no one will do that? 231 */ 232 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 233 addr_lsb, t); /* synchronous? */ 234 } 235 if (ret < 0) 236 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 237 t->comm, t->pid, ret); 238 return ret; 239 } 240 241 /* 242 * When a unknown page type is encountered drain as many buffers as possible 243 * in the hope to turn the page into a LRU or free page, which we can handle. 244 */ 245 void shake_page(struct page *p, int access) 246 { 247 if (PageHuge(p)) 248 return; 249 250 if (!PageSlab(p)) { 251 lru_add_drain_all(); 252 if (PageLRU(p)) 253 return; 254 drain_all_pages(page_zone(p)); 255 if (PageLRU(p) || is_free_buddy_page(p)) 256 return; 257 } 258 259 /* 260 * Only call shrink_node_slabs here (which would also shrink 261 * other caches) if access is not potentially fatal. 262 */ 263 if (access) 264 drop_slab_node(page_to_nid(p)); 265 } 266 EXPORT_SYMBOL_GPL(shake_page); 267 268 static unsigned long dev_pagemap_mapping_shift(struct page *page, 269 struct vm_area_struct *vma) 270 { 271 unsigned long address = vma_address(page, vma); 272 pgd_t *pgd; 273 p4d_t *p4d; 274 pud_t *pud; 275 pmd_t *pmd; 276 pte_t *pte; 277 278 pgd = pgd_offset(vma->vm_mm, address); 279 if (!pgd_present(*pgd)) 280 return 0; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 return 0; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 return 0; 287 if (pud_devmap(*pud)) 288 return PUD_SHIFT; 289 pmd = pmd_offset(pud, address); 290 if (!pmd_present(*pmd)) 291 return 0; 292 if (pmd_devmap(*pmd)) 293 return PMD_SHIFT; 294 pte = pte_offset_map(pmd, address); 295 if (!pte_present(*pte)) 296 return 0; 297 if (pte_devmap(*pte)) 298 return PAGE_SHIFT; 299 return 0; 300 } 301 302 /* 303 * Failure handling: if we can't find or can't kill a process there's 304 * not much we can do. We just print a message and ignore otherwise. 305 */ 306 307 /* 308 * Schedule a process for later kill. 309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 310 * TBD would GFP_NOIO be enough? 311 */ 312 static void add_to_kill(struct task_struct *tsk, struct page *p, 313 struct vm_area_struct *vma, 314 struct list_head *to_kill, 315 struct to_kill **tkc) 316 { 317 struct to_kill *tk; 318 319 if (*tkc) { 320 tk = *tkc; 321 *tkc = NULL; 322 } else { 323 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 324 if (!tk) { 325 pr_err("Memory failure: Out of memory while machine check handling\n"); 326 return; 327 } 328 } 329 tk->addr = page_address_in_vma(p, vma); 330 tk->addr_valid = 1; 331 if (is_zone_device_page(p)) 332 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 333 else 334 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; 335 336 /* 337 * In theory we don't have to kill when the page was 338 * munmaped. But it could be also a mremap. Since that's 339 * likely very rare kill anyways just out of paranoia, but use 340 * a SIGKILL because the error is not contained anymore. 341 */ 342 if (tk->addr == -EFAULT || tk->size_shift == 0) { 343 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 344 page_to_pfn(p), tsk->comm); 345 tk->addr_valid = 0; 346 } 347 get_task_struct(tsk); 348 tk->tsk = tsk; 349 list_add_tail(&tk->nd, to_kill); 350 } 351 352 /* 353 * Kill the processes that have been collected earlier. 354 * 355 * Only do anything when DOIT is set, otherwise just free the list 356 * (this is used for clean pages which do not need killing) 357 * Also when FAIL is set do a force kill because something went 358 * wrong earlier. 359 */ 360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 361 unsigned long pfn, int flags) 362 { 363 struct to_kill *tk, *next; 364 365 list_for_each_entry_safe (tk, next, to_kill, nd) { 366 if (forcekill) { 367 /* 368 * In case something went wrong with munmapping 369 * make sure the process doesn't catch the 370 * signal and then access the memory. Just kill it. 371 */ 372 if (fail || tk->addr_valid == 0) { 373 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 374 pfn, tk->tsk->comm, tk->tsk->pid); 375 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 376 tk->tsk, PIDTYPE_PID); 377 } 378 379 /* 380 * In theory the process could have mapped 381 * something else on the address in-between. We could 382 * check for that, but we need to tell the 383 * process anyways. 384 */ 385 else if (kill_proc(tk, pfn, flags) < 0) 386 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 387 pfn, tk->tsk->comm, tk->tsk->pid); 388 } 389 put_task_struct(tk->tsk); 390 kfree(tk); 391 } 392 } 393 394 /* 395 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 396 * on behalf of the thread group. Return task_struct of the (first found) 397 * dedicated thread if found, and return NULL otherwise. 398 * 399 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 400 * have to call rcu_read_lock/unlock() in this function. 401 */ 402 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 403 { 404 struct task_struct *t; 405 406 for_each_thread(tsk, t) 407 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 408 return t; 409 return NULL; 410 } 411 412 /* 413 * Determine whether a given process is "early kill" process which expects 414 * to be signaled when some page under the process is hwpoisoned. 415 * Return task_struct of the dedicated thread (main thread unless explicitly 416 * specified) if the process is "early kill," and otherwise returns NULL. 417 */ 418 static struct task_struct *task_early_kill(struct task_struct *tsk, 419 int force_early) 420 { 421 struct task_struct *t; 422 if (!tsk->mm) 423 return NULL; 424 if (force_early) 425 return tsk; 426 t = find_early_kill_thread(tsk); 427 if (t) 428 return t; 429 if (sysctl_memory_failure_early_kill) 430 return tsk; 431 return NULL; 432 } 433 434 /* 435 * Collect processes when the error hit an anonymous page. 436 */ 437 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 438 struct to_kill **tkc, int force_early) 439 { 440 struct vm_area_struct *vma; 441 struct task_struct *tsk; 442 struct anon_vma *av; 443 pgoff_t pgoff; 444 445 av = page_lock_anon_vma_read(page); 446 if (av == NULL) /* Not actually mapped anymore */ 447 return; 448 449 pgoff = page_to_pgoff(page); 450 read_lock(&tasklist_lock); 451 for_each_process (tsk) { 452 struct anon_vma_chain *vmac; 453 struct task_struct *t = task_early_kill(tsk, force_early); 454 455 if (!t) 456 continue; 457 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 458 pgoff, pgoff) { 459 vma = vmac->vma; 460 if (!page_mapped_in_vma(page, vma)) 461 continue; 462 if (vma->vm_mm == t->mm) 463 add_to_kill(t, page, vma, to_kill, tkc); 464 } 465 } 466 read_unlock(&tasklist_lock); 467 page_unlock_anon_vma_read(av); 468 } 469 470 /* 471 * Collect processes when the error hit a file mapped page. 472 */ 473 static void collect_procs_file(struct page *page, struct list_head *to_kill, 474 struct to_kill **tkc, int force_early) 475 { 476 struct vm_area_struct *vma; 477 struct task_struct *tsk; 478 struct address_space *mapping = page->mapping; 479 480 i_mmap_lock_read(mapping); 481 read_lock(&tasklist_lock); 482 for_each_process(tsk) { 483 pgoff_t pgoff = page_to_pgoff(page); 484 struct task_struct *t = task_early_kill(tsk, force_early); 485 486 if (!t) 487 continue; 488 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 489 pgoff) { 490 /* 491 * Send early kill signal to tasks where a vma covers 492 * the page but the corrupted page is not necessarily 493 * mapped it in its pte. 494 * Assume applications who requested early kill want 495 * to be informed of all such data corruptions. 496 */ 497 if (vma->vm_mm == t->mm) 498 add_to_kill(t, page, vma, to_kill, tkc); 499 } 500 } 501 read_unlock(&tasklist_lock); 502 i_mmap_unlock_read(mapping); 503 } 504 505 /* 506 * Collect the processes who have the corrupted page mapped to kill. 507 * This is done in two steps for locking reasons. 508 * First preallocate one tokill structure outside the spin locks, 509 * so that we can kill at least one process reasonably reliable. 510 */ 511 static void collect_procs(struct page *page, struct list_head *tokill, 512 int force_early) 513 { 514 struct to_kill *tk; 515 516 if (!page->mapping) 517 return; 518 519 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 520 if (!tk) 521 return; 522 if (PageAnon(page)) 523 collect_procs_anon(page, tokill, &tk, force_early); 524 else 525 collect_procs_file(page, tokill, &tk, force_early); 526 kfree(tk); 527 } 528 529 static const char *action_name[] = { 530 [MF_IGNORED] = "Ignored", 531 [MF_FAILED] = "Failed", 532 [MF_DELAYED] = "Delayed", 533 [MF_RECOVERED] = "Recovered", 534 }; 535 536 static const char * const action_page_types[] = { 537 [MF_MSG_KERNEL] = "reserved kernel page", 538 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 539 [MF_MSG_SLAB] = "kernel slab page", 540 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 541 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 542 [MF_MSG_HUGE] = "huge page", 543 [MF_MSG_FREE_HUGE] = "free huge page", 544 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 545 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 546 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 547 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 548 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 549 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 550 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 551 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 552 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 553 [MF_MSG_CLEAN_LRU] = "clean LRU page", 554 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 555 [MF_MSG_BUDDY] = "free buddy page", 556 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 557 [MF_MSG_DAX] = "dax page", 558 [MF_MSG_UNKNOWN] = "unknown page", 559 }; 560 561 /* 562 * XXX: It is possible that a page is isolated from LRU cache, 563 * and then kept in swap cache or failed to remove from page cache. 564 * The page count will stop it from being freed by unpoison. 565 * Stress tests should be aware of this memory leak problem. 566 */ 567 static int delete_from_lru_cache(struct page *p) 568 { 569 if (!isolate_lru_page(p)) { 570 /* 571 * Clear sensible page flags, so that the buddy system won't 572 * complain when the page is unpoison-and-freed. 573 */ 574 ClearPageActive(p); 575 ClearPageUnevictable(p); 576 577 /* 578 * Poisoned page might never drop its ref count to 0 so we have 579 * to uncharge it manually from its memcg. 580 */ 581 mem_cgroup_uncharge(p); 582 583 /* 584 * drop the page count elevated by isolate_lru_page() 585 */ 586 put_page(p); 587 return 0; 588 } 589 return -EIO; 590 } 591 592 static int truncate_error_page(struct page *p, unsigned long pfn, 593 struct address_space *mapping) 594 { 595 int ret = MF_FAILED; 596 597 if (mapping->a_ops->error_remove_page) { 598 int err = mapping->a_ops->error_remove_page(mapping, p); 599 600 if (err != 0) { 601 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 602 pfn, err); 603 } else if (page_has_private(p) && 604 !try_to_release_page(p, GFP_NOIO)) { 605 pr_info("Memory failure: %#lx: failed to release buffers\n", 606 pfn); 607 } else { 608 ret = MF_RECOVERED; 609 } 610 } else { 611 /* 612 * If the file system doesn't support it just invalidate 613 * This fails on dirty or anything with private pages 614 */ 615 if (invalidate_inode_page(p)) 616 ret = MF_RECOVERED; 617 else 618 pr_info("Memory failure: %#lx: Failed to invalidate\n", 619 pfn); 620 } 621 622 return ret; 623 } 624 625 /* 626 * Error hit kernel page. 627 * Do nothing, try to be lucky and not touch this instead. For a few cases we 628 * could be more sophisticated. 629 */ 630 static int me_kernel(struct page *p, unsigned long pfn) 631 { 632 return MF_IGNORED; 633 } 634 635 /* 636 * Page in unknown state. Do nothing. 637 */ 638 static int me_unknown(struct page *p, unsigned long pfn) 639 { 640 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 641 return MF_FAILED; 642 } 643 644 /* 645 * Clean (or cleaned) page cache page. 646 */ 647 static int me_pagecache_clean(struct page *p, unsigned long pfn) 648 { 649 struct address_space *mapping; 650 651 delete_from_lru_cache(p); 652 653 /* 654 * For anonymous pages we're done the only reference left 655 * should be the one m_f() holds. 656 */ 657 if (PageAnon(p)) 658 return MF_RECOVERED; 659 660 /* 661 * Now truncate the page in the page cache. This is really 662 * more like a "temporary hole punch" 663 * Don't do this for block devices when someone else 664 * has a reference, because it could be file system metadata 665 * and that's not safe to truncate. 666 */ 667 mapping = page_mapping(p); 668 if (!mapping) { 669 /* 670 * Page has been teared down in the meanwhile 671 */ 672 return MF_FAILED; 673 } 674 675 /* 676 * Truncation is a bit tricky. Enable it per file system for now. 677 * 678 * Open: to take i_mutex or not for this? Right now we don't. 679 */ 680 return truncate_error_page(p, pfn, mapping); 681 } 682 683 /* 684 * Dirty pagecache page 685 * Issues: when the error hit a hole page the error is not properly 686 * propagated. 687 */ 688 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 689 { 690 struct address_space *mapping = page_mapping(p); 691 692 SetPageError(p); 693 /* TBD: print more information about the file. */ 694 if (mapping) { 695 /* 696 * IO error will be reported by write(), fsync(), etc. 697 * who check the mapping. 698 * This way the application knows that something went 699 * wrong with its dirty file data. 700 * 701 * There's one open issue: 702 * 703 * The EIO will be only reported on the next IO 704 * operation and then cleared through the IO map. 705 * Normally Linux has two mechanisms to pass IO error 706 * first through the AS_EIO flag in the address space 707 * and then through the PageError flag in the page. 708 * Since we drop pages on memory failure handling the 709 * only mechanism open to use is through AS_AIO. 710 * 711 * This has the disadvantage that it gets cleared on 712 * the first operation that returns an error, while 713 * the PageError bit is more sticky and only cleared 714 * when the page is reread or dropped. If an 715 * application assumes it will always get error on 716 * fsync, but does other operations on the fd before 717 * and the page is dropped between then the error 718 * will not be properly reported. 719 * 720 * This can already happen even without hwpoisoned 721 * pages: first on metadata IO errors (which only 722 * report through AS_EIO) or when the page is dropped 723 * at the wrong time. 724 * 725 * So right now we assume that the application DTRT on 726 * the first EIO, but we're not worse than other parts 727 * of the kernel. 728 */ 729 mapping_set_error(mapping, -EIO); 730 } 731 732 return me_pagecache_clean(p, pfn); 733 } 734 735 /* 736 * Clean and dirty swap cache. 737 * 738 * Dirty swap cache page is tricky to handle. The page could live both in page 739 * cache and swap cache(ie. page is freshly swapped in). So it could be 740 * referenced concurrently by 2 types of PTEs: 741 * normal PTEs and swap PTEs. We try to handle them consistently by calling 742 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 743 * and then 744 * - clear dirty bit to prevent IO 745 * - remove from LRU 746 * - but keep in the swap cache, so that when we return to it on 747 * a later page fault, we know the application is accessing 748 * corrupted data and shall be killed (we installed simple 749 * interception code in do_swap_page to catch it). 750 * 751 * Clean swap cache pages can be directly isolated. A later page fault will 752 * bring in the known good data from disk. 753 */ 754 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 755 { 756 ClearPageDirty(p); 757 /* Trigger EIO in shmem: */ 758 ClearPageUptodate(p); 759 760 if (!delete_from_lru_cache(p)) 761 return MF_DELAYED; 762 else 763 return MF_FAILED; 764 } 765 766 static int me_swapcache_clean(struct page *p, unsigned long pfn) 767 { 768 delete_from_swap_cache(p); 769 770 if (!delete_from_lru_cache(p)) 771 return MF_RECOVERED; 772 else 773 return MF_FAILED; 774 } 775 776 /* 777 * Huge pages. Needs work. 778 * Issues: 779 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 780 * To narrow down kill region to one page, we need to break up pmd. 781 */ 782 static int me_huge_page(struct page *p, unsigned long pfn) 783 { 784 int res = 0; 785 struct page *hpage = compound_head(p); 786 struct address_space *mapping; 787 788 if (!PageHuge(hpage)) 789 return MF_DELAYED; 790 791 mapping = page_mapping(hpage); 792 if (mapping) { 793 res = truncate_error_page(hpage, pfn, mapping); 794 } else { 795 unlock_page(hpage); 796 /* 797 * migration entry prevents later access on error anonymous 798 * hugepage, so we can free and dissolve it into buddy to 799 * save healthy subpages. 800 */ 801 if (PageAnon(hpage)) 802 put_page(hpage); 803 dissolve_free_huge_page(p); 804 res = MF_RECOVERED; 805 lock_page(hpage); 806 } 807 808 return res; 809 } 810 811 /* 812 * Various page states we can handle. 813 * 814 * A page state is defined by its current page->flags bits. 815 * The table matches them in order and calls the right handler. 816 * 817 * This is quite tricky because we can access page at any time 818 * in its live cycle, so all accesses have to be extremely careful. 819 * 820 * This is not complete. More states could be added. 821 * For any missing state don't attempt recovery. 822 */ 823 824 #define dirty (1UL << PG_dirty) 825 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 826 #define unevict (1UL << PG_unevictable) 827 #define mlock (1UL << PG_mlocked) 828 #define writeback (1UL << PG_writeback) 829 #define lru (1UL << PG_lru) 830 #define head (1UL << PG_head) 831 #define slab (1UL << PG_slab) 832 #define reserved (1UL << PG_reserved) 833 834 static struct page_state { 835 unsigned long mask; 836 unsigned long res; 837 enum mf_action_page_type type; 838 int (*action)(struct page *p, unsigned long pfn); 839 } error_states[] = { 840 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 841 /* 842 * free pages are specially detected outside this table: 843 * PG_buddy pages only make a small fraction of all free pages. 844 */ 845 846 /* 847 * Could in theory check if slab page is free or if we can drop 848 * currently unused objects without touching them. But just 849 * treat it as standard kernel for now. 850 */ 851 { slab, slab, MF_MSG_SLAB, me_kernel }, 852 853 { head, head, MF_MSG_HUGE, me_huge_page }, 854 855 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 856 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 857 858 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 859 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 860 861 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 862 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 863 864 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 865 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 866 867 /* 868 * Catchall entry: must be at end. 869 */ 870 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 871 }; 872 873 #undef dirty 874 #undef sc 875 #undef unevict 876 #undef mlock 877 #undef writeback 878 #undef lru 879 #undef head 880 #undef slab 881 #undef reserved 882 883 /* 884 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 885 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 886 */ 887 static void action_result(unsigned long pfn, enum mf_action_page_type type, 888 enum mf_result result) 889 { 890 trace_memory_failure_event(pfn, type, result); 891 892 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 893 pfn, action_page_types[type], action_name[result]); 894 } 895 896 static int page_action(struct page_state *ps, struct page *p, 897 unsigned long pfn) 898 { 899 int result; 900 int count; 901 902 result = ps->action(p, pfn); 903 904 count = page_count(p) - 1; 905 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 906 count--; 907 if (count > 0) { 908 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 909 pfn, action_page_types[ps->type], count); 910 result = MF_FAILED; 911 } 912 action_result(pfn, ps->type, result); 913 914 /* Could do more checks here if page looks ok */ 915 /* 916 * Could adjust zone counters here to correct for the missing page. 917 */ 918 919 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 920 } 921 922 /** 923 * get_hwpoison_page() - Get refcount for memory error handling: 924 * @page: raw error page (hit by memory error) 925 * 926 * Return: return 0 if failed to grab the refcount, otherwise true (some 927 * non-zero value.) 928 */ 929 int get_hwpoison_page(struct page *page) 930 { 931 struct page *head = compound_head(page); 932 933 if (!PageHuge(head) && PageTransHuge(head)) { 934 /* 935 * Non anonymous thp exists only in allocation/free time. We 936 * can't handle such a case correctly, so let's give it up. 937 * This should be better than triggering BUG_ON when kernel 938 * tries to touch the "partially handled" page. 939 */ 940 if (!PageAnon(head)) { 941 pr_err("Memory failure: %#lx: non anonymous thp\n", 942 page_to_pfn(page)); 943 return 0; 944 } 945 } 946 947 if (get_page_unless_zero(head)) { 948 if (head == compound_head(page)) 949 return 1; 950 951 pr_info("Memory failure: %#lx cannot catch tail\n", 952 page_to_pfn(page)); 953 put_page(head); 954 } 955 956 return 0; 957 } 958 EXPORT_SYMBOL_GPL(get_hwpoison_page); 959 960 /* 961 * Do all that is necessary to remove user space mappings. Unmap 962 * the pages and send SIGBUS to the processes if the data was dirty. 963 */ 964 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 965 int flags, struct page **hpagep) 966 { 967 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 968 struct address_space *mapping; 969 LIST_HEAD(tokill); 970 bool unmap_success; 971 int kill = 1, forcekill; 972 struct page *hpage = *hpagep; 973 bool mlocked = PageMlocked(hpage); 974 975 /* 976 * Here we are interested only in user-mapped pages, so skip any 977 * other types of pages. 978 */ 979 if (PageReserved(p) || PageSlab(p)) 980 return true; 981 if (!(PageLRU(hpage) || PageHuge(p))) 982 return true; 983 984 /* 985 * This check implies we don't kill processes if their pages 986 * are in the swap cache early. Those are always late kills. 987 */ 988 if (!page_mapped(hpage)) 989 return true; 990 991 if (PageKsm(p)) { 992 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 993 return false; 994 } 995 996 if (PageSwapCache(p)) { 997 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 998 pfn); 999 ttu |= TTU_IGNORE_HWPOISON; 1000 } 1001 1002 /* 1003 * Propagate the dirty bit from PTEs to struct page first, because we 1004 * need this to decide if we should kill or just drop the page. 1005 * XXX: the dirty test could be racy: set_page_dirty() may not always 1006 * be called inside page lock (it's recommended but not enforced). 1007 */ 1008 mapping = page_mapping(hpage); 1009 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1010 mapping_cap_writeback_dirty(mapping)) { 1011 if (page_mkclean(hpage)) { 1012 SetPageDirty(hpage); 1013 } else { 1014 kill = 0; 1015 ttu |= TTU_IGNORE_HWPOISON; 1016 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1017 pfn); 1018 } 1019 } 1020 1021 /* 1022 * First collect all the processes that have the page 1023 * mapped in dirty form. This has to be done before try_to_unmap, 1024 * because ttu takes the rmap data structures down. 1025 * 1026 * Error handling: We ignore errors here because 1027 * there's nothing that can be done. 1028 */ 1029 if (kill) 1030 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1031 1032 unmap_success = try_to_unmap(hpage, ttu); 1033 if (!unmap_success) 1034 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1035 pfn, page_mapcount(hpage)); 1036 1037 /* 1038 * try_to_unmap() might put mlocked page in lru cache, so call 1039 * shake_page() again to ensure that it's flushed. 1040 */ 1041 if (mlocked) 1042 shake_page(hpage, 0); 1043 1044 /* 1045 * Now that the dirty bit has been propagated to the 1046 * struct page and all unmaps done we can decide if 1047 * killing is needed or not. Only kill when the page 1048 * was dirty or the process is not restartable, 1049 * otherwise the tokill list is merely 1050 * freed. When there was a problem unmapping earlier 1051 * use a more force-full uncatchable kill to prevent 1052 * any accesses to the poisoned memory. 1053 */ 1054 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1055 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1056 1057 return unmap_success; 1058 } 1059 1060 static int identify_page_state(unsigned long pfn, struct page *p, 1061 unsigned long page_flags) 1062 { 1063 struct page_state *ps; 1064 1065 /* 1066 * The first check uses the current page flags which may not have any 1067 * relevant information. The second check with the saved page flags is 1068 * carried out only if the first check can't determine the page status. 1069 */ 1070 for (ps = error_states;; ps++) 1071 if ((p->flags & ps->mask) == ps->res) 1072 break; 1073 1074 page_flags |= (p->flags & (1UL << PG_dirty)); 1075 1076 if (!ps->mask) 1077 for (ps = error_states;; ps++) 1078 if ((page_flags & ps->mask) == ps->res) 1079 break; 1080 return page_action(ps, p, pfn); 1081 } 1082 1083 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1084 { 1085 struct page *p = pfn_to_page(pfn); 1086 struct page *head = compound_head(p); 1087 int res; 1088 unsigned long page_flags; 1089 1090 if (TestSetPageHWPoison(head)) { 1091 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1092 pfn); 1093 return 0; 1094 } 1095 1096 num_poisoned_pages_inc(); 1097 1098 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1099 /* 1100 * Check "filter hit" and "race with other subpage." 1101 */ 1102 lock_page(head); 1103 if (PageHWPoison(head)) { 1104 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1105 || (p != head && TestSetPageHWPoison(head))) { 1106 num_poisoned_pages_dec(); 1107 unlock_page(head); 1108 return 0; 1109 } 1110 } 1111 unlock_page(head); 1112 dissolve_free_huge_page(p); 1113 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1114 return 0; 1115 } 1116 1117 lock_page(head); 1118 page_flags = head->flags; 1119 1120 if (!PageHWPoison(head)) { 1121 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1122 num_poisoned_pages_dec(); 1123 unlock_page(head); 1124 put_hwpoison_page(head); 1125 return 0; 1126 } 1127 1128 /* 1129 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1130 * simply disable it. In order to make it work properly, we need 1131 * make sure that: 1132 * - conversion of a pud that maps an error hugetlb into hwpoison 1133 * entry properly works, and 1134 * - other mm code walking over page table is aware of pud-aligned 1135 * hwpoison entries. 1136 */ 1137 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1138 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1139 res = -EBUSY; 1140 goto out; 1141 } 1142 1143 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1144 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1145 res = -EBUSY; 1146 goto out; 1147 } 1148 1149 res = identify_page_state(pfn, p, page_flags); 1150 out: 1151 unlock_page(head); 1152 return res; 1153 } 1154 1155 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1156 struct dev_pagemap *pgmap) 1157 { 1158 struct page *page = pfn_to_page(pfn); 1159 const bool unmap_success = true; 1160 unsigned long size = 0; 1161 struct to_kill *tk; 1162 LIST_HEAD(tokill); 1163 int rc = -EBUSY; 1164 loff_t start; 1165 dax_entry_t cookie; 1166 1167 /* 1168 * Prevent the inode from being freed while we are interrogating 1169 * the address_space, typically this would be handled by 1170 * lock_page(), but dax pages do not use the page lock. This 1171 * also prevents changes to the mapping of this pfn until 1172 * poison signaling is complete. 1173 */ 1174 cookie = dax_lock_page(page); 1175 if (!cookie) 1176 goto out; 1177 1178 if (hwpoison_filter(page)) { 1179 rc = 0; 1180 goto unlock; 1181 } 1182 1183 switch (pgmap->type) { 1184 case MEMORY_DEVICE_PRIVATE: 1185 case MEMORY_DEVICE_PUBLIC: 1186 /* 1187 * TODO: Handle HMM pages which may need coordination 1188 * with device-side memory. 1189 */ 1190 goto unlock; 1191 default: 1192 break; 1193 } 1194 1195 /* 1196 * Use this flag as an indication that the dax page has been 1197 * remapped UC to prevent speculative consumption of poison. 1198 */ 1199 SetPageHWPoison(page); 1200 1201 /* 1202 * Unlike System-RAM there is no possibility to swap in a 1203 * different physical page at a given virtual address, so all 1204 * userspace consumption of ZONE_DEVICE memory necessitates 1205 * SIGBUS (i.e. MF_MUST_KILL) 1206 */ 1207 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1208 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1209 1210 list_for_each_entry(tk, &tokill, nd) 1211 if (tk->size_shift) 1212 size = max(size, 1UL << tk->size_shift); 1213 if (size) { 1214 /* 1215 * Unmap the largest mapping to avoid breaking up 1216 * device-dax mappings which are constant size. The 1217 * actual size of the mapping being torn down is 1218 * communicated in siginfo, see kill_proc() 1219 */ 1220 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1221 unmap_mapping_range(page->mapping, start, start + size, 0); 1222 } 1223 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1224 rc = 0; 1225 unlock: 1226 dax_unlock_page(page, cookie); 1227 out: 1228 /* drop pgmap ref acquired in caller */ 1229 put_dev_pagemap(pgmap); 1230 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1231 return rc; 1232 } 1233 1234 /** 1235 * memory_failure - Handle memory failure of a page. 1236 * @pfn: Page Number of the corrupted page 1237 * @flags: fine tune action taken 1238 * 1239 * This function is called by the low level machine check code 1240 * of an architecture when it detects hardware memory corruption 1241 * of a page. It tries its best to recover, which includes 1242 * dropping pages, killing processes etc. 1243 * 1244 * The function is primarily of use for corruptions that 1245 * happen outside the current execution context (e.g. when 1246 * detected by a background scrubber) 1247 * 1248 * Must run in process context (e.g. a work queue) with interrupts 1249 * enabled and no spinlocks hold. 1250 */ 1251 int memory_failure(unsigned long pfn, int flags) 1252 { 1253 struct page *p; 1254 struct page *hpage; 1255 struct page *orig_head; 1256 struct dev_pagemap *pgmap; 1257 int res; 1258 unsigned long page_flags; 1259 1260 if (!sysctl_memory_failure_recovery) 1261 panic("Memory failure on page %lx", pfn); 1262 1263 if (!pfn_valid(pfn)) { 1264 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1265 pfn); 1266 return -ENXIO; 1267 } 1268 1269 pgmap = get_dev_pagemap(pfn, NULL); 1270 if (pgmap) 1271 return memory_failure_dev_pagemap(pfn, flags, pgmap); 1272 1273 p = pfn_to_page(pfn); 1274 if (PageHuge(p)) 1275 return memory_failure_hugetlb(pfn, flags); 1276 if (TestSetPageHWPoison(p)) { 1277 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1278 pfn); 1279 return 0; 1280 } 1281 1282 orig_head = hpage = compound_head(p); 1283 num_poisoned_pages_inc(); 1284 1285 /* 1286 * We need/can do nothing about count=0 pages. 1287 * 1) it's a free page, and therefore in safe hand: 1288 * prep_new_page() will be the gate keeper. 1289 * 2) it's part of a non-compound high order page. 1290 * Implies some kernel user: cannot stop them from 1291 * R/W the page; let's pray that the page has been 1292 * used and will be freed some time later. 1293 * In fact it's dangerous to directly bump up page count from 0, 1294 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1295 */ 1296 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1297 if (is_free_buddy_page(p)) { 1298 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1299 return 0; 1300 } else { 1301 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1302 return -EBUSY; 1303 } 1304 } 1305 1306 if (PageTransHuge(hpage)) { 1307 lock_page(p); 1308 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1309 unlock_page(p); 1310 if (!PageAnon(p)) 1311 pr_err("Memory failure: %#lx: non anonymous thp\n", 1312 pfn); 1313 else 1314 pr_err("Memory failure: %#lx: thp split failed\n", 1315 pfn); 1316 if (TestClearPageHWPoison(p)) 1317 num_poisoned_pages_dec(); 1318 put_hwpoison_page(p); 1319 return -EBUSY; 1320 } 1321 unlock_page(p); 1322 VM_BUG_ON_PAGE(!page_count(p), p); 1323 hpage = compound_head(p); 1324 } 1325 1326 /* 1327 * We ignore non-LRU pages for good reasons. 1328 * - PG_locked is only well defined for LRU pages and a few others 1329 * - to avoid races with __SetPageLocked() 1330 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1331 * The check (unnecessarily) ignores LRU pages being isolated and 1332 * walked by the page reclaim code, however that's not a big loss. 1333 */ 1334 shake_page(p, 0); 1335 /* shake_page could have turned it free. */ 1336 if (!PageLRU(p) && is_free_buddy_page(p)) { 1337 if (flags & MF_COUNT_INCREASED) 1338 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1339 else 1340 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1341 return 0; 1342 } 1343 1344 lock_page(p); 1345 1346 /* 1347 * The page could have changed compound pages during the locking. 1348 * If this happens just bail out. 1349 */ 1350 if (PageCompound(p) && compound_head(p) != orig_head) { 1351 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1352 res = -EBUSY; 1353 goto out; 1354 } 1355 1356 /* 1357 * We use page flags to determine what action should be taken, but 1358 * the flags can be modified by the error containment action. One 1359 * example is an mlocked page, where PG_mlocked is cleared by 1360 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1361 * correctly, we save a copy of the page flags at this time. 1362 */ 1363 if (PageHuge(p)) 1364 page_flags = hpage->flags; 1365 else 1366 page_flags = p->flags; 1367 1368 /* 1369 * unpoison always clear PG_hwpoison inside page lock 1370 */ 1371 if (!PageHWPoison(p)) { 1372 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1373 num_poisoned_pages_dec(); 1374 unlock_page(p); 1375 put_hwpoison_page(p); 1376 return 0; 1377 } 1378 if (hwpoison_filter(p)) { 1379 if (TestClearPageHWPoison(p)) 1380 num_poisoned_pages_dec(); 1381 unlock_page(p); 1382 put_hwpoison_page(p); 1383 return 0; 1384 } 1385 1386 if (!PageTransTail(p) && !PageLRU(p)) 1387 goto identify_page_state; 1388 1389 /* 1390 * It's very difficult to mess with pages currently under IO 1391 * and in many cases impossible, so we just avoid it here. 1392 */ 1393 wait_on_page_writeback(p); 1394 1395 /* 1396 * Now take care of user space mappings. 1397 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1398 * 1399 * When the raw error page is thp tail page, hpage points to the raw 1400 * page after thp split. 1401 */ 1402 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1403 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1404 res = -EBUSY; 1405 goto out; 1406 } 1407 1408 /* 1409 * Torn down by someone else? 1410 */ 1411 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1412 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1413 res = -EBUSY; 1414 goto out; 1415 } 1416 1417 identify_page_state: 1418 res = identify_page_state(pfn, p, page_flags); 1419 out: 1420 unlock_page(p); 1421 return res; 1422 } 1423 EXPORT_SYMBOL_GPL(memory_failure); 1424 1425 #define MEMORY_FAILURE_FIFO_ORDER 4 1426 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1427 1428 struct memory_failure_entry { 1429 unsigned long pfn; 1430 int flags; 1431 }; 1432 1433 struct memory_failure_cpu { 1434 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1435 MEMORY_FAILURE_FIFO_SIZE); 1436 spinlock_t lock; 1437 struct work_struct work; 1438 }; 1439 1440 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1441 1442 /** 1443 * memory_failure_queue - Schedule handling memory failure of a page. 1444 * @pfn: Page Number of the corrupted page 1445 * @flags: Flags for memory failure handling 1446 * 1447 * This function is called by the low level hardware error handler 1448 * when it detects hardware memory corruption of a page. It schedules 1449 * the recovering of error page, including dropping pages, killing 1450 * processes etc. 1451 * 1452 * The function is primarily of use for corruptions that 1453 * happen outside the current execution context (e.g. when 1454 * detected by a background scrubber) 1455 * 1456 * Can run in IRQ context. 1457 */ 1458 void memory_failure_queue(unsigned long pfn, int flags) 1459 { 1460 struct memory_failure_cpu *mf_cpu; 1461 unsigned long proc_flags; 1462 struct memory_failure_entry entry = { 1463 .pfn = pfn, 1464 .flags = flags, 1465 }; 1466 1467 mf_cpu = &get_cpu_var(memory_failure_cpu); 1468 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1469 if (kfifo_put(&mf_cpu->fifo, entry)) 1470 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1471 else 1472 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1473 pfn); 1474 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1475 put_cpu_var(memory_failure_cpu); 1476 } 1477 EXPORT_SYMBOL_GPL(memory_failure_queue); 1478 1479 static void memory_failure_work_func(struct work_struct *work) 1480 { 1481 struct memory_failure_cpu *mf_cpu; 1482 struct memory_failure_entry entry = { 0, }; 1483 unsigned long proc_flags; 1484 int gotten; 1485 1486 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1487 for (;;) { 1488 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1489 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1490 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1491 if (!gotten) 1492 break; 1493 if (entry.flags & MF_SOFT_OFFLINE) 1494 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1495 else 1496 memory_failure(entry.pfn, entry.flags); 1497 } 1498 } 1499 1500 static int __init memory_failure_init(void) 1501 { 1502 struct memory_failure_cpu *mf_cpu; 1503 int cpu; 1504 1505 for_each_possible_cpu(cpu) { 1506 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1507 spin_lock_init(&mf_cpu->lock); 1508 INIT_KFIFO(mf_cpu->fifo); 1509 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1510 } 1511 1512 return 0; 1513 } 1514 core_initcall(memory_failure_init); 1515 1516 #define unpoison_pr_info(fmt, pfn, rs) \ 1517 ({ \ 1518 if (__ratelimit(rs)) \ 1519 pr_info(fmt, pfn); \ 1520 }) 1521 1522 /** 1523 * unpoison_memory - Unpoison a previously poisoned page 1524 * @pfn: Page number of the to be unpoisoned page 1525 * 1526 * Software-unpoison a page that has been poisoned by 1527 * memory_failure() earlier. 1528 * 1529 * This is only done on the software-level, so it only works 1530 * for linux injected failures, not real hardware failures 1531 * 1532 * Returns 0 for success, otherwise -errno. 1533 */ 1534 int unpoison_memory(unsigned long pfn) 1535 { 1536 struct page *page; 1537 struct page *p; 1538 int freeit = 0; 1539 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1540 DEFAULT_RATELIMIT_BURST); 1541 1542 if (!pfn_valid(pfn)) 1543 return -ENXIO; 1544 1545 p = pfn_to_page(pfn); 1546 page = compound_head(p); 1547 1548 if (!PageHWPoison(p)) { 1549 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1550 pfn, &unpoison_rs); 1551 return 0; 1552 } 1553 1554 if (page_count(page) > 1) { 1555 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1556 pfn, &unpoison_rs); 1557 return 0; 1558 } 1559 1560 if (page_mapped(page)) { 1561 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1562 pfn, &unpoison_rs); 1563 return 0; 1564 } 1565 1566 if (page_mapping(page)) { 1567 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1568 pfn, &unpoison_rs); 1569 return 0; 1570 } 1571 1572 /* 1573 * unpoison_memory() can encounter thp only when the thp is being 1574 * worked by memory_failure() and the page lock is not held yet. 1575 * In such case, we yield to memory_failure() and make unpoison fail. 1576 */ 1577 if (!PageHuge(page) && PageTransHuge(page)) { 1578 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1579 pfn, &unpoison_rs); 1580 return 0; 1581 } 1582 1583 if (!get_hwpoison_page(p)) { 1584 if (TestClearPageHWPoison(p)) 1585 num_poisoned_pages_dec(); 1586 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1587 pfn, &unpoison_rs); 1588 return 0; 1589 } 1590 1591 lock_page(page); 1592 /* 1593 * This test is racy because PG_hwpoison is set outside of page lock. 1594 * That's acceptable because that won't trigger kernel panic. Instead, 1595 * the PG_hwpoison page will be caught and isolated on the entrance to 1596 * the free buddy page pool. 1597 */ 1598 if (TestClearPageHWPoison(page)) { 1599 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1600 pfn, &unpoison_rs); 1601 num_poisoned_pages_dec(); 1602 freeit = 1; 1603 } 1604 unlock_page(page); 1605 1606 put_hwpoison_page(page); 1607 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1608 put_hwpoison_page(page); 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL(unpoison_memory); 1613 1614 static struct page *new_page(struct page *p, unsigned long private) 1615 { 1616 int nid = page_to_nid(p); 1617 1618 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1619 } 1620 1621 /* 1622 * Safely get reference count of an arbitrary page. 1623 * Returns 0 for a free page, -EIO for a zero refcount page 1624 * that is not free, and 1 for any other page type. 1625 * For 1 the page is returned with increased page count, otherwise not. 1626 */ 1627 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1628 { 1629 int ret; 1630 1631 if (flags & MF_COUNT_INCREASED) 1632 return 1; 1633 1634 /* 1635 * When the target page is a free hugepage, just remove it 1636 * from free hugepage list. 1637 */ 1638 if (!get_hwpoison_page(p)) { 1639 if (PageHuge(p)) { 1640 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1641 ret = 0; 1642 } else if (is_free_buddy_page(p)) { 1643 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1644 ret = 0; 1645 } else { 1646 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1647 __func__, pfn, p->flags); 1648 ret = -EIO; 1649 } 1650 } else { 1651 /* Not a free page */ 1652 ret = 1; 1653 } 1654 return ret; 1655 } 1656 1657 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1658 { 1659 int ret = __get_any_page(page, pfn, flags); 1660 1661 if (ret == 1 && !PageHuge(page) && 1662 !PageLRU(page) && !__PageMovable(page)) { 1663 /* 1664 * Try to free it. 1665 */ 1666 put_hwpoison_page(page); 1667 shake_page(page, 1); 1668 1669 /* 1670 * Did it turn free? 1671 */ 1672 ret = __get_any_page(page, pfn, 0); 1673 if (ret == 1 && !PageLRU(page)) { 1674 /* Drop page reference which is from __get_any_page() */ 1675 put_hwpoison_page(page); 1676 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1677 pfn, page->flags, &page->flags); 1678 return -EIO; 1679 } 1680 } 1681 return ret; 1682 } 1683 1684 static int soft_offline_huge_page(struct page *page, int flags) 1685 { 1686 int ret; 1687 unsigned long pfn = page_to_pfn(page); 1688 struct page *hpage = compound_head(page); 1689 LIST_HEAD(pagelist); 1690 1691 /* 1692 * This double-check of PageHWPoison is to avoid the race with 1693 * memory_failure(). See also comment in __soft_offline_page(). 1694 */ 1695 lock_page(hpage); 1696 if (PageHWPoison(hpage)) { 1697 unlock_page(hpage); 1698 put_hwpoison_page(hpage); 1699 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1700 return -EBUSY; 1701 } 1702 unlock_page(hpage); 1703 1704 ret = isolate_huge_page(hpage, &pagelist); 1705 /* 1706 * get_any_page() and isolate_huge_page() takes a refcount each, 1707 * so need to drop one here. 1708 */ 1709 put_hwpoison_page(hpage); 1710 if (!ret) { 1711 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1712 return -EBUSY; 1713 } 1714 1715 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1716 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1717 if (ret) { 1718 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1719 pfn, ret, page->flags, &page->flags); 1720 if (!list_empty(&pagelist)) 1721 putback_movable_pages(&pagelist); 1722 if (ret > 0) 1723 ret = -EIO; 1724 } else { 1725 /* 1726 * We set PG_hwpoison only when the migration source hugepage 1727 * was successfully dissolved, because otherwise hwpoisoned 1728 * hugepage remains on free hugepage list, then userspace will 1729 * find it as SIGBUS by allocation failure. That's not expected 1730 * in soft-offlining. 1731 */ 1732 ret = dissolve_free_huge_page(page); 1733 if (!ret) { 1734 if (set_hwpoison_free_buddy_page(page)) 1735 num_poisoned_pages_inc(); 1736 } 1737 } 1738 return ret; 1739 } 1740 1741 static int __soft_offline_page(struct page *page, int flags) 1742 { 1743 int ret; 1744 unsigned long pfn = page_to_pfn(page); 1745 1746 /* 1747 * Check PageHWPoison again inside page lock because PageHWPoison 1748 * is set by memory_failure() outside page lock. Note that 1749 * memory_failure() also double-checks PageHWPoison inside page lock, 1750 * so there's no race between soft_offline_page() and memory_failure(). 1751 */ 1752 lock_page(page); 1753 wait_on_page_writeback(page); 1754 if (PageHWPoison(page)) { 1755 unlock_page(page); 1756 put_hwpoison_page(page); 1757 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1758 return -EBUSY; 1759 } 1760 /* 1761 * Try to invalidate first. This should work for 1762 * non dirty unmapped page cache pages. 1763 */ 1764 ret = invalidate_inode_page(page); 1765 unlock_page(page); 1766 /* 1767 * RED-PEN would be better to keep it isolated here, but we 1768 * would need to fix isolation locking first. 1769 */ 1770 if (ret == 1) { 1771 put_hwpoison_page(page); 1772 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1773 SetPageHWPoison(page); 1774 num_poisoned_pages_inc(); 1775 return 0; 1776 } 1777 1778 /* 1779 * Simple invalidation didn't work. 1780 * Try to migrate to a new page instead. migrate.c 1781 * handles a large number of cases for us. 1782 */ 1783 if (PageLRU(page)) 1784 ret = isolate_lru_page(page); 1785 else 1786 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1787 /* 1788 * Drop page reference which is came from get_any_page() 1789 * successful isolate_lru_page() already took another one. 1790 */ 1791 put_hwpoison_page(page); 1792 if (!ret) { 1793 LIST_HEAD(pagelist); 1794 /* 1795 * After isolated lru page, the PageLRU will be cleared, 1796 * so use !__PageMovable instead for LRU page's mapping 1797 * cannot have PAGE_MAPPING_MOVABLE. 1798 */ 1799 if (!__PageMovable(page)) 1800 inc_node_page_state(page, NR_ISOLATED_ANON + 1801 page_is_file_cache(page)); 1802 list_add(&page->lru, &pagelist); 1803 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1804 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1805 if (ret) { 1806 if (!list_empty(&pagelist)) 1807 putback_movable_pages(&pagelist); 1808 1809 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1810 pfn, ret, page->flags, &page->flags); 1811 if (ret > 0) 1812 ret = -EIO; 1813 } 1814 } else { 1815 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1816 pfn, ret, page_count(page), page->flags, &page->flags); 1817 } 1818 return ret; 1819 } 1820 1821 static int soft_offline_in_use_page(struct page *page, int flags) 1822 { 1823 int ret; 1824 int mt; 1825 struct page *hpage = compound_head(page); 1826 1827 if (!PageHuge(page) && PageTransHuge(hpage)) { 1828 lock_page(page); 1829 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1830 unlock_page(page); 1831 if (!PageAnon(page)) 1832 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1833 else 1834 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1835 put_hwpoison_page(page); 1836 return -EBUSY; 1837 } 1838 unlock_page(page); 1839 } 1840 1841 /* 1842 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1843 * to free list immediately (not via pcplist) when released after 1844 * successful page migration. Otherwise we can't guarantee that the 1845 * page is really free after put_page() returns, so 1846 * set_hwpoison_free_buddy_page() highly likely fails. 1847 */ 1848 mt = get_pageblock_migratetype(page); 1849 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1850 if (PageHuge(page)) 1851 ret = soft_offline_huge_page(page, flags); 1852 else 1853 ret = __soft_offline_page(page, flags); 1854 set_pageblock_migratetype(page, mt); 1855 return ret; 1856 } 1857 1858 static int soft_offline_free_page(struct page *page) 1859 { 1860 int rc = 0; 1861 struct page *head = compound_head(page); 1862 1863 if (PageHuge(head)) 1864 rc = dissolve_free_huge_page(page); 1865 if (!rc) { 1866 if (set_hwpoison_free_buddy_page(page)) 1867 num_poisoned_pages_inc(); 1868 else 1869 rc = -EBUSY; 1870 } 1871 return rc; 1872 } 1873 1874 /** 1875 * soft_offline_page - Soft offline a page. 1876 * @page: page to offline 1877 * @flags: flags. Same as memory_failure(). 1878 * 1879 * Returns 0 on success, otherwise negated errno. 1880 * 1881 * Soft offline a page, by migration or invalidation, 1882 * without killing anything. This is for the case when 1883 * a page is not corrupted yet (so it's still valid to access), 1884 * but has had a number of corrected errors and is better taken 1885 * out. 1886 * 1887 * The actual policy on when to do that is maintained by 1888 * user space. 1889 * 1890 * This should never impact any application or cause data loss, 1891 * however it might take some time. 1892 * 1893 * This is not a 100% solution for all memory, but tries to be 1894 * ``good enough'' for the majority of memory. 1895 */ 1896 int soft_offline_page(struct page *page, int flags) 1897 { 1898 int ret; 1899 unsigned long pfn = page_to_pfn(page); 1900 1901 if (is_zone_device_page(page)) { 1902 pr_debug_ratelimited("soft_offline: %#lx page is device page\n", 1903 pfn); 1904 if (flags & MF_COUNT_INCREASED) 1905 put_page(page); 1906 return -EIO; 1907 } 1908 1909 if (PageHWPoison(page)) { 1910 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1911 if (flags & MF_COUNT_INCREASED) 1912 put_hwpoison_page(page); 1913 return -EBUSY; 1914 } 1915 1916 get_online_mems(); 1917 ret = get_any_page(page, pfn, flags); 1918 put_online_mems(); 1919 1920 if (ret > 0) 1921 ret = soft_offline_in_use_page(page, flags); 1922 else if (ret == 0) 1923 ret = soft_offline_free_page(page); 1924 1925 return ret; 1926 } 1927