1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched.h> 44 #include <linux/ksm.h> 45 #include <linux/rmap.h> 46 #include <linux/export.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/backing-dev.h> 50 #include <linux/migrate.h> 51 #include <linux/page-isolation.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 struct siginfo si; 185 int ret; 186 187 printk(KERN_ERR 188 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 si.si_signo = SIGBUS; 191 si.si_errno = 0; 192 si.si_addr = (void *)addr; 193 #ifdef __ARCH_SI_TRAPNO 194 si.si_trapno = trapno; 195 #endif 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 197 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 199 si.si_code = BUS_MCEERR_AR; 200 ret = force_sig_info(SIGBUS, &si, current); 201 } else { 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully no one will do that? 207 */ 208 si.si_code = BUS_MCEERR_AO; 209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 210 } 211 if (ret < 0) 212 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 213 t->comm, t->pid, ret); 214 return ret; 215 } 216 217 /* 218 * When a unknown page type is encountered drain as many buffers as possible 219 * in the hope to turn the page into a LRU or free page, which we can handle. 220 */ 221 void shake_page(struct page *p, int access) 222 { 223 if (!PageSlab(p)) { 224 lru_add_drain_all(); 225 if (PageLRU(p)) 226 return; 227 drain_all_pages(page_zone(p)); 228 if (PageLRU(p) || is_free_buddy_page(p)) 229 return; 230 } 231 232 /* 233 * Only call shrink_node_slabs here (which would also shrink 234 * other caches) if access is not potentially fatal. 235 */ 236 if (access) 237 drop_slab_node(page_to_nid(p)); 238 } 239 EXPORT_SYMBOL_GPL(shake_page); 240 241 /* 242 * Kill all processes that have a poisoned page mapped and then isolate 243 * the page. 244 * 245 * General strategy: 246 * Find all processes having the page mapped and kill them. 247 * But we keep a page reference around so that the page is not 248 * actually freed yet. 249 * Then stash the page away 250 * 251 * There's no convenient way to get back to mapped processes 252 * from the VMAs. So do a brute-force search over all 253 * running processes. 254 * 255 * Remember that machine checks are not common (or rather 256 * if they are common you have other problems), so this shouldn't 257 * be a performance issue. 258 * 259 * Also there are some races possible while we get from the 260 * error detection to actually handle it. 261 */ 262 263 struct to_kill { 264 struct list_head nd; 265 struct task_struct *tsk; 266 unsigned long addr; 267 char addr_valid; 268 }; 269 270 /* 271 * Failure handling: if we can't find or can't kill a process there's 272 * not much we can do. We just print a message and ignore otherwise. 273 */ 274 275 /* 276 * Schedule a process for later kill. 277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 278 * TBD would GFP_NOIO be enough? 279 */ 280 static void add_to_kill(struct task_struct *tsk, struct page *p, 281 struct vm_area_struct *vma, 282 struct list_head *to_kill, 283 struct to_kill **tkc) 284 { 285 struct to_kill *tk; 286 287 if (*tkc) { 288 tk = *tkc; 289 *tkc = NULL; 290 } else { 291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 292 if (!tk) { 293 printk(KERN_ERR 294 "MCE: Out of memory while machine check handling\n"); 295 return; 296 } 297 } 298 tk->addr = page_address_in_vma(p, vma); 299 tk->addr_valid = 1; 300 301 /* 302 * In theory we don't have to kill when the page was 303 * munmaped. But it could be also a mremap. Since that's 304 * likely very rare kill anyways just out of paranoia, but use 305 * a SIGKILL because the error is not contained anymore. 306 */ 307 if (tk->addr == -EFAULT) { 308 pr_info("MCE: Unable to find user space address %lx in %s\n", 309 page_to_pfn(p), tsk->comm); 310 tk->addr_valid = 0; 311 } 312 get_task_struct(tsk); 313 tk->tsk = tsk; 314 list_add_tail(&tk->nd, to_kill); 315 } 316 317 /* 318 * Kill the processes that have been collected earlier. 319 * 320 * Only do anything when DOIT is set, otherwise just free the list 321 * (this is used for clean pages which do not need killing) 322 * Also when FAIL is set do a force kill because something went 323 * wrong earlier. 324 */ 325 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 326 int fail, struct page *page, unsigned long pfn, 327 int flags) 328 { 329 struct to_kill *tk, *next; 330 331 list_for_each_entry_safe (tk, next, to_kill, nd) { 332 if (forcekill) { 333 /* 334 * In case something went wrong with munmapping 335 * make sure the process doesn't catch the 336 * signal and then access the memory. Just kill it. 337 */ 338 if (fail || tk->addr_valid == 0) { 339 printk(KERN_ERR 340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 341 pfn, tk->tsk->comm, tk->tsk->pid); 342 force_sig(SIGKILL, tk->tsk); 343 } 344 345 /* 346 * In theory the process could have mapped 347 * something else on the address in-between. We could 348 * check for that, but we need to tell the 349 * process anyways. 350 */ 351 else if (kill_proc(tk->tsk, tk->addr, trapno, 352 pfn, page, flags) < 0) 353 printk(KERN_ERR 354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 } 357 put_task_struct(tk->tsk); 358 kfree(tk); 359 } 360 } 361 362 /* 363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 364 * on behalf of the thread group. Return task_struct of the (first found) 365 * dedicated thread if found, and return NULL otherwise. 366 * 367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 368 * have to call rcu_read_lock/unlock() in this function. 369 */ 370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 371 { 372 struct task_struct *t; 373 374 for_each_thread(tsk, t) 375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 376 return t; 377 return NULL; 378 } 379 380 /* 381 * Determine whether a given process is "early kill" process which expects 382 * to be signaled when some page under the process is hwpoisoned. 383 * Return task_struct of the dedicated thread (main thread unless explicitly 384 * specified) if the process is "early kill," and otherwise returns NULL. 385 */ 386 static struct task_struct *task_early_kill(struct task_struct *tsk, 387 int force_early) 388 { 389 struct task_struct *t; 390 if (!tsk->mm) 391 return NULL; 392 if (force_early) 393 return tsk; 394 t = find_early_kill_thread(tsk); 395 if (t) 396 return t; 397 if (sysctl_memory_failure_early_kill) 398 return tsk; 399 return NULL; 400 } 401 402 /* 403 * Collect processes when the error hit an anonymous page. 404 */ 405 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 406 struct to_kill **tkc, int force_early) 407 { 408 struct vm_area_struct *vma; 409 struct task_struct *tsk; 410 struct anon_vma *av; 411 pgoff_t pgoff; 412 413 av = page_lock_anon_vma_read(page); 414 if (av == NULL) /* Not actually mapped anymore */ 415 return; 416 417 pgoff = page_to_pgoff(page); 418 read_lock(&tasklist_lock); 419 for_each_process (tsk) { 420 struct anon_vma_chain *vmac; 421 struct task_struct *t = task_early_kill(tsk, force_early); 422 423 if (!t) 424 continue; 425 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 426 pgoff, pgoff) { 427 vma = vmac->vma; 428 if (!page_mapped_in_vma(page, vma)) 429 continue; 430 if (vma->vm_mm == t->mm) 431 add_to_kill(t, page, vma, to_kill, tkc); 432 } 433 } 434 read_unlock(&tasklist_lock); 435 page_unlock_anon_vma_read(av); 436 } 437 438 /* 439 * Collect processes when the error hit a file mapped page. 440 */ 441 static void collect_procs_file(struct page *page, struct list_head *to_kill, 442 struct to_kill **tkc, int force_early) 443 { 444 struct vm_area_struct *vma; 445 struct task_struct *tsk; 446 struct address_space *mapping = page->mapping; 447 448 i_mmap_lock_read(mapping); 449 read_lock(&tasklist_lock); 450 for_each_process(tsk) { 451 pgoff_t pgoff = page_to_pgoff(page); 452 struct task_struct *t = task_early_kill(tsk, force_early); 453 454 if (!t) 455 continue; 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 457 pgoff) { 458 /* 459 * Send early kill signal to tasks where a vma covers 460 * the page but the corrupted page is not necessarily 461 * mapped it in its pte. 462 * Assume applications who requested early kill want 463 * to be informed of all such data corruptions. 464 */ 465 if (vma->vm_mm == t->mm) 466 add_to_kill(t, page, vma, to_kill, tkc); 467 } 468 } 469 read_unlock(&tasklist_lock); 470 i_mmap_unlock_read(mapping); 471 } 472 473 /* 474 * Collect the processes who have the corrupted page mapped to kill. 475 * This is done in two steps for locking reasons. 476 * First preallocate one tokill structure outside the spin locks, 477 * so that we can kill at least one process reasonably reliable. 478 */ 479 static void collect_procs(struct page *page, struct list_head *tokill, 480 int force_early) 481 { 482 struct to_kill *tk; 483 484 if (!page->mapping) 485 return; 486 487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 488 if (!tk) 489 return; 490 if (PageAnon(page)) 491 collect_procs_anon(page, tokill, &tk, force_early); 492 else 493 collect_procs_file(page, tokill, &tk, force_early); 494 kfree(tk); 495 } 496 497 static const char *action_name[] = { 498 [MF_IGNORED] = "Ignored", 499 [MF_FAILED] = "Failed", 500 [MF_DELAYED] = "Delayed", 501 [MF_RECOVERED] = "Recovered", 502 }; 503 504 static const char * const action_page_types[] = { 505 [MF_MSG_KERNEL] = "reserved kernel page", 506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 507 [MF_MSG_SLAB] = "kernel slab page", 508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 510 [MF_MSG_HUGE] = "huge page", 511 [MF_MSG_FREE_HUGE] = "free huge page", 512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 519 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 520 [MF_MSG_CLEAN_LRU] = "clean LRU page", 521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 522 [MF_MSG_BUDDY] = "free buddy page", 523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 524 [MF_MSG_UNKNOWN] = "unknown page", 525 }; 526 527 /* 528 * XXX: It is possible that a page is isolated from LRU cache, 529 * and then kept in swap cache or failed to remove from page cache. 530 * The page count will stop it from being freed by unpoison. 531 * Stress tests should be aware of this memory leak problem. 532 */ 533 static int delete_from_lru_cache(struct page *p) 534 { 535 if (!isolate_lru_page(p)) { 536 /* 537 * Clear sensible page flags, so that the buddy system won't 538 * complain when the page is unpoison-and-freed. 539 */ 540 ClearPageActive(p); 541 ClearPageUnevictable(p); 542 /* 543 * drop the page count elevated by isolate_lru_page() 544 */ 545 page_cache_release(p); 546 return 0; 547 } 548 return -EIO; 549 } 550 551 /* 552 * Error hit kernel page. 553 * Do nothing, try to be lucky and not touch this instead. For a few cases we 554 * could be more sophisticated. 555 */ 556 static int me_kernel(struct page *p, unsigned long pfn) 557 { 558 return MF_IGNORED; 559 } 560 561 /* 562 * Page in unknown state. Do nothing. 563 */ 564 static int me_unknown(struct page *p, unsigned long pfn) 565 { 566 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 567 return MF_FAILED; 568 } 569 570 /* 571 * Clean (or cleaned) page cache page. 572 */ 573 static int me_pagecache_clean(struct page *p, unsigned long pfn) 574 { 575 int err; 576 int ret = MF_FAILED; 577 struct address_space *mapping; 578 579 delete_from_lru_cache(p); 580 581 /* 582 * For anonymous pages we're done the only reference left 583 * should be the one m_f() holds. 584 */ 585 if (PageAnon(p)) 586 return MF_RECOVERED; 587 588 /* 589 * Now truncate the page in the page cache. This is really 590 * more like a "temporary hole punch" 591 * Don't do this for block devices when someone else 592 * has a reference, because it could be file system metadata 593 * and that's not safe to truncate. 594 */ 595 mapping = page_mapping(p); 596 if (!mapping) { 597 /* 598 * Page has been teared down in the meanwhile 599 */ 600 return MF_FAILED; 601 } 602 603 /* 604 * Truncation is a bit tricky. Enable it per file system for now. 605 * 606 * Open: to take i_mutex or not for this? Right now we don't. 607 */ 608 if (mapping->a_ops->error_remove_page) { 609 err = mapping->a_ops->error_remove_page(mapping, p); 610 if (err != 0) { 611 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 612 pfn, err); 613 } else if (page_has_private(p) && 614 !try_to_release_page(p, GFP_NOIO)) { 615 pr_info("MCE %#lx: failed to release buffers\n", pfn); 616 } else { 617 ret = MF_RECOVERED; 618 } 619 } else { 620 /* 621 * If the file system doesn't support it just invalidate 622 * This fails on dirty or anything with private pages 623 */ 624 if (invalidate_inode_page(p)) 625 ret = MF_RECOVERED; 626 else 627 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 628 pfn); 629 } 630 return ret; 631 } 632 633 /* 634 * Dirty pagecache page 635 * Issues: when the error hit a hole page the error is not properly 636 * propagated. 637 */ 638 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 639 { 640 struct address_space *mapping = page_mapping(p); 641 642 SetPageError(p); 643 /* TBD: print more information about the file. */ 644 if (mapping) { 645 /* 646 * IO error will be reported by write(), fsync(), etc. 647 * who check the mapping. 648 * This way the application knows that something went 649 * wrong with its dirty file data. 650 * 651 * There's one open issue: 652 * 653 * The EIO will be only reported on the next IO 654 * operation and then cleared through the IO map. 655 * Normally Linux has two mechanisms to pass IO error 656 * first through the AS_EIO flag in the address space 657 * and then through the PageError flag in the page. 658 * Since we drop pages on memory failure handling the 659 * only mechanism open to use is through AS_AIO. 660 * 661 * This has the disadvantage that it gets cleared on 662 * the first operation that returns an error, while 663 * the PageError bit is more sticky and only cleared 664 * when the page is reread or dropped. If an 665 * application assumes it will always get error on 666 * fsync, but does other operations on the fd before 667 * and the page is dropped between then the error 668 * will not be properly reported. 669 * 670 * This can already happen even without hwpoisoned 671 * pages: first on metadata IO errors (which only 672 * report through AS_EIO) or when the page is dropped 673 * at the wrong time. 674 * 675 * So right now we assume that the application DTRT on 676 * the first EIO, but we're not worse than other parts 677 * of the kernel. 678 */ 679 mapping_set_error(mapping, EIO); 680 } 681 682 return me_pagecache_clean(p, pfn); 683 } 684 685 /* 686 * Clean and dirty swap cache. 687 * 688 * Dirty swap cache page is tricky to handle. The page could live both in page 689 * cache and swap cache(ie. page is freshly swapped in). So it could be 690 * referenced concurrently by 2 types of PTEs: 691 * normal PTEs and swap PTEs. We try to handle them consistently by calling 692 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 693 * and then 694 * - clear dirty bit to prevent IO 695 * - remove from LRU 696 * - but keep in the swap cache, so that when we return to it on 697 * a later page fault, we know the application is accessing 698 * corrupted data and shall be killed (we installed simple 699 * interception code in do_swap_page to catch it). 700 * 701 * Clean swap cache pages can be directly isolated. A later page fault will 702 * bring in the known good data from disk. 703 */ 704 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 705 { 706 ClearPageDirty(p); 707 /* Trigger EIO in shmem: */ 708 ClearPageUptodate(p); 709 710 if (!delete_from_lru_cache(p)) 711 return MF_DELAYED; 712 else 713 return MF_FAILED; 714 } 715 716 static int me_swapcache_clean(struct page *p, unsigned long pfn) 717 { 718 delete_from_swap_cache(p); 719 720 if (!delete_from_lru_cache(p)) 721 return MF_RECOVERED; 722 else 723 return MF_FAILED; 724 } 725 726 /* 727 * Huge pages. Needs work. 728 * Issues: 729 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 730 * To narrow down kill region to one page, we need to break up pmd. 731 */ 732 static int me_huge_page(struct page *p, unsigned long pfn) 733 { 734 int res = 0; 735 struct page *hpage = compound_head(p); 736 737 if (!PageHuge(hpage)) 738 return MF_DELAYED; 739 740 /* 741 * We can safely recover from error on free or reserved (i.e. 742 * not in-use) hugepage by dequeuing it from freelist. 743 * To check whether a hugepage is in-use or not, we can't use 744 * page->lru because it can be used in other hugepage operations, 745 * such as __unmap_hugepage_range() and gather_surplus_pages(). 746 * So instead we use page_mapping() and PageAnon(). 747 * We assume that this function is called with page lock held, 748 * so there is no race between isolation and mapping/unmapping. 749 */ 750 if (!(page_mapping(hpage) || PageAnon(hpage))) { 751 res = dequeue_hwpoisoned_huge_page(hpage); 752 if (!res) 753 return MF_RECOVERED; 754 } 755 return MF_DELAYED; 756 } 757 758 /* 759 * Various page states we can handle. 760 * 761 * A page state is defined by its current page->flags bits. 762 * The table matches them in order and calls the right handler. 763 * 764 * This is quite tricky because we can access page at any time 765 * in its live cycle, so all accesses have to be extremely careful. 766 * 767 * This is not complete. More states could be added. 768 * For any missing state don't attempt recovery. 769 */ 770 771 #define dirty (1UL << PG_dirty) 772 #define sc (1UL << PG_swapcache) 773 #define unevict (1UL << PG_unevictable) 774 #define mlock (1UL << PG_mlocked) 775 #define writeback (1UL << PG_writeback) 776 #define lru (1UL << PG_lru) 777 #define swapbacked (1UL << PG_swapbacked) 778 #define head (1UL << PG_head) 779 #define slab (1UL << PG_slab) 780 #define reserved (1UL << PG_reserved) 781 782 static struct page_state { 783 unsigned long mask; 784 unsigned long res; 785 enum mf_action_page_type type; 786 int (*action)(struct page *p, unsigned long pfn); 787 } error_states[] = { 788 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 789 /* 790 * free pages are specially detected outside this table: 791 * PG_buddy pages only make a small fraction of all free pages. 792 */ 793 794 /* 795 * Could in theory check if slab page is free or if we can drop 796 * currently unused objects without touching them. But just 797 * treat it as standard kernel for now. 798 */ 799 { slab, slab, MF_MSG_SLAB, me_kernel }, 800 801 { head, head, MF_MSG_HUGE, me_huge_page }, 802 803 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 804 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 805 806 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 807 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 808 809 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 810 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 811 812 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 813 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 814 815 /* 816 * Catchall entry: must be at end. 817 */ 818 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 819 }; 820 821 #undef dirty 822 #undef sc 823 #undef unevict 824 #undef mlock 825 #undef writeback 826 #undef lru 827 #undef swapbacked 828 #undef head 829 #undef tail 830 #undef compound 831 #undef slab 832 #undef reserved 833 834 /* 835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 836 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 837 */ 838 static void action_result(unsigned long pfn, enum mf_action_page_type type, 839 enum mf_result result) 840 { 841 trace_memory_failure_event(pfn, type, result); 842 843 pr_err("MCE %#lx: recovery action for %s: %s\n", 844 pfn, action_page_types[type], action_name[result]); 845 } 846 847 static int page_action(struct page_state *ps, struct page *p, 848 unsigned long pfn) 849 { 850 int result; 851 int count; 852 853 result = ps->action(p, pfn); 854 855 count = page_count(p) - 1; 856 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 857 count--; 858 if (count != 0) { 859 printk(KERN_ERR 860 "MCE %#lx: %s still referenced by %d users\n", 861 pfn, action_page_types[ps->type], count); 862 result = MF_FAILED; 863 } 864 action_result(pfn, ps->type, result); 865 866 /* Could do more checks here if page looks ok */ 867 /* 868 * Could adjust zone counters here to correct for the missing page. 869 */ 870 871 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 872 } 873 874 /** 875 * get_hwpoison_page() - Get refcount for memory error handling: 876 * @page: raw error page (hit by memory error) 877 * 878 * Return: return 0 if failed to grab the refcount, otherwise true (some 879 * non-zero value.) 880 */ 881 int get_hwpoison_page(struct page *page) 882 { 883 struct page *head = compound_head(page); 884 885 if (!PageHuge(head) && PageTransHuge(head)) { 886 /* 887 * Non anonymous thp exists only in allocation/free time. We 888 * can't handle such a case correctly, so let's give it up. 889 * This should be better than triggering BUG_ON when kernel 890 * tries to touch the "partially handled" page. 891 */ 892 if (!PageAnon(head)) { 893 pr_err("MCE: %#lx: non anonymous thp\n", 894 page_to_pfn(page)); 895 return 0; 896 } 897 } 898 899 return get_page_unless_zero(head); 900 } 901 EXPORT_SYMBOL_GPL(get_hwpoison_page); 902 903 /* 904 * Do all that is necessary to remove user space mappings. Unmap 905 * the pages and send SIGBUS to the processes if the data was dirty. 906 */ 907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 908 int trapno, int flags, struct page **hpagep) 909 { 910 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 911 struct address_space *mapping; 912 LIST_HEAD(tokill); 913 int ret; 914 int kill = 1, forcekill; 915 struct page *hpage = *hpagep; 916 917 /* 918 * Here we are interested only in user-mapped pages, so skip any 919 * other types of pages. 920 */ 921 if (PageReserved(p) || PageSlab(p)) 922 return SWAP_SUCCESS; 923 if (!(PageLRU(hpage) || PageHuge(p))) 924 return SWAP_SUCCESS; 925 926 /* 927 * This check implies we don't kill processes if their pages 928 * are in the swap cache early. Those are always late kills. 929 */ 930 if (!page_mapped(hpage)) 931 return SWAP_SUCCESS; 932 933 if (PageKsm(p)) { 934 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); 935 return SWAP_FAIL; 936 } 937 938 if (PageSwapCache(p)) { 939 printk(KERN_ERR 940 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 941 ttu |= TTU_IGNORE_HWPOISON; 942 } 943 944 /* 945 * Propagate the dirty bit from PTEs to struct page first, because we 946 * need this to decide if we should kill or just drop the page. 947 * XXX: the dirty test could be racy: set_page_dirty() may not always 948 * be called inside page lock (it's recommended but not enforced). 949 */ 950 mapping = page_mapping(hpage); 951 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 952 mapping_cap_writeback_dirty(mapping)) { 953 if (page_mkclean(hpage)) { 954 SetPageDirty(hpage); 955 } else { 956 kill = 0; 957 ttu |= TTU_IGNORE_HWPOISON; 958 printk(KERN_INFO 959 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 960 pfn); 961 } 962 } 963 964 /* 965 * First collect all the processes that have the page 966 * mapped in dirty form. This has to be done before try_to_unmap, 967 * because ttu takes the rmap data structures down. 968 * 969 * Error handling: We ignore errors here because 970 * there's nothing that can be done. 971 */ 972 if (kill) 973 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 974 975 ret = try_to_unmap(hpage, ttu); 976 if (ret != SWAP_SUCCESS) 977 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 978 pfn, page_mapcount(hpage)); 979 980 /* 981 * Now that the dirty bit has been propagated to the 982 * struct page and all unmaps done we can decide if 983 * killing is needed or not. Only kill when the page 984 * was dirty or the process is not restartable, 985 * otherwise the tokill list is merely 986 * freed. When there was a problem unmapping earlier 987 * use a more force-full uncatchable kill to prevent 988 * any accesses to the poisoned memory. 989 */ 990 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 991 kill_procs(&tokill, forcekill, trapno, 992 ret != SWAP_SUCCESS, p, pfn, flags); 993 994 return ret; 995 } 996 997 static void set_page_hwpoison_huge_page(struct page *hpage) 998 { 999 int i; 1000 int nr_pages = 1 << compound_order(hpage); 1001 for (i = 0; i < nr_pages; i++) 1002 SetPageHWPoison(hpage + i); 1003 } 1004 1005 static void clear_page_hwpoison_huge_page(struct page *hpage) 1006 { 1007 int i; 1008 int nr_pages = 1 << compound_order(hpage); 1009 for (i = 0; i < nr_pages; i++) 1010 ClearPageHWPoison(hpage + i); 1011 } 1012 1013 /** 1014 * memory_failure - Handle memory failure of a page. 1015 * @pfn: Page Number of the corrupted page 1016 * @trapno: Trap number reported in the signal to user space. 1017 * @flags: fine tune action taken 1018 * 1019 * This function is called by the low level machine check code 1020 * of an architecture when it detects hardware memory corruption 1021 * of a page. It tries its best to recover, which includes 1022 * dropping pages, killing processes etc. 1023 * 1024 * The function is primarily of use for corruptions that 1025 * happen outside the current execution context (e.g. when 1026 * detected by a background scrubber) 1027 * 1028 * Must run in process context (e.g. a work queue) with interrupts 1029 * enabled and no spinlocks hold. 1030 */ 1031 int memory_failure(unsigned long pfn, int trapno, int flags) 1032 { 1033 struct page_state *ps; 1034 struct page *p; 1035 struct page *hpage; 1036 struct page *orig_head; 1037 int res; 1038 unsigned int nr_pages; 1039 unsigned long page_flags; 1040 1041 if (!sysctl_memory_failure_recovery) 1042 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1043 1044 if (!pfn_valid(pfn)) { 1045 printk(KERN_ERR 1046 "MCE %#lx: memory outside kernel control\n", 1047 pfn); 1048 return -ENXIO; 1049 } 1050 1051 p = pfn_to_page(pfn); 1052 orig_head = hpage = compound_head(p); 1053 if (TestSetPageHWPoison(p)) { 1054 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1055 return 0; 1056 } 1057 1058 /* 1059 * Currently errors on hugetlbfs pages are measured in hugepage units, 1060 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1061 * transparent hugepages, they are supposed to be split and error 1062 * measurement is done in normal page units. So nr_pages should be one 1063 * in this case. 1064 */ 1065 if (PageHuge(p)) 1066 nr_pages = 1 << compound_order(hpage); 1067 else /* normal page or thp */ 1068 nr_pages = 1; 1069 num_poisoned_pages_add(nr_pages); 1070 1071 /* 1072 * We need/can do nothing about count=0 pages. 1073 * 1) it's a free page, and therefore in safe hand: 1074 * prep_new_page() will be the gate keeper. 1075 * 2) it's a free hugepage, which is also safe: 1076 * an affected hugepage will be dequeued from hugepage freelist, 1077 * so there's no concern about reusing it ever after. 1078 * 3) it's part of a non-compound high order page. 1079 * Implies some kernel user: cannot stop them from 1080 * R/W the page; let's pray that the page has been 1081 * used and will be freed some time later. 1082 * In fact it's dangerous to directly bump up page count from 0, 1083 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1084 */ 1085 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1086 if (is_free_buddy_page(p)) { 1087 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1088 return 0; 1089 } else if (PageHuge(hpage)) { 1090 /* 1091 * Check "filter hit" and "race with other subpage." 1092 */ 1093 lock_page(hpage); 1094 if (PageHWPoison(hpage)) { 1095 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1096 || (p != hpage && TestSetPageHWPoison(hpage))) { 1097 num_poisoned_pages_sub(nr_pages); 1098 unlock_page(hpage); 1099 return 0; 1100 } 1101 } 1102 set_page_hwpoison_huge_page(hpage); 1103 res = dequeue_hwpoisoned_huge_page(hpage); 1104 action_result(pfn, MF_MSG_FREE_HUGE, 1105 res ? MF_IGNORED : MF_DELAYED); 1106 unlock_page(hpage); 1107 return res; 1108 } else { 1109 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1110 return -EBUSY; 1111 } 1112 } 1113 1114 if (!PageHuge(p) && PageTransHuge(hpage)) { 1115 lock_page(hpage); 1116 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1117 unlock_page(hpage); 1118 if (!PageAnon(hpage)) 1119 pr_err("MCE: %#lx: non anonymous thp\n", pfn); 1120 else 1121 pr_err("MCE: %#lx: thp split failed\n", pfn); 1122 if (TestClearPageHWPoison(p)) 1123 num_poisoned_pages_sub(nr_pages); 1124 put_hwpoison_page(p); 1125 return -EBUSY; 1126 } 1127 unlock_page(hpage); 1128 get_hwpoison_page(p); 1129 put_hwpoison_page(hpage); 1130 VM_BUG_ON_PAGE(!page_count(p), p); 1131 hpage = compound_head(p); 1132 } 1133 1134 /* 1135 * We ignore non-LRU pages for good reasons. 1136 * - PG_locked is only well defined for LRU pages and a few others 1137 * - to avoid races with __SetPageLocked() 1138 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1139 * The check (unnecessarily) ignores LRU pages being isolated and 1140 * walked by the page reclaim code, however that's not a big loss. 1141 */ 1142 if (!PageHuge(p)) { 1143 if (!PageLRU(p)) 1144 shake_page(p, 0); 1145 if (!PageLRU(p)) { 1146 /* 1147 * shake_page could have turned it free. 1148 */ 1149 if (is_free_buddy_page(p)) { 1150 if (flags & MF_COUNT_INCREASED) 1151 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1152 else 1153 action_result(pfn, MF_MSG_BUDDY_2ND, 1154 MF_DELAYED); 1155 return 0; 1156 } 1157 } 1158 } 1159 1160 lock_page(hpage); 1161 1162 /* 1163 * The page could have changed compound pages during the locking. 1164 * If this happens just bail out. 1165 */ 1166 if (PageCompound(p) && compound_head(p) != orig_head) { 1167 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1168 res = -EBUSY; 1169 goto out; 1170 } 1171 1172 /* 1173 * We use page flags to determine what action should be taken, but 1174 * the flags can be modified by the error containment action. One 1175 * example is an mlocked page, where PG_mlocked is cleared by 1176 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1177 * correctly, we save a copy of the page flags at this time. 1178 */ 1179 page_flags = p->flags; 1180 1181 /* 1182 * unpoison always clear PG_hwpoison inside page lock 1183 */ 1184 if (!PageHWPoison(p)) { 1185 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1186 num_poisoned_pages_sub(nr_pages); 1187 unlock_page(hpage); 1188 put_hwpoison_page(hpage); 1189 return 0; 1190 } 1191 if (hwpoison_filter(p)) { 1192 if (TestClearPageHWPoison(p)) 1193 num_poisoned_pages_sub(nr_pages); 1194 unlock_page(hpage); 1195 put_hwpoison_page(hpage); 1196 return 0; 1197 } 1198 1199 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1200 goto identify_page_state; 1201 1202 /* 1203 * For error on the tail page, we should set PG_hwpoison 1204 * on the head page to show that the hugepage is hwpoisoned 1205 */ 1206 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1207 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1208 unlock_page(hpage); 1209 put_hwpoison_page(hpage); 1210 return 0; 1211 } 1212 /* 1213 * Set PG_hwpoison on all pages in an error hugepage, 1214 * because containment is done in hugepage unit for now. 1215 * Since we have done TestSetPageHWPoison() for the head page with 1216 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1217 */ 1218 if (PageHuge(p)) 1219 set_page_hwpoison_huge_page(hpage); 1220 1221 /* 1222 * It's very difficult to mess with pages currently under IO 1223 * and in many cases impossible, so we just avoid it here. 1224 */ 1225 wait_on_page_writeback(p); 1226 1227 /* 1228 * Now take care of user space mappings. 1229 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1230 * 1231 * When the raw error page is thp tail page, hpage points to the raw 1232 * page after thp split. 1233 */ 1234 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1235 != SWAP_SUCCESS) { 1236 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1237 res = -EBUSY; 1238 goto out; 1239 } 1240 1241 /* 1242 * Torn down by someone else? 1243 */ 1244 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1245 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1246 res = -EBUSY; 1247 goto out; 1248 } 1249 1250 identify_page_state: 1251 res = -EBUSY; 1252 /* 1253 * The first check uses the current page flags which may not have any 1254 * relevant information. The second check with the saved page flagss is 1255 * carried out only if the first check can't determine the page status. 1256 */ 1257 for (ps = error_states;; ps++) 1258 if ((p->flags & ps->mask) == ps->res) 1259 break; 1260 1261 page_flags |= (p->flags & (1UL << PG_dirty)); 1262 1263 if (!ps->mask) 1264 for (ps = error_states;; ps++) 1265 if ((page_flags & ps->mask) == ps->res) 1266 break; 1267 res = page_action(ps, p, pfn); 1268 out: 1269 unlock_page(hpage); 1270 return res; 1271 } 1272 EXPORT_SYMBOL_GPL(memory_failure); 1273 1274 #define MEMORY_FAILURE_FIFO_ORDER 4 1275 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1276 1277 struct memory_failure_entry { 1278 unsigned long pfn; 1279 int trapno; 1280 int flags; 1281 }; 1282 1283 struct memory_failure_cpu { 1284 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1285 MEMORY_FAILURE_FIFO_SIZE); 1286 spinlock_t lock; 1287 struct work_struct work; 1288 }; 1289 1290 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1291 1292 /** 1293 * memory_failure_queue - Schedule handling memory failure of a page. 1294 * @pfn: Page Number of the corrupted page 1295 * @trapno: Trap number reported in the signal to user space. 1296 * @flags: Flags for memory failure handling 1297 * 1298 * This function is called by the low level hardware error handler 1299 * when it detects hardware memory corruption of a page. It schedules 1300 * the recovering of error page, including dropping pages, killing 1301 * processes etc. 1302 * 1303 * The function is primarily of use for corruptions that 1304 * happen outside the current execution context (e.g. when 1305 * detected by a background scrubber) 1306 * 1307 * Can run in IRQ context. 1308 */ 1309 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1310 { 1311 struct memory_failure_cpu *mf_cpu; 1312 unsigned long proc_flags; 1313 struct memory_failure_entry entry = { 1314 .pfn = pfn, 1315 .trapno = trapno, 1316 .flags = flags, 1317 }; 1318 1319 mf_cpu = &get_cpu_var(memory_failure_cpu); 1320 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1321 if (kfifo_put(&mf_cpu->fifo, entry)) 1322 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1323 else 1324 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1325 pfn); 1326 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1327 put_cpu_var(memory_failure_cpu); 1328 } 1329 EXPORT_SYMBOL_GPL(memory_failure_queue); 1330 1331 static void memory_failure_work_func(struct work_struct *work) 1332 { 1333 struct memory_failure_cpu *mf_cpu; 1334 struct memory_failure_entry entry = { 0, }; 1335 unsigned long proc_flags; 1336 int gotten; 1337 1338 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1339 for (;;) { 1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1341 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1342 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1343 if (!gotten) 1344 break; 1345 if (entry.flags & MF_SOFT_OFFLINE) 1346 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1347 else 1348 memory_failure(entry.pfn, entry.trapno, entry.flags); 1349 } 1350 } 1351 1352 static int __init memory_failure_init(void) 1353 { 1354 struct memory_failure_cpu *mf_cpu; 1355 int cpu; 1356 1357 for_each_possible_cpu(cpu) { 1358 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1359 spin_lock_init(&mf_cpu->lock); 1360 INIT_KFIFO(mf_cpu->fifo); 1361 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1362 } 1363 1364 return 0; 1365 } 1366 core_initcall(memory_failure_init); 1367 1368 #define unpoison_pr_info(fmt, pfn, rs) \ 1369 ({ \ 1370 if (__ratelimit(rs)) \ 1371 pr_info(fmt, pfn); \ 1372 }) 1373 1374 /** 1375 * unpoison_memory - Unpoison a previously poisoned page 1376 * @pfn: Page number of the to be unpoisoned page 1377 * 1378 * Software-unpoison a page that has been poisoned by 1379 * memory_failure() earlier. 1380 * 1381 * This is only done on the software-level, so it only works 1382 * for linux injected failures, not real hardware failures 1383 * 1384 * Returns 0 for success, otherwise -errno. 1385 */ 1386 int unpoison_memory(unsigned long pfn) 1387 { 1388 struct page *page; 1389 struct page *p; 1390 int freeit = 0; 1391 unsigned int nr_pages; 1392 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1393 DEFAULT_RATELIMIT_BURST); 1394 1395 if (!pfn_valid(pfn)) 1396 return -ENXIO; 1397 1398 p = pfn_to_page(pfn); 1399 page = compound_head(p); 1400 1401 if (!PageHWPoison(p)) { 1402 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n", 1403 pfn, &unpoison_rs); 1404 return 0; 1405 } 1406 1407 if (page_count(page) > 1) { 1408 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n", 1409 pfn, &unpoison_rs); 1410 return 0; 1411 } 1412 1413 if (page_mapped(page)) { 1414 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n", 1415 pfn, &unpoison_rs); 1416 return 0; 1417 } 1418 1419 if (page_mapping(page)) { 1420 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n", 1421 pfn, &unpoison_rs); 1422 return 0; 1423 } 1424 1425 /* 1426 * unpoison_memory() can encounter thp only when the thp is being 1427 * worked by memory_failure() and the page lock is not held yet. 1428 * In such case, we yield to memory_failure() and make unpoison fail. 1429 */ 1430 if (!PageHuge(page) && PageTransHuge(page)) { 1431 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n", 1432 pfn, &unpoison_rs); 1433 return 0; 1434 } 1435 1436 nr_pages = 1 << compound_order(page); 1437 1438 if (!get_hwpoison_page(p)) { 1439 /* 1440 * Since HWPoisoned hugepage should have non-zero refcount, 1441 * race between memory failure and unpoison seems to happen. 1442 * In such case unpoison fails and memory failure runs 1443 * to the end. 1444 */ 1445 if (PageHuge(page)) { 1446 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", 1447 pfn, &unpoison_rs); 1448 return 0; 1449 } 1450 if (TestClearPageHWPoison(p)) 1451 num_poisoned_pages_dec(); 1452 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n", 1453 pfn, &unpoison_rs); 1454 return 0; 1455 } 1456 1457 lock_page(page); 1458 /* 1459 * This test is racy because PG_hwpoison is set outside of page lock. 1460 * That's acceptable because that won't trigger kernel panic. Instead, 1461 * the PG_hwpoison page will be caught and isolated on the entrance to 1462 * the free buddy page pool. 1463 */ 1464 if (TestClearPageHWPoison(page)) { 1465 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n", 1466 pfn, &unpoison_rs); 1467 num_poisoned_pages_sub(nr_pages); 1468 freeit = 1; 1469 if (PageHuge(page)) 1470 clear_page_hwpoison_huge_page(page); 1471 } 1472 unlock_page(page); 1473 1474 put_hwpoison_page(page); 1475 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1476 put_hwpoison_page(page); 1477 1478 return 0; 1479 } 1480 EXPORT_SYMBOL(unpoison_memory); 1481 1482 static struct page *new_page(struct page *p, unsigned long private, int **x) 1483 { 1484 int nid = page_to_nid(p); 1485 if (PageHuge(p)) 1486 return alloc_huge_page_node(page_hstate(compound_head(p)), 1487 nid); 1488 else 1489 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1490 } 1491 1492 /* 1493 * Safely get reference count of an arbitrary page. 1494 * Returns 0 for a free page, -EIO for a zero refcount page 1495 * that is not free, and 1 for any other page type. 1496 * For 1 the page is returned with increased page count, otherwise not. 1497 */ 1498 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1499 { 1500 int ret; 1501 1502 if (flags & MF_COUNT_INCREASED) 1503 return 1; 1504 1505 /* 1506 * When the target page is a free hugepage, just remove it 1507 * from free hugepage list. 1508 */ 1509 if (!get_hwpoison_page(p)) { 1510 if (PageHuge(p)) { 1511 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1512 ret = 0; 1513 } else if (is_free_buddy_page(p)) { 1514 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1515 ret = 0; 1516 } else { 1517 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1518 __func__, pfn, p->flags); 1519 ret = -EIO; 1520 } 1521 } else { 1522 /* Not a free page */ 1523 ret = 1; 1524 } 1525 return ret; 1526 } 1527 1528 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1529 { 1530 int ret = __get_any_page(page, pfn, flags); 1531 1532 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1533 /* 1534 * Try to free it. 1535 */ 1536 put_hwpoison_page(page); 1537 shake_page(page, 1); 1538 1539 /* 1540 * Did it turn free? 1541 */ 1542 ret = __get_any_page(page, pfn, 0); 1543 if (ret == 1 && !PageLRU(page)) { 1544 /* Drop page reference which is from __get_any_page() */ 1545 put_hwpoison_page(page); 1546 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1547 pfn, page->flags); 1548 return -EIO; 1549 } 1550 } 1551 return ret; 1552 } 1553 1554 static int soft_offline_huge_page(struct page *page, int flags) 1555 { 1556 int ret; 1557 unsigned long pfn = page_to_pfn(page); 1558 struct page *hpage = compound_head(page); 1559 LIST_HEAD(pagelist); 1560 1561 /* 1562 * This double-check of PageHWPoison is to avoid the race with 1563 * memory_failure(). See also comment in __soft_offline_page(). 1564 */ 1565 lock_page(hpage); 1566 if (PageHWPoison(hpage)) { 1567 unlock_page(hpage); 1568 put_hwpoison_page(hpage); 1569 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1570 return -EBUSY; 1571 } 1572 unlock_page(hpage); 1573 1574 ret = isolate_huge_page(hpage, &pagelist); 1575 /* 1576 * get_any_page() and isolate_huge_page() takes a refcount each, 1577 * so need to drop one here. 1578 */ 1579 put_hwpoison_page(hpage); 1580 if (!ret) { 1581 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1582 return -EBUSY; 1583 } 1584 1585 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1586 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1587 if (ret) { 1588 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1589 pfn, ret, page->flags); 1590 /* 1591 * We know that soft_offline_huge_page() tries to migrate 1592 * only one hugepage pointed to by hpage, so we need not 1593 * run through the pagelist here. 1594 */ 1595 putback_active_hugepage(hpage); 1596 if (ret > 0) 1597 ret = -EIO; 1598 } else { 1599 /* overcommit hugetlb page will be freed to buddy */ 1600 if (PageHuge(page)) { 1601 set_page_hwpoison_huge_page(hpage); 1602 dequeue_hwpoisoned_huge_page(hpage); 1603 num_poisoned_pages_add(1 << compound_order(hpage)); 1604 } else { 1605 SetPageHWPoison(page); 1606 num_poisoned_pages_inc(); 1607 } 1608 } 1609 return ret; 1610 } 1611 1612 static int __soft_offline_page(struct page *page, int flags) 1613 { 1614 int ret; 1615 unsigned long pfn = page_to_pfn(page); 1616 1617 /* 1618 * Check PageHWPoison again inside page lock because PageHWPoison 1619 * is set by memory_failure() outside page lock. Note that 1620 * memory_failure() also double-checks PageHWPoison inside page lock, 1621 * so there's no race between soft_offline_page() and memory_failure(). 1622 */ 1623 lock_page(page); 1624 wait_on_page_writeback(page); 1625 if (PageHWPoison(page)) { 1626 unlock_page(page); 1627 put_hwpoison_page(page); 1628 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1629 return -EBUSY; 1630 } 1631 /* 1632 * Try to invalidate first. This should work for 1633 * non dirty unmapped page cache pages. 1634 */ 1635 ret = invalidate_inode_page(page); 1636 unlock_page(page); 1637 /* 1638 * RED-PEN would be better to keep it isolated here, but we 1639 * would need to fix isolation locking first. 1640 */ 1641 if (ret == 1) { 1642 put_hwpoison_page(page); 1643 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1644 SetPageHWPoison(page); 1645 num_poisoned_pages_inc(); 1646 return 0; 1647 } 1648 1649 /* 1650 * Simple invalidation didn't work. 1651 * Try to migrate to a new page instead. migrate.c 1652 * handles a large number of cases for us. 1653 */ 1654 ret = isolate_lru_page(page); 1655 /* 1656 * Drop page reference which is came from get_any_page() 1657 * successful isolate_lru_page() already took another one. 1658 */ 1659 put_hwpoison_page(page); 1660 if (!ret) { 1661 LIST_HEAD(pagelist); 1662 inc_zone_page_state(page, NR_ISOLATED_ANON + 1663 page_is_file_cache(page)); 1664 list_add(&page->lru, &pagelist); 1665 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1666 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1667 if (ret) { 1668 if (!list_empty(&pagelist)) { 1669 list_del(&page->lru); 1670 dec_zone_page_state(page, NR_ISOLATED_ANON + 1671 page_is_file_cache(page)); 1672 putback_lru_page(page); 1673 } 1674 1675 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1676 pfn, ret, page->flags); 1677 if (ret > 0) 1678 ret = -EIO; 1679 } 1680 } else { 1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1682 pfn, ret, page_count(page), page->flags); 1683 } 1684 return ret; 1685 } 1686 1687 static int soft_offline_in_use_page(struct page *page, int flags) 1688 { 1689 int ret; 1690 struct page *hpage = compound_head(page); 1691 1692 if (!PageHuge(page) && PageTransHuge(hpage)) { 1693 lock_page(hpage); 1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1695 unlock_page(hpage); 1696 if (!PageAnon(hpage)) 1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1698 else 1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1700 put_hwpoison_page(hpage); 1701 return -EBUSY; 1702 } 1703 unlock_page(hpage); 1704 get_hwpoison_page(page); 1705 put_hwpoison_page(hpage); 1706 } 1707 1708 if (PageHuge(page)) 1709 ret = soft_offline_huge_page(page, flags); 1710 else 1711 ret = __soft_offline_page(page, flags); 1712 1713 return ret; 1714 } 1715 1716 static void soft_offline_free_page(struct page *page) 1717 { 1718 if (PageHuge(page)) { 1719 struct page *hpage = compound_head(page); 1720 1721 set_page_hwpoison_huge_page(hpage); 1722 if (!dequeue_hwpoisoned_huge_page(hpage)) 1723 num_poisoned_pages_add(1 << compound_order(hpage)); 1724 } else { 1725 if (!TestSetPageHWPoison(page)) 1726 num_poisoned_pages_inc(); 1727 } 1728 } 1729 1730 /** 1731 * soft_offline_page - Soft offline a page. 1732 * @page: page to offline 1733 * @flags: flags. Same as memory_failure(). 1734 * 1735 * Returns 0 on success, otherwise negated errno. 1736 * 1737 * Soft offline a page, by migration or invalidation, 1738 * without killing anything. This is for the case when 1739 * a page is not corrupted yet (so it's still valid to access), 1740 * but has had a number of corrected errors and is better taken 1741 * out. 1742 * 1743 * The actual policy on when to do that is maintained by 1744 * user space. 1745 * 1746 * This should never impact any application or cause data loss, 1747 * however it might take some time. 1748 * 1749 * This is not a 100% solution for all memory, but tries to be 1750 * ``good enough'' for the majority of memory. 1751 */ 1752 int soft_offline_page(struct page *page, int flags) 1753 { 1754 int ret; 1755 unsigned long pfn = page_to_pfn(page); 1756 1757 if (PageHWPoison(page)) { 1758 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1759 if (flags & MF_COUNT_INCREASED) 1760 put_hwpoison_page(page); 1761 return -EBUSY; 1762 } 1763 1764 get_online_mems(); 1765 ret = get_any_page(page, pfn, flags); 1766 put_online_mems(); 1767 1768 if (ret > 0) 1769 ret = soft_offline_in_use_page(page, flags); 1770 else if (ret == 0) 1771 soft_offline_free_page(page); 1772 1773 return ret; 1774 } 1775