xref: /openbmc/linux/mm/memory-failure.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69 
70 static int sysctl_memory_failure_early_kill __read_mostly;
71 
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73 
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 
76 static bool hw_memory_failure __read_mostly = false;
77 
78 inline void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 	atomic_long_inc(&num_poisoned_pages);
81 	memblk_nr_poison_inc(pfn);
82 }
83 
84 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 	atomic_long_sub(i, &num_poisoned_pages);
87 	if (pfn != -1UL)
88 		memblk_nr_poison_sub(pfn, i);
89 }
90 
91 /**
92  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93  * @_name: name of the file in the per NUMA sysfs directory.
94  */
95 #define MF_ATTR_RO(_name)					\
96 static ssize_t _name##_show(struct device *dev,			\
97 			    struct device_attribute *attr,	\
98 			    char *buf)				\
99 {								\
100 	struct memory_failure_stats *mf_stats =			\
101 		&NODE_DATA(dev->id)->mf_stats;			\
102 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
103 }								\
104 static DEVICE_ATTR_RO(_name)
105 
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111 
112 static struct attribute *memory_failure_attr[] = {
113 	&dev_attr_total.attr,
114 	&dev_attr_ignored.attr,
115 	&dev_attr_failed.attr,
116 	&dev_attr_delayed.attr,
117 	&dev_attr_recovered.attr,
118 	NULL,
119 };
120 
121 const struct attribute_group memory_failure_attr_group = {
122 	.name = "memory_failure",
123 	.attrs = memory_failure_attr,
124 };
125 
126 #ifdef CONFIG_SYSCTL
127 static struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{ }
147 };
148 
149 static int __init memory_failure_sysctl_init(void)
150 {
151 	register_sysctl_init("vm", memory_failure_table);
152 	return 0;
153 }
154 late_initcall(memory_failure_sysctl_init);
155 #endif /* CONFIG_SYSCTL */
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	zone_pcp_disable(page_zone(page));
168 	ret = dissolve_free_huge_page(page);
169 	if (!ret)
170 		ret = take_page_off_buddy(page);
171 	zone_pcp_enable(page_zone(page));
172 
173 	return ret;
174 }
175 
176 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
177 {
178 	if (hugepage_or_freepage) {
179 		/*
180 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
181 		 * returns 0 for non-hugetlb pages as well.
182 		 */
183 		if (__page_handle_poison(page) <= 0)
184 			/*
185 			 * We could fail to take off the target page from buddy
186 			 * for example due to racy page allocation, but that's
187 			 * acceptable because soft-offlined page is not broken
188 			 * and if someone really want to use it, they should
189 			 * take it.
190 			 */
191 			return false;
192 	}
193 
194 	SetPageHWPoison(page);
195 	if (release)
196 		put_page(page);
197 	page_ref_inc(page);
198 	num_poisoned_pages_inc(page_to_pfn(page));
199 
200 	return true;
201 }
202 
203 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
204 
205 u32 hwpoison_filter_enable = 0;
206 u32 hwpoison_filter_dev_major = ~0U;
207 u32 hwpoison_filter_dev_minor = ~0U;
208 u64 hwpoison_filter_flags_mask;
209 u64 hwpoison_filter_flags_value;
210 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
211 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
215 
216 static int hwpoison_filter_dev(struct page *p)
217 {
218 	struct address_space *mapping;
219 	dev_t dev;
220 
221 	if (hwpoison_filter_dev_major == ~0U &&
222 	    hwpoison_filter_dev_minor == ~0U)
223 		return 0;
224 
225 	mapping = page_mapping(p);
226 	if (mapping == NULL || mapping->host == NULL)
227 		return -EINVAL;
228 
229 	dev = mapping->host->i_sb->s_dev;
230 	if (hwpoison_filter_dev_major != ~0U &&
231 	    hwpoison_filter_dev_major != MAJOR(dev))
232 		return -EINVAL;
233 	if (hwpoison_filter_dev_minor != ~0U &&
234 	    hwpoison_filter_dev_minor != MINOR(dev))
235 		return -EINVAL;
236 
237 	return 0;
238 }
239 
240 static int hwpoison_filter_flags(struct page *p)
241 {
242 	if (!hwpoison_filter_flags_mask)
243 		return 0;
244 
245 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
246 				    hwpoison_filter_flags_value)
247 		return 0;
248 	else
249 		return -EINVAL;
250 }
251 
252 /*
253  * This allows stress tests to limit test scope to a collection of tasks
254  * by putting them under some memcg. This prevents killing unrelated/important
255  * processes such as /sbin/init. Note that the target task may share clean
256  * pages with init (eg. libc text), which is harmless. If the target task
257  * share _dirty_ pages with another task B, the test scheme must make sure B
258  * is also included in the memcg. At last, due to race conditions this filter
259  * can only guarantee that the page either belongs to the memcg tasks, or is
260  * a freed page.
261  */
262 #ifdef CONFIG_MEMCG
263 u64 hwpoison_filter_memcg;
264 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
265 static int hwpoison_filter_task(struct page *p)
266 {
267 	if (!hwpoison_filter_memcg)
268 		return 0;
269 
270 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
271 		return -EINVAL;
272 
273 	return 0;
274 }
275 #else
276 static int hwpoison_filter_task(struct page *p) { return 0; }
277 #endif
278 
279 int hwpoison_filter(struct page *p)
280 {
281 	if (!hwpoison_filter_enable)
282 		return 0;
283 
284 	if (hwpoison_filter_dev(p))
285 		return -EINVAL;
286 
287 	if (hwpoison_filter_flags(p))
288 		return -EINVAL;
289 
290 	if (hwpoison_filter_task(p))
291 		return -EINVAL;
292 
293 	return 0;
294 }
295 #else
296 int hwpoison_filter(struct page *p)
297 {
298 	return 0;
299 }
300 #endif
301 
302 EXPORT_SYMBOL_GPL(hwpoison_filter);
303 
304 /*
305  * Kill all processes that have a poisoned page mapped and then isolate
306  * the page.
307  *
308  * General strategy:
309  * Find all processes having the page mapped and kill them.
310  * But we keep a page reference around so that the page is not
311  * actually freed yet.
312  * Then stash the page away
313  *
314  * There's no convenient way to get back to mapped processes
315  * from the VMAs. So do a brute-force search over all
316  * running processes.
317  *
318  * Remember that machine checks are not common (or rather
319  * if they are common you have other problems), so this shouldn't
320  * be a performance issue.
321  *
322  * Also there are some races possible while we get from the
323  * error detection to actually handle it.
324  */
325 
326 struct to_kill {
327 	struct list_head nd;
328 	struct task_struct *tsk;
329 	unsigned long addr;
330 	short size_shift;
331 };
332 
333 /*
334  * Send all the processes who have the page mapped a signal.
335  * ``action optional'' if they are not immediately affected by the error
336  * ``action required'' if error happened in current execution context
337  */
338 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
339 {
340 	struct task_struct *t = tk->tsk;
341 	short addr_lsb = tk->size_shift;
342 	int ret = 0;
343 
344 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
345 			pfn, t->comm, t->pid);
346 
347 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
348 		ret = force_sig_mceerr(BUS_MCEERR_AR,
349 				 (void __user *)tk->addr, addr_lsb);
350 	else
351 		/*
352 		 * Signal other processes sharing the page if they have
353 		 * PF_MCE_EARLY set.
354 		 * Don't use force here, it's convenient if the signal
355 		 * can be temporarily blocked.
356 		 * This could cause a loop when the user sets SIGBUS
357 		 * to SIG_IGN, but hopefully no one will do that?
358 		 */
359 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
360 				      addr_lsb, t);
361 	if (ret < 0)
362 		pr_info("Error sending signal to %s:%d: %d\n",
363 			t->comm, t->pid, ret);
364 	return ret;
365 }
366 
367 /*
368  * Unknown page type encountered. Try to check whether it can turn PageLRU by
369  * lru_add_drain_all.
370  */
371 void shake_page(struct page *p)
372 {
373 	if (PageHuge(p))
374 		return;
375 
376 	if (!PageSlab(p)) {
377 		lru_add_drain_all();
378 		if (PageLRU(p) || is_free_buddy_page(p))
379 			return;
380 	}
381 
382 	/*
383 	 * TODO: Could shrink slab caches here if a lightweight range-based
384 	 * shrinker will be available.
385 	 */
386 }
387 EXPORT_SYMBOL_GPL(shake_page);
388 
389 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
390 		unsigned long address)
391 {
392 	unsigned long ret = 0;
393 	pgd_t *pgd;
394 	p4d_t *p4d;
395 	pud_t *pud;
396 	pmd_t *pmd;
397 	pte_t *pte;
398 
399 	VM_BUG_ON_VMA(address == -EFAULT, vma);
400 	pgd = pgd_offset(vma->vm_mm, address);
401 	if (!pgd_present(*pgd))
402 		return 0;
403 	p4d = p4d_offset(pgd, address);
404 	if (!p4d_present(*p4d))
405 		return 0;
406 	pud = pud_offset(p4d, address);
407 	if (!pud_present(*pud))
408 		return 0;
409 	if (pud_devmap(*pud))
410 		return PUD_SHIFT;
411 	pmd = pmd_offset(pud, address);
412 	if (!pmd_present(*pmd))
413 		return 0;
414 	if (pmd_devmap(*pmd))
415 		return PMD_SHIFT;
416 	pte = pte_offset_map(pmd, address);
417 	if (pte_present(*pte) && pte_devmap(*pte))
418 		ret = PAGE_SHIFT;
419 	pte_unmap(pte);
420 	return ret;
421 }
422 
423 /*
424  * Failure handling: if we can't find or can't kill a process there's
425  * not much we can do.	We just print a message and ignore otherwise.
426  */
427 
428 #define FSDAX_INVALID_PGOFF ULONG_MAX
429 
430 /*
431  * Schedule a process for later kill.
432  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
433  *
434  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
435  * filesystem with a memory failure handler has claimed the
436  * memory_failure event. In all other cases, page->index and
437  * page->mapping are sufficient for mapping the page back to its
438  * corresponding user virtual address.
439  */
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 			  struct vm_area_struct *vma, struct list_head *to_kill,
442 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
443 {
444 	struct to_kill *tk;
445 
446 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
447 	if (!tk) {
448 		pr_err("Out of memory while machine check handling\n");
449 		return;
450 	}
451 
452 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
453 	if (is_zone_device_page(p)) {
454 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
455 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
456 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
457 	} else
458 		tk->size_shift = page_shift(compound_head(p));
459 
460 	/*
461 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
462 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
463 	 * so "tk->size_shift == 0" effectively checks no mapping on
464 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
465 	 * to a process' address space, it's possible not all N VMAs
466 	 * contain mappings for the page, but at least one VMA does.
467 	 * Only deliver SIGBUS with payload derived from the VMA that
468 	 * has a mapping for the page.
469 	 */
470 	if (tk->addr == -EFAULT) {
471 		pr_info("Unable to find user space address %lx in %s\n",
472 			page_to_pfn(p), tsk->comm);
473 	} else if (tk->size_shift == 0) {
474 		kfree(tk);
475 		return;
476 	}
477 
478 	get_task_struct(tsk);
479 	tk->tsk = tsk;
480 	list_add_tail(&tk->nd, to_kill);
481 }
482 
483 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
484 				  struct vm_area_struct *vma,
485 				  struct list_head *to_kill)
486 {
487 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
488 }
489 
490 #ifdef CONFIG_KSM
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 				 struct task_struct *tsk)
493 {
494 	struct to_kill *tk, *next;
495 
496 	list_for_each_entry_safe(tk, next, to_kill, nd) {
497 		if (tk->tsk == tsk)
498 			return true;
499 	}
500 
501 	return false;
502 }
503 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
504 		     struct vm_area_struct *vma, struct list_head *to_kill,
505 		     unsigned long ksm_addr)
506 {
507 	if (!task_in_to_kill_list(to_kill, tsk))
508 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
509 }
510 #endif
511 /*
512  * Kill the processes that have been collected earlier.
513  *
514  * Only do anything when FORCEKILL is set, otherwise just free the
515  * list (this is used for clean pages which do not need killing)
516  * Also when FAIL is set do a force kill because something went
517  * wrong earlier.
518  */
519 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
520 		unsigned long pfn, int flags)
521 {
522 	struct to_kill *tk, *next;
523 
524 	list_for_each_entry_safe(tk, next, to_kill, nd) {
525 		if (forcekill) {
526 			/*
527 			 * In case something went wrong with munmapping
528 			 * make sure the process doesn't catch the
529 			 * signal and then access the memory. Just kill it.
530 			 */
531 			if (fail || tk->addr == -EFAULT) {
532 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
533 				       pfn, tk->tsk->comm, tk->tsk->pid);
534 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
535 						 tk->tsk, PIDTYPE_PID);
536 			}
537 
538 			/*
539 			 * In theory the process could have mapped
540 			 * something else on the address in-between. We could
541 			 * check for that, but we need to tell the
542 			 * process anyways.
543 			 */
544 			else if (kill_proc(tk, pfn, flags) < 0)
545 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
546 				       pfn, tk->tsk->comm, tk->tsk->pid);
547 		}
548 		list_del(&tk->nd);
549 		put_task_struct(tk->tsk);
550 		kfree(tk);
551 	}
552 }
553 
554 /*
555  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
556  * on behalf of the thread group. Return task_struct of the (first found)
557  * dedicated thread if found, and return NULL otherwise.
558  *
559  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
560  * have to call rcu_read_lock/unlock() in this function.
561  */
562 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
563 {
564 	struct task_struct *t;
565 
566 	for_each_thread(tsk, t) {
567 		if (t->flags & PF_MCE_PROCESS) {
568 			if (t->flags & PF_MCE_EARLY)
569 				return t;
570 		} else {
571 			if (sysctl_memory_failure_early_kill)
572 				return t;
573 		}
574 	}
575 	return NULL;
576 }
577 
578 /*
579  * Determine whether a given process is "early kill" process which expects
580  * to be signaled when some page under the process is hwpoisoned.
581  * Return task_struct of the dedicated thread (main thread unless explicitly
582  * specified) if the process is "early kill" and otherwise returns NULL.
583  *
584  * Note that the above is true for Action Optional case. For Action Required
585  * case, it's only meaningful to the current thread which need to be signaled
586  * with SIGBUS, this error is Action Optional for other non current
587  * processes sharing the same error page,if the process is "early kill", the
588  * task_struct of the dedicated thread will also be returned.
589  */
590 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
591 {
592 	if (!tsk->mm)
593 		return NULL;
594 	/*
595 	 * Comparing ->mm here because current task might represent
596 	 * a subthread, while tsk always points to the main thread.
597 	 */
598 	if (force_early && tsk->mm == current->mm)
599 		return current;
600 
601 	return find_early_kill_thread(tsk);
602 }
603 
604 /*
605  * Collect processes when the error hit an anonymous page.
606  */
607 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
608 				int force_early)
609 {
610 	struct folio *folio = page_folio(page);
611 	struct vm_area_struct *vma;
612 	struct task_struct *tsk;
613 	struct anon_vma *av;
614 	pgoff_t pgoff;
615 
616 	av = folio_lock_anon_vma_read(folio, NULL);
617 	if (av == NULL)	/* Not actually mapped anymore */
618 		return;
619 
620 	pgoff = page_to_pgoff(page);
621 	read_lock(&tasklist_lock);
622 	for_each_process (tsk) {
623 		struct anon_vma_chain *vmac;
624 		struct task_struct *t = task_early_kill(tsk, force_early);
625 
626 		if (!t)
627 			continue;
628 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
629 					       pgoff, pgoff) {
630 			vma = vmac->vma;
631 			if (vma->vm_mm != t->mm)
632 				continue;
633 			if (!page_mapped_in_vma(page, vma))
634 				continue;
635 			add_to_kill_anon_file(t, page, vma, to_kill);
636 		}
637 	}
638 	read_unlock(&tasklist_lock);
639 	anon_vma_unlock_read(av);
640 }
641 
642 /*
643  * Collect processes when the error hit a file mapped page.
644  */
645 static void collect_procs_file(struct page *page, struct list_head *to_kill,
646 				int force_early)
647 {
648 	struct vm_area_struct *vma;
649 	struct task_struct *tsk;
650 	struct address_space *mapping = page->mapping;
651 	pgoff_t pgoff;
652 
653 	i_mmap_lock_read(mapping);
654 	read_lock(&tasklist_lock);
655 	pgoff = page_to_pgoff(page);
656 	for_each_process(tsk) {
657 		struct task_struct *t = task_early_kill(tsk, force_early);
658 
659 		if (!t)
660 			continue;
661 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
662 				      pgoff) {
663 			/*
664 			 * Send early kill signal to tasks where a vma covers
665 			 * the page but the corrupted page is not necessarily
666 			 * mapped it in its pte.
667 			 * Assume applications who requested early kill want
668 			 * to be informed of all such data corruptions.
669 			 */
670 			if (vma->vm_mm == t->mm)
671 				add_to_kill_anon_file(t, page, vma, to_kill);
672 		}
673 	}
674 	read_unlock(&tasklist_lock);
675 	i_mmap_unlock_read(mapping);
676 }
677 
678 #ifdef CONFIG_FS_DAX
679 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
680 			      struct vm_area_struct *vma,
681 			      struct list_head *to_kill, pgoff_t pgoff)
682 {
683 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
684 }
685 
686 /*
687  * Collect processes when the error hit a fsdax page.
688  */
689 static void collect_procs_fsdax(struct page *page,
690 		struct address_space *mapping, pgoff_t pgoff,
691 		struct list_head *to_kill)
692 {
693 	struct vm_area_struct *vma;
694 	struct task_struct *tsk;
695 
696 	i_mmap_lock_read(mapping);
697 	read_lock(&tasklist_lock);
698 	for_each_process(tsk) {
699 		struct task_struct *t = task_early_kill(tsk, true);
700 
701 		if (!t)
702 			continue;
703 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
704 			if (vma->vm_mm == t->mm)
705 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
706 		}
707 	}
708 	read_unlock(&tasklist_lock);
709 	i_mmap_unlock_read(mapping);
710 }
711 #endif /* CONFIG_FS_DAX */
712 
713 /*
714  * Collect the processes who have the corrupted page mapped to kill.
715  */
716 static void collect_procs(struct page *page, struct list_head *tokill,
717 				int force_early)
718 {
719 	if (!page->mapping)
720 		return;
721 	if (unlikely(PageKsm(page)))
722 		collect_procs_ksm(page, tokill, force_early);
723 	else if (PageAnon(page))
724 		collect_procs_anon(page, tokill, force_early);
725 	else
726 		collect_procs_file(page, tokill, force_early);
727 }
728 
729 struct hwp_walk {
730 	struct to_kill tk;
731 	unsigned long pfn;
732 	int flags;
733 };
734 
735 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
736 {
737 	tk->addr = addr;
738 	tk->size_shift = shift;
739 }
740 
741 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
742 				unsigned long poisoned_pfn, struct to_kill *tk)
743 {
744 	unsigned long pfn = 0;
745 
746 	if (pte_present(pte)) {
747 		pfn = pte_pfn(pte);
748 	} else {
749 		swp_entry_t swp = pte_to_swp_entry(pte);
750 
751 		if (is_hwpoison_entry(swp))
752 			pfn = swp_offset_pfn(swp);
753 	}
754 
755 	if (!pfn || pfn != poisoned_pfn)
756 		return 0;
757 
758 	set_to_kill(tk, addr, shift);
759 	return 1;
760 }
761 
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
764 				      struct hwp_walk *hwp)
765 {
766 	pmd_t pmd = *pmdp;
767 	unsigned long pfn;
768 	unsigned long hwpoison_vaddr;
769 
770 	if (!pmd_present(pmd))
771 		return 0;
772 	pfn = pmd_pfn(pmd);
773 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
774 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
775 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
776 		return 1;
777 	}
778 	return 0;
779 }
780 #else
781 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
782 				      struct hwp_walk *hwp)
783 {
784 	return 0;
785 }
786 #endif
787 
788 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
789 			      unsigned long end, struct mm_walk *walk)
790 {
791 	struct hwp_walk *hwp = walk->private;
792 	int ret = 0;
793 	pte_t *ptep, *mapped_pte;
794 	spinlock_t *ptl;
795 
796 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
797 	if (ptl) {
798 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
799 		spin_unlock(ptl);
800 		goto out;
801 	}
802 
803 	if (pmd_trans_unstable(pmdp))
804 		goto out;
805 
806 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
807 						addr, &ptl);
808 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
809 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
810 					     hwp->pfn, &hwp->tk);
811 		if (ret == 1)
812 			break;
813 	}
814 	pte_unmap_unlock(mapped_pte, ptl);
815 out:
816 	cond_resched();
817 	return ret;
818 }
819 
820 #ifdef CONFIG_HUGETLB_PAGE
821 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
822 			    unsigned long addr, unsigned long end,
823 			    struct mm_walk *walk)
824 {
825 	struct hwp_walk *hwp = walk->private;
826 	pte_t pte = huge_ptep_get(ptep);
827 	struct hstate *h = hstate_vma(walk->vma);
828 
829 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
830 				      hwp->pfn, &hwp->tk);
831 }
832 #else
833 #define hwpoison_hugetlb_range	NULL
834 #endif
835 
836 static const struct mm_walk_ops hwp_walk_ops = {
837 	.pmd_entry = hwpoison_pte_range,
838 	.hugetlb_entry = hwpoison_hugetlb_range,
839 };
840 
841 /*
842  * Sends SIGBUS to the current process with error info.
843  *
844  * This function is intended to handle "Action Required" MCEs on already
845  * hardware poisoned pages. They could happen, for example, when
846  * memory_failure() failed to unmap the error page at the first call, or
847  * when multiple local machine checks happened on different CPUs.
848  *
849  * MCE handler currently has no easy access to the error virtual address,
850  * so this function walks page table to find it. The returned virtual address
851  * is proper in most cases, but it could be wrong when the application
852  * process has multiple entries mapping the error page.
853  */
854 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
855 				  int flags)
856 {
857 	int ret;
858 	struct hwp_walk priv = {
859 		.pfn = pfn,
860 	};
861 	priv.tk.tsk = p;
862 
863 	if (!p->mm)
864 		return -EFAULT;
865 
866 	mmap_read_lock(p->mm);
867 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
868 			      (void *)&priv);
869 	if (ret == 1 && priv.tk.addr)
870 		kill_proc(&priv.tk, pfn, flags);
871 	else
872 		ret = 0;
873 	mmap_read_unlock(p->mm);
874 	return ret > 0 ? -EHWPOISON : -EFAULT;
875 }
876 
877 static const char *action_name[] = {
878 	[MF_IGNORED] = "Ignored",
879 	[MF_FAILED] = "Failed",
880 	[MF_DELAYED] = "Delayed",
881 	[MF_RECOVERED] = "Recovered",
882 };
883 
884 static const char * const action_page_types[] = {
885 	[MF_MSG_KERNEL]			= "reserved kernel page",
886 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
887 	[MF_MSG_SLAB]			= "kernel slab page",
888 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
889 	[MF_MSG_HUGE]			= "huge page",
890 	[MF_MSG_FREE_HUGE]		= "free huge page",
891 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
892 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
893 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
894 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
895 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
896 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
897 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
898 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
899 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
900 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
901 	[MF_MSG_BUDDY]			= "free buddy page",
902 	[MF_MSG_DAX]			= "dax page",
903 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
904 	[MF_MSG_UNKNOWN]		= "unknown page",
905 };
906 
907 /*
908  * XXX: It is possible that a page is isolated from LRU cache,
909  * and then kept in swap cache or failed to remove from page cache.
910  * The page count will stop it from being freed by unpoison.
911  * Stress tests should be aware of this memory leak problem.
912  */
913 static int delete_from_lru_cache(struct page *p)
914 {
915 	if (isolate_lru_page(p)) {
916 		/*
917 		 * Clear sensible page flags, so that the buddy system won't
918 		 * complain when the page is unpoison-and-freed.
919 		 */
920 		ClearPageActive(p);
921 		ClearPageUnevictable(p);
922 
923 		/*
924 		 * Poisoned page might never drop its ref count to 0 so we have
925 		 * to uncharge it manually from its memcg.
926 		 */
927 		mem_cgroup_uncharge(page_folio(p));
928 
929 		/*
930 		 * drop the page count elevated by isolate_lru_page()
931 		 */
932 		put_page(p);
933 		return 0;
934 	}
935 	return -EIO;
936 }
937 
938 static int truncate_error_page(struct page *p, unsigned long pfn,
939 				struct address_space *mapping)
940 {
941 	int ret = MF_FAILED;
942 
943 	if (mapping->a_ops->error_remove_page) {
944 		struct folio *folio = page_folio(p);
945 		int err = mapping->a_ops->error_remove_page(mapping, p);
946 
947 		if (err != 0) {
948 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
949 		} else if (folio_has_private(folio) &&
950 			   !filemap_release_folio(folio, GFP_NOIO)) {
951 			pr_info("%#lx: failed to release buffers\n", pfn);
952 		} else {
953 			ret = MF_RECOVERED;
954 		}
955 	} else {
956 		/*
957 		 * If the file system doesn't support it just invalidate
958 		 * This fails on dirty or anything with private pages
959 		 */
960 		if (invalidate_inode_page(p))
961 			ret = MF_RECOVERED;
962 		else
963 			pr_info("%#lx: Failed to invalidate\n",	pfn);
964 	}
965 
966 	return ret;
967 }
968 
969 struct page_state {
970 	unsigned long mask;
971 	unsigned long res;
972 	enum mf_action_page_type type;
973 
974 	/* Callback ->action() has to unlock the relevant page inside it. */
975 	int (*action)(struct page_state *ps, struct page *p);
976 };
977 
978 /*
979  * Return true if page is still referenced by others, otherwise return
980  * false.
981  *
982  * The extra_pins is true when one extra refcount is expected.
983  */
984 static bool has_extra_refcount(struct page_state *ps, struct page *p,
985 			       bool extra_pins)
986 {
987 	int count = page_count(p) - 1;
988 
989 	if (extra_pins)
990 		count -= 1;
991 
992 	if (count > 0) {
993 		pr_err("%#lx: %s still referenced by %d users\n",
994 		       page_to_pfn(p), action_page_types[ps->type], count);
995 		return true;
996 	}
997 
998 	return false;
999 }
1000 
1001 /*
1002  * Error hit kernel page.
1003  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1004  * could be more sophisticated.
1005  */
1006 static int me_kernel(struct page_state *ps, struct page *p)
1007 {
1008 	unlock_page(p);
1009 	return MF_IGNORED;
1010 }
1011 
1012 /*
1013  * Page in unknown state. Do nothing.
1014  */
1015 static int me_unknown(struct page_state *ps, struct page *p)
1016 {
1017 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1018 	unlock_page(p);
1019 	return MF_FAILED;
1020 }
1021 
1022 /*
1023  * Clean (or cleaned) page cache page.
1024  */
1025 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1026 {
1027 	int ret;
1028 	struct address_space *mapping;
1029 	bool extra_pins;
1030 
1031 	delete_from_lru_cache(p);
1032 
1033 	/*
1034 	 * For anonymous pages we're done the only reference left
1035 	 * should be the one m_f() holds.
1036 	 */
1037 	if (PageAnon(p)) {
1038 		ret = MF_RECOVERED;
1039 		goto out;
1040 	}
1041 
1042 	/*
1043 	 * Now truncate the page in the page cache. This is really
1044 	 * more like a "temporary hole punch"
1045 	 * Don't do this for block devices when someone else
1046 	 * has a reference, because it could be file system metadata
1047 	 * and that's not safe to truncate.
1048 	 */
1049 	mapping = page_mapping(p);
1050 	if (!mapping) {
1051 		/*
1052 		 * Page has been teared down in the meanwhile
1053 		 */
1054 		ret = MF_FAILED;
1055 		goto out;
1056 	}
1057 
1058 	/*
1059 	 * The shmem page is kept in page cache instead of truncating
1060 	 * so is expected to have an extra refcount after error-handling.
1061 	 */
1062 	extra_pins = shmem_mapping(mapping);
1063 
1064 	/*
1065 	 * Truncation is a bit tricky. Enable it per file system for now.
1066 	 *
1067 	 * Open: to take i_rwsem or not for this? Right now we don't.
1068 	 */
1069 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1070 	if (has_extra_refcount(ps, p, extra_pins))
1071 		ret = MF_FAILED;
1072 
1073 out:
1074 	unlock_page(p);
1075 
1076 	return ret;
1077 }
1078 
1079 /*
1080  * Dirty pagecache page
1081  * Issues: when the error hit a hole page the error is not properly
1082  * propagated.
1083  */
1084 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1085 {
1086 	struct address_space *mapping = page_mapping(p);
1087 
1088 	SetPageError(p);
1089 	/* TBD: print more information about the file. */
1090 	if (mapping) {
1091 		/*
1092 		 * IO error will be reported by write(), fsync(), etc.
1093 		 * who check the mapping.
1094 		 * This way the application knows that something went
1095 		 * wrong with its dirty file data.
1096 		 *
1097 		 * There's one open issue:
1098 		 *
1099 		 * The EIO will be only reported on the next IO
1100 		 * operation and then cleared through the IO map.
1101 		 * Normally Linux has two mechanisms to pass IO error
1102 		 * first through the AS_EIO flag in the address space
1103 		 * and then through the PageError flag in the page.
1104 		 * Since we drop pages on memory failure handling the
1105 		 * only mechanism open to use is through AS_AIO.
1106 		 *
1107 		 * This has the disadvantage that it gets cleared on
1108 		 * the first operation that returns an error, while
1109 		 * the PageError bit is more sticky and only cleared
1110 		 * when the page is reread or dropped.  If an
1111 		 * application assumes it will always get error on
1112 		 * fsync, but does other operations on the fd before
1113 		 * and the page is dropped between then the error
1114 		 * will not be properly reported.
1115 		 *
1116 		 * This can already happen even without hwpoisoned
1117 		 * pages: first on metadata IO errors (which only
1118 		 * report through AS_EIO) or when the page is dropped
1119 		 * at the wrong time.
1120 		 *
1121 		 * So right now we assume that the application DTRT on
1122 		 * the first EIO, but we're not worse than other parts
1123 		 * of the kernel.
1124 		 */
1125 		mapping_set_error(mapping, -EIO);
1126 	}
1127 
1128 	return me_pagecache_clean(ps, p);
1129 }
1130 
1131 /*
1132  * Clean and dirty swap cache.
1133  *
1134  * Dirty swap cache page is tricky to handle. The page could live both in page
1135  * cache and swap cache(ie. page is freshly swapped in). So it could be
1136  * referenced concurrently by 2 types of PTEs:
1137  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1138  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1139  * and then
1140  *      - clear dirty bit to prevent IO
1141  *      - remove from LRU
1142  *      - but keep in the swap cache, so that when we return to it on
1143  *        a later page fault, we know the application is accessing
1144  *        corrupted data and shall be killed (we installed simple
1145  *        interception code in do_swap_page to catch it).
1146  *
1147  * Clean swap cache pages can be directly isolated. A later page fault will
1148  * bring in the known good data from disk.
1149  */
1150 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1151 {
1152 	int ret;
1153 	bool extra_pins = false;
1154 
1155 	ClearPageDirty(p);
1156 	/* Trigger EIO in shmem: */
1157 	ClearPageUptodate(p);
1158 
1159 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1160 	unlock_page(p);
1161 
1162 	if (ret == MF_DELAYED)
1163 		extra_pins = true;
1164 
1165 	if (has_extra_refcount(ps, p, extra_pins))
1166 		ret = MF_FAILED;
1167 
1168 	return ret;
1169 }
1170 
1171 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1172 {
1173 	struct folio *folio = page_folio(p);
1174 	int ret;
1175 
1176 	delete_from_swap_cache(folio);
1177 
1178 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1179 	folio_unlock(folio);
1180 
1181 	if (has_extra_refcount(ps, p, false))
1182 		ret = MF_FAILED;
1183 
1184 	return ret;
1185 }
1186 
1187 /*
1188  * Huge pages. Needs work.
1189  * Issues:
1190  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1191  *   To narrow down kill region to one page, we need to break up pmd.
1192  */
1193 static int me_huge_page(struct page_state *ps, struct page *p)
1194 {
1195 	int res;
1196 	struct page *hpage = compound_head(p);
1197 	struct address_space *mapping;
1198 	bool extra_pins = false;
1199 
1200 	if (!PageHuge(hpage))
1201 		return MF_DELAYED;
1202 
1203 	mapping = page_mapping(hpage);
1204 	if (mapping) {
1205 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1206 		/* The page is kept in page cache. */
1207 		extra_pins = true;
1208 		unlock_page(hpage);
1209 	} else {
1210 		unlock_page(hpage);
1211 		/*
1212 		 * migration entry prevents later access on error hugepage,
1213 		 * so we can free and dissolve it into buddy to save healthy
1214 		 * subpages.
1215 		 */
1216 		put_page(hpage);
1217 		if (__page_handle_poison(p) >= 0) {
1218 			page_ref_inc(p);
1219 			res = MF_RECOVERED;
1220 		} else {
1221 			res = MF_FAILED;
1222 		}
1223 	}
1224 
1225 	if (has_extra_refcount(ps, p, extra_pins))
1226 		res = MF_FAILED;
1227 
1228 	return res;
1229 }
1230 
1231 /*
1232  * Various page states we can handle.
1233  *
1234  * A page state is defined by its current page->flags bits.
1235  * The table matches them in order and calls the right handler.
1236  *
1237  * This is quite tricky because we can access page at any time
1238  * in its live cycle, so all accesses have to be extremely careful.
1239  *
1240  * This is not complete. More states could be added.
1241  * For any missing state don't attempt recovery.
1242  */
1243 
1244 #define dirty		(1UL << PG_dirty)
1245 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1246 #define unevict		(1UL << PG_unevictable)
1247 #define mlock		(1UL << PG_mlocked)
1248 #define lru		(1UL << PG_lru)
1249 #define head		(1UL << PG_head)
1250 #define slab		(1UL << PG_slab)
1251 #define reserved	(1UL << PG_reserved)
1252 
1253 static struct page_state error_states[] = {
1254 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1255 	/*
1256 	 * free pages are specially detected outside this table:
1257 	 * PG_buddy pages only make a small fraction of all free pages.
1258 	 */
1259 
1260 	/*
1261 	 * Could in theory check if slab page is free or if we can drop
1262 	 * currently unused objects without touching them. But just
1263 	 * treat it as standard kernel for now.
1264 	 */
1265 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1266 
1267 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1268 
1269 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1270 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1271 
1272 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1273 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1274 
1275 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1276 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1277 
1278 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1279 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1280 
1281 	/*
1282 	 * Catchall entry: must be at end.
1283 	 */
1284 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1285 };
1286 
1287 #undef dirty
1288 #undef sc
1289 #undef unevict
1290 #undef mlock
1291 #undef lru
1292 #undef head
1293 #undef slab
1294 #undef reserved
1295 
1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 				     enum mf_result result)
1298 {
1299 	int nid = MAX_NUMNODES;
1300 	struct memory_failure_stats *mf_stats = NULL;
1301 
1302 	nid = pfn_to_nid(pfn);
1303 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 		return;
1306 	}
1307 
1308 	mf_stats = &NODE_DATA(nid)->mf_stats;
1309 	switch (result) {
1310 	case MF_IGNORED:
1311 		++mf_stats->ignored;
1312 		break;
1313 	case MF_FAILED:
1314 		++mf_stats->failed;
1315 		break;
1316 	case MF_DELAYED:
1317 		++mf_stats->delayed;
1318 		break;
1319 	case MF_RECOVERED:
1320 		++mf_stats->recovered;
1321 		break;
1322 	default:
1323 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 		break;
1325 	}
1326 	++mf_stats->total;
1327 }
1328 
1329 /*
1330  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332  */
1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 			 enum mf_result result)
1335 {
1336 	trace_memory_failure_event(pfn, type, result);
1337 
1338 	num_poisoned_pages_inc(pfn);
1339 
1340 	update_per_node_mf_stats(pfn, result);
1341 
1342 	pr_err("%#lx: recovery action for %s: %s\n",
1343 		pfn, action_page_types[type], action_name[result]);
1344 
1345 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 }
1347 
1348 static int page_action(struct page_state *ps, struct page *p,
1349 			unsigned long pfn)
1350 {
1351 	int result;
1352 
1353 	/* page p should be unlocked after returning from ps->action().  */
1354 	result = ps->action(ps, p);
1355 
1356 	/* Could do more checks here if page looks ok */
1357 	/*
1358 	 * Could adjust zone counters here to correct for the missing page.
1359 	 */
1360 
1361 	return action_result(pfn, ps->type, result);
1362 }
1363 
1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1365 {
1366 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 }
1368 
1369 void SetPageHWPoisonTakenOff(struct page *page)
1370 {
1371 	set_page_private(page, MAGIC_HWPOISON);
1372 }
1373 
1374 void ClearPageHWPoisonTakenOff(struct page *page)
1375 {
1376 	if (PageHWPoison(page))
1377 		set_page_private(page, 0);
1378 }
1379 
1380 /*
1381  * Return true if a page type of a given page is supported by hwpoison
1382  * mechanism (while handling could fail), otherwise false.  This function
1383  * does not return true for hugetlb or device memory pages, so it's assumed
1384  * to be called only in the context where we never have such pages.
1385  */
1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1387 {
1388 	/* Soft offline could migrate non-LRU movable pages */
1389 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1390 		return true;
1391 
1392 	return PageLRU(page) || is_free_buddy_page(page);
1393 }
1394 
1395 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1396 {
1397 	struct folio *folio = page_folio(page);
1398 	int ret = 0;
1399 	bool hugetlb = false;
1400 
1401 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1402 	if (hugetlb)
1403 		return ret;
1404 
1405 	/*
1406 	 * This check prevents from calling folio_try_get() for any
1407 	 * unsupported type of folio in order to reduce the risk of unexpected
1408 	 * races caused by taking a folio refcount.
1409 	 */
1410 	if (!HWPoisonHandlable(&folio->page, flags))
1411 		return -EBUSY;
1412 
1413 	if (folio_try_get(folio)) {
1414 		if (folio == page_folio(page))
1415 			return 1;
1416 
1417 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1418 		folio_put(folio);
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int get_any_page(struct page *p, unsigned long flags)
1425 {
1426 	int ret = 0, pass = 0;
1427 	bool count_increased = false;
1428 
1429 	if (flags & MF_COUNT_INCREASED)
1430 		count_increased = true;
1431 
1432 try_again:
1433 	if (!count_increased) {
1434 		ret = __get_hwpoison_page(p, flags);
1435 		if (!ret) {
1436 			if (page_count(p)) {
1437 				/* We raced with an allocation, retry. */
1438 				if (pass++ < 3)
1439 					goto try_again;
1440 				ret = -EBUSY;
1441 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1442 				/* We raced with put_page, retry. */
1443 				if (pass++ < 3)
1444 					goto try_again;
1445 				ret = -EIO;
1446 			}
1447 			goto out;
1448 		} else if (ret == -EBUSY) {
1449 			/*
1450 			 * We raced with (possibly temporary) unhandlable
1451 			 * page, retry.
1452 			 */
1453 			if (pass++ < 3) {
1454 				shake_page(p);
1455 				goto try_again;
1456 			}
1457 			ret = -EIO;
1458 			goto out;
1459 		}
1460 	}
1461 
1462 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1463 		ret = 1;
1464 	} else {
1465 		/*
1466 		 * A page we cannot handle. Check whether we can turn
1467 		 * it into something we can handle.
1468 		 */
1469 		if (pass++ < 3) {
1470 			put_page(p);
1471 			shake_page(p);
1472 			count_increased = false;
1473 			goto try_again;
1474 		}
1475 		put_page(p);
1476 		ret = -EIO;
1477 	}
1478 out:
1479 	if (ret == -EIO)
1480 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1481 
1482 	return ret;
1483 }
1484 
1485 static int __get_unpoison_page(struct page *page)
1486 {
1487 	struct folio *folio = page_folio(page);
1488 	int ret = 0;
1489 	bool hugetlb = false;
1490 
1491 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1492 	if (hugetlb)
1493 		return ret;
1494 
1495 	/*
1496 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1497 	 * but also isolated from buddy freelist, so need to identify the
1498 	 * state and have to cancel both operations to unpoison.
1499 	 */
1500 	if (PageHWPoisonTakenOff(page))
1501 		return -EHWPOISON;
1502 
1503 	return get_page_unless_zero(page) ? 1 : 0;
1504 }
1505 
1506 /**
1507  * get_hwpoison_page() - Get refcount for memory error handling
1508  * @p:		Raw error page (hit by memory error)
1509  * @flags:	Flags controlling behavior of error handling
1510  *
1511  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1512  * error on it, after checking that the error page is in a well-defined state
1513  * (defined as a page-type we can successfully handle the memory error on it,
1514  * such as LRU page and hugetlb page).
1515  *
1516  * Memory error handling could be triggered at any time on any type of page,
1517  * so it's prone to race with typical memory management lifecycle (like
1518  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1519  * extra care for the error page's state (as done in __get_hwpoison_page()),
1520  * and has some retry logic in get_any_page().
1521  *
1522  * When called from unpoison_memory(), the caller should already ensure that
1523  * the given page has PG_hwpoison. So it's never reused for other page
1524  * allocations, and __get_unpoison_page() never races with them.
1525  *
1526  * Return: 0 on failure,
1527  *         1 on success for in-use pages in a well-defined state,
1528  *         -EIO for pages on which we can not handle memory errors,
1529  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1530  *         operations like allocation and free,
1531  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1532  */
1533 static int get_hwpoison_page(struct page *p, unsigned long flags)
1534 {
1535 	int ret;
1536 
1537 	zone_pcp_disable(page_zone(p));
1538 	if (flags & MF_UNPOISON)
1539 		ret = __get_unpoison_page(p);
1540 	else
1541 		ret = get_any_page(p, flags);
1542 	zone_pcp_enable(page_zone(p));
1543 
1544 	return ret;
1545 }
1546 
1547 /*
1548  * Do all that is necessary to remove user space mappings. Unmap
1549  * the pages and send SIGBUS to the processes if the data was dirty.
1550  */
1551 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1552 				  int flags, struct page *hpage)
1553 {
1554 	struct folio *folio = page_folio(hpage);
1555 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1556 	struct address_space *mapping;
1557 	LIST_HEAD(tokill);
1558 	bool unmap_success;
1559 	int forcekill;
1560 	bool mlocked = PageMlocked(hpage);
1561 
1562 	/*
1563 	 * Here we are interested only in user-mapped pages, so skip any
1564 	 * other types of pages.
1565 	 */
1566 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1567 		return true;
1568 	if (!(PageLRU(hpage) || PageHuge(p)))
1569 		return true;
1570 
1571 	/*
1572 	 * This check implies we don't kill processes if their pages
1573 	 * are in the swap cache early. Those are always late kills.
1574 	 */
1575 	if (!page_mapped(hpage))
1576 		return true;
1577 
1578 	if (PageSwapCache(p)) {
1579 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1580 		ttu &= ~TTU_HWPOISON;
1581 	}
1582 
1583 	/*
1584 	 * Propagate the dirty bit from PTEs to struct page first, because we
1585 	 * need this to decide if we should kill or just drop the page.
1586 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1587 	 * be called inside page lock (it's recommended but not enforced).
1588 	 */
1589 	mapping = page_mapping(hpage);
1590 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1591 	    mapping_can_writeback(mapping)) {
1592 		if (page_mkclean(hpage)) {
1593 			SetPageDirty(hpage);
1594 		} else {
1595 			ttu &= ~TTU_HWPOISON;
1596 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1597 				pfn);
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * First collect all the processes that have the page
1603 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1604 	 * because ttu takes the rmap data structures down.
1605 	 */
1606 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1607 
1608 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1609 		/*
1610 		 * For hugetlb pages in shared mappings, try_to_unmap
1611 		 * could potentially call huge_pmd_unshare.  Because of
1612 		 * this, take semaphore in write mode here and set
1613 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1614 		 * at this higher level.
1615 		 */
1616 		mapping = hugetlb_page_mapping_lock_write(hpage);
1617 		if (mapping) {
1618 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1619 			i_mmap_unlock_write(mapping);
1620 		} else
1621 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1622 	} else {
1623 		try_to_unmap(folio, ttu);
1624 	}
1625 
1626 	unmap_success = !page_mapped(hpage);
1627 	if (!unmap_success)
1628 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1629 		       pfn, page_mapcount(hpage));
1630 
1631 	/*
1632 	 * try_to_unmap() might put mlocked page in lru cache, so call
1633 	 * shake_page() again to ensure that it's flushed.
1634 	 */
1635 	if (mlocked)
1636 		shake_page(hpage);
1637 
1638 	/*
1639 	 * Now that the dirty bit has been propagated to the
1640 	 * struct page and all unmaps done we can decide if
1641 	 * killing is needed or not.  Only kill when the page
1642 	 * was dirty or the process is not restartable,
1643 	 * otherwise the tokill list is merely
1644 	 * freed.  When there was a problem unmapping earlier
1645 	 * use a more force-full uncatchable kill to prevent
1646 	 * any accesses to the poisoned memory.
1647 	 */
1648 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1649 		    !unmap_success;
1650 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1651 
1652 	return unmap_success;
1653 }
1654 
1655 static int identify_page_state(unsigned long pfn, struct page *p,
1656 				unsigned long page_flags)
1657 {
1658 	struct page_state *ps;
1659 
1660 	/*
1661 	 * The first check uses the current page flags which may not have any
1662 	 * relevant information. The second check with the saved page flags is
1663 	 * carried out only if the first check can't determine the page status.
1664 	 */
1665 	for (ps = error_states;; ps++)
1666 		if ((p->flags & ps->mask) == ps->res)
1667 			break;
1668 
1669 	page_flags |= (p->flags & (1UL << PG_dirty));
1670 
1671 	if (!ps->mask)
1672 		for (ps = error_states;; ps++)
1673 			if ((page_flags & ps->mask) == ps->res)
1674 				break;
1675 	return page_action(ps, p, pfn);
1676 }
1677 
1678 static int try_to_split_thp_page(struct page *page)
1679 {
1680 	int ret;
1681 
1682 	lock_page(page);
1683 	ret = split_huge_page(page);
1684 	unlock_page(page);
1685 
1686 	if (unlikely(ret))
1687 		put_page(page);
1688 
1689 	return ret;
1690 }
1691 
1692 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1693 		struct address_space *mapping, pgoff_t index, int flags)
1694 {
1695 	struct to_kill *tk;
1696 	unsigned long size = 0;
1697 
1698 	list_for_each_entry(tk, to_kill, nd)
1699 		if (tk->size_shift)
1700 			size = max(size, 1UL << tk->size_shift);
1701 
1702 	if (size) {
1703 		/*
1704 		 * Unmap the largest mapping to avoid breaking up device-dax
1705 		 * mappings which are constant size. The actual size of the
1706 		 * mapping being torn down is communicated in siginfo, see
1707 		 * kill_proc()
1708 		 */
1709 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1710 
1711 		unmap_mapping_range(mapping, start, size, 0);
1712 	}
1713 
1714 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1715 }
1716 
1717 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1718 		struct dev_pagemap *pgmap)
1719 {
1720 	struct page *page = pfn_to_page(pfn);
1721 	LIST_HEAD(to_kill);
1722 	dax_entry_t cookie;
1723 	int rc = 0;
1724 
1725 	/*
1726 	 * Pages instantiated by device-dax (not filesystem-dax)
1727 	 * may be compound pages.
1728 	 */
1729 	page = compound_head(page);
1730 
1731 	/*
1732 	 * Prevent the inode from being freed while we are interrogating
1733 	 * the address_space, typically this would be handled by
1734 	 * lock_page(), but dax pages do not use the page lock. This
1735 	 * also prevents changes to the mapping of this pfn until
1736 	 * poison signaling is complete.
1737 	 */
1738 	cookie = dax_lock_page(page);
1739 	if (!cookie)
1740 		return -EBUSY;
1741 
1742 	if (hwpoison_filter(page)) {
1743 		rc = -EOPNOTSUPP;
1744 		goto unlock;
1745 	}
1746 
1747 	switch (pgmap->type) {
1748 	case MEMORY_DEVICE_PRIVATE:
1749 	case MEMORY_DEVICE_COHERENT:
1750 		/*
1751 		 * TODO: Handle device pages which may need coordination
1752 		 * with device-side memory.
1753 		 */
1754 		rc = -ENXIO;
1755 		goto unlock;
1756 	default:
1757 		break;
1758 	}
1759 
1760 	/*
1761 	 * Use this flag as an indication that the dax page has been
1762 	 * remapped UC to prevent speculative consumption of poison.
1763 	 */
1764 	SetPageHWPoison(page);
1765 
1766 	/*
1767 	 * Unlike System-RAM there is no possibility to swap in a
1768 	 * different physical page at a given virtual address, so all
1769 	 * userspace consumption of ZONE_DEVICE memory necessitates
1770 	 * SIGBUS (i.e. MF_MUST_KILL)
1771 	 */
1772 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1773 	collect_procs(page, &to_kill, true);
1774 
1775 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1776 unlock:
1777 	dax_unlock_page(page, cookie);
1778 	return rc;
1779 }
1780 
1781 #ifdef CONFIG_FS_DAX
1782 /**
1783  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1784  * @mapping:	address_space of the file in use
1785  * @index:	start pgoff of the range within the file
1786  * @count:	length of the range, in unit of PAGE_SIZE
1787  * @mf_flags:	memory failure flags
1788  */
1789 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1790 		unsigned long count, int mf_flags)
1791 {
1792 	LIST_HEAD(to_kill);
1793 	dax_entry_t cookie;
1794 	struct page *page;
1795 	size_t end = index + count;
1796 
1797 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1798 
1799 	for (; index < end; index++) {
1800 		page = NULL;
1801 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1802 		if (!cookie)
1803 			return -EBUSY;
1804 		if (!page)
1805 			goto unlock;
1806 
1807 		SetPageHWPoison(page);
1808 
1809 		collect_procs_fsdax(page, mapping, index, &to_kill);
1810 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1811 				index, mf_flags);
1812 unlock:
1813 		dax_unlock_mapping_entry(mapping, index, cookie);
1814 	}
1815 	return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1818 #endif /* CONFIG_FS_DAX */
1819 
1820 #ifdef CONFIG_HUGETLB_PAGE
1821 /*
1822  * Struct raw_hwp_page represents information about "raw error page",
1823  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1824  */
1825 struct raw_hwp_page {
1826 	struct llist_node node;
1827 	struct page *page;
1828 };
1829 
1830 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1831 {
1832 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1833 }
1834 
1835 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1836 {
1837 	struct llist_head *head;
1838 	struct llist_node *t, *tnode;
1839 	unsigned long count = 0;
1840 
1841 	head = raw_hwp_list_head(folio);
1842 	llist_for_each_safe(tnode, t, head->first) {
1843 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1844 
1845 		if (move_flag)
1846 			SetPageHWPoison(p->page);
1847 		else
1848 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1849 		kfree(p);
1850 		count++;
1851 	}
1852 	llist_del_all(head);
1853 	return count;
1854 }
1855 
1856 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1857 {
1858 	struct llist_head *head;
1859 	struct raw_hwp_page *raw_hwp;
1860 	struct llist_node *t, *tnode;
1861 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1862 
1863 	/*
1864 	 * Once the hwpoison hugepage has lost reliable raw error info,
1865 	 * there is little meaning to keep additional error info precisely,
1866 	 * so skip to add additional raw error info.
1867 	 */
1868 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1869 		return -EHWPOISON;
1870 	head = raw_hwp_list_head(folio);
1871 	llist_for_each_safe(tnode, t, head->first) {
1872 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1873 
1874 		if (p->page == page)
1875 			return -EHWPOISON;
1876 	}
1877 
1878 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1879 	if (raw_hwp) {
1880 		raw_hwp->page = page;
1881 		llist_add(&raw_hwp->node, head);
1882 		/* the first error event will be counted in action_result(). */
1883 		if (ret)
1884 			num_poisoned_pages_inc(page_to_pfn(page));
1885 	} else {
1886 		/*
1887 		 * Failed to save raw error info.  We no longer trace all
1888 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1889 		 * this hwpoisoned hugepage.
1890 		 */
1891 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1892 		/*
1893 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1894 		 * used any more, so free it.
1895 		 */
1896 		__folio_free_raw_hwp(folio, false);
1897 	}
1898 	return ret;
1899 }
1900 
1901 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1902 {
1903 	/*
1904 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1905 	 * pages for tail pages are required but they don't exist.
1906 	 */
1907 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1908 		return 0;
1909 
1910 	/*
1911 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1912 	 * definition.
1913 	 */
1914 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1915 		return 0;
1916 
1917 	return __folio_free_raw_hwp(folio, move_flag);
1918 }
1919 
1920 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1921 {
1922 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1923 		return;
1924 	folio_clear_hwpoison(folio);
1925 	folio_free_raw_hwp(folio, true);
1926 }
1927 
1928 /*
1929  * Called from hugetlb code with hugetlb_lock held.
1930  *
1931  * Return values:
1932  *   0             - free hugepage
1933  *   1             - in-use hugepage
1934  *   2             - not a hugepage
1935  *   -EBUSY        - the hugepage is busy (try to retry)
1936  *   -EHWPOISON    - the hugepage is already hwpoisoned
1937  */
1938 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1939 				 bool *migratable_cleared)
1940 {
1941 	struct page *page = pfn_to_page(pfn);
1942 	struct folio *folio = page_folio(page);
1943 	int ret = 2;	/* fallback to normal page handling */
1944 	bool count_increased = false;
1945 
1946 	if (!folio_test_hugetlb(folio))
1947 		goto out;
1948 
1949 	if (flags & MF_COUNT_INCREASED) {
1950 		ret = 1;
1951 		count_increased = true;
1952 	} else if (folio_test_hugetlb_freed(folio)) {
1953 		ret = 0;
1954 	} else if (folio_test_hugetlb_migratable(folio)) {
1955 		ret = folio_try_get(folio);
1956 		if (ret)
1957 			count_increased = true;
1958 	} else {
1959 		ret = -EBUSY;
1960 		if (!(flags & MF_NO_RETRY))
1961 			goto out;
1962 	}
1963 
1964 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1965 		ret = -EHWPOISON;
1966 		goto out;
1967 	}
1968 
1969 	/*
1970 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1971 	 * from being migrated by memory hotremove.
1972 	 */
1973 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1974 		folio_clear_hugetlb_migratable(folio);
1975 		*migratable_cleared = true;
1976 	}
1977 
1978 	return ret;
1979 out:
1980 	if (count_increased)
1981 		folio_put(folio);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Taking refcount of hugetlb pages needs extra care about race conditions
1987  * with basic operations like hugepage allocation/free/demotion.
1988  * So some of prechecks for hwpoison (pinning, and testing/setting
1989  * PageHWPoison) should be done in single hugetlb_lock range.
1990  */
1991 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1992 {
1993 	int res;
1994 	struct page *p = pfn_to_page(pfn);
1995 	struct folio *folio;
1996 	unsigned long page_flags;
1997 	bool migratable_cleared = false;
1998 
1999 	*hugetlb = 1;
2000 retry:
2001 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2002 	if (res == 2) { /* fallback to normal page handling */
2003 		*hugetlb = 0;
2004 		return 0;
2005 	} else if (res == -EHWPOISON) {
2006 		pr_err("%#lx: already hardware poisoned\n", pfn);
2007 		if (flags & MF_ACTION_REQUIRED) {
2008 			folio = page_folio(p);
2009 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2010 		}
2011 		return res;
2012 	} else if (res == -EBUSY) {
2013 		if (!(flags & MF_NO_RETRY)) {
2014 			flags |= MF_NO_RETRY;
2015 			goto retry;
2016 		}
2017 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2018 	}
2019 
2020 	folio = page_folio(p);
2021 	folio_lock(folio);
2022 
2023 	if (hwpoison_filter(p)) {
2024 		folio_clear_hugetlb_hwpoison(folio);
2025 		if (migratable_cleared)
2026 			folio_set_hugetlb_migratable(folio);
2027 		folio_unlock(folio);
2028 		if (res == 1)
2029 			folio_put(folio);
2030 		return -EOPNOTSUPP;
2031 	}
2032 
2033 	/*
2034 	 * Handling free hugepage.  The possible race with hugepage allocation
2035 	 * or demotion can be prevented by PageHWPoison flag.
2036 	 */
2037 	if (res == 0) {
2038 		folio_unlock(folio);
2039 		if (__page_handle_poison(p) >= 0) {
2040 			page_ref_inc(p);
2041 			res = MF_RECOVERED;
2042 		} else {
2043 			res = MF_FAILED;
2044 		}
2045 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2046 	}
2047 
2048 	page_flags = folio->flags;
2049 
2050 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2051 		folio_unlock(folio);
2052 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2053 	}
2054 
2055 	return identify_page_state(pfn, p, page_flags);
2056 }
2057 
2058 #else
2059 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2060 {
2061 	return 0;
2062 }
2063 
2064 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2065 {
2066 	return 0;
2067 }
2068 #endif	/* CONFIG_HUGETLB_PAGE */
2069 
2070 /* Drop the extra refcount in case we come from madvise() */
2071 static void put_ref_page(unsigned long pfn, int flags)
2072 {
2073 	struct page *page;
2074 
2075 	if (!(flags & MF_COUNT_INCREASED))
2076 		return;
2077 
2078 	page = pfn_to_page(pfn);
2079 	if (page)
2080 		put_page(page);
2081 }
2082 
2083 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2084 		struct dev_pagemap *pgmap)
2085 {
2086 	int rc = -ENXIO;
2087 
2088 	put_ref_page(pfn, flags);
2089 
2090 	/* device metadata space is not recoverable */
2091 	if (!pgmap_pfn_valid(pgmap, pfn))
2092 		goto out;
2093 
2094 	/*
2095 	 * Call driver's implementation to handle the memory failure, otherwise
2096 	 * fall back to generic handler.
2097 	 */
2098 	if (pgmap_has_memory_failure(pgmap)) {
2099 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2100 		/*
2101 		 * Fall back to generic handler too if operation is not
2102 		 * supported inside the driver/device/filesystem.
2103 		 */
2104 		if (rc != -EOPNOTSUPP)
2105 			goto out;
2106 	}
2107 
2108 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2109 out:
2110 	/* drop pgmap ref acquired in caller */
2111 	put_dev_pagemap(pgmap);
2112 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2113 	return rc;
2114 }
2115 
2116 static DEFINE_MUTEX(mf_mutex);
2117 
2118 /**
2119  * memory_failure - Handle memory failure of a page.
2120  * @pfn: Page Number of the corrupted page
2121  * @flags: fine tune action taken
2122  *
2123  * This function is called by the low level machine check code
2124  * of an architecture when it detects hardware memory corruption
2125  * of a page. It tries its best to recover, which includes
2126  * dropping pages, killing processes etc.
2127  *
2128  * The function is primarily of use for corruptions that
2129  * happen outside the current execution context (e.g. when
2130  * detected by a background scrubber)
2131  *
2132  * Must run in process context (e.g. a work queue) with interrupts
2133  * enabled and no spinlocks hold.
2134  *
2135  * Return: 0 for successfully handled the memory error,
2136  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2137  *         < 0(except -EOPNOTSUPP) on failure.
2138  */
2139 int memory_failure(unsigned long pfn, int flags)
2140 {
2141 	struct page *p;
2142 	struct page *hpage;
2143 	struct dev_pagemap *pgmap;
2144 	int res = 0;
2145 	unsigned long page_flags;
2146 	bool retry = true;
2147 	int hugetlb = 0;
2148 
2149 	if (!sysctl_memory_failure_recovery)
2150 		panic("Memory failure on page %lx", pfn);
2151 
2152 	mutex_lock(&mf_mutex);
2153 
2154 	if (!(flags & MF_SW_SIMULATED))
2155 		hw_memory_failure = true;
2156 
2157 	p = pfn_to_online_page(pfn);
2158 	if (!p) {
2159 		res = arch_memory_failure(pfn, flags);
2160 		if (res == 0)
2161 			goto unlock_mutex;
2162 
2163 		if (pfn_valid(pfn)) {
2164 			pgmap = get_dev_pagemap(pfn, NULL);
2165 			if (pgmap) {
2166 				res = memory_failure_dev_pagemap(pfn, flags,
2167 								 pgmap);
2168 				goto unlock_mutex;
2169 			}
2170 		}
2171 		pr_err("%#lx: memory outside kernel control\n", pfn);
2172 		res = -ENXIO;
2173 		goto unlock_mutex;
2174 	}
2175 
2176 try_again:
2177 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2178 	if (hugetlb)
2179 		goto unlock_mutex;
2180 
2181 	if (TestSetPageHWPoison(p)) {
2182 		pr_err("%#lx: already hardware poisoned\n", pfn);
2183 		res = -EHWPOISON;
2184 		if (flags & MF_ACTION_REQUIRED)
2185 			res = kill_accessing_process(current, pfn, flags);
2186 		if (flags & MF_COUNT_INCREASED)
2187 			put_page(p);
2188 		goto unlock_mutex;
2189 	}
2190 
2191 	hpage = compound_head(p);
2192 
2193 	/*
2194 	 * We need/can do nothing about count=0 pages.
2195 	 * 1) it's a free page, and therefore in safe hand:
2196 	 *    check_new_page() will be the gate keeper.
2197 	 * 2) it's part of a non-compound high order page.
2198 	 *    Implies some kernel user: cannot stop them from
2199 	 *    R/W the page; let's pray that the page has been
2200 	 *    used and will be freed some time later.
2201 	 * In fact it's dangerous to directly bump up page count from 0,
2202 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2203 	 */
2204 	if (!(flags & MF_COUNT_INCREASED)) {
2205 		res = get_hwpoison_page(p, flags);
2206 		if (!res) {
2207 			if (is_free_buddy_page(p)) {
2208 				if (take_page_off_buddy(p)) {
2209 					page_ref_inc(p);
2210 					res = MF_RECOVERED;
2211 				} else {
2212 					/* We lost the race, try again */
2213 					if (retry) {
2214 						ClearPageHWPoison(p);
2215 						retry = false;
2216 						goto try_again;
2217 					}
2218 					res = MF_FAILED;
2219 				}
2220 				res = action_result(pfn, MF_MSG_BUDDY, res);
2221 			} else {
2222 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2223 			}
2224 			goto unlock_mutex;
2225 		} else if (res < 0) {
2226 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2227 			goto unlock_mutex;
2228 		}
2229 	}
2230 
2231 	if (PageTransHuge(hpage)) {
2232 		/*
2233 		 * The flag must be set after the refcount is bumped
2234 		 * otherwise it may race with THP split.
2235 		 * And the flag can't be set in get_hwpoison_page() since
2236 		 * it is called by soft offline too and it is just called
2237 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2238 		 * place.
2239 		 *
2240 		 * Don't need care about the above error handling paths for
2241 		 * get_hwpoison_page() since they handle either free page
2242 		 * or unhandlable page.  The refcount is bumped iff the
2243 		 * page is a valid handlable page.
2244 		 */
2245 		SetPageHasHWPoisoned(hpage);
2246 		if (try_to_split_thp_page(p) < 0) {
2247 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2248 			goto unlock_mutex;
2249 		}
2250 		VM_BUG_ON_PAGE(!page_count(p), p);
2251 	}
2252 
2253 	/*
2254 	 * We ignore non-LRU pages for good reasons.
2255 	 * - PG_locked is only well defined for LRU pages and a few others
2256 	 * - to avoid races with __SetPageLocked()
2257 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2258 	 * The check (unnecessarily) ignores LRU pages being isolated and
2259 	 * walked by the page reclaim code, however that's not a big loss.
2260 	 */
2261 	shake_page(p);
2262 
2263 	lock_page(p);
2264 
2265 	/*
2266 	 * We're only intended to deal with the non-Compound page here.
2267 	 * However, the page could have changed compound pages due to
2268 	 * race window. If this happens, we could try again to hopefully
2269 	 * handle the page next round.
2270 	 */
2271 	if (PageCompound(p)) {
2272 		if (retry) {
2273 			ClearPageHWPoison(p);
2274 			unlock_page(p);
2275 			put_page(p);
2276 			flags &= ~MF_COUNT_INCREASED;
2277 			retry = false;
2278 			goto try_again;
2279 		}
2280 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2281 		goto unlock_page;
2282 	}
2283 
2284 	/*
2285 	 * We use page flags to determine what action should be taken, but
2286 	 * the flags can be modified by the error containment action.  One
2287 	 * example is an mlocked page, where PG_mlocked is cleared by
2288 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2289 	 * correctly, we save a copy of the page flags at this time.
2290 	 */
2291 	page_flags = p->flags;
2292 
2293 	if (hwpoison_filter(p)) {
2294 		ClearPageHWPoison(p);
2295 		unlock_page(p);
2296 		put_page(p);
2297 		res = -EOPNOTSUPP;
2298 		goto unlock_mutex;
2299 	}
2300 
2301 	/*
2302 	 * __munlock_folio() may clear a writeback page's LRU flag without
2303 	 * page_lock. We need wait writeback completion for this page or it
2304 	 * may trigger vfs BUG while evict inode.
2305 	 */
2306 	if (!PageLRU(p) && !PageWriteback(p))
2307 		goto identify_page_state;
2308 
2309 	/*
2310 	 * It's very difficult to mess with pages currently under IO
2311 	 * and in many cases impossible, so we just avoid it here.
2312 	 */
2313 	wait_on_page_writeback(p);
2314 
2315 	/*
2316 	 * Now take care of user space mappings.
2317 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2318 	 */
2319 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2320 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2321 		goto unlock_page;
2322 	}
2323 
2324 	/*
2325 	 * Torn down by someone else?
2326 	 */
2327 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2328 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2329 		goto unlock_page;
2330 	}
2331 
2332 identify_page_state:
2333 	res = identify_page_state(pfn, p, page_flags);
2334 	mutex_unlock(&mf_mutex);
2335 	return res;
2336 unlock_page:
2337 	unlock_page(p);
2338 unlock_mutex:
2339 	mutex_unlock(&mf_mutex);
2340 	return res;
2341 }
2342 EXPORT_SYMBOL_GPL(memory_failure);
2343 
2344 #define MEMORY_FAILURE_FIFO_ORDER	4
2345 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2346 
2347 struct memory_failure_entry {
2348 	unsigned long pfn;
2349 	int flags;
2350 };
2351 
2352 struct memory_failure_cpu {
2353 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2354 		      MEMORY_FAILURE_FIFO_SIZE);
2355 	spinlock_t lock;
2356 	struct work_struct work;
2357 };
2358 
2359 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2360 
2361 /**
2362  * memory_failure_queue - Schedule handling memory failure of a page.
2363  * @pfn: Page Number of the corrupted page
2364  * @flags: Flags for memory failure handling
2365  *
2366  * This function is called by the low level hardware error handler
2367  * when it detects hardware memory corruption of a page. It schedules
2368  * the recovering of error page, including dropping pages, killing
2369  * processes etc.
2370  *
2371  * The function is primarily of use for corruptions that
2372  * happen outside the current execution context (e.g. when
2373  * detected by a background scrubber)
2374  *
2375  * Can run in IRQ context.
2376  */
2377 void memory_failure_queue(unsigned long pfn, int flags)
2378 {
2379 	struct memory_failure_cpu *mf_cpu;
2380 	unsigned long proc_flags;
2381 	struct memory_failure_entry entry = {
2382 		.pfn =		pfn,
2383 		.flags =	flags,
2384 	};
2385 
2386 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2387 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2388 	if (kfifo_put(&mf_cpu->fifo, entry))
2389 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2390 	else
2391 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2392 		       pfn);
2393 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2394 	put_cpu_var(memory_failure_cpu);
2395 }
2396 EXPORT_SYMBOL_GPL(memory_failure_queue);
2397 
2398 static void memory_failure_work_func(struct work_struct *work)
2399 {
2400 	struct memory_failure_cpu *mf_cpu;
2401 	struct memory_failure_entry entry = { 0, };
2402 	unsigned long proc_flags;
2403 	int gotten;
2404 
2405 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2406 	for (;;) {
2407 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2408 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2409 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2410 		if (!gotten)
2411 			break;
2412 		if (entry.flags & MF_SOFT_OFFLINE)
2413 			soft_offline_page(entry.pfn, entry.flags);
2414 		else
2415 			memory_failure(entry.pfn, entry.flags);
2416 	}
2417 }
2418 
2419 /*
2420  * Process memory_failure work queued on the specified CPU.
2421  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2422  */
2423 void memory_failure_queue_kick(int cpu)
2424 {
2425 	struct memory_failure_cpu *mf_cpu;
2426 
2427 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2428 	cancel_work_sync(&mf_cpu->work);
2429 	memory_failure_work_func(&mf_cpu->work);
2430 }
2431 
2432 static int __init memory_failure_init(void)
2433 {
2434 	struct memory_failure_cpu *mf_cpu;
2435 	int cpu;
2436 
2437 	for_each_possible_cpu(cpu) {
2438 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2439 		spin_lock_init(&mf_cpu->lock);
2440 		INIT_KFIFO(mf_cpu->fifo);
2441 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2442 	}
2443 
2444 	return 0;
2445 }
2446 core_initcall(memory_failure_init);
2447 
2448 #undef pr_fmt
2449 #define pr_fmt(fmt)	"" fmt
2450 #define unpoison_pr_info(fmt, pfn, rs)			\
2451 ({							\
2452 	if (__ratelimit(rs))				\
2453 		pr_info(fmt, pfn);			\
2454 })
2455 
2456 /**
2457  * unpoison_memory - Unpoison a previously poisoned page
2458  * @pfn: Page number of the to be unpoisoned page
2459  *
2460  * Software-unpoison a page that has been poisoned by
2461  * memory_failure() earlier.
2462  *
2463  * This is only done on the software-level, so it only works
2464  * for linux injected failures, not real hardware failures
2465  *
2466  * Returns 0 for success, otherwise -errno.
2467  */
2468 int unpoison_memory(unsigned long pfn)
2469 {
2470 	struct folio *folio;
2471 	struct page *p;
2472 	int ret = -EBUSY;
2473 	unsigned long count = 1;
2474 	bool huge = false;
2475 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2476 					DEFAULT_RATELIMIT_BURST);
2477 
2478 	if (!pfn_valid(pfn))
2479 		return -ENXIO;
2480 
2481 	p = pfn_to_page(pfn);
2482 	folio = page_folio(p);
2483 
2484 	mutex_lock(&mf_mutex);
2485 
2486 	if (hw_memory_failure) {
2487 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2488 				 pfn, &unpoison_rs);
2489 		ret = -EOPNOTSUPP;
2490 		goto unlock_mutex;
2491 	}
2492 
2493 	if (!folio_test_hwpoison(folio)) {
2494 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2495 				 pfn, &unpoison_rs);
2496 		goto unlock_mutex;
2497 	}
2498 
2499 	if (folio_ref_count(folio) > 1) {
2500 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2501 				 pfn, &unpoison_rs);
2502 		goto unlock_mutex;
2503 	}
2504 
2505 	if (folio_mapped(folio)) {
2506 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2507 				 pfn, &unpoison_rs);
2508 		goto unlock_mutex;
2509 	}
2510 
2511 	if (folio_mapping(folio)) {
2512 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2513 				 pfn, &unpoison_rs);
2514 		goto unlock_mutex;
2515 	}
2516 
2517 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2518 		goto unlock_mutex;
2519 
2520 	ret = get_hwpoison_page(p, MF_UNPOISON);
2521 	if (!ret) {
2522 		if (PageHuge(p)) {
2523 			huge = true;
2524 			count = folio_free_raw_hwp(folio, false);
2525 			if (count == 0) {
2526 				ret = -EBUSY;
2527 				goto unlock_mutex;
2528 			}
2529 		}
2530 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2531 	} else if (ret < 0) {
2532 		if (ret == -EHWPOISON) {
2533 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2534 		} else
2535 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2536 					 pfn, &unpoison_rs);
2537 	} else {
2538 		if (PageHuge(p)) {
2539 			huge = true;
2540 			count = folio_free_raw_hwp(folio, false);
2541 			if (count == 0) {
2542 				ret = -EBUSY;
2543 				folio_put(folio);
2544 				goto unlock_mutex;
2545 			}
2546 		}
2547 
2548 		folio_put(folio);
2549 		if (TestClearPageHWPoison(p)) {
2550 			folio_put(folio);
2551 			ret = 0;
2552 		}
2553 	}
2554 
2555 unlock_mutex:
2556 	mutex_unlock(&mf_mutex);
2557 	if (!ret) {
2558 		if (!huge)
2559 			num_poisoned_pages_sub(pfn, 1);
2560 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2561 				 page_to_pfn(p), &unpoison_rs);
2562 	}
2563 	return ret;
2564 }
2565 EXPORT_SYMBOL(unpoison_memory);
2566 
2567 static bool isolate_page(struct page *page, struct list_head *pagelist)
2568 {
2569 	bool isolated = false;
2570 
2571 	if (PageHuge(page)) {
2572 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2573 	} else {
2574 		bool lru = !__PageMovable(page);
2575 
2576 		if (lru)
2577 			isolated = isolate_lru_page(page);
2578 		else
2579 			isolated = isolate_movable_page(page,
2580 							ISOLATE_UNEVICTABLE);
2581 
2582 		if (isolated) {
2583 			list_add(&page->lru, pagelist);
2584 			if (lru)
2585 				inc_node_page_state(page, NR_ISOLATED_ANON +
2586 						    page_is_file_lru(page));
2587 		}
2588 	}
2589 
2590 	/*
2591 	 * If we succeed to isolate the page, we grabbed another refcount on
2592 	 * the page, so we can safely drop the one we got from get_any_pages().
2593 	 * If we failed to isolate the page, it means that we cannot go further
2594 	 * and we will return an error, so drop the reference we got from
2595 	 * get_any_pages() as well.
2596 	 */
2597 	put_page(page);
2598 	return isolated;
2599 }
2600 
2601 /*
2602  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2603  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2604  * If the page is mapped, it migrates the contents over.
2605  */
2606 static int soft_offline_in_use_page(struct page *page)
2607 {
2608 	long ret = 0;
2609 	unsigned long pfn = page_to_pfn(page);
2610 	struct page *hpage = compound_head(page);
2611 	char const *msg_page[] = {"page", "hugepage"};
2612 	bool huge = PageHuge(page);
2613 	LIST_HEAD(pagelist);
2614 	struct migration_target_control mtc = {
2615 		.nid = NUMA_NO_NODE,
2616 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2617 	};
2618 
2619 	if (!huge && PageTransHuge(hpage)) {
2620 		if (try_to_split_thp_page(page)) {
2621 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2622 			return -EBUSY;
2623 		}
2624 		hpage = page;
2625 	}
2626 
2627 	lock_page(page);
2628 	if (!PageHuge(page))
2629 		wait_on_page_writeback(page);
2630 	if (PageHWPoison(page)) {
2631 		unlock_page(page);
2632 		put_page(page);
2633 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2634 		return 0;
2635 	}
2636 
2637 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2638 		/*
2639 		 * Try to invalidate first. This should work for
2640 		 * non dirty unmapped page cache pages.
2641 		 */
2642 		ret = invalidate_inode_page(page);
2643 	unlock_page(page);
2644 
2645 	if (ret) {
2646 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2647 		page_handle_poison(page, false, true);
2648 		return 0;
2649 	}
2650 
2651 	if (isolate_page(hpage, &pagelist)) {
2652 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2653 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2654 		if (!ret) {
2655 			bool release = !huge;
2656 
2657 			if (!page_handle_poison(page, huge, release))
2658 				ret = -EBUSY;
2659 		} else {
2660 			if (!list_empty(&pagelist))
2661 				putback_movable_pages(&pagelist);
2662 
2663 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2664 				pfn, msg_page[huge], ret, &page->flags);
2665 			if (ret > 0)
2666 				ret = -EBUSY;
2667 		}
2668 	} else {
2669 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2670 			pfn, msg_page[huge], page_count(page), &page->flags);
2671 		ret = -EBUSY;
2672 	}
2673 	return ret;
2674 }
2675 
2676 /**
2677  * soft_offline_page - Soft offline a page.
2678  * @pfn: pfn to soft-offline
2679  * @flags: flags. Same as memory_failure().
2680  *
2681  * Returns 0 on success
2682  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2683  *         < 0 otherwise negated errno.
2684  *
2685  * Soft offline a page, by migration or invalidation,
2686  * without killing anything. This is for the case when
2687  * a page is not corrupted yet (so it's still valid to access),
2688  * but has had a number of corrected errors and is better taken
2689  * out.
2690  *
2691  * The actual policy on when to do that is maintained by
2692  * user space.
2693  *
2694  * This should never impact any application or cause data loss,
2695  * however it might take some time.
2696  *
2697  * This is not a 100% solution for all memory, but tries to be
2698  * ``good enough'' for the majority of memory.
2699  */
2700 int soft_offline_page(unsigned long pfn, int flags)
2701 {
2702 	int ret;
2703 	bool try_again = true;
2704 	struct page *page;
2705 
2706 	if (!pfn_valid(pfn)) {
2707 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2708 		return -ENXIO;
2709 	}
2710 
2711 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2712 	page = pfn_to_online_page(pfn);
2713 	if (!page) {
2714 		put_ref_page(pfn, flags);
2715 		return -EIO;
2716 	}
2717 
2718 	mutex_lock(&mf_mutex);
2719 
2720 	if (PageHWPoison(page)) {
2721 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2722 		put_ref_page(pfn, flags);
2723 		mutex_unlock(&mf_mutex);
2724 		return 0;
2725 	}
2726 
2727 retry:
2728 	get_online_mems();
2729 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2730 	put_online_mems();
2731 
2732 	if (hwpoison_filter(page)) {
2733 		if (ret > 0)
2734 			put_page(page);
2735 
2736 		mutex_unlock(&mf_mutex);
2737 		return -EOPNOTSUPP;
2738 	}
2739 
2740 	if (ret > 0) {
2741 		ret = soft_offline_in_use_page(page);
2742 	} else if (ret == 0) {
2743 		if (!page_handle_poison(page, true, false) && try_again) {
2744 			try_again = false;
2745 			flags &= ~MF_COUNT_INCREASED;
2746 			goto retry;
2747 		}
2748 	}
2749 
2750 	mutex_unlock(&mf_mutex);
2751 
2752 	return ret;
2753 }
2754