1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Kill all processes that have a poisoned page mapped and then isolate 177 * the page. 178 * 179 * General strategy: 180 * Find all processes having the page mapped and kill them. 181 * But we keep a page reference around so that the page is not 182 * actually freed yet. 183 * Then stash the page away 184 * 185 * There's no convenient way to get back to mapped processes 186 * from the VMAs. So do a brute-force search over all 187 * running processes. 188 * 189 * Remember that machine checks are not common (or rather 190 * if they are common you have other problems), so this shouldn't 191 * be a performance issue. 192 * 193 * Also there are some races possible while we get from the 194 * error detection to actually handle it. 195 */ 196 197 struct to_kill { 198 struct list_head nd; 199 struct task_struct *tsk; 200 unsigned long addr; 201 short size_shift; 202 }; 203 204 /* 205 * Send all the processes who have the page mapped a signal. 206 * ``action optional'' if they are not immediately affected by the error 207 * ``action required'' if error happened in current execution context 208 */ 209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 210 { 211 struct task_struct *t = tk->tsk; 212 short addr_lsb = tk->size_shift; 213 int ret; 214 215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 216 pfn, t->comm, t->pid); 217 218 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 219 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, 220 addr_lsb); 221 } else { 222 /* 223 * Don't use force here, it's convenient if the signal 224 * can be temporarily blocked. 225 * This could cause a loop when the user sets SIGBUS 226 * to SIG_IGN, but hopefully no one will do that? 227 */ 228 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 229 addr_lsb, t); /* synchronous? */ 230 } 231 if (ret < 0) 232 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 233 t->comm, t->pid, ret); 234 return ret; 235 } 236 237 /* 238 * When a unknown page type is encountered drain as many buffers as possible 239 * in the hope to turn the page into a LRU or free page, which we can handle. 240 */ 241 void shake_page(struct page *p, int access) 242 { 243 if (PageHuge(p)) 244 return; 245 246 if (!PageSlab(p)) { 247 lru_add_drain_all(); 248 if (PageLRU(p)) 249 return; 250 drain_all_pages(page_zone(p)); 251 if (PageLRU(p) || is_free_buddy_page(p)) 252 return; 253 } 254 255 /* 256 * Only call shrink_node_slabs here (which would also shrink 257 * other caches) if access is not potentially fatal. 258 */ 259 if (access) 260 drop_slab_node(page_to_nid(p)); 261 } 262 EXPORT_SYMBOL_GPL(shake_page); 263 264 static unsigned long dev_pagemap_mapping_shift(struct page *page, 265 struct vm_area_struct *vma) 266 { 267 unsigned long address = vma_address(page, vma); 268 pgd_t *pgd; 269 p4d_t *p4d; 270 pud_t *pud; 271 pmd_t *pmd; 272 pte_t *pte; 273 274 pgd = pgd_offset(vma->vm_mm, address); 275 if (!pgd_present(*pgd)) 276 return 0; 277 p4d = p4d_offset(pgd, address); 278 if (!p4d_present(*p4d)) 279 return 0; 280 pud = pud_offset(p4d, address); 281 if (!pud_present(*pud)) 282 return 0; 283 if (pud_devmap(*pud)) 284 return PUD_SHIFT; 285 pmd = pmd_offset(pud, address); 286 if (!pmd_present(*pmd)) 287 return 0; 288 if (pmd_devmap(*pmd)) 289 return PMD_SHIFT; 290 pte = pte_offset_map(pmd, address); 291 if (!pte_present(*pte)) 292 return 0; 293 if (pte_devmap(*pte)) 294 return PAGE_SHIFT; 295 return 0; 296 } 297 298 /* 299 * Failure handling: if we can't find or can't kill a process there's 300 * not much we can do. We just print a message and ignore otherwise. 301 */ 302 303 /* 304 * Schedule a process for later kill. 305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 306 * TBD would GFP_NOIO be enough? 307 */ 308 static void add_to_kill(struct task_struct *tsk, struct page *p, 309 struct vm_area_struct *vma, 310 struct list_head *to_kill, 311 struct to_kill **tkc) 312 { 313 struct to_kill *tk; 314 315 if (*tkc) { 316 tk = *tkc; 317 *tkc = NULL; 318 } else { 319 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 320 if (!tk) { 321 pr_err("Memory failure: Out of memory while machine check handling\n"); 322 return; 323 } 324 } 325 tk->addr = page_address_in_vma(p, vma); 326 if (is_zone_device_page(p)) 327 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 328 else 329 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; 330 331 /* 332 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 333 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 334 * so "tk->size_shift == 0" effectively checks no mapping on 335 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 336 * to a process' address space, it's possible not all N VMAs 337 * contain mappings for the page, but at least one VMA does. 338 * Only deliver SIGBUS with payload derived from the VMA that 339 * has a mapping for the page. 340 */ 341 if (tk->addr == -EFAULT) { 342 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 343 page_to_pfn(p), tsk->comm); 344 } else if (tk->size_shift == 0) { 345 kfree(tk); 346 return; 347 } 348 get_task_struct(tsk); 349 tk->tsk = tsk; 350 list_add_tail(&tk->nd, to_kill); 351 } 352 353 /* 354 * Kill the processes that have been collected earlier. 355 * 356 * Only do anything when DOIT is set, otherwise just free the list 357 * (this is used for clean pages which do not need killing) 358 * Also when FAIL is set do a force kill because something went 359 * wrong earlier. 360 */ 361 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 362 unsigned long pfn, int flags) 363 { 364 struct to_kill *tk, *next; 365 366 list_for_each_entry_safe (tk, next, to_kill, nd) { 367 if (forcekill) { 368 /* 369 * In case something went wrong with munmapping 370 * make sure the process doesn't catch the 371 * signal and then access the memory. Just kill it. 372 */ 373 if (fail || tk->addr == -EFAULT) { 374 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 375 pfn, tk->tsk->comm, tk->tsk->pid); 376 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 377 tk->tsk, PIDTYPE_PID); 378 } 379 380 /* 381 * In theory the process could have mapped 382 * something else on the address in-between. We could 383 * check for that, but we need to tell the 384 * process anyways. 385 */ 386 else if (kill_proc(tk, pfn, flags) < 0) 387 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 388 pfn, tk->tsk->comm, tk->tsk->pid); 389 } 390 put_task_struct(tk->tsk); 391 kfree(tk); 392 } 393 } 394 395 /* 396 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 397 * on behalf of the thread group. Return task_struct of the (first found) 398 * dedicated thread if found, and return NULL otherwise. 399 * 400 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 401 * have to call rcu_read_lock/unlock() in this function. 402 */ 403 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 404 { 405 struct task_struct *t; 406 407 for_each_thread(tsk, t) 408 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 409 return t; 410 return NULL; 411 } 412 413 /* 414 * Determine whether a given process is "early kill" process which expects 415 * to be signaled when some page under the process is hwpoisoned. 416 * Return task_struct of the dedicated thread (main thread unless explicitly 417 * specified) if the process is "early kill," and otherwise returns NULL. 418 */ 419 static struct task_struct *task_early_kill(struct task_struct *tsk, 420 int force_early) 421 { 422 struct task_struct *t; 423 if (!tsk->mm) 424 return NULL; 425 if (force_early) 426 return tsk; 427 t = find_early_kill_thread(tsk); 428 if (t) 429 return t; 430 if (sysctl_memory_failure_early_kill) 431 return tsk; 432 return NULL; 433 } 434 435 /* 436 * Collect processes when the error hit an anonymous page. 437 */ 438 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 439 struct to_kill **tkc, int force_early) 440 { 441 struct vm_area_struct *vma; 442 struct task_struct *tsk; 443 struct anon_vma *av; 444 pgoff_t pgoff; 445 446 av = page_lock_anon_vma_read(page); 447 if (av == NULL) /* Not actually mapped anymore */ 448 return; 449 450 pgoff = page_to_pgoff(page); 451 read_lock(&tasklist_lock); 452 for_each_process (tsk) { 453 struct anon_vma_chain *vmac; 454 struct task_struct *t = task_early_kill(tsk, force_early); 455 456 if (!t) 457 continue; 458 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 459 pgoff, pgoff) { 460 vma = vmac->vma; 461 if (!page_mapped_in_vma(page, vma)) 462 continue; 463 if (vma->vm_mm == t->mm) 464 add_to_kill(t, page, vma, to_kill, tkc); 465 } 466 } 467 read_unlock(&tasklist_lock); 468 page_unlock_anon_vma_read(av); 469 } 470 471 /* 472 * Collect processes when the error hit a file mapped page. 473 */ 474 static void collect_procs_file(struct page *page, struct list_head *to_kill, 475 struct to_kill **tkc, int force_early) 476 { 477 struct vm_area_struct *vma; 478 struct task_struct *tsk; 479 struct address_space *mapping = page->mapping; 480 481 i_mmap_lock_read(mapping); 482 read_lock(&tasklist_lock); 483 for_each_process(tsk) { 484 pgoff_t pgoff = page_to_pgoff(page); 485 struct task_struct *t = task_early_kill(tsk, force_early); 486 487 if (!t) 488 continue; 489 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 490 pgoff) { 491 /* 492 * Send early kill signal to tasks where a vma covers 493 * the page but the corrupted page is not necessarily 494 * mapped it in its pte. 495 * Assume applications who requested early kill want 496 * to be informed of all such data corruptions. 497 */ 498 if (vma->vm_mm == t->mm) 499 add_to_kill(t, page, vma, to_kill, tkc); 500 } 501 } 502 read_unlock(&tasklist_lock); 503 i_mmap_unlock_read(mapping); 504 } 505 506 /* 507 * Collect the processes who have the corrupted page mapped to kill. 508 * This is done in two steps for locking reasons. 509 * First preallocate one tokill structure outside the spin locks, 510 * so that we can kill at least one process reasonably reliable. 511 */ 512 static void collect_procs(struct page *page, struct list_head *tokill, 513 int force_early) 514 { 515 struct to_kill *tk; 516 517 if (!page->mapping) 518 return; 519 520 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 521 if (!tk) 522 return; 523 if (PageAnon(page)) 524 collect_procs_anon(page, tokill, &tk, force_early); 525 else 526 collect_procs_file(page, tokill, &tk, force_early); 527 kfree(tk); 528 } 529 530 static const char *action_name[] = { 531 [MF_IGNORED] = "Ignored", 532 [MF_FAILED] = "Failed", 533 [MF_DELAYED] = "Delayed", 534 [MF_RECOVERED] = "Recovered", 535 }; 536 537 static const char * const action_page_types[] = { 538 [MF_MSG_KERNEL] = "reserved kernel page", 539 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 540 [MF_MSG_SLAB] = "kernel slab page", 541 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 542 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 543 [MF_MSG_HUGE] = "huge page", 544 [MF_MSG_FREE_HUGE] = "free huge page", 545 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 546 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 547 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 548 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 549 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 550 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 551 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 552 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 553 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 554 [MF_MSG_CLEAN_LRU] = "clean LRU page", 555 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 556 [MF_MSG_BUDDY] = "free buddy page", 557 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 558 [MF_MSG_DAX] = "dax page", 559 [MF_MSG_UNKNOWN] = "unknown page", 560 }; 561 562 /* 563 * XXX: It is possible that a page is isolated from LRU cache, 564 * and then kept in swap cache or failed to remove from page cache. 565 * The page count will stop it from being freed by unpoison. 566 * Stress tests should be aware of this memory leak problem. 567 */ 568 static int delete_from_lru_cache(struct page *p) 569 { 570 if (!isolate_lru_page(p)) { 571 /* 572 * Clear sensible page flags, so that the buddy system won't 573 * complain when the page is unpoison-and-freed. 574 */ 575 ClearPageActive(p); 576 ClearPageUnevictable(p); 577 578 /* 579 * Poisoned page might never drop its ref count to 0 so we have 580 * to uncharge it manually from its memcg. 581 */ 582 mem_cgroup_uncharge(p); 583 584 /* 585 * drop the page count elevated by isolate_lru_page() 586 */ 587 put_page(p); 588 return 0; 589 } 590 return -EIO; 591 } 592 593 static int truncate_error_page(struct page *p, unsigned long pfn, 594 struct address_space *mapping) 595 { 596 int ret = MF_FAILED; 597 598 if (mapping->a_ops->error_remove_page) { 599 int err = mapping->a_ops->error_remove_page(mapping, p); 600 601 if (err != 0) { 602 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 603 pfn, err); 604 } else if (page_has_private(p) && 605 !try_to_release_page(p, GFP_NOIO)) { 606 pr_info("Memory failure: %#lx: failed to release buffers\n", 607 pfn); 608 } else { 609 ret = MF_RECOVERED; 610 } 611 } else { 612 /* 613 * If the file system doesn't support it just invalidate 614 * This fails on dirty or anything with private pages 615 */ 616 if (invalidate_inode_page(p)) 617 ret = MF_RECOVERED; 618 else 619 pr_info("Memory failure: %#lx: Failed to invalidate\n", 620 pfn); 621 } 622 623 return ret; 624 } 625 626 /* 627 * Error hit kernel page. 628 * Do nothing, try to be lucky and not touch this instead. For a few cases we 629 * could be more sophisticated. 630 */ 631 static int me_kernel(struct page *p, unsigned long pfn) 632 { 633 return MF_IGNORED; 634 } 635 636 /* 637 * Page in unknown state. Do nothing. 638 */ 639 static int me_unknown(struct page *p, unsigned long pfn) 640 { 641 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 642 return MF_FAILED; 643 } 644 645 /* 646 * Clean (or cleaned) page cache page. 647 */ 648 static int me_pagecache_clean(struct page *p, unsigned long pfn) 649 { 650 struct address_space *mapping; 651 652 delete_from_lru_cache(p); 653 654 /* 655 * For anonymous pages we're done the only reference left 656 * should be the one m_f() holds. 657 */ 658 if (PageAnon(p)) 659 return MF_RECOVERED; 660 661 /* 662 * Now truncate the page in the page cache. This is really 663 * more like a "temporary hole punch" 664 * Don't do this for block devices when someone else 665 * has a reference, because it could be file system metadata 666 * and that's not safe to truncate. 667 */ 668 mapping = page_mapping(p); 669 if (!mapping) { 670 /* 671 * Page has been teared down in the meanwhile 672 */ 673 return MF_FAILED; 674 } 675 676 /* 677 * Truncation is a bit tricky. Enable it per file system for now. 678 * 679 * Open: to take i_mutex or not for this? Right now we don't. 680 */ 681 return truncate_error_page(p, pfn, mapping); 682 } 683 684 /* 685 * Dirty pagecache page 686 * Issues: when the error hit a hole page the error is not properly 687 * propagated. 688 */ 689 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 690 { 691 struct address_space *mapping = page_mapping(p); 692 693 SetPageError(p); 694 /* TBD: print more information about the file. */ 695 if (mapping) { 696 /* 697 * IO error will be reported by write(), fsync(), etc. 698 * who check the mapping. 699 * This way the application knows that something went 700 * wrong with its dirty file data. 701 * 702 * There's one open issue: 703 * 704 * The EIO will be only reported on the next IO 705 * operation and then cleared through the IO map. 706 * Normally Linux has two mechanisms to pass IO error 707 * first through the AS_EIO flag in the address space 708 * and then through the PageError flag in the page. 709 * Since we drop pages on memory failure handling the 710 * only mechanism open to use is through AS_AIO. 711 * 712 * This has the disadvantage that it gets cleared on 713 * the first operation that returns an error, while 714 * the PageError bit is more sticky and only cleared 715 * when the page is reread or dropped. If an 716 * application assumes it will always get error on 717 * fsync, but does other operations on the fd before 718 * and the page is dropped between then the error 719 * will not be properly reported. 720 * 721 * This can already happen even without hwpoisoned 722 * pages: first on metadata IO errors (which only 723 * report through AS_EIO) or when the page is dropped 724 * at the wrong time. 725 * 726 * So right now we assume that the application DTRT on 727 * the first EIO, but we're not worse than other parts 728 * of the kernel. 729 */ 730 mapping_set_error(mapping, -EIO); 731 } 732 733 return me_pagecache_clean(p, pfn); 734 } 735 736 /* 737 * Clean and dirty swap cache. 738 * 739 * Dirty swap cache page is tricky to handle. The page could live both in page 740 * cache and swap cache(ie. page is freshly swapped in). So it could be 741 * referenced concurrently by 2 types of PTEs: 742 * normal PTEs and swap PTEs. We try to handle them consistently by calling 743 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 744 * and then 745 * - clear dirty bit to prevent IO 746 * - remove from LRU 747 * - but keep in the swap cache, so that when we return to it on 748 * a later page fault, we know the application is accessing 749 * corrupted data and shall be killed (we installed simple 750 * interception code in do_swap_page to catch it). 751 * 752 * Clean swap cache pages can be directly isolated. A later page fault will 753 * bring in the known good data from disk. 754 */ 755 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 756 { 757 ClearPageDirty(p); 758 /* Trigger EIO in shmem: */ 759 ClearPageUptodate(p); 760 761 if (!delete_from_lru_cache(p)) 762 return MF_DELAYED; 763 else 764 return MF_FAILED; 765 } 766 767 static int me_swapcache_clean(struct page *p, unsigned long pfn) 768 { 769 delete_from_swap_cache(p); 770 771 if (!delete_from_lru_cache(p)) 772 return MF_RECOVERED; 773 else 774 return MF_FAILED; 775 } 776 777 /* 778 * Huge pages. Needs work. 779 * Issues: 780 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 781 * To narrow down kill region to one page, we need to break up pmd. 782 */ 783 static int me_huge_page(struct page *p, unsigned long pfn) 784 { 785 int res = 0; 786 struct page *hpage = compound_head(p); 787 struct address_space *mapping; 788 789 if (!PageHuge(hpage)) 790 return MF_DELAYED; 791 792 mapping = page_mapping(hpage); 793 if (mapping) { 794 res = truncate_error_page(hpage, pfn, mapping); 795 } else { 796 unlock_page(hpage); 797 /* 798 * migration entry prevents later access on error anonymous 799 * hugepage, so we can free and dissolve it into buddy to 800 * save healthy subpages. 801 */ 802 if (PageAnon(hpage)) 803 put_page(hpage); 804 dissolve_free_huge_page(p); 805 res = MF_RECOVERED; 806 lock_page(hpage); 807 } 808 809 return res; 810 } 811 812 /* 813 * Various page states we can handle. 814 * 815 * A page state is defined by its current page->flags bits. 816 * The table matches them in order and calls the right handler. 817 * 818 * This is quite tricky because we can access page at any time 819 * in its live cycle, so all accesses have to be extremely careful. 820 * 821 * This is not complete. More states could be added. 822 * For any missing state don't attempt recovery. 823 */ 824 825 #define dirty (1UL << PG_dirty) 826 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 827 #define unevict (1UL << PG_unevictable) 828 #define mlock (1UL << PG_mlocked) 829 #define writeback (1UL << PG_writeback) 830 #define lru (1UL << PG_lru) 831 #define head (1UL << PG_head) 832 #define slab (1UL << PG_slab) 833 #define reserved (1UL << PG_reserved) 834 835 static struct page_state { 836 unsigned long mask; 837 unsigned long res; 838 enum mf_action_page_type type; 839 int (*action)(struct page *p, unsigned long pfn); 840 } error_states[] = { 841 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 842 /* 843 * free pages are specially detected outside this table: 844 * PG_buddy pages only make a small fraction of all free pages. 845 */ 846 847 /* 848 * Could in theory check if slab page is free or if we can drop 849 * currently unused objects without touching them. But just 850 * treat it as standard kernel for now. 851 */ 852 { slab, slab, MF_MSG_SLAB, me_kernel }, 853 854 { head, head, MF_MSG_HUGE, me_huge_page }, 855 856 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 857 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 858 859 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 860 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 861 862 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 863 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 864 865 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 866 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 867 868 /* 869 * Catchall entry: must be at end. 870 */ 871 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 872 }; 873 874 #undef dirty 875 #undef sc 876 #undef unevict 877 #undef mlock 878 #undef writeback 879 #undef lru 880 #undef head 881 #undef slab 882 #undef reserved 883 884 /* 885 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 886 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 887 */ 888 static void action_result(unsigned long pfn, enum mf_action_page_type type, 889 enum mf_result result) 890 { 891 trace_memory_failure_event(pfn, type, result); 892 893 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 894 pfn, action_page_types[type], action_name[result]); 895 } 896 897 static int page_action(struct page_state *ps, struct page *p, 898 unsigned long pfn) 899 { 900 int result; 901 int count; 902 903 result = ps->action(p, pfn); 904 905 count = page_count(p) - 1; 906 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 907 count--; 908 if (count > 0) { 909 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 910 pfn, action_page_types[ps->type], count); 911 result = MF_FAILED; 912 } 913 action_result(pfn, ps->type, result); 914 915 /* Could do more checks here if page looks ok */ 916 /* 917 * Could adjust zone counters here to correct for the missing page. 918 */ 919 920 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 921 } 922 923 /** 924 * get_hwpoison_page() - Get refcount for memory error handling: 925 * @page: raw error page (hit by memory error) 926 * 927 * Return: return 0 if failed to grab the refcount, otherwise true (some 928 * non-zero value.) 929 */ 930 int get_hwpoison_page(struct page *page) 931 { 932 struct page *head = compound_head(page); 933 934 if (!PageHuge(head) && PageTransHuge(head)) { 935 /* 936 * Non anonymous thp exists only in allocation/free time. We 937 * can't handle such a case correctly, so let's give it up. 938 * This should be better than triggering BUG_ON when kernel 939 * tries to touch the "partially handled" page. 940 */ 941 if (!PageAnon(head)) { 942 pr_err("Memory failure: %#lx: non anonymous thp\n", 943 page_to_pfn(page)); 944 return 0; 945 } 946 } 947 948 if (get_page_unless_zero(head)) { 949 if (head == compound_head(page)) 950 return 1; 951 952 pr_info("Memory failure: %#lx cannot catch tail\n", 953 page_to_pfn(page)); 954 put_page(head); 955 } 956 957 return 0; 958 } 959 EXPORT_SYMBOL_GPL(get_hwpoison_page); 960 961 /* 962 * Do all that is necessary to remove user space mappings. Unmap 963 * the pages and send SIGBUS to the processes if the data was dirty. 964 */ 965 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 966 int flags, struct page **hpagep) 967 { 968 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 969 struct address_space *mapping; 970 LIST_HEAD(tokill); 971 bool unmap_success; 972 int kill = 1, forcekill; 973 struct page *hpage = *hpagep; 974 bool mlocked = PageMlocked(hpage); 975 976 /* 977 * Here we are interested only in user-mapped pages, so skip any 978 * other types of pages. 979 */ 980 if (PageReserved(p) || PageSlab(p)) 981 return true; 982 if (!(PageLRU(hpage) || PageHuge(p))) 983 return true; 984 985 /* 986 * This check implies we don't kill processes if their pages 987 * are in the swap cache early. Those are always late kills. 988 */ 989 if (!page_mapped(hpage)) 990 return true; 991 992 if (PageKsm(p)) { 993 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 994 return false; 995 } 996 997 if (PageSwapCache(p)) { 998 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 999 pfn); 1000 ttu |= TTU_IGNORE_HWPOISON; 1001 } 1002 1003 /* 1004 * Propagate the dirty bit from PTEs to struct page first, because we 1005 * need this to decide if we should kill or just drop the page. 1006 * XXX: the dirty test could be racy: set_page_dirty() may not always 1007 * be called inside page lock (it's recommended but not enforced). 1008 */ 1009 mapping = page_mapping(hpage); 1010 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1011 mapping_cap_writeback_dirty(mapping)) { 1012 if (page_mkclean(hpage)) { 1013 SetPageDirty(hpage); 1014 } else { 1015 kill = 0; 1016 ttu |= TTU_IGNORE_HWPOISON; 1017 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1018 pfn); 1019 } 1020 } 1021 1022 /* 1023 * First collect all the processes that have the page 1024 * mapped in dirty form. This has to be done before try_to_unmap, 1025 * because ttu takes the rmap data structures down. 1026 * 1027 * Error handling: We ignore errors here because 1028 * there's nothing that can be done. 1029 */ 1030 if (kill) 1031 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1032 1033 unmap_success = try_to_unmap(hpage, ttu); 1034 if (!unmap_success) 1035 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1036 pfn, page_mapcount(hpage)); 1037 1038 /* 1039 * try_to_unmap() might put mlocked page in lru cache, so call 1040 * shake_page() again to ensure that it's flushed. 1041 */ 1042 if (mlocked) 1043 shake_page(hpage, 0); 1044 1045 /* 1046 * Now that the dirty bit has been propagated to the 1047 * struct page and all unmaps done we can decide if 1048 * killing is needed or not. Only kill when the page 1049 * was dirty or the process is not restartable, 1050 * otherwise the tokill list is merely 1051 * freed. When there was a problem unmapping earlier 1052 * use a more force-full uncatchable kill to prevent 1053 * any accesses to the poisoned memory. 1054 */ 1055 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1056 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1057 1058 return unmap_success; 1059 } 1060 1061 static int identify_page_state(unsigned long pfn, struct page *p, 1062 unsigned long page_flags) 1063 { 1064 struct page_state *ps; 1065 1066 /* 1067 * The first check uses the current page flags which may not have any 1068 * relevant information. The second check with the saved page flags is 1069 * carried out only if the first check can't determine the page status. 1070 */ 1071 for (ps = error_states;; ps++) 1072 if ((p->flags & ps->mask) == ps->res) 1073 break; 1074 1075 page_flags |= (p->flags & (1UL << PG_dirty)); 1076 1077 if (!ps->mask) 1078 for (ps = error_states;; ps++) 1079 if ((page_flags & ps->mask) == ps->res) 1080 break; 1081 return page_action(ps, p, pfn); 1082 } 1083 1084 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1085 { 1086 struct page *p = pfn_to_page(pfn); 1087 struct page *head = compound_head(p); 1088 int res; 1089 unsigned long page_flags; 1090 1091 if (TestSetPageHWPoison(head)) { 1092 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1093 pfn); 1094 return 0; 1095 } 1096 1097 num_poisoned_pages_inc(); 1098 1099 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1100 /* 1101 * Check "filter hit" and "race with other subpage." 1102 */ 1103 lock_page(head); 1104 if (PageHWPoison(head)) { 1105 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1106 || (p != head && TestSetPageHWPoison(head))) { 1107 num_poisoned_pages_dec(); 1108 unlock_page(head); 1109 return 0; 1110 } 1111 } 1112 unlock_page(head); 1113 dissolve_free_huge_page(p); 1114 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1115 return 0; 1116 } 1117 1118 lock_page(head); 1119 page_flags = head->flags; 1120 1121 if (!PageHWPoison(head)) { 1122 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1123 num_poisoned_pages_dec(); 1124 unlock_page(head); 1125 put_hwpoison_page(head); 1126 return 0; 1127 } 1128 1129 /* 1130 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1131 * simply disable it. In order to make it work properly, we need 1132 * make sure that: 1133 * - conversion of a pud that maps an error hugetlb into hwpoison 1134 * entry properly works, and 1135 * - other mm code walking over page table is aware of pud-aligned 1136 * hwpoison entries. 1137 */ 1138 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1139 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1140 res = -EBUSY; 1141 goto out; 1142 } 1143 1144 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1145 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1146 res = -EBUSY; 1147 goto out; 1148 } 1149 1150 res = identify_page_state(pfn, p, page_flags); 1151 out: 1152 unlock_page(head); 1153 return res; 1154 } 1155 1156 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1157 struct dev_pagemap *pgmap) 1158 { 1159 struct page *page = pfn_to_page(pfn); 1160 const bool unmap_success = true; 1161 unsigned long size = 0; 1162 struct to_kill *tk; 1163 LIST_HEAD(tokill); 1164 int rc = -EBUSY; 1165 loff_t start; 1166 dax_entry_t cookie; 1167 1168 /* 1169 * Prevent the inode from being freed while we are interrogating 1170 * the address_space, typically this would be handled by 1171 * lock_page(), but dax pages do not use the page lock. This 1172 * also prevents changes to the mapping of this pfn until 1173 * poison signaling is complete. 1174 */ 1175 cookie = dax_lock_page(page); 1176 if (!cookie) 1177 goto out; 1178 1179 if (hwpoison_filter(page)) { 1180 rc = 0; 1181 goto unlock; 1182 } 1183 1184 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1185 /* 1186 * TODO: Handle HMM pages which may need coordination 1187 * with device-side memory. 1188 */ 1189 goto unlock; 1190 } 1191 1192 /* 1193 * Use this flag as an indication that the dax page has been 1194 * remapped UC to prevent speculative consumption of poison. 1195 */ 1196 SetPageHWPoison(page); 1197 1198 /* 1199 * Unlike System-RAM there is no possibility to swap in a 1200 * different physical page at a given virtual address, so all 1201 * userspace consumption of ZONE_DEVICE memory necessitates 1202 * SIGBUS (i.e. MF_MUST_KILL) 1203 */ 1204 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1205 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1206 1207 list_for_each_entry(tk, &tokill, nd) 1208 if (tk->size_shift) 1209 size = max(size, 1UL << tk->size_shift); 1210 if (size) { 1211 /* 1212 * Unmap the largest mapping to avoid breaking up 1213 * device-dax mappings which are constant size. The 1214 * actual size of the mapping being torn down is 1215 * communicated in siginfo, see kill_proc() 1216 */ 1217 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1218 unmap_mapping_range(page->mapping, start, start + size, 0); 1219 } 1220 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1221 rc = 0; 1222 unlock: 1223 dax_unlock_page(page, cookie); 1224 out: 1225 /* drop pgmap ref acquired in caller */ 1226 put_dev_pagemap(pgmap); 1227 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1228 return rc; 1229 } 1230 1231 /** 1232 * memory_failure - Handle memory failure of a page. 1233 * @pfn: Page Number of the corrupted page 1234 * @flags: fine tune action taken 1235 * 1236 * This function is called by the low level machine check code 1237 * of an architecture when it detects hardware memory corruption 1238 * of a page. It tries its best to recover, which includes 1239 * dropping pages, killing processes etc. 1240 * 1241 * The function is primarily of use for corruptions that 1242 * happen outside the current execution context (e.g. when 1243 * detected by a background scrubber) 1244 * 1245 * Must run in process context (e.g. a work queue) with interrupts 1246 * enabled and no spinlocks hold. 1247 */ 1248 int memory_failure(unsigned long pfn, int flags) 1249 { 1250 struct page *p; 1251 struct page *hpage; 1252 struct page *orig_head; 1253 struct dev_pagemap *pgmap; 1254 int res; 1255 unsigned long page_flags; 1256 1257 if (!sysctl_memory_failure_recovery) 1258 panic("Memory failure on page %lx", pfn); 1259 1260 p = pfn_to_online_page(pfn); 1261 if (!p) { 1262 if (pfn_valid(pfn)) { 1263 pgmap = get_dev_pagemap(pfn, NULL); 1264 if (pgmap) 1265 return memory_failure_dev_pagemap(pfn, flags, 1266 pgmap); 1267 } 1268 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1269 pfn); 1270 return -ENXIO; 1271 } 1272 1273 if (PageHuge(p)) 1274 return memory_failure_hugetlb(pfn, flags); 1275 if (TestSetPageHWPoison(p)) { 1276 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1277 pfn); 1278 return 0; 1279 } 1280 1281 orig_head = hpage = compound_head(p); 1282 num_poisoned_pages_inc(); 1283 1284 /* 1285 * We need/can do nothing about count=0 pages. 1286 * 1) it's a free page, and therefore in safe hand: 1287 * prep_new_page() will be the gate keeper. 1288 * 2) it's part of a non-compound high order page. 1289 * Implies some kernel user: cannot stop them from 1290 * R/W the page; let's pray that the page has been 1291 * used and will be freed some time later. 1292 * In fact it's dangerous to directly bump up page count from 0, 1293 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1294 */ 1295 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1296 if (is_free_buddy_page(p)) { 1297 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1298 return 0; 1299 } else { 1300 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1301 return -EBUSY; 1302 } 1303 } 1304 1305 if (PageTransHuge(hpage)) { 1306 lock_page(p); 1307 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1308 unlock_page(p); 1309 if (!PageAnon(p)) 1310 pr_err("Memory failure: %#lx: non anonymous thp\n", 1311 pfn); 1312 else 1313 pr_err("Memory failure: %#lx: thp split failed\n", 1314 pfn); 1315 if (TestClearPageHWPoison(p)) 1316 num_poisoned_pages_dec(); 1317 put_hwpoison_page(p); 1318 return -EBUSY; 1319 } 1320 unlock_page(p); 1321 VM_BUG_ON_PAGE(!page_count(p), p); 1322 hpage = compound_head(p); 1323 } 1324 1325 /* 1326 * We ignore non-LRU pages for good reasons. 1327 * - PG_locked is only well defined for LRU pages and a few others 1328 * - to avoid races with __SetPageLocked() 1329 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1330 * The check (unnecessarily) ignores LRU pages being isolated and 1331 * walked by the page reclaim code, however that's not a big loss. 1332 */ 1333 shake_page(p, 0); 1334 /* shake_page could have turned it free. */ 1335 if (!PageLRU(p) && is_free_buddy_page(p)) { 1336 if (flags & MF_COUNT_INCREASED) 1337 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1338 else 1339 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1340 return 0; 1341 } 1342 1343 lock_page(p); 1344 1345 /* 1346 * The page could have changed compound pages during the locking. 1347 * If this happens just bail out. 1348 */ 1349 if (PageCompound(p) && compound_head(p) != orig_head) { 1350 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1351 res = -EBUSY; 1352 goto out; 1353 } 1354 1355 /* 1356 * We use page flags to determine what action should be taken, but 1357 * the flags can be modified by the error containment action. One 1358 * example is an mlocked page, where PG_mlocked is cleared by 1359 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1360 * correctly, we save a copy of the page flags at this time. 1361 */ 1362 if (PageHuge(p)) 1363 page_flags = hpage->flags; 1364 else 1365 page_flags = p->flags; 1366 1367 /* 1368 * unpoison always clear PG_hwpoison inside page lock 1369 */ 1370 if (!PageHWPoison(p)) { 1371 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1372 num_poisoned_pages_dec(); 1373 unlock_page(p); 1374 put_hwpoison_page(p); 1375 return 0; 1376 } 1377 if (hwpoison_filter(p)) { 1378 if (TestClearPageHWPoison(p)) 1379 num_poisoned_pages_dec(); 1380 unlock_page(p); 1381 put_hwpoison_page(p); 1382 return 0; 1383 } 1384 1385 if (!PageTransTail(p) && !PageLRU(p)) 1386 goto identify_page_state; 1387 1388 /* 1389 * It's very difficult to mess with pages currently under IO 1390 * and in many cases impossible, so we just avoid it here. 1391 */ 1392 wait_on_page_writeback(p); 1393 1394 /* 1395 * Now take care of user space mappings. 1396 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1397 * 1398 * When the raw error page is thp tail page, hpage points to the raw 1399 * page after thp split. 1400 */ 1401 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1402 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1403 res = -EBUSY; 1404 goto out; 1405 } 1406 1407 /* 1408 * Torn down by someone else? 1409 */ 1410 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1411 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1412 res = -EBUSY; 1413 goto out; 1414 } 1415 1416 identify_page_state: 1417 res = identify_page_state(pfn, p, page_flags); 1418 out: 1419 unlock_page(p); 1420 return res; 1421 } 1422 EXPORT_SYMBOL_GPL(memory_failure); 1423 1424 #define MEMORY_FAILURE_FIFO_ORDER 4 1425 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1426 1427 struct memory_failure_entry { 1428 unsigned long pfn; 1429 int flags; 1430 }; 1431 1432 struct memory_failure_cpu { 1433 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1434 MEMORY_FAILURE_FIFO_SIZE); 1435 spinlock_t lock; 1436 struct work_struct work; 1437 }; 1438 1439 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1440 1441 /** 1442 * memory_failure_queue - Schedule handling memory failure of a page. 1443 * @pfn: Page Number of the corrupted page 1444 * @flags: Flags for memory failure handling 1445 * 1446 * This function is called by the low level hardware error handler 1447 * when it detects hardware memory corruption of a page. It schedules 1448 * the recovering of error page, including dropping pages, killing 1449 * processes etc. 1450 * 1451 * The function is primarily of use for corruptions that 1452 * happen outside the current execution context (e.g. when 1453 * detected by a background scrubber) 1454 * 1455 * Can run in IRQ context. 1456 */ 1457 void memory_failure_queue(unsigned long pfn, int flags) 1458 { 1459 struct memory_failure_cpu *mf_cpu; 1460 unsigned long proc_flags; 1461 struct memory_failure_entry entry = { 1462 .pfn = pfn, 1463 .flags = flags, 1464 }; 1465 1466 mf_cpu = &get_cpu_var(memory_failure_cpu); 1467 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1468 if (kfifo_put(&mf_cpu->fifo, entry)) 1469 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1470 else 1471 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1472 pfn); 1473 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1474 put_cpu_var(memory_failure_cpu); 1475 } 1476 EXPORT_SYMBOL_GPL(memory_failure_queue); 1477 1478 static void memory_failure_work_func(struct work_struct *work) 1479 { 1480 struct memory_failure_cpu *mf_cpu; 1481 struct memory_failure_entry entry = { 0, }; 1482 unsigned long proc_flags; 1483 int gotten; 1484 1485 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1486 for (;;) { 1487 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1488 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1489 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1490 if (!gotten) 1491 break; 1492 if (entry.flags & MF_SOFT_OFFLINE) 1493 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1494 else 1495 memory_failure(entry.pfn, entry.flags); 1496 } 1497 } 1498 1499 static int __init memory_failure_init(void) 1500 { 1501 struct memory_failure_cpu *mf_cpu; 1502 int cpu; 1503 1504 for_each_possible_cpu(cpu) { 1505 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1506 spin_lock_init(&mf_cpu->lock); 1507 INIT_KFIFO(mf_cpu->fifo); 1508 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1509 } 1510 1511 return 0; 1512 } 1513 core_initcall(memory_failure_init); 1514 1515 #define unpoison_pr_info(fmt, pfn, rs) \ 1516 ({ \ 1517 if (__ratelimit(rs)) \ 1518 pr_info(fmt, pfn); \ 1519 }) 1520 1521 /** 1522 * unpoison_memory - Unpoison a previously poisoned page 1523 * @pfn: Page number of the to be unpoisoned page 1524 * 1525 * Software-unpoison a page that has been poisoned by 1526 * memory_failure() earlier. 1527 * 1528 * This is only done on the software-level, so it only works 1529 * for linux injected failures, not real hardware failures 1530 * 1531 * Returns 0 for success, otherwise -errno. 1532 */ 1533 int unpoison_memory(unsigned long pfn) 1534 { 1535 struct page *page; 1536 struct page *p; 1537 int freeit = 0; 1538 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1539 DEFAULT_RATELIMIT_BURST); 1540 1541 if (!pfn_valid(pfn)) 1542 return -ENXIO; 1543 1544 p = pfn_to_page(pfn); 1545 page = compound_head(p); 1546 1547 if (!PageHWPoison(p)) { 1548 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1549 pfn, &unpoison_rs); 1550 return 0; 1551 } 1552 1553 if (page_count(page) > 1) { 1554 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1555 pfn, &unpoison_rs); 1556 return 0; 1557 } 1558 1559 if (page_mapped(page)) { 1560 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1561 pfn, &unpoison_rs); 1562 return 0; 1563 } 1564 1565 if (page_mapping(page)) { 1566 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1567 pfn, &unpoison_rs); 1568 return 0; 1569 } 1570 1571 /* 1572 * unpoison_memory() can encounter thp only when the thp is being 1573 * worked by memory_failure() and the page lock is not held yet. 1574 * In such case, we yield to memory_failure() and make unpoison fail. 1575 */ 1576 if (!PageHuge(page) && PageTransHuge(page)) { 1577 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1578 pfn, &unpoison_rs); 1579 return 0; 1580 } 1581 1582 if (!get_hwpoison_page(p)) { 1583 if (TestClearPageHWPoison(p)) 1584 num_poisoned_pages_dec(); 1585 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1586 pfn, &unpoison_rs); 1587 return 0; 1588 } 1589 1590 lock_page(page); 1591 /* 1592 * This test is racy because PG_hwpoison is set outside of page lock. 1593 * That's acceptable because that won't trigger kernel panic. Instead, 1594 * the PG_hwpoison page will be caught and isolated on the entrance to 1595 * the free buddy page pool. 1596 */ 1597 if (TestClearPageHWPoison(page)) { 1598 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1599 pfn, &unpoison_rs); 1600 num_poisoned_pages_dec(); 1601 freeit = 1; 1602 } 1603 unlock_page(page); 1604 1605 put_hwpoison_page(page); 1606 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1607 put_hwpoison_page(page); 1608 1609 return 0; 1610 } 1611 EXPORT_SYMBOL(unpoison_memory); 1612 1613 static struct page *new_page(struct page *p, unsigned long private) 1614 { 1615 int nid = page_to_nid(p); 1616 1617 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1618 } 1619 1620 /* 1621 * Safely get reference count of an arbitrary page. 1622 * Returns 0 for a free page, -EIO for a zero refcount page 1623 * that is not free, and 1 for any other page type. 1624 * For 1 the page is returned with increased page count, otherwise not. 1625 */ 1626 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1627 { 1628 int ret; 1629 1630 if (flags & MF_COUNT_INCREASED) 1631 return 1; 1632 1633 /* 1634 * When the target page is a free hugepage, just remove it 1635 * from free hugepage list. 1636 */ 1637 if (!get_hwpoison_page(p)) { 1638 if (PageHuge(p)) { 1639 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1640 ret = 0; 1641 } else if (is_free_buddy_page(p)) { 1642 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1643 ret = 0; 1644 } else { 1645 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1646 __func__, pfn, p->flags); 1647 ret = -EIO; 1648 } 1649 } else { 1650 /* Not a free page */ 1651 ret = 1; 1652 } 1653 return ret; 1654 } 1655 1656 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1657 { 1658 int ret = __get_any_page(page, pfn, flags); 1659 1660 if (ret == 1 && !PageHuge(page) && 1661 !PageLRU(page) && !__PageMovable(page)) { 1662 /* 1663 * Try to free it. 1664 */ 1665 put_hwpoison_page(page); 1666 shake_page(page, 1); 1667 1668 /* 1669 * Did it turn free? 1670 */ 1671 ret = __get_any_page(page, pfn, 0); 1672 if (ret == 1 && !PageLRU(page)) { 1673 /* Drop page reference which is from __get_any_page() */ 1674 put_hwpoison_page(page); 1675 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1676 pfn, page->flags, &page->flags); 1677 return -EIO; 1678 } 1679 } 1680 return ret; 1681 } 1682 1683 static int soft_offline_huge_page(struct page *page, int flags) 1684 { 1685 int ret; 1686 unsigned long pfn = page_to_pfn(page); 1687 struct page *hpage = compound_head(page); 1688 LIST_HEAD(pagelist); 1689 1690 /* 1691 * This double-check of PageHWPoison is to avoid the race with 1692 * memory_failure(). See also comment in __soft_offline_page(). 1693 */ 1694 lock_page(hpage); 1695 if (PageHWPoison(hpage)) { 1696 unlock_page(hpage); 1697 put_hwpoison_page(hpage); 1698 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1699 return -EBUSY; 1700 } 1701 unlock_page(hpage); 1702 1703 ret = isolate_huge_page(hpage, &pagelist); 1704 /* 1705 * get_any_page() and isolate_huge_page() takes a refcount each, 1706 * so need to drop one here. 1707 */ 1708 put_hwpoison_page(hpage); 1709 if (!ret) { 1710 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1711 return -EBUSY; 1712 } 1713 1714 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1715 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1716 if (ret) { 1717 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1718 pfn, ret, page->flags, &page->flags); 1719 if (!list_empty(&pagelist)) 1720 putback_movable_pages(&pagelist); 1721 if (ret > 0) 1722 ret = -EIO; 1723 } else { 1724 /* 1725 * We set PG_hwpoison only when the migration source hugepage 1726 * was successfully dissolved, because otherwise hwpoisoned 1727 * hugepage remains on free hugepage list, then userspace will 1728 * find it as SIGBUS by allocation failure. That's not expected 1729 * in soft-offlining. 1730 */ 1731 ret = dissolve_free_huge_page(page); 1732 if (!ret) { 1733 if (set_hwpoison_free_buddy_page(page)) 1734 num_poisoned_pages_inc(); 1735 else 1736 ret = -EBUSY; 1737 } 1738 } 1739 return ret; 1740 } 1741 1742 static int __soft_offline_page(struct page *page, int flags) 1743 { 1744 int ret; 1745 unsigned long pfn = page_to_pfn(page); 1746 1747 /* 1748 * Check PageHWPoison again inside page lock because PageHWPoison 1749 * is set by memory_failure() outside page lock. Note that 1750 * memory_failure() also double-checks PageHWPoison inside page lock, 1751 * so there's no race between soft_offline_page() and memory_failure(). 1752 */ 1753 lock_page(page); 1754 wait_on_page_writeback(page); 1755 if (PageHWPoison(page)) { 1756 unlock_page(page); 1757 put_hwpoison_page(page); 1758 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1759 return -EBUSY; 1760 } 1761 /* 1762 * Try to invalidate first. This should work for 1763 * non dirty unmapped page cache pages. 1764 */ 1765 ret = invalidate_inode_page(page); 1766 unlock_page(page); 1767 /* 1768 * RED-PEN would be better to keep it isolated here, but we 1769 * would need to fix isolation locking first. 1770 */ 1771 if (ret == 1) { 1772 put_hwpoison_page(page); 1773 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1774 SetPageHWPoison(page); 1775 num_poisoned_pages_inc(); 1776 return 0; 1777 } 1778 1779 /* 1780 * Simple invalidation didn't work. 1781 * Try to migrate to a new page instead. migrate.c 1782 * handles a large number of cases for us. 1783 */ 1784 if (PageLRU(page)) 1785 ret = isolate_lru_page(page); 1786 else 1787 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1788 /* 1789 * Drop page reference which is came from get_any_page() 1790 * successful isolate_lru_page() already took another one. 1791 */ 1792 put_hwpoison_page(page); 1793 if (!ret) { 1794 LIST_HEAD(pagelist); 1795 /* 1796 * After isolated lru page, the PageLRU will be cleared, 1797 * so use !__PageMovable instead for LRU page's mapping 1798 * cannot have PAGE_MAPPING_MOVABLE. 1799 */ 1800 if (!__PageMovable(page)) 1801 inc_node_page_state(page, NR_ISOLATED_ANON + 1802 page_is_file_cache(page)); 1803 list_add(&page->lru, &pagelist); 1804 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1805 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1806 if (ret) { 1807 if (!list_empty(&pagelist)) 1808 putback_movable_pages(&pagelist); 1809 1810 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1811 pfn, ret, page->flags, &page->flags); 1812 if (ret > 0) 1813 ret = -EIO; 1814 } 1815 } else { 1816 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1817 pfn, ret, page_count(page), page->flags, &page->flags); 1818 } 1819 return ret; 1820 } 1821 1822 static int soft_offline_in_use_page(struct page *page, int flags) 1823 { 1824 int ret; 1825 int mt; 1826 struct page *hpage = compound_head(page); 1827 1828 if (!PageHuge(page) && PageTransHuge(hpage)) { 1829 lock_page(page); 1830 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1831 unlock_page(page); 1832 if (!PageAnon(page)) 1833 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1834 else 1835 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1836 put_hwpoison_page(page); 1837 return -EBUSY; 1838 } 1839 unlock_page(page); 1840 } 1841 1842 /* 1843 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1844 * to free list immediately (not via pcplist) when released after 1845 * successful page migration. Otherwise we can't guarantee that the 1846 * page is really free after put_page() returns, so 1847 * set_hwpoison_free_buddy_page() highly likely fails. 1848 */ 1849 mt = get_pageblock_migratetype(page); 1850 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1851 if (PageHuge(page)) 1852 ret = soft_offline_huge_page(page, flags); 1853 else 1854 ret = __soft_offline_page(page, flags); 1855 set_pageblock_migratetype(page, mt); 1856 return ret; 1857 } 1858 1859 static int soft_offline_free_page(struct page *page) 1860 { 1861 int rc = dissolve_free_huge_page(page); 1862 1863 if (!rc) { 1864 if (set_hwpoison_free_buddy_page(page)) 1865 num_poisoned_pages_inc(); 1866 else 1867 rc = -EBUSY; 1868 } 1869 return rc; 1870 } 1871 1872 /** 1873 * soft_offline_page - Soft offline a page. 1874 * @page: page to offline 1875 * @flags: flags. Same as memory_failure(). 1876 * 1877 * Returns 0 on success, otherwise negated errno. 1878 * 1879 * Soft offline a page, by migration or invalidation, 1880 * without killing anything. This is for the case when 1881 * a page is not corrupted yet (so it's still valid to access), 1882 * but has had a number of corrected errors and is better taken 1883 * out. 1884 * 1885 * The actual policy on when to do that is maintained by 1886 * user space. 1887 * 1888 * This should never impact any application or cause data loss, 1889 * however it might take some time. 1890 * 1891 * This is not a 100% solution for all memory, but tries to be 1892 * ``good enough'' for the majority of memory. 1893 */ 1894 int soft_offline_page(struct page *page, int flags) 1895 { 1896 int ret; 1897 unsigned long pfn = page_to_pfn(page); 1898 1899 if (is_zone_device_page(page)) { 1900 pr_debug_ratelimited("soft_offline: %#lx page is device page\n", 1901 pfn); 1902 if (flags & MF_COUNT_INCREASED) 1903 put_page(page); 1904 return -EIO; 1905 } 1906 1907 if (PageHWPoison(page)) { 1908 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1909 if (flags & MF_COUNT_INCREASED) 1910 put_hwpoison_page(page); 1911 return -EBUSY; 1912 } 1913 1914 get_online_mems(); 1915 ret = get_any_page(page, pfn, flags); 1916 put_online_mems(); 1917 1918 if (ret > 0) 1919 ret = soft_offline_in_use_page(page, flags); 1920 else if (ret == 0) 1921 ret = soft_offline_free_page(page); 1922 1923 return ret; 1924 } 1925