1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 69 { 70 if (hugepage_or_freepage) { 71 /* 72 * Doing this check for free pages is also fine since dissolve_free_huge_page 73 * returns 0 for non-hugetlb pages as well. 74 */ 75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page)) 76 /* 77 * We could fail to take off the target page from buddy 78 * for example due to racy page allocaiton, but that's 79 * acceptable because soft-offlined page is not broken 80 * and if someone really want to use it, they should 81 * take it. 82 */ 83 return false; 84 } 85 86 SetPageHWPoison(page); 87 if (release) 88 put_page(page); 89 page_ref_inc(page); 90 num_poisoned_pages_inc(); 91 92 return true; 93 } 94 95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 96 97 u32 hwpoison_filter_enable = 0; 98 u32 hwpoison_filter_dev_major = ~0U; 99 u32 hwpoison_filter_dev_minor = ~0U; 100 u64 hwpoison_filter_flags_mask; 101 u64 hwpoison_filter_flags_value; 102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 107 108 static int hwpoison_filter_dev(struct page *p) 109 { 110 struct address_space *mapping; 111 dev_t dev; 112 113 if (hwpoison_filter_dev_major == ~0U && 114 hwpoison_filter_dev_minor == ~0U) 115 return 0; 116 117 /* 118 * page_mapping() does not accept slab pages. 119 */ 120 if (PageSlab(p)) 121 return -EINVAL; 122 123 mapping = page_mapping(p); 124 if (mapping == NULL || mapping->host == NULL) 125 return -EINVAL; 126 127 dev = mapping->host->i_sb->s_dev; 128 if (hwpoison_filter_dev_major != ~0U && 129 hwpoison_filter_dev_major != MAJOR(dev)) 130 return -EINVAL; 131 if (hwpoison_filter_dev_minor != ~0U && 132 hwpoison_filter_dev_minor != MINOR(dev)) 133 return -EINVAL; 134 135 return 0; 136 } 137 138 static int hwpoison_filter_flags(struct page *p) 139 { 140 if (!hwpoison_filter_flags_mask) 141 return 0; 142 143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 144 hwpoison_filter_flags_value) 145 return 0; 146 else 147 return -EINVAL; 148 } 149 150 /* 151 * This allows stress tests to limit test scope to a collection of tasks 152 * by putting them under some memcg. This prevents killing unrelated/important 153 * processes such as /sbin/init. Note that the target task may share clean 154 * pages with init (eg. libc text), which is harmless. If the target task 155 * share _dirty_ pages with another task B, the test scheme must make sure B 156 * is also included in the memcg. At last, due to race conditions this filter 157 * can only guarantee that the page either belongs to the memcg tasks, or is 158 * a freed page. 159 */ 160 #ifdef CONFIG_MEMCG 161 u64 hwpoison_filter_memcg; 162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 163 static int hwpoison_filter_task(struct page *p) 164 { 165 if (!hwpoison_filter_memcg) 166 return 0; 167 168 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 169 return -EINVAL; 170 171 return 0; 172 } 173 #else 174 static int hwpoison_filter_task(struct page *p) { return 0; } 175 #endif 176 177 int hwpoison_filter(struct page *p) 178 { 179 if (!hwpoison_filter_enable) 180 return 0; 181 182 if (hwpoison_filter_dev(p)) 183 return -EINVAL; 184 185 if (hwpoison_filter_flags(p)) 186 return -EINVAL; 187 188 if (hwpoison_filter_task(p)) 189 return -EINVAL; 190 191 return 0; 192 } 193 #else 194 int hwpoison_filter(struct page *p) 195 { 196 return 0; 197 } 198 #endif 199 200 EXPORT_SYMBOL_GPL(hwpoison_filter); 201 202 /* 203 * Kill all processes that have a poisoned page mapped and then isolate 204 * the page. 205 * 206 * General strategy: 207 * Find all processes having the page mapped and kill them. 208 * But we keep a page reference around so that the page is not 209 * actually freed yet. 210 * Then stash the page away 211 * 212 * There's no convenient way to get back to mapped processes 213 * from the VMAs. So do a brute-force search over all 214 * running processes. 215 * 216 * Remember that machine checks are not common (or rather 217 * if they are common you have other problems), so this shouldn't 218 * be a performance issue. 219 * 220 * Also there are some races possible while we get from the 221 * error detection to actually handle it. 222 */ 223 224 struct to_kill { 225 struct list_head nd; 226 struct task_struct *tsk; 227 unsigned long addr; 228 short size_shift; 229 }; 230 231 /* 232 * Send all the processes who have the page mapped a signal. 233 * ``action optional'' if they are not immediately affected by the error 234 * ``action required'' if error happened in current execution context 235 */ 236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 237 { 238 struct task_struct *t = tk->tsk; 239 short addr_lsb = tk->size_shift; 240 int ret = 0; 241 242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 243 pfn, t->comm, t->pid); 244 245 if (flags & MF_ACTION_REQUIRED) { 246 WARN_ON_ONCE(t != current); 247 ret = force_sig_mceerr(BUS_MCEERR_AR, 248 (void __user *)tk->addr, addr_lsb); 249 } else { 250 /* 251 * Don't use force here, it's convenient if the signal 252 * can be temporarily blocked. 253 * This could cause a loop when the user sets SIGBUS 254 * to SIG_IGN, but hopefully no one will do that? 255 */ 256 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 257 addr_lsb, t); /* synchronous? */ 258 } 259 if (ret < 0) 260 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 261 t->comm, t->pid, ret); 262 return ret; 263 } 264 265 /* 266 * Unknown page type encountered. Try to check whether it can turn PageLRU by 267 * lru_add_drain_all, or a free page by reclaiming slabs when possible. 268 */ 269 void shake_page(struct page *p, int access) 270 { 271 if (PageHuge(p)) 272 return; 273 274 if (!PageSlab(p)) { 275 lru_add_drain_all(); 276 if (PageLRU(p) || is_free_buddy_page(p)) 277 return; 278 } 279 280 /* 281 * Only call shrink_node_slabs here (which would also shrink 282 * other caches) if access is not potentially fatal. 283 */ 284 if (access) 285 drop_slab_node(page_to_nid(p)); 286 } 287 EXPORT_SYMBOL_GPL(shake_page); 288 289 static unsigned long dev_pagemap_mapping_shift(struct page *page, 290 struct vm_area_struct *vma) 291 { 292 unsigned long address = vma_address(page, vma); 293 pgd_t *pgd; 294 p4d_t *p4d; 295 pud_t *pud; 296 pmd_t *pmd; 297 pte_t *pte; 298 299 pgd = pgd_offset(vma->vm_mm, address); 300 if (!pgd_present(*pgd)) 301 return 0; 302 p4d = p4d_offset(pgd, address); 303 if (!p4d_present(*p4d)) 304 return 0; 305 pud = pud_offset(p4d, address); 306 if (!pud_present(*pud)) 307 return 0; 308 if (pud_devmap(*pud)) 309 return PUD_SHIFT; 310 pmd = pmd_offset(pud, address); 311 if (!pmd_present(*pmd)) 312 return 0; 313 if (pmd_devmap(*pmd)) 314 return PMD_SHIFT; 315 pte = pte_offset_map(pmd, address); 316 if (!pte_present(*pte)) 317 return 0; 318 if (pte_devmap(*pte)) 319 return PAGE_SHIFT; 320 return 0; 321 } 322 323 /* 324 * Failure handling: if we can't find or can't kill a process there's 325 * not much we can do. We just print a message and ignore otherwise. 326 */ 327 328 /* 329 * Schedule a process for later kill. 330 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 331 */ 332 static void add_to_kill(struct task_struct *tsk, struct page *p, 333 struct vm_area_struct *vma, 334 struct list_head *to_kill) 335 { 336 struct to_kill *tk; 337 338 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 339 if (!tk) { 340 pr_err("Memory failure: Out of memory while machine check handling\n"); 341 return; 342 } 343 344 tk->addr = page_address_in_vma(p, vma); 345 if (is_zone_device_page(p)) 346 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 347 else 348 tk->size_shift = page_shift(compound_head(p)); 349 350 /* 351 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 352 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 353 * so "tk->size_shift == 0" effectively checks no mapping on 354 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 355 * to a process' address space, it's possible not all N VMAs 356 * contain mappings for the page, but at least one VMA does. 357 * Only deliver SIGBUS with payload derived from the VMA that 358 * has a mapping for the page. 359 */ 360 if (tk->addr == -EFAULT) { 361 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 362 page_to_pfn(p), tsk->comm); 363 } else if (tk->size_shift == 0) { 364 kfree(tk); 365 return; 366 } 367 368 get_task_struct(tsk); 369 tk->tsk = tsk; 370 list_add_tail(&tk->nd, to_kill); 371 } 372 373 /* 374 * Kill the processes that have been collected earlier. 375 * 376 * Only do anything when DOIT is set, otherwise just free the list 377 * (this is used for clean pages which do not need killing) 378 * Also when FAIL is set do a force kill because something went 379 * wrong earlier. 380 */ 381 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 382 unsigned long pfn, int flags) 383 { 384 struct to_kill *tk, *next; 385 386 list_for_each_entry_safe (tk, next, to_kill, nd) { 387 if (forcekill) { 388 /* 389 * In case something went wrong with munmapping 390 * make sure the process doesn't catch the 391 * signal and then access the memory. Just kill it. 392 */ 393 if (fail || tk->addr == -EFAULT) { 394 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 395 pfn, tk->tsk->comm, tk->tsk->pid); 396 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 397 tk->tsk, PIDTYPE_PID); 398 } 399 400 /* 401 * In theory the process could have mapped 402 * something else on the address in-between. We could 403 * check for that, but we need to tell the 404 * process anyways. 405 */ 406 else if (kill_proc(tk, pfn, flags) < 0) 407 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 408 pfn, tk->tsk->comm, tk->tsk->pid); 409 } 410 put_task_struct(tk->tsk); 411 kfree(tk); 412 } 413 } 414 415 /* 416 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 417 * on behalf of the thread group. Return task_struct of the (first found) 418 * dedicated thread if found, and return NULL otherwise. 419 * 420 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 421 * have to call rcu_read_lock/unlock() in this function. 422 */ 423 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 424 { 425 struct task_struct *t; 426 427 for_each_thread(tsk, t) { 428 if (t->flags & PF_MCE_PROCESS) { 429 if (t->flags & PF_MCE_EARLY) 430 return t; 431 } else { 432 if (sysctl_memory_failure_early_kill) 433 return t; 434 } 435 } 436 return NULL; 437 } 438 439 /* 440 * Determine whether a given process is "early kill" process which expects 441 * to be signaled when some page under the process is hwpoisoned. 442 * Return task_struct of the dedicated thread (main thread unless explicitly 443 * specified) if the process is "early kill," and otherwise returns NULL. 444 * 445 * Note that the above is true for Action Optional case, but not for Action 446 * Required case where SIGBUS should sent only to the current thread. 447 */ 448 static struct task_struct *task_early_kill(struct task_struct *tsk, 449 int force_early) 450 { 451 if (!tsk->mm) 452 return NULL; 453 if (force_early) { 454 /* 455 * Comparing ->mm here because current task might represent 456 * a subthread, while tsk always points to the main thread. 457 */ 458 if (tsk->mm == current->mm) 459 return current; 460 else 461 return NULL; 462 } 463 return find_early_kill_thread(tsk); 464 } 465 466 /* 467 * Collect processes when the error hit an anonymous page. 468 */ 469 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 470 int force_early) 471 { 472 struct vm_area_struct *vma; 473 struct task_struct *tsk; 474 struct anon_vma *av; 475 pgoff_t pgoff; 476 477 av = page_lock_anon_vma_read(page); 478 if (av == NULL) /* Not actually mapped anymore */ 479 return; 480 481 pgoff = page_to_pgoff(page); 482 read_lock(&tasklist_lock); 483 for_each_process (tsk) { 484 struct anon_vma_chain *vmac; 485 struct task_struct *t = task_early_kill(tsk, force_early); 486 487 if (!t) 488 continue; 489 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 490 pgoff, pgoff) { 491 vma = vmac->vma; 492 if (!page_mapped_in_vma(page, vma)) 493 continue; 494 if (vma->vm_mm == t->mm) 495 add_to_kill(t, page, vma, to_kill); 496 } 497 } 498 read_unlock(&tasklist_lock); 499 page_unlock_anon_vma_read(av); 500 } 501 502 /* 503 * Collect processes when the error hit a file mapped page. 504 */ 505 static void collect_procs_file(struct page *page, struct list_head *to_kill, 506 int force_early) 507 { 508 struct vm_area_struct *vma; 509 struct task_struct *tsk; 510 struct address_space *mapping = page->mapping; 511 pgoff_t pgoff; 512 513 i_mmap_lock_read(mapping); 514 read_lock(&tasklist_lock); 515 pgoff = page_to_pgoff(page); 516 for_each_process(tsk) { 517 struct task_struct *t = task_early_kill(tsk, force_early); 518 519 if (!t) 520 continue; 521 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 522 pgoff) { 523 /* 524 * Send early kill signal to tasks where a vma covers 525 * the page but the corrupted page is not necessarily 526 * mapped it in its pte. 527 * Assume applications who requested early kill want 528 * to be informed of all such data corruptions. 529 */ 530 if (vma->vm_mm == t->mm) 531 add_to_kill(t, page, vma, to_kill); 532 } 533 } 534 read_unlock(&tasklist_lock); 535 i_mmap_unlock_read(mapping); 536 } 537 538 /* 539 * Collect the processes who have the corrupted page mapped to kill. 540 */ 541 static void collect_procs(struct page *page, struct list_head *tokill, 542 int force_early) 543 { 544 if (!page->mapping) 545 return; 546 547 if (PageAnon(page)) 548 collect_procs_anon(page, tokill, force_early); 549 else 550 collect_procs_file(page, tokill, force_early); 551 } 552 553 static const char *action_name[] = { 554 [MF_IGNORED] = "Ignored", 555 [MF_FAILED] = "Failed", 556 [MF_DELAYED] = "Delayed", 557 [MF_RECOVERED] = "Recovered", 558 }; 559 560 static const char * const action_page_types[] = { 561 [MF_MSG_KERNEL] = "reserved kernel page", 562 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 563 [MF_MSG_SLAB] = "kernel slab page", 564 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 565 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 566 [MF_MSG_HUGE] = "huge page", 567 [MF_MSG_FREE_HUGE] = "free huge page", 568 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 569 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 570 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 571 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 572 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 573 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 574 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 575 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 576 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 577 [MF_MSG_CLEAN_LRU] = "clean LRU page", 578 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 579 [MF_MSG_BUDDY] = "free buddy page", 580 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 581 [MF_MSG_DAX] = "dax page", 582 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 583 [MF_MSG_UNKNOWN] = "unknown page", 584 }; 585 586 /* 587 * XXX: It is possible that a page is isolated from LRU cache, 588 * and then kept in swap cache or failed to remove from page cache. 589 * The page count will stop it from being freed by unpoison. 590 * Stress tests should be aware of this memory leak problem. 591 */ 592 static int delete_from_lru_cache(struct page *p) 593 { 594 if (!isolate_lru_page(p)) { 595 /* 596 * Clear sensible page flags, so that the buddy system won't 597 * complain when the page is unpoison-and-freed. 598 */ 599 ClearPageActive(p); 600 ClearPageUnevictable(p); 601 602 /* 603 * Poisoned page might never drop its ref count to 0 so we have 604 * to uncharge it manually from its memcg. 605 */ 606 mem_cgroup_uncharge(p); 607 608 /* 609 * drop the page count elevated by isolate_lru_page() 610 */ 611 put_page(p); 612 return 0; 613 } 614 return -EIO; 615 } 616 617 static int truncate_error_page(struct page *p, unsigned long pfn, 618 struct address_space *mapping) 619 { 620 int ret = MF_FAILED; 621 622 if (mapping->a_ops->error_remove_page) { 623 int err = mapping->a_ops->error_remove_page(mapping, p); 624 625 if (err != 0) { 626 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 627 pfn, err); 628 } else if (page_has_private(p) && 629 !try_to_release_page(p, GFP_NOIO)) { 630 pr_info("Memory failure: %#lx: failed to release buffers\n", 631 pfn); 632 } else { 633 ret = MF_RECOVERED; 634 } 635 } else { 636 /* 637 * If the file system doesn't support it just invalidate 638 * This fails on dirty or anything with private pages 639 */ 640 if (invalidate_inode_page(p)) 641 ret = MF_RECOVERED; 642 else 643 pr_info("Memory failure: %#lx: Failed to invalidate\n", 644 pfn); 645 } 646 647 return ret; 648 } 649 650 /* 651 * Error hit kernel page. 652 * Do nothing, try to be lucky and not touch this instead. For a few cases we 653 * could be more sophisticated. 654 */ 655 static int me_kernel(struct page *p, unsigned long pfn) 656 { 657 return MF_IGNORED; 658 } 659 660 /* 661 * Page in unknown state. Do nothing. 662 */ 663 static int me_unknown(struct page *p, unsigned long pfn) 664 { 665 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 666 return MF_FAILED; 667 } 668 669 /* 670 * Clean (or cleaned) page cache page. 671 */ 672 static int me_pagecache_clean(struct page *p, unsigned long pfn) 673 { 674 struct address_space *mapping; 675 676 delete_from_lru_cache(p); 677 678 /* 679 * For anonymous pages we're done the only reference left 680 * should be the one m_f() holds. 681 */ 682 if (PageAnon(p)) 683 return MF_RECOVERED; 684 685 /* 686 * Now truncate the page in the page cache. This is really 687 * more like a "temporary hole punch" 688 * Don't do this for block devices when someone else 689 * has a reference, because it could be file system metadata 690 * and that's not safe to truncate. 691 */ 692 mapping = page_mapping(p); 693 if (!mapping) { 694 /* 695 * Page has been teared down in the meanwhile 696 */ 697 return MF_FAILED; 698 } 699 700 /* 701 * Truncation is a bit tricky. Enable it per file system for now. 702 * 703 * Open: to take i_mutex or not for this? Right now we don't. 704 */ 705 return truncate_error_page(p, pfn, mapping); 706 } 707 708 /* 709 * Dirty pagecache page 710 * Issues: when the error hit a hole page the error is not properly 711 * propagated. 712 */ 713 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 714 { 715 struct address_space *mapping = page_mapping(p); 716 717 SetPageError(p); 718 /* TBD: print more information about the file. */ 719 if (mapping) { 720 /* 721 * IO error will be reported by write(), fsync(), etc. 722 * who check the mapping. 723 * This way the application knows that something went 724 * wrong with its dirty file data. 725 * 726 * There's one open issue: 727 * 728 * The EIO will be only reported on the next IO 729 * operation and then cleared through the IO map. 730 * Normally Linux has two mechanisms to pass IO error 731 * first through the AS_EIO flag in the address space 732 * and then through the PageError flag in the page. 733 * Since we drop pages on memory failure handling the 734 * only mechanism open to use is through AS_AIO. 735 * 736 * This has the disadvantage that it gets cleared on 737 * the first operation that returns an error, while 738 * the PageError bit is more sticky and only cleared 739 * when the page is reread or dropped. If an 740 * application assumes it will always get error on 741 * fsync, but does other operations on the fd before 742 * and the page is dropped between then the error 743 * will not be properly reported. 744 * 745 * This can already happen even without hwpoisoned 746 * pages: first on metadata IO errors (which only 747 * report through AS_EIO) or when the page is dropped 748 * at the wrong time. 749 * 750 * So right now we assume that the application DTRT on 751 * the first EIO, but we're not worse than other parts 752 * of the kernel. 753 */ 754 mapping_set_error(mapping, -EIO); 755 } 756 757 return me_pagecache_clean(p, pfn); 758 } 759 760 /* 761 * Clean and dirty swap cache. 762 * 763 * Dirty swap cache page is tricky to handle. The page could live both in page 764 * cache and swap cache(ie. page is freshly swapped in). So it could be 765 * referenced concurrently by 2 types of PTEs: 766 * normal PTEs and swap PTEs. We try to handle them consistently by calling 767 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 768 * and then 769 * - clear dirty bit to prevent IO 770 * - remove from LRU 771 * - but keep in the swap cache, so that when we return to it on 772 * a later page fault, we know the application is accessing 773 * corrupted data and shall be killed (we installed simple 774 * interception code in do_swap_page to catch it). 775 * 776 * Clean swap cache pages can be directly isolated. A later page fault will 777 * bring in the known good data from disk. 778 */ 779 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 780 { 781 ClearPageDirty(p); 782 /* Trigger EIO in shmem: */ 783 ClearPageUptodate(p); 784 785 if (!delete_from_lru_cache(p)) 786 return MF_DELAYED; 787 else 788 return MF_FAILED; 789 } 790 791 static int me_swapcache_clean(struct page *p, unsigned long pfn) 792 { 793 delete_from_swap_cache(p); 794 795 if (!delete_from_lru_cache(p)) 796 return MF_RECOVERED; 797 else 798 return MF_FAILED; 799 } 800 801 /* 802 * Huge pages. Needs work. 803 * Issues: 804 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 805 * To narrow down kill region to one page, we need to break up pmd. 806 */ 807 static int me_huge_page(struct page *p, unsigned long pfn) 808 { 809 int res; 810 struct page *hpage = compound_head(p); 811 struct address_space *mapping; 812 813 if (!PageHuge(hpage)) 814 return MF_DELAYED; 815 816 mapping = page_mapping(hpage); 817 if (mapping) { 818 res = truncate_error_page(hpage, pfn, mapping); 819 } else { 820 res = MF_FAILED; 821 unlock_page(hpage); 822 /* 823 * migration entry prevents later access on error anonymous 824 * hugepage, so we can free and dissolve it into buddy to 825 * save healthy subpages. 826 */ 827 if (PageAnon(hpage)) 828 put_page(hpage); 829 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 830 page_ref_inc(p); 831 res = MF_RECOVERED; 832 } 833 lock_page(hpage); 834 } 835 836 return res; 837 } 838 839 /* 840 * Various page states we can handle. 841 * 842 * A page state is defined by its current page->flags bits. 843 * The table matches them in order and calls the right handler. 844 * 845 * This is quite tricky because we can access page at any time 846 * in its live cycle, so all accesses have to be extremely careful. 847 * 848 * This is not complete. More states could be added. 849 * For any missing state don't attempt recovery. 850 */ 851 852 #define dirty (1UL << PG_dirty) 853 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 854 #define unevict (1UL << PG_unevictable) 855 #define mlock (1UL << PG_mlocked) 856 #define lru (1UL << PG_lru) 857 #define head (1UL << PG_head) 858 #define slab (1UL << PG_slab) 859 #define reserved (1UL << PG_reserved) 860 861 static struct page_state { 862 unsigned long mask; 863 unsigned long res; 864 enum mf_action_page_type type; 865 int (*action)(struct page *p, unsigned long pfn); 866 } error_states[] = { 867 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 868 /* 869 * free pages are specially detected outside this table: 870 * PG_buddy pages only make a small fraction of all free pages. 871 */ 872 873 /* 874 * Could in theory check if slab page is free or if we can drop 875 * currently unused objects without touching them. But just 876 * treat it as standard kernel for now. 877 */ 878 { slab, slab, MF_MSG_SLAB, me_kernel }, 879 880 { head, head, MF_MSG_HUGE, me_huge_page }, 881 882 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 883 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 884 885 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 886 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 887 888 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 889 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 890 891 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 892 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 893 894 /* 895 * Catchall entry: must be at end. 896 */ 897 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 898 }; 899 900 #undef dirty 901 #undef sc 902 #undef unevict 903 #undef mlock 904 #undef lru 905 #undef head 906 #undef slab 907 #undef reserved 908 909 /* 910 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 911 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 912 */ 913 static void action_result(unsigned long pfn, enum mf_action_page_type type, 914 enum mf_result result) 915 { 916 trace_memory_failure_event(pfn, type, result); 917 918 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 919 pfn, action_page_types[type], action_name[result]); 920 } 921 922 static int page_action(struct page_state *ps, struct page *p, 923 unsigned long pfn) 924 { 925 int result; 926 int count; 927 928 result = ps->action(p, pfn); 929 930 count = page_count(p) - 1; 931 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 932 count--; 933 if (count > 0) { 934 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 935 pfn, action_page_types[ps->type], count); 936 result = MF_FAILED; 937 } 938 action_result(pfn, ps->type, result); 939 940 /* Could do more checks here if page looks ok */ 941 /* 942 * Could adjust zone counters here to correct for the missing page. 943 */ 944 945 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 946 } 947 948 /** 949 * __get_hwpoison_page() - Get refcount for memory error handling: 950 * @page: raw error page (hit by memory error) 951 * 952 * Return: return 0 if failed to grab the refcount, otherwise true (some 953 * non-zero value.) 954 */ 955 static int __get_hwpoison_page(struct page *page) 956 { 957 struct page *head = compound_head(page); 958 959 if (!PageHuge(head) && PageTransHuge(head)) { 960 /* 961 * Non anonymous thp exists only in allocation/free time. We 962 * can't handle such a case correctly, so let's give it up. 963 * This should be better than triggering BUG_ON when kernel 964 * tries to touch the "partially handled" page. 965 */ 966 if (!PageAnon(head)) { 967 pr_err("Memory failure: %#lx: non anonymous thp\n", 968 page_to_pfn(page)); 969 return 0; 970 } 971 } 972 973 if (get_page_unless_zero(head)) { 974 if (head == compound_head(page)) 975 return 1; 976 977 pr_info("Memory failure: %#lx cannot catch tail\n", 978 page_to_pfn(page)); 979 put_page(head); 980 } 981 982 return 0; 983 } 984 985 /* 986 * Safely get reference count of an arbitrary page. 987 * 988 * Returns 0 for a free page, 1 for an in-use page, 989 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an 990 * allocation. 991 * We only incremented refcount in case the page was already in-use and it 992 * is a known type we can handle. 993 */ 994 static int get_any_page(struct page *p, unsigned long flags) 995 { 996 int ret = 0, pass = 0; 997 bool count_increased = false; 998 999 if (flags & MF_COUNT_INCREASED) 1000 count_increased = true; 1001 1002 try_again: 1003 if (!count_increased && !__get_hwpoison_page(p)) { 1004 if (page_count(p)) { 1005 /* We raced with an allocation, retry. */ 1006 if (pass++ < 3) 1007 goto try_again; 1008 ret = -EBUSY; 1009 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1010 /* We raced with put_page, retry. */ 1011 if (pass++ < 3) 1012 goto try_again; 1013 ret = -EIO; 1014 } 1015 } else { 1016 if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) { 1017 ret = 1; 1018 } else { 1019 /* 1020 * A page we cannot handle. Check whether we can turn 1021 * it into something we can handle. 1022 */ 1023 if (pass++ < 3) { 1024 put_page(p); 1025 shake_page(p, 1); 1026 count_increased = false; 1027 goto try_again; 1028 } 1029 put_page(p); 1030 ret = -EIO; 1031 } 1032 } 1033 1034 return ret; 1035 } 1036 1037 static int get_hwpoison_page(struct page *p, unsigned long flags, 1038 enum mf_flags ctxt) 1039 { 1040 int ret; 1041 1042 zone_pcp_disable(page_zone(p)); 1043 if (ctxt == MF_SOFT_OFFLINE) 1044 ret = get_any_page(p, flags); 1045 else 1046 ret = __get_hwpoison_page(p); 1047 zone_pcp_enable(page_zone(p)); 1048 1049 return ret; 1050 } 1051 1052 /* 1053 * Do all that is necessary to remove user space mappings. Unmap 1054 * the pages and send SIGBUS to the processes if the data was dirty. 1055 */ 1056 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1057 int flags, struct page **hpagep) 1058 { 1059 enum ttu_flags ttu = TTU_IGNORE_MLOCK; 1060 struct address_space *mapping; 1061 LIST_HEAD(tokill); 1062 bool unmap_success = true; 1063 int kill = 1, forcekill; 1064 struct page *hpage = *hpagep; 1065 bool mlocked = PageMlocked(hpage); 1066 1067 /* 1068 * Here we are interested only in user-mapped pages, so skip any 1069 * other types of pages. 1070 */ 1071 if (PageReserved(p) || PageSlab(p)) 1072 return true; 1073 if (!(PageLRU(hpage) || PageHuge(p))) 1074 return true; 1075 1076 /* 1077 * This check implies we don't kill processes if their pages 1078 * are in the swap cache early. Those are always late kills. 1079 */ 1080 if (!page_mapped(hpage)) 1081 return true; 1082 1083 if (PageKsm(p)) { 1084 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1085 return false; 1086 } 1087 1088 if (PageSwapCache(p)) { 1089 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1090 pfn); 1091 ttu |= TTU_IGNORE_HWPOISON; 1092 } 1093 1094 /* 1095 * Propagate the dirty bit from PTEs to struct page first, because we 1096 * need this to decide if we should kill or just drop the page. 1097 * XXX: the dirty test could be racy: set_page_dirty() may not always 1098 * be called inside page lock (it's recommended but not enforced). 1099 */ 1100 mapping = page_mapping(hpage); 1101 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1102 mapping_can_writeback(mapping)) { 1103 if (page_mkclean(hpage)) { 1104 SetPageDirty(hpage); 1105 } else { 1106 kill = 0; 1107 ttu |= TTU_IGNORE_HWPOISON; 1108 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1109 pfn); 1110 } 1111 } 1112 1113 /* 1114 * First collect all the processes that have the page 1115 * mapped in dirty form. This has to be done before try_to_unmap, 1116 * because ttu takes the rmap data structures down. 1117 * 1118 * Error handling: We ignore errors here because 1119 * there's nothing that can be done. 1120 */ 1121 if (kill) 1122 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1123 1124 if (!PageHuge(hpage)) { 1125 unmap_success = try_to_unmap(hpage, ttu); 1126 } else { 1127 if (!PageAnon(hpage)) { 1128 /* 1129 * For hugetlb pages in shared mappings, try_to_unmap 1130 * could potentially call huge_pmd_unshare. Because of 1131 * this, take semaphore in write mode here and set 1132 * TTU_RMAP_LOCKED to indicate we have taken the lock 1133 * at this higer level. 1134 */ 1135 mapping = hugetlb_page_mapping_lock_write(hpage); 1136 if (mapping) { 1137 unmap_success = try_to_unmap(hpage, 1138 ttu|TTU_RMAP_LOCKED); 1139 i_mmap_unlock_write(mapping); 1140 } else { 1141 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1142 unmap_success = false; 1143 } 1144 } else { 1145 unmap_success = try_to_unmap(hpage, ttu); 1146 } 1147 } 1148 if (!unmap_success) 1149 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1150 pfn, page_mapcount(hpage)); 1151 1152 /* 1153 * try_to_unmap() might put mlocked page in lru cache, so call 1154 * shake_page() again to ensure that it's flushed. 1155 */ 1156 if (mlocked) 1157 shake_page(hpage, 0); 1158 1159 /* 1160 * Now that the dirty bit has been propagated to the 1161 * struct page and all unmaps done we can decide if 1162 * killing is needed or not. Only kill when the page 1163 * was dirty or the process is not restartable, 1164 * otherwise the tokill list is merely 1165 * freed. When there was a problem unmapping earlier 1166 * use a more force-full uncatchable kill to prevent 1167 * any accesses to the poisoned memory. 1168 */ 1169 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1170 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1171 1172 return unmap_success; 1173 } 1174 1175 static int identify_page_state(unsigned long pfn, struct page *p, 1176 unsigned long page_flags) 1177 { 1178 struct page_state *ps; 1179 1180 /* 1181 * The first check uses the current page flags which may not have any 1182 * relevant information. The second check with the saved page flags is 1183 * carried out only if the first check can't determine the page status. 1184 */ 1185 for (ps = error_states;; ps++) 1186 if ((p->flags & ps->mask) == ps->res) 1187 break; 1188 1189 page_flags |= (p->flags & (1UL << PG_dirty)); 1190 1191 if (!ps->mask) 1192 for (ps = error_states;; ps++) 1193 if ((page_flags & ps->mask) == ps->res) 1194 break; 1195 return page_action(ps, p, pfn); 1196 } 1197 1198 static int try_to_split_thp_page(struct page *page, const char *msg) 1199 { 1200 lock_page(page); 1201 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1202 unsigned long pfn = page_to_pfn(page); 1203 1204 unlock_page(page); 1205 if (!PageAnon(page)) 1206 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn); 1207 else 1208 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1209 put_page(page); 1210 return -EBUSY; 1211 } 1212 unlock_page(page); 1213 1214 return 0; 1215 } 1216 1217 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1218 { 1219 struct page *p = pfn_to_page(pfn); 1220 struct page *head = compound_head(p); 1221 int res; 1222 unsigned long page_flags; 1223 1224 if (TestSetPageHWPoison(head)) { 1225 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1226 pfn); 1227 return 0; 1228 } 1229 1230 num_poisoned_pages_inc(); 1231 1232 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1233 /* 1234 * Check "filter hit" and "race with other subpage." 1235 */ 1236 lock_page(head); 1237 if (PageHWPoison(head)) { 1238 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1239 || (p != head && TestSetPageHWPoison(head))) { 1240 num_poisoned_pages_dec(); 1241 unlock_page(head); 1242 return 0; 1243 } 1244 } 1245 unlock_page(head); 1246 res = MF_FAILED; 1247 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 1248 page_ref_inc(p); 1249 res = MF_RECOVERED; 1250 } 1251 action_result(pfn, MF_MSG_FREE_HUGE, res); 1252 return res == MF_RECOVERED ? 0 : -EBUSY; 1253 } 1254 1255 lock_page(head); 1256 page_flags = head->flags; 1257 1258 if (!PageHWPoison(head)) { 1259 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1260 num_poisoned_pages_dec(); 1261 unlock_page(head); 1262 put_page(head); 1263 return 0; 1264 } 1265 1266 /* 1267 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1268 * simply disable it. In order to make it work properly, we need 1269 * make sure that: 1270 * - conversion of a pud that maps an error hugetlb into hwpoison 1271 * entry properly works, and 1272 * - other mm code walking over page table is aware of pud-aligned 1273 * hwpoison entries. 1274 */ 1275 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1276 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1277 res = -EBUSY; 1278 goto out; 1279 } 1280 1281 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1282 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1283 res = -EBUSY; 1284 goto out; 1285 } 1286 1287 res = identify_page_state(pfn, p, page_flags); 1288 out: 1289 unlock_page(head); 1290 return res; 1291 } 1292 1293 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1294 struct dev_pagemap *pgmap) 1295 { 1296 struct page *page = pfn_to_page(pfn); 1297 const bool unmap_success = true; 1298 unsigned long size = 0; 1299 struct to_kill *tk; 1300 LIST_HEAD(tokill); 1301 int rc = -EBUSY; 1302 loff_t start; 1303 dax_entry_t cookie; 1304 1305 if (flags & MF_COUNT_INCREASED) 1306 /* 1307 * Drop the extra refcount in case we come from madvise(). 1308 */ 1309 put_page(page); 1310 1311 /* 1312 * Prevent the inode from being freed while we are interrogating 1313 * the address_space, typically this would be handled by 1314 * lock_page(), but dax pages do not use the page lock. This 1315 * also prevents changes to the mapping of this pfn until 1316 * poison signaling is complete. 1317 */ 1318 cookie = dax_lock_page(page); 1319 if (!cookie) 1320 goto out; 1321 1322 if (hwpoison_filter(page)) { 1323 rc = 0; 1324 goto unlock; 1325 } 1326 1327 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1328 /* 1329 * TODO: Handle HMM pages which may need coordination 1330 * with device-side memory. 1331 */ 1332 goto unlock; 1333 } 1334 1335 /* 1336 * Use this flag as an indication that the dax page has been 1337 * remapped UC to prevent speculative consumption of poison. 1338 */ 1339 SetPageHWPoison(page); 1340 1341 /* 1342 * Unlike System-RAM there is no possibility to swap in a 1343 * different physical page at a given virtual address, so all 1344 * userspace consumption of ZONE_DEVICE memory necessitates 1345 * SIGBUS (i.e. MF_MUST_KILL) 1346 */ 1347 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1348 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1349 1350 list_for_each_entry(tk, &tokill, nd) 1351 if (tk->size_shift) 1352 size = max(size, 1UL << tk->size_shift); 1353 if (size) { 1354 /* 1355 * Unmap the largest mapping to avoid breaking up 1356 * device-dax mappings which are constant size. The 1357 * actual size of the mapping being torn down is 1358 * communicated in siginfo, see kill_proc() 1359 */ 1360 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1361 unmap_mapping_range(page->mapping, start, start + size, 0); 1362 } 1363 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1364 rc = 0; 1365 unlock: 1366 dax_unlock_page(page, cookie); 1367 out: 1368 /* drop pgmap ref acquired in caller */ 1369 put_dev_pagemap(pgmap); 1370 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1371 return rc; 1372 } 1373 1374 /** 1375 * memory_failure - Handle memory failure of a page. 1376 * @pfn: Page Number of the corrupted page 1377 * @flags: fine tune action taken 1378 * 1379 * This function is called by the low level machine check code 1380 * of an architecture when it detects hardware memory corruption 1381 * of a page. It tries its best to recover, which includes 1382 * dropping pages, killing processes etc. 1383 * 1384 * The function is primarily of use for corruptions that 1385 * happen outside the current execution context (e.g. when 1386 * detected by a background scrubber) 1387 * 1388 * Must run in process context (e.g. a work queue) with interrupts 1389 * enabled and no spinlocks hold. 1390 */ 1391 int memory_failure(unsigned long pfn, int flags) 1392 { 1393 struct page *p; 1394 struct page *hpage; 1395 struct page *orig_head; 1396 struct dev_pagemap *pgmap; 1397 int res; 1398 unsigned long page_flags; 1399 bool retry = true; 1400 1401 if (!sysctl_memory_failure_recovery) 1402 panic("Memory failure on page %lx", pfn); 1403 1404 p = pfn_to_online_page(pfn); 1405 if (!p) { 1406 if (pfn_valid(pfn)) { 1407 pgmap = get_dev_pagemap(pfn, NULL); 1408 if (pgmap) 1409 return memory_failure_dev_pagemap(pfn, flags, 1410 pgmap); 1411 } 1412 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1413 pfn); 1414 return -ENXIO; 1415 } 1416 1417 try_again: 1418 if (PageHuge(p)) 1419 return memory_failure_hugetlb(pfn, flags); 1420 if (TestSetPageHWPoison(p)) { 1421 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1422 pfn); 1423 return 0; 1424 } 1425 1426 orig_head = hpage = compound_head(p); 1427 num_poisoned_pages_inc(); 1428 1429 /* 1430 * We need/can do nothing about count=0 pages. 1431 * 1) it's a free page, and therefore in safe hand: 1432 * prep_new_page() will be the gate keeper. 1433 * 2) it's part of a non-compound high order page. 1434 * Implies some kernel user: cannot stop them from 1435 * R/W the page; let's pray that the page has been 1436 * used and will be freed some time later. 1437 * In fact it's dangerous to directly bump up page count from 0, 1438 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1439 */ 1440 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1441 if (is_free_buddy_page(p)) { 1442 if (take_page_off_buddy(p)) { 1443 page_ref_inc(p); 1444 res = MF_RECOVERED; 1445 } else { 1446 /* We lost the race, try again */ 1447 if (retry) { 1448 ClearPageHWPoison(p); 1449 num_poisoned_pages_dec(); 1450 retry = false; 1451 goto try_again; 1452 } 1453 res = MF_FAILED; 1454 } 1455 action_result(pfn, MF_MSG_BUDDY, res); 1456 return res == MF_RECOVERED ? 0 : -EBUSY; 1457 } else { 1458 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1459 return -EBUSY; 1460 } 1461 } 1462 1463 if (PageTransHuge(hpage)) { 1464 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1465 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1466 return -EBUSY; 1467 } 1468 VM_BUG_ON_PAGE(!page_count(p), p); 1469 } 1470 1471 /* 1472 * We ignore non-LRU pages for good reasons. 1473 * - PG_locked is only well defined for LRU pages and a few others 1474 * - to avoid races with __SetPageLocked() 1475 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1476 * The check (unnecessarily) ignores LRU pages being isolated and 1477 * walked by the page reclaim code, however that's not a big loss. 1478 */ 1479 shake_page(p, 0); 1480 1481 lock_page(p); 1482 1483 /* 1484 * The page could have changed compound pages during the locking. 1485 * If this happens just bail out. 1486 */ 1487 if (PageCompound(p) && compound_head(p) != orig_head) { 1488 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1489 res = -EBUSY; 1490 goto out; 1491 } 1492 1493 /* 1494 * We use page flags to determine what action should be taken, but 1495 * the flags can be modified by the error containment action. One 1496 * example is an mlocked page, where PG_mlocked is cleared by 1497 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1498 * correctly, we save a copy of the page flags at this time. 1499 */ 1500 page_flags = p->flags; 1501 1502 /* 1503 * unpoison always clear PG_hwpoison inside page lock 1504 */ 1505 if (!PageHWPoison(p)) { 1506 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1507 num_poisoned_pages_dec(); 1508 unlock_page(p); 1509 put_page(p); 1510 return 0; 1511 } 1512 if (hwpoison_filter(p)) { 1513 if (TestClearPageHWPoison(p)) 1514 num_poisoned_pages_dec(); 1515 unlock_page(p); 1516 put_page(p); 1517 return 0; 1518 } 1519 1520 if (!PageTransTail(p) && !PageLRU(p)) 1521 goto identify_page_state; 1522 1523 /* 1524 * It's very difficult to mess with pages currently under IO 1525 * and in many cases impossible, so we just avoid it here. 1526 */ 1527 wait_on_page_writeback(p); 1528 1529 /* 1530 * Now take care of user space mappings. 1531 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1532 */ 1533 if (!hwpoison_user_mappings(p, pfn, flags, &p)) { 1534 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1535 res = -EBUSY; 1536 goto out; 1537 } 1538 1539 /* 1540 * Torn down by someone else? 1541 */ 1542 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1543 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1544 res = -EBUSY; 1545 goto out; 1546 } 1547 1548 identify_page_state: 1549 res = identify_page_state(pfn, p, page_flags); 1550 out: 1551 unlock_page(p); 1552 return res; 1553 } 1554 EXPORT_SYMBOL_GPL(memory_failure); 1555 1556 #define MEMORY_FAILURE_FIFO_ORDER 4 1557 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1558 1559 struct memory_failure_entry { 1560 unsigned long pfn; 1561 int flags; 1562 }; 1563 1564 struct memory_failure_cpu { 1565 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1566 MEMORY_FAILURE_FIFO_SIZE); 1567 spinlock_t lock; 1568 struct work_struct work; 1569 }; 1570 1571 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1572 1573 /** 1574 * memory_failure_queue - Schedule handling memory failure of a page. 1575 * @pfn: Page Number of the corrupted page 1576 * @flags: Flags for memory failure handling 1577 * 1578 * This function is called by the low level hardware error handler 1579 * when it detects hardware memory corruption of a page. It schedules 1580 * the recovering of error page, including dropping pages, killing 1581 * processes etc. 1582 * 1583 * The function is primarily of use for corruptions that 1584 * happen outside the current execution context (e.g. when 1585 * detected by a background scrubber) 1586 * 1587 * Can run in IRQ context. 1588 */ 1589 void memory_failure_queue(unsigned long pfn, int flags) 1590 { 1591 struct memory_failure_cpu *mf_cpu; 1592 unsigned long proc_flags; 1593 struct memory_failure_entry entry = { 1594 .pfn = pfn, 1595 .flags = flags, 1596 }; 1597 1598 mf_cpu = &get_cpu_var(memory_failure_cpu); 1599 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1600 if (kfifo_put(&mf_cpu->fifo, entry)) 1601 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1602 else 1603 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1604 pfn); 1605 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1606 put_cpu_var(memory_failure_cpu); 1607 } 1608 EXPORT_SYMBOL_GPL(memory_failure_queue); 1609 1610 static void memory_failure_work_func(struct work_struct *work) 1611 { 1612 struct memory_failure_cpu *mf_cpu; 1613 struct memory_failure_entry entry = { 0, }; 1614 unsigned long proc_flags; 1615 int gotten; 1616 1617 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1618 for (;;) { 1619 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1620 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1621 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1622 if (!gotten) 1623 break; 1624 if (entry.flags & MF_SOFT_OFFLINE) 1625 soft_offline_page(entry.pfn, entry.flags); 1626 else 1627 memory_failure(entry.pfn, entry.flags); 1628 } 1629 } 1630 1631 /* 1632 * Process memory_failure work queued on the specified CPU. 1633 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1634 */ 1635 void memory_failure_queue_kick(int cpu) 1636 { 1637 struct memory_failure_cpu *mf_cpu; 1638 1639 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1640 cancel_work_sync(&mf_cpu->work); 1641 memory_failure_work_func(&mf_cpu->work); 1642 } 1643 1644 static int __init memory_failure_init(void) 1645 { 1646 struct memory_failure_cpu *mf_cpu; 1647 int cpu; 1648 1649 for_each_possible_cpu(cpu) { 1650 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1651 spin_lock_init(&mf_cpu->lock); 1652 INIT_KFIFO(mf_cpu->fifo); 1653 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1654 } 1655 1656 return 0; 1657 } 1658 core_initcall(memory_failure_init); 1659 1660 #define unpoison_pr_info(fmt, pfn, rs) \ 1661 ({ \ 1662 if (__ratelimit(rs)) \ 1663 pr_info(fmt, pfn); \ 1664 }) 1665 1666 /** 1667 * unpoison_memory - Unpoison a previously poisoned page 1668 * @pfn: Page number of the to be unpoisoned page 1669 * 1670 * Software-unpoison a page that has been poisoned by 1671 * memory_failure() earlier. 1672 * 1673 * This is only done on the software-level, so it only works 1674 * for linux injected failures, not real hardware failures 1675 * 1676 * Returns 0 for success, otherwise -errno. 1677 */ 1678 int unpoison_memory(unsigned long pfn) 1679 { 1680 struct page *page; 1681 struct page *p; 1682 int freeit = 0; 1683 unsigned long flags = 0; 1684 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1685 DEFAULT_RATELIMIT_BURST); 1686 1687 if (!pfn_valid(pfn)) 1688 return -ENXIO; 1689 1690 p = pfn_to_page(pfn); 1691 page = compound_head(p); 1692 1693 if (!PageHWPoison(p)) { 1694 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1695 pfn, &unpoison_rs); 1696 return 0; 1697 } 1698 1699 if (page_count(page) > 1) { 1700 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1701 pfn, &unpoison_rs); 1702 return 0; 1703 } 1704 1705 if (page_mapped(page)) { 1706 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1707 pfn, &unpoison_rs); 1708 return 0; 1709 } 1710 1711 if (page_mapping(page)) { 1712 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1713 pfn, &unpoison_rs); 1714 return 0; 1715 } 1716 1717 /* 1718 * unpoison_memory() can encounter thp only when the thp is being 1719 * worked by memory_failure() and the page lock is not held yet. 1720 * In such case, we yield to memory_failure() and make unpoison fail. 1721 */ 1722 if (!PageHuge(page) && PageTransHuge(page)) { 1723 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1724 pfn, &unpoison_rs); 1725 return 0; 1726 } 1727 1728 if (!get_hwpoison_page(p, flags, 0)) { 1729 if (TestClearPageHWPoison(p)) 1730 num_poisoned_pages_dec(); 1731 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1732 pfn, &unpoison_rs); 1733 return 0; 1734 } 1735 1736 lock_page(page); 1737 /* 1738 * This test is racy because PG_hwpoison is set outside of page lock. 1739 * That's acceptable because that won't trigger kernel panic. Instead, 1740 * the PG_hwpoison page will be caught and isolated on the entrance to 1741 * the free buddy page pool. 1742 */ 1743 if (TestClearPageHWPoison(page)) { 1744 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1745 pfn, &unpoison_rs); 1746 num_poisoned_pages_dec(); 1747 freeit = 1; 1748 } 1749 unlock_page(page); 1750 1751 put_page(page); 1752 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1753 put_page(page); 1754 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(unpoison_memory); 1758 1759 static bool isolate_page(struct page *page, struct list_head *pagelist) 1760 { 1761 bool isolated = false; 1762 bool lru = PageLRU(page); 1763 1764 if (PageHuge(page)) { 1765 isolated = isolate_huge_page(page, pagelist); 1766 } else { 1767 if (lru) 1768 isolated = !isolate_lru_page(page); 1769 else 1770 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1771 1772 if (isolated) 1773 list_add(&page->lru, pagelist); 1774 } 1775 1776 if (isolated && lru) 1777 inc_node_page_state(page, NR_ISOLATED_ANON + 1778 page_is_file_lru(page)); 1779 1780 /* 1781 * If we succeed to isolate the page, we grabbed another refcount on 1782 * the page, so we can safely drop the one we got from get_any_pages(). 1783 * If we failed to isolate the page, it means that we cannot go further 1784 * and we will return an error, so drop the reference we got from 1785 * get_any_pages() as well. 1786 */ 1787 put_page(page); 1788 return isolated; 1789 } 1790 1791 /* 1792 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 1793 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 1794 * If the page is mapped, it migrates the contents over. 1795 */ 1796 static int __soft_offline_page(struct page *page) 1797 { 1798 int ret = 0; 1799 unsigned long pfn = page_to_pfn(page); 1800 struct page *hpage = compound_head(page); 1801 char const *msg_page[] = {"page", "hugepage"}; 1802 bool huge = PageHuge(page); 1803 LIST_HEAD(pagelist); 1804 struct migration_target_control mtc = { 1805 .nid = NUMA_NO_NODE, 1806 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1807 }; 1808 1809 /* 1810 * Check PageHWPoison again inside page lock because PageHWPoison 1811 * is set by memory_failure() outside page lock. Note that 1812 * memory_failure() also double-checks PageHWPoison inside page lock, 1813 * so there's no race between soft_offline_page() and memory_failure(). 1814 */ 1815 lock_page(page); 1816 if (!PageHuge(page)) 1817 wait_on_page_writeback(page); 1818 if (PageHWPoison(page)) { 1819 unlock_page(page); 1820 put_page(page); 1821 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1822 return 0; 1823 } 1824 1825 if (!PageHuge(page)) 1826 /* 1827 * Try to invalidate first. This should work for 1828 * non dirty unmapped page cache pages. 1829 */ 1830 ret = invalidate_inode_page(page); 1831 unlock_page(page); 1832 1833 /* 1834 * RED-PEN would be better to keep it isolated here, but we 1835 * would need to fix isolation locking first. 1836 */ 1837 if (ret) { 1838 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1839 page_handle_poison(page, false, true); 1840 return 0; 1841 } 1842 1843 if (isolate_page(hpage, &pagelist)) { 1844 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 1845 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE); 1846 if (!ret) { 1847 bool release = !huge; 1848 1849 if (!page_handle_poison(page, huge, release)) 1850 ret = -EBUSY; 1851 } else { 1852 if (!list_empty(&pagelist)) 1853 putback_movable_pages(&pagelist); 1854 1855 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n", 1856 pfn, msg_page[huge], ret, page->flags, &page->flags); 1857 if (ret > 0) 1858 ret = -EBUSY; 1859 } 1860 } else { 1861 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n", 1862 pfn, msg_page[huge], page_count(page), page->flags, &page->flags); 1863 ret = -EBUSY; 1864 } 1865 return ret; 1866 } 1867 1868 static int soft_offline_in_use_page(struct page *page) 1869 { 1870 struct page *hpage = compound_head(page); 1871 1872 if (!PageHuge(page) && PageTransHuge(hpage)) 1873 if (try_to_split_thp_page(page, "soft offline") < 0) 1874 return -EBUSY; 1875 return __soft_offline_page(page); 1876 } 1877 1878 static int soft_offline_free_page(struct page *page) 1879 { 1880 int rc = 0; 1881 1882 if (!page_handle_poison(page, true, false)) 1883 rc = -EBUSY; 1884 1885 return rc; 1886 } 1887 1888 static void put_ref_page(struct page *page) 1889 { 1890 if (page) 1891 put_page(page); 1892 } 1893 1894 /** 1895 * soft_offline_page - Soft offline a page. 1896 * @pfn: pfn to soft-offline 1897 * @flags: flags. Same as memory_failure(). 1898 * 1899 * Returns 0 on success, otherwise negated errno. 1900 * 1901 * Soft offline a page, by migration or invalidation, 1902 * without killing anything. This is for the case when 1903 * a page is not corrupted yet (so it's still valid to access), 1904 * but has had a number of corrected errors and is better taken 1905 * out. 1906 * 1907 * The actual policy on when to do that is maintained by 1908 * user space. 1909 * 1910 * This should never impact any application or cause data loss, 1911 * however it might take some time. 1912 * 1913 * This is not a 100% solution for all memory, but tries to be 1914 * ``good enough'' for the majority of memory. 1915 */ 1916 int soft_offline_page(unsigned long pfn, int flags) 1917 { 1918 int ret; 1919 bool try_again = true; 1920 struct page *page, *ref_page = NULL; 1921 1922 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 1923 1924 if (!pfn_valid(pfn)) 1925 return -ENXIO; 1926 if (flags & MF_COUNT_INCREASED) 1927 ref_page = pfn_to_page(pfn); 1928 1929 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1930 page = pfn_to_online_page(pfn); 1931 if (!page) { 1932 put_ref_page(ref_page); 1933 return -EIO; 1934 } 1935 1936 if (PageHWPoison(page)) { 1937 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 1938 put_ref_page(ref_page); 1939 return 0; 1940 } 1941 1942 retry: 1943 get_online_mems(); 1944 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE); 1945 put_online_mems(); 1946 1947 if (ret > 0) { 1948 ret = soft_offline_in_use_page(page); 1949 } else if (ret == 0) { 1950 if (soft_offline_free_page(page) && try_again) { 1951 try_again = false; 1952 goto retry; 1953 } 1954 } else if (ret == -EIO) { 1955 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n", 1956 __func__, pfn, page->flags, &page->flags); 1957 } 1958 1959 return ret; 1960 } 1961