xref: /openbmc/linux/mm/memory-failure.c (revision 84b102f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 	if (hugepage_or_freepage) {
71 		/*
72 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 		 * returns 0 for non-hugetlb pages as well.
74 		 */
75 		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 			/*
77 			 * We could fail to take off the target page from buddy
78 			 * for example due to racy page allocaiton, but that's
79 			 * acceptable because soft-offlined page is not broken
80 			 * and if someone really want to use it, they should
81 			 * take it.
82 			 */
83 			return false;
84 	}
85 
86 	SetPageHWPoison(page);
87 	if (release)
88 		put_page(page);
89 	page_ref_inc(page);
90 	num_poisoned_pages_inc();
91 
92 	return true;
93 }
94 
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96 
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107 
108 static int hwpoison_filter_dev(struct page *p)
109 {
110 	struct address_space *mapping;
111 	dev_t dev;
112 
113 	if (hwpoison_filter_dev_major == ~0U &&
114 	    hwpoison_filter_dev_minor == ~0U)
115 		return 0;
116 
117 	/*
118 	 * page_mapping() does not accept slab pages.
119 	 */
120 	if (PageSlab(p))
121 		return -EINVAL;
122 
123 	mapping = page_mapping(p);
124 	if (mapping == NULL || mapping->host == NULL)
125 		return -EINVAL;
126 
127 	dev = mapping->host->i_sb->s_dev;
128 	if (hwpoison_filter_dev_major != ~0U &&
129 	    hwpoison_filter_dev_major != MAJOR(dev))
130 		return -EINVAL;
131 	if (hwpoison_filter_dev_minor != ~0U &&
132 	    hwpoison_filter_dev_minor != MINOR(dev))
133 		return -EINVAL;
134 
135 	return 0;
136 }
137 
138 static int hwpoison_filter_flags(struct page *p)
139 {
140 	if (!hwpoison_filter_flags_mask)
141 		return 0;
142 
143 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 				    hwpoison_filter_flags_value)
145 		return 0;
146 	else
147 		return -EINVAL;
148 }
149 
150 /*
151  * This allows stress tests to limit test scope to a collection of tasks
152  * by putting them under some memcg. This prevents killing unrelated/important
153  * processes such as /sbin/init. Note that the target task may share clean
154  * pages with init (eg. libc text), which is harmless. If the target task
155  * share _dirty_ pages with another task B, the test scheme must make sure B
156  * is also included in the memcg. At last, due to race conditions this filter
157  * can only guarantee that the page either belongs to the memcg tasks, or is
158  * a freed page.
159  */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163 static int hwpoison_filter_task(struct page *p)
164 {
165 	if (!hwpoison_filter_memcg)
166 		return 0;
167 
168 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 		return -EINVAL;
170 
171 	return 0;
172 }
173 #else
174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176 
177 int hwpoison_filter(struct page *p)
178 {
179 	if (!hwpoison_filter_enable)
180 		return 0;
181 
182 	if (hwpoison_filter_dev(p))
183 		return -EINVAL;
184 
185 	if (hwpoison_filter_flags(p))
186 		return -EINVAL;
187 
188 	if (hwpoison_filter_task(p))
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 #else
194 int hwpoison_filter(struct page *p)
195 {
196 	return 0;
197 }
198 #endif
199 
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201 
202 /*
203  * Kill all processes that have a poisoned page mapped and then isolate
204  * the page.
205  *
206  * General strategy:
207  * Find all processes having the page mapped and kill them.
208  * But we keep a page reference around so that the page is not
209  * actually freed yet.
210  * Then stash the page away
211  *
212  * There's no convenient way to get back to mapped processes
213  * from the VMAs. So do a brute-force search over all
214  * running processes.
215  *
216  * Remember that machine checks are not common (or rather
217  * if they are common you have other problems), so this shouldn't
218  * be a performance issue.
219  *
220  * Also there are some races possible while we get from the
221  * error detection to actually handle it.
222  */
223 
224 struct to_kill {
225 	struct list_head nd;
226 	struct task_struct *tsk;
227 	unsigned long addr;
228 	short size_shift;
229 };
230 
231 /*
232  * Send all the processes who have the page mapped a signal.
233  * ``action optional'' if they are not immediately affected by the error
234  * ``action required'' if error happened in current execution context
235  */
236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 	struct task_struct *t = tk->tsk;
239 	short addr_lsb = tk->size_shift;
240 	int ret = 0;
241 
242 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 			pfn, t->comm, t->pid);
244 
245 	if (flags & MF_ACTION_REQUIRED) {
246 		WARN_ON_ONCE(t != current);
247 		ret = force_sig_mceerr(BUS_MCEERR_AR,
248 					 (void __user *)tk->addr, addr_lsb);
249 	} else {
250 		/*
251 		 * Don't use force here, it's convenient if the signal
252 		 * can be temporarily blocked.
253 		 * This could cause a loop when the user sets SIGBUS
254 		 * to SIG_IGN, but hopefully no one will do that?
255 		 */
256 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257 				      addr_lsb, t);  /* synchronous? */
258 	}
259 	if (ret < 0)
260 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261 			t->comm, t->pid, ret);
262 	return ret;
263 }
264 
265 /*
266  * Unknown page type encountered. Try to check whether it can turn PageLRU by
267  * lru_add_drain_all, or a free page by reclaiming slabs when possible.
268  */
269 void shake_page(struct page *p, int access)
270 {
271 	if (PageHuge(p))
272 		return;
273 
274 	if (!PageSlab(p)) {
275 		lru_add_drain_all();
276 		if (PageLRU(p) || is_free_buddy_page(p))
277 			return;
278 	}
279 
280 	/*
281 	 * Only call shrink_node_slabs here (which would also shrink
282 	 * other caches) if access is not potentially fatal.
283 	 */
284 	if (access)
285 		drop_slab_node(page_to_nid(p));
286 }
287 EXPORT_SYMBOL_GPL(shake_page);
288 
289 static unsigned long dev_pagemap_mapping_shift(struct page *page,
290 		struct vm_area_struct *vma)
291 {
292 	unsigned long address = vma_address(page, vma);
293 	pgd_t *pgd;
294 	p4d_t *p4d;
295 	pud_t *pud;
296 	pmd_t *pmd;
297 	pte_t *pte;
298 
299 	pgd = pgd_offset(vma->vm_mm, address);
300 	if (!pgd_present(*pgd))
301 		return 0;
302 	p4d = p4d_offset(pgd, address);
303 	if (!p4d_present(*p4d))
304 		return 0;
305 	pud = pud_offset(p4d, address);
306 	if (!pud_present(*pud))
307 		return 0;
308 	if (pud_devmap(*pud))
309 		return PUD_SHIFT;
310 	pmd = pmd_offset(pud, address);
311 	if (!pmd_present(*pmd))
312 		return 0;
313 	if (pmd_devmap(*pmd))
314 		return PMD_SHIFT;
315 	pte = pte_offset_map(pmd, address);
316 	if (!pte_present(*pte))
317 		return 0;
318 	if (pte_devmap(*pte))
319 		return PAGE_SHIFT;
320 	return 0;
321 }
322 
323 /*
324  * Failure handling: if we can't find or can't kill a process there's
325  * not much we can do.	We just print a message and ignore otherwise.
326  */
327 
328 /*
329  * Schedule a process for later kill.
330  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
331  */
332 static void add_to_kill(struct task_struct *tsk, struct page *p,
333 		       struct vm_area_struct *vma,
334 		       struct list_head *to_kill)
335 {
336 	struct to_kill *tk;
337 
338 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
339 	if (!tk) {
340 		pr_err("Memory failure: Out of memory while machine check handling\n");
341 		return;
342 	}
343 
344 	tk->addr = page_address_in_vma(p, vma);
345 	if (is_zone_device_page(p))
346 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
347 	else
348 		tk->size_shift = page_shift(compound_head(p));
349 
350 	/*
351 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
352 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
353 	 * so "tk->size_shift == 0" effectively checks no mapping on
354 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
355 	 * to a process' address space, it's possible not all N VMAs
356 	 * contain mappings for the page, but at least one VMA does.
357 	 * Only deliver SIGBUS with payload derived from the VMA that
358 	 * has a mapping for the page.
359 	 */
360 	if (tk->addr == -EFAULT) {
361 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
362 			page_to_pfn(p), tsk->comm);
363 	} else if (tk->size_shift == 0) {
364 		kfree(tk);
365 		return;
366 	}
367 
368 	get_task_struct(tsk);
369 	tk->tsk = tsk;
370 	list_add_tail(&tk->nd, to_kill);
371 }
372 
373 /*
374  * Kill the processes that have been collected earlier.
375  *
376  * Only do anything when DOIT is set, otherwise just free the list
377  * (this is used for clean pages which do not need killing)
378  * Also when FAIL is set do a force kill because something went
379  * wrong earlier.
380  */
381 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
382 		unsigned long pfn, int flags)
383 {
384 	struct to_kill *tk, *next;
385 
386 	list_for_each_entry_safe (tk, next, to_kill, nd) {
387 		if (forcekill) {
388 			/*
389 			 * In case something went wrong with munmapping
390 			 * make sure the process doesn't catch the
391 			 * signal and then access the memory. Just kill it.
392 			 */
393 			if (fail || tk->addr == -EFAULT) {
394 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
395 				       pfn, tk->tsk->comm, tk->tsk->pid);
396 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
397 						 tk->tsk, PIDTYPE_PID);
398 			}
399 
400 			/*
401 			 * In theory the process could have mapped
402 			 * something else on the address in-between. We could
403 			 * check for that, but we need to tell the
404 			 * process anyways.
405 			 */
406 			else if (kill_proc(tk, pfn, flags) < 0)
407 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
408 				       pfn, tk->tsk->comm, tk->tsk->pid);
409 		}
410 		put_task_struct(tk->tsk);
411 		kfree(tk);
412 	}
413 }
414 
415 /*
416  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
417  * on behalf of the thread group. Return task_struct of the (first found)
418  * dedicated thread if found, and return NULL otherwise.
419  *
420  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
421  * have to call rcu_read_lock/unlock() in this function.
422  */
423 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
424 {
425 	struct task_struct *t;
426 
427 	for_each_thread(tsk, t) {
428 		if (t->flags & PF_MCE_PROCESS) {
429 			if (t->flags & PF_MCE_EARLY)
430 				return t;
431 		} else {
432 			if (sysctl_memory_failure_early_kill)
433 				return t;
434 		}
435 	}
436 	return NULL;
437 }
438 
439 /*
440  * Determine whether a given process is "early kill" process which expects
441  * to be signaled when some page under the process is hwpoisoned.
442  * Return task_struct of the dedicated thread (main thread unless explicitly
443  * specified) if the process is "early kill," and otherwise returns NULL.
444  *
445  * Note that the above is true for Action Optional case, but not for Action
446  * Required case where SIGBUS should sent only to the current thread.
447  */
448 static struct task_struct *task_early_kill(struct task_struct *tsk,
449 					   int force_early)
450 {
451 	if (!tsk->mm)
452 		return NULL;
453 	if (force_early) {
454 		/*
455 		 * Comparing ->mm here because current task might represent
456 		 * a subthread, while tsk always points to the main thread.
457 		 */
458 		if (tsk->mm == current->mm)
459 			return current;
460 		else
461 			return NULL;
462 	}
463 	return find_early_kill_thread(tsk);
464 }
465 
466 /*
467  * Collect processes when the error hit an anonymous page.
468  */
469 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
470 				int force_early)
471 {
472 	struct vm_area_struct *vma;
473 	struct task_struct *tsk;
474 	struct anon_vma *av;
475 	pgoff_t pgoff;
476 
477 	av = page_lock_anon_vma_read(page);
478 	if (av == NULL)	/* Not actually mapped anymore */
479 		return;
480 
481 	pgoff = page_to_pgoff(page);
482 	read_lock(&tasklist_lock);
483 	for_each_process (tsk) {
484 		struct anon_vma_chain *vmac;
485 		struct task_struct *t = task_early_kill(tsk, force_early);
486 
487 		if (!t)
488 			continue;
489 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
490 					       pgoff, pgoff) {
491 			vma = vmac->vma;
492 			if (!page_mapped_in_vma(page, vma))
493 				continue;
494 			if (vma->vm_mm == t->mm)
495 				add_to_kill(t, page, vma, to_kill);
496 		}
497 	}
498 	read_unlock(&tasklist_lock);
499 	page_unlock_anon_vma_read(av);
500 }
501 
502 /*
503  * Collect processes when the error hit a file mapped page.
504  */
505 static void collect_procs_file(struct page *page, struct list_head *to_kill,
506 				int force_early)
507 {
508 	struct vm_area_struct *vma;
509 	struct task_struct *tsk;
510 	struct address_space *mapping = page->mapping;
511 	pgoff_t pgoff;
512 
513 	i_mmap_lock_read(mapping);
514 	read_lock(&tasklist_lock);
515 	pgoff = page_to_pgoff(page);
516 	for_each_process(tsk) {
517 		struct task_struct *t = task_early_kill(tsk, force_early);
518 
519 		if (!t)
520 			continue;
521 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
522 				      pgoff) {
523 			/*
524 			 * Send early kill signal to tasks where a vma covers
525 			 * the page but the corrupted page is not necessarily
526 			 * mapped it in its pte.
527 			 * Assume applications who requested early kill want
528 			 * to be informed of all such data corruptions.
529 			 */
530 			if (vma->vm_mm == t->mm)
531 				add_to_kill(t, page, vma, to_kill);
532 		}
533 	}
534 	read_unlock(&tasklist_lock);
535 	i_mmap_unlock_read(mapping);
536 }
537 
538 /*
539  * Collect the processes who have the corrupted page mapped to kill.
540  */
541 static void collect_procs(struct page *page, struct list_head *tokill,
542 				int force_early)
543 {
544 	if (!page->mapping)
545 		return;
546 
547 	if (PageAnon(page))
548 		collect_procs_anon(page, tokill, force_early);
549 	else
550 		collect_procs_file(page, tokill, force_early);
551 }
552 
553 static const char *action_name[] = {
554 	[MF_IGNORED] = "Ignored",
555 	[MF_FAILED] = "Failed",
556 	[MF_DELAYED] = "Delayed",
557 	[MF_RECOVERED] = "Recovered",
558 };
559 
560 static const char * const action_page_types[] = {
561 	[MF_MSG_KERNEL]			= "reserved kernel page",
562 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
563 	[MF_MSG_SLAB]			= "kernel slab page",
564 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
565 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
566 	[MF_MSG_HUGE]			= "huge page",
567 	[MF_MSG_FREE_HUGE]		= "free huge page",
568 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
569 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
570 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
571 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
572 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
573 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
574 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
575 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
576 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
577 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
578 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
579 	[MF_MSG_BUDDY]			= "free buddy page",
580 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
581 	[MF_MSG_DAX]			= "dax page",
582 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
583 	[MF_MSG_UNKNOWN]		= "unknown page",
584 };
585 
586 /*
587  * XXX: It is possible that a page is isolated from LRU cache,
588  * and then kept in swap cache or failed to remove from page cache.
589  * The page count will stop it from being freed by unpoison.
590  * Stress tests should be aware of this memory leak problem.
591  */
592 static int delete_from_lru_cache(struct page *p)
593 {
594 	if (!isolate_lru_page(p)) {
595 		/*
596 		 * Clear sensible page flags, so that the buddy system won't
597 		 * complain when the page is unpoison-and-freed.
598 		 */
599 		ClearPageActive(p);
600 		ClearPageUnevictable(p);
601 
602 		/*
603 		 * Poisoned page might never drop its ref count to 0 so we have
604 		 * to uncharge it manually from its memcg.
605 		 */
606 		mem_cgroup_uncharge(p);
607 
608 		/*
609 		 * drop the page count elevated by isolate_lru_page()
610 		 */
611 		put_page(p);
612 		return 0;
613 	}
614 	return -EIO;
615 }
616 
617 static int truncate_error_page(struct page *p, unsigned long pfn,
618 				struct address_space *mapping)
619 {
620 	int ret = MF_FAILED;
621 
622 	if (mapping->a_ops->error_remove_page) {
623 		int err = mapping->a_ops->error_remove_page(mapping, p);
624 
625 		if (err != 0) {
626 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
627 				pfn, err);
628 		} else if (page_has_private(p) &&
629 			   !try_to_release_page(p, GFP_NOIO)) {
630 			pr_info("Memory failure: %#lx: failed to release buffers\n",
631 				pfn);
632 		} else {
633 			ret = MF_RECOVERED;
634 		}
635 	} else {
636 		/*
637 		 * If the file system doesn't support it just invalidate
638 		 * This fails on dirty or anything with private pages
639 		 */
640 		if (invalidate_inode_page(p))
641 			ret = MF_RECOVERED;
642 		else
643 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
644 				pfn);
645 	}
646 
647 	return ret;
648 }
649 
650 /*
651  * Error hit kernel page.
652  * Do nothing, try to be lucky and not touch this instead. For a few cases we
653  * could be more sophisticated.
654  */
655 static int me_kernel(struct page *p, unsigned long pfn)
656 {
657 	return MF_IGNORED;
658 }
659 
660 /*
661  * Page in unknown state. Do nothing.
662  */
663 static int me_unknown(struct page *p, unsigned long pfn)
664 {
665 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
666 	return MF_FAILED;
667 }
668 
669 /*
670  * Clean (or cleaned) page cache page.
671  */
672 static int me_pagecache_clean(struct page *p, unsigned long pfn)
673 {
674 	struct address_space *mapping;
675 
676 	delete_from_lru_cache(p);
677 
678 	/*
679 	 * For anonymous pages we're done the only reference left
680 	 * should be the one m_f() holds.
681 	 */
682 	if (PageAnon(p))
683 		return MF_RECOVERED;
684 
685 	/*
686 	 * Now truncate the page in the page cache. This is really
687 	 * more like a "temporary hole punch"
688 	 * Don't do this for block devices when someone else
689 	 * has a reference, because it could be file system metadata
690 	 * and that's not safe to truncate.
691 	 */
692 	mapping = page_mapping(p);
693 	if (!mapping) {
694 		/*
695 		 * Page has been teared down in the meanwhile
696 		 */
697 		return MF_FAILED;
698 	}
699 
700 	/*
701 	 * Truncation is a bit tricky. Enable it per file system for now.
702 	 *
703 	 * Open: to take i_mutex or not for this? Right now we don't.
704 	 */
705 	return truncate_error_page(p, pfn, mapping);
706 }
707 
708 /*
709  * Dirty pagecache page
710  * Issues: when the error hit a hole page the error is not properly
711  * propagated.
712  */
713 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
714 {
715 	struct address_space *mapping = page_mapping(p);
716 
717 	SetPageError(p);
718 	/* TBD: print more information about the file. */
719 	if (mapping) {
720 		/*
721 		 * IO error will be reported by write(), fsync(), etc.
722 		 * who check the mapping.
723 		 * This way the application knows that something went
724 		 * wrong with its dirty file data.
725 		 *
726 		 * There's one open issue:
727 		 *
728 		 * The EIO will be only reported on the next IO
729 		 * operation and then cleared through the IO map.
730 		 * Normally Linux has two mechanisms to pass IO error
731 		 * first through the AS_EIO flag in the address space
732 		 * and then through the PageError flag in the page.
733 		 * Since we drop pages on memory failure handling the
734 		 * only mechanism open to use is through AS_AIO.
735 		 *
736 		 * This has the disadvantage that it gets cleared on
737 		 * the first operation that returns an error, while
738 		 * the PageError bit is more sticky and only cleared
739 		 * when the page is reread or dropped.  If an
740 		 * application assumes it will always get error on
741 		 * fsync, but does other operations on the fd before
742 		 * and the page is dropped between then the error
743 		 * will not be properly reported.
744 		 *
745 		 * This can already happen even without hwpoisoned
746 		 * pages: first on metadata IO errors (which only
747 		 * report through AS_EIO) or when the page is dropped
748 		 * at the wrong time.
749 		 *
750 		 * So right now we assume that the application DTRT on
751 		 * the first EIO, but we're not worse than other parts
752 		 * of the kernel.
753 		 */
754 		mapping_set_error(mapping, -EIO);
755 	}
756 
757 	return me_pagecache_clean(p, pfn);
758 }
759 
760 /*
761  * Clean and dirty swap cache.
762  *
763  * Dirty swap cache page is tricky to handle. The page could live both in page
764  * cache and swap cache(ie. page is freshly swapped in). So it could be
765  * referenced concurrently by 2 types of PTEs:
766  * normal PTEs and swap PTEs. We try to handle them consistently by calling
767  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
768  * and then
769  *      - clear dirty bit to prevent IO
770  *      - remove from LRU
771  *      - but keep in the swap cache, so that when we return to it on
772  *        a later page fault, we know the application is accessing
773  *        corrupted data and shall be killed (we installed simple
774  *        interception code in do_swap_page to catch it).
775  *
776  * Clean swap cache pages can be directly isolated. A later page fault will
777  * bring in the known good data from disk.
778  */
779 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
780 {
781 	ClearPageDirty(p);
782 	/* Trigger EIO in shmem: */
783 	ClearPageUptodate(p);
784 
785 	if (!delete_from_lru_cache(p))
786 		return MF_DELAYED;
787 	else
788 		return MF_FAILED;
789 }
790 
791 static int me_swapcache_clean(struct page *p, unsigned long pfn)
792 {
793 	delete_from_swap_cache(p);
794 
795 	if (!delete_from_lru_cache(p))
796 		return MF_RECOVERED;
797 	else
798 		return MF_FAILED;
799 }
800 
801 /*
802  * Huge pages. Needs work.
803  * Issues:
804  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
805  *   To narrow down kill region to one page, we need to break up pmd.
806  */
807 static int me_huge_page(struct page *p, unsigned long pfn)
808 {
809 	int res;
810 	struct page *hpage = compound_head(p);
811 	struct address_space *mapping;
812 
813 	if (!PageHuge(hpage))
814 		return MF_DELAYED;
815 
816 	mapping = page_mapping(hpage);
817 	if (mapping) {
818 		res = truncate_error_page(hpage, pfn, mapping);
819 	} else {
820 		res = MF_FAILED;
821 		unlock_page(hpage);
822 		/*
823 		 * migration entry prevents later access on error anonymous
824 		 * hugepage, so we can free and dissolve it into buddy to
825 		 * save healthy subpages.
826 		 */
827 		if (PageAnon(hpage))
828 			put_page(hpage);
829 		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
830 			page_ref_inc(p);
831 			res = MF_RECOVERED;
832 		}
833 		lock_page(hpage);
834 	}
835 
836 	return res;
837 }
838 
839 /*
840  * Various page states we can handle.
841  *
842  * A page state is defined by its current page->flags bits.
843  * The table matches them in order and calls the right handler.
844  *
845  * This is quite tricky because we can access page at any time
846  * in its live cycle, so all accesses have to be extremely careful.
847  *
848  * This is not complete. More states could be added.
849  * For any missing state don't attempt recovery.
850  */
851 
852 #define dirty		(1UL << PG_dirty)
853 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
854 #define unevict		(1UL << PG_unevictable)
855 #define mlock		(1UL << PG_mlocked)
856 #define lru		(1UL << PG_lru)
857 #define head		(1UL << PG_head)
858 #define slab		(1UL << PG_slab)
859 #define reserved	(1UL << PG_reserved)
860 
861 static struct page_state {
862 	unsigned long mask;
863 	unsigned long res;
864 	enum mf_action_page_type type;
865 	int (*action)(struct page *p, unsigned long pfn);
866 } error_states[] = {
867 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
868 	/*
869 	 * free pages are specially detected outside this table:
870 	 * PG_buddy pages only make a small fraction of all free pages.
871 	 */
872 
873 	/*
874 	 * Could in theory check if slab page is free or if we can drop
875 	 * currently unused objects without touching them. But just
876 	 * treat it as standard kernel for now.
877 	 */
878 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
879 
880 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
881 
882 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
883 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
884 
885 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
886 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
887 
888 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
889 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
890 
891 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
892 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
893 
894 	/*
895 	 * Catchall entry: must be at end.
896 	 */
897 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
898 };
899 
900 #undef dirty
901 #undef sc
902 #undef unevict
903 #undef mlock
904 #undef lru
905 #undef head
906 #undef slab
907 #undef reserved
908 
909 /*
910  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
911  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
912  */
913 static void action_result(unsigned long pfn, enum mf_action_page_type type,
914 			  enum mf_result result)
915 {
916 	trace_memory_failure_event(pfn, type, result);
917 
918 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
919 		pfn, action_page_types[type], action_name[result]);
920 }
921 
922 static int page_action(struct page_state *ps, struct page *p,
923 			unsigned long pfn)
924 {
925 	int result;
926 	int count;
927 
928 	result = ps->action(p, pfn);
929 
930 	count = page_count(p) - 1;
931 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
932 		count--;
933 	if (count > 0) {
934 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
935 		       pfn, action_page_types[ps->type], count);
936 		result = MF_FAILED;
937 	}
938 	action_result(pfn, ps->type, result);
939 
940 	/* Could do more checks here if page looks ok */
941 	/*
942 	 * Could adjust zone counters here to correct for the missing page.
943 	 */
944 
945 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
946 }
947 
948 /**
949  * __get_hwpoison_page() - Get refcount for memory error handling:
950  * @page:	raw error page (hit by memory error)
951  *
952  * Return: return 0 if failed to grab the refcount, otherwise true (some
953  * non-zero value.)
954  */
955 static int __get_hwpoison_page(struct page *page)
956 {
957 	struct page *head = compound_head(page);
958 
959 	if (!PageHuge(head) && PageTransHuge(head)) {
960 		/*
961 		 * Non anonymous thp exists only in allocation/free time. We
962 		 * can't handle such a case correctly, so let's give it up.
963 		 * This should be better than triggering BUG_ON when kernel
964 		 * tries to touch the "partially handled" page.
965 		 */
966 		if (!PageAnon(head)) {
967 			pr_err("Memory failure: %#lx: non anonymous thp\n",
968 				page_to_pfn(page));
969 			return 0;
970 		}
971 	}
972 
973 	if (get_page_unless_zero(head)) {
974 		if (head == compound_head(page))
975 			return 1;
976 
977 		pr_info("Memory failure: %#lx cannot catch tail\n",
978 			page_to_pfn(page));
979 		put_page(head);
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Safely get reference count of an arbitrary page.
987  *
988  * Returns 0 for a free page, 1 for an in-use page,
989  * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
990  * allocation.
991  * We only incremented refcount in case the page was already in-use and it
992  * is a known type we can handle.
993  */
994 static int get_any_page(struct page *p, unsigned long flags)
995 {
996 	int ret = 0, pass = 0;
997 	bool count_increased = false;
998 
999 	if (flags & MF_COUNT_INCREASED)
1000 		count_increased = true;
1001 
1002 try_again:
1003 	if (!count_increased && !__get_hwpoison_page(p)) {
1004 		if (page_count(p)) {
1005 			/* We raced with an allocation, retry. */
1006 			if (pass++ < 3)
1007 				goto try_again;
1008 			ret = -EBUSY;
1009 		} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1010 			/* We raced with put_page, retry. */
1011 			if (pass++ < 3)
1012 				goto try_again;
1013 			ret = -EIO;
1014 		}
1015 	} else {
1016 		if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1017 			ret = 1;
1018 		} else {
1019 			/*
1020 			 * A page we cannot handle. Check whether we can turn
1021 			 * it into something we can handle.
1022 			 */
1023 			if (pass++ < 3) {
1024 				put_page(p);
1025 				shake_page(p, 1);
1026 				count_increased = false;
1027 				goto try_again;
1028 			}
1029 			put_page(p);
1030 			ret = -EIO;
1031 		}
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 static int get_hwpoison_page(struct page *p, unsigned long flags,
1038 			     enum mf_flags ctxt)
1039 {
1040 	int ret;
1041 
1042 	zone_pcp_disable(page_zone(p));
1043 	if (ctxt == MF_SOFT_OFFLINE)
1044 		ret = get_any_page(p, flags);
1045 	else
1046 		ret = __get_hwpoison_page(p);
1047 	zone_pcp_enable(page_zone(p));
1048 
1049 	return ret;
1050 }
1051 
1052 /*
1053  * Do all that is necessary to remove user space mappings. Unmap
1054  * the pages and send SIGBUS to the processes if the data was dirty.
1055  */
1056 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1057 				  int flags, struct page **hpagep)
1058 {
1059 	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1060 	struct address_space *mapping;
1061 	LIST_HEAD(tokill);
1062 	bool unmap_success = true;
1063 	int kill = 1, forcekill;
1064 	struct page *hpage = *hpagep;
1065 	bool mlocked = PageMlocked(hpage);
1066 
1067 	/*
1068 	 * Here we are interested only in user-mapped pages, so skip any
1069 	 * other types of pages.
1070 	 */
1071 	if (PageReserved(p) || PageSlab(p))
1072 		return true;
1073 	if (!(PageLRU(hpage) || PageHuge(p)))
1074 		return true;
1075 
1076 	/*
1077 	 * This check implies we don't kill processes if their pages
1078 	 * are in the swap cache early. Those are always late kills.
1079 	 */
1080 	if (!page_mapped(hpage))
1081 		return true;
1082 
1083 	if (PageKsm(p)) {
1084 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1085 		return false;
1086 	}
1087 
1088 	if (PageSwapCache(p)) {
1089 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1090 			pfn);
1091 		ttu |= TTU_IGNORE_HWPOISON;
1092 	}
1093 
1094 	/*
1095 	 * Propagate the dirty bit from PTEs to struct page first, because we
1096 	 * need this to decide if we should kill or just drop the page.
1097 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1098 	 * be called inside page lock (it's recommended but not enforced).
1099 	 */
1100 	mapping = page_mapping(hpage);
1101 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1102 	    mapping_can_writeback(mapping)) {
1103 		if (page_mkclean(hpage)) {
1104 			SetPageDirty(hpage);
1105 		} else {
1106 			kill = 0;
1107 			ttu |= TTU_IGNORE_HWPOISON;
1108 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1109 				pfn);
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * First collect all the processes that have the page
1115 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1116 	 * because ttu takes the rmap data structures down.
1117 	 *
1118 	 * Error handling: We ignore errors here because
1119 	 * there's nothing that can be done.
1120 	 */
1121 	if (kill)
1122 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1123 
1124 	if (!PageHuge(hpage)) {
1125 		unmap_success = try_to_unmap(hpage, ttu);
1126 	} else {
1127 		if (!PageAnon(hpage)) {
1128 			/*
1129 			 * For hugetlb pages in shared mappings, try_to_unmap
1130 			 * could potentially call huge_pmd_unshare.  Because of
1131 			 * this, take semaphore in write mode here and set
1132 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1133 			 * at this higer level.
1134 			 */
1135 			mapping = hugetlb_page_mapping_lock_write(hpage);
1136 			if (mapping) {
1137 				unmap_success = try_to_unmap(hpage,
1138 						     ttu|TTU_RMAP_LOCKED);
1139 				i_mmap_unlock_write(mapping);
1140 			} else {
1141 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1142 				unmap_success = false;
1143 			}
1144 		} else {
1145 			unmap_success = try_to_unmap(hpage, ttu);
1146 		}
1147 	}
1148 	if (!unmap_success)
1149 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1150 		       pfn, page_mapcount(hpage));
1151 
1152 	/*
1153 	 * try_to_unmap() might put mlocked page in lru cache, so call
1154 	 * shake_page() again to ensure that it's flushed.
1155 	 */
1156 	if (mlocked)
1157 		shake_page(hpage, 0);
1158 
1159 	/*
1160 	 * Now that the dirty bit has been propagated to the
1161 	 * struct page and all unmaps done we can decide if
1162 	 * killing is needed or not.  Only kill when the page
1163 	 * was dirty or the process is not restartable,
1164 	 * otherwise the tokill list is merely
1165 	 * freed.  When there was a problem unmapping earlier
1166 	 * use a more force-full uncatchable kill to prevent
1167 	 * any accesses to the poisoned memory.
1168 	 */
1169 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1170 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1171 
1172 	return unmap_success;
1173 }
1174 
1175 static int identify_page_state(unsigned long pfn, struct page *p,
1176 				unsigned long page_flags)
1177 {
1178 	struct page_state *ps;
1179 
1180 	/*
1181 	 * The first check uses the current page flags which may not have any
1182 	 * relevant information. The second check with the saved page flags is
1183 	 * carried out only if the first check can't determine the page status.
1184 	 */
1185 	for (ps = error_states;; ps++)
1186 		if ((p->flags & ps->mask) == ps->res)
1187 			break;
1188 
1189 	page_flags |= (p->flags & (1UL << PG_dirty));
1190 
1191 	if (!ps->mask)
1192 		for (ps = error_states;; ps++)
1193 			if ((page_flags & ps->mask) == ps->res)
1194 				break;
1195 	return page_action(ps, p, pfn);
1196 }
1197 
1198 static int try_to_split_thp_page(struct page *page, const char *msg)
1199 {
1200 	lock_page(page);
1201 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1202 		unsigned long pfn = page_to_pfn(page);
1203 
1204 		unlock_page(page);
1205 		if (!PageAnon(page))
1206 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1207 		else
1208 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1209 		put_page(page);
1210 		return -EBUSY;
1211 	}
1212 	unlock_page(page);
1213 
1214 	return 0;
1215 }
1216 
1217 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1218 {
1219 	struct page *p = pfn_to_page(pfn);
1220 	struct page *head = compound_head(p);
1221 	int res;
1222 	unsigned long page_flags;
1223 
1224 	if (TestSetPageHWPoison(head)) {
1225 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1226 		       pfn);
1227 		return 0;
1228 	}
1229 
1230 	num_poisoned_pages_inc();
1231 
1232 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1233 		/*
1234 		 * Check "filter hit" and "race with other subpage."
1235 		 */
1236 		lock_page(head);
1237 		if (PageHWPoison(head)) {
1238 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1239 			    || (p != head && TestSetPageHWPoison(head))) {
1240 				num_poisoned_pages_dec();
1241 				unlock_page(head);
1242 				return 0;
1243 			}
1244 		}
1245 		unlock_page(head);
1246 		res = MF_FAILED;
1247 		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1248 			page_ref_inc(p);
1249 			res = MF_RECOVERED;
1250 		}
1251 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1252 		return res == MF_RECOVERED ? 0 : -EBUSY;
1253 	}
1254 
1255 	lock_page(head);
1256 	page_flags = head->flags;
1257 
1258 	if (!PageHWPoison(head)) {
1259 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1260 		num_poisoned_pages_dec();
1261 		unlock_page(head);
1262 		put_page(head);
1263 		return 0;
1264 	}
1265 
1266 	/*
1267 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1268 	 * simply disable it. In order to make it work properly, we need
1269 	 * make sure that:
1270 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1271 	 *    entry properly works, and
1272 	 *  - other mm code walking over page table is aware of pud-aligned
1273 	 *    hwpoison entries.
1274 	 */
1275 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1276 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1277 		res = -EBUSY;
1278 		goto out;
1279 	}
1280 
1281 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1282 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1283 		res = -EBUSY;
1284 		goto out;
1285 	}
1286 
1287 	res = identify_page_state(pfn, p, page_flags);
1288 out:
1289 	unlock_page(head);
1290 	return res;
1291 }
1292 
1293 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1294 		struct dev_pagemap *pgmap)
1295 {
1296 	struct page *page = pfn_to_page(pfn);
1297 	const bool unmap_success = true;
1298 	unsigned long size = 0;
1299 	struct to_kill *tk;
1300 	LIST_HEAD(tokill);
1301 	int rc = -EBUSY;
1302 	loff_t start;
1303 	dax_entry_t cookie;
1304 
1305 	if (flags & MF_COUNT_INCREASED)
1306 		/*
1307 		 * Drop the extra refcount in case we come from madvise().
1308 		 */
1309 		put_page(page);
1310 
1311 	/*
1312 	 * Prevent the inode from being freed while we are interrogating
1313 	 * the address_space, typically this would be handled by
1314 	 * lock_page(), but dax pages do not use the page lock. This
1315 	 * also prevents changes to the mapping of this pfn until
1316 	 * poison signaling is complete.
1317 	 */
1318 	cookie = dax_lock_page(page);
1319 	if (!cookie)
1320 		goto out;
1321 
1322 	if (hwpoison_filter(page)) {
1323 		rc = 0;
1324 		goto unlock;
1325 	}
1326 
1327 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1328 		/*
1329 		 * TODO: Handle HMM pages which may need coordination
1330 		 * with device-side memory.
1331 		 */
1332 		goto unlock;
1333 	}
1334 
1335 	/*
1336 	 * Use this flag as an indication that the dax page has been
1337 	 * remapped UC to prevent speculative consumption of poison.
1338 	 */
1339 	SetPageHWPoison(page);
1340 
1341 	/*
1342 	 * Unlike System-RAM there is no possibility to swap in a
1343 	 * different physical page at a given virtual address, so all
1344 	 * userspace consumption of ZONE_DEVICE memory necessitates
1345 	 * SIGBUS (i.e. MF_MUST_KILL)
1346 	 */
1347 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1348 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1349 
1350 	list_for_each_entry(tk, &tokill, nd)
1351 		if (tk->size_shift)
1352 			size = max(size, 1UL << tk->size_shift);
1353 	if (size) {
1354 		/*
1355 		 * Unmap the largest mapping to avoid breaking up
1356 		 * device-dax mappings which are constant size. The
1357 		 * actual size of the mapping being torn down is
1358 		 * communicated in siginfo, see kill_proc()
1359 		 */
1360 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1361 		unmap_mapping_range(page->mapping, start, start + size, 0);
1362 	}
1363 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1364 	rc = 0;
1365 unlock:
1366 	dax_unlock_page(page, cookie);
1367 out:
1368 	/* drop pgmap ref acquired in caller */
1369 	put_dev_pagemap(pgmap);
1370 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1371 	return rc;
1372 }
1373 
1374 /**
1375  * memory_failure - Handle memory failure of a page.
1376  * @pfn: Page Number of the corrupted page
1377  * @flags: fine tune action taken
1378  *
1379  * This function is called by the low level machine check code
1380  * of an architecture when it detects hardware memory corruption
1381  * of a page. It tries its best to recover, which includes
1382  * dropping pages, killing processes etc.
1383  *
1384  * The function is primarily of use for corruptions that
1385  * happen outside the current execution context (e.g. when
1386  * detected by a background scrubber)
1387  *
1388  * Must run in process context (e.g. a work queue) with interrupts
1389  * enabled and no spinlocks hold.
1390  */
1391 int memory_failure(unsigned long pfn, int flags)
1392 {
1393 	struct page *p;
1394 	struct page *hpage;
1395 	struct page *orig_head;
1396 	struct dev_pagemap *pgmap;
1397 	int res;
1398 	unsigned long page_flags;
1399 	bool retry = true;
1400 
1401 	if (!sysctl_memory_failure_recovery)
1402 		panic("Memory failure on page %lx", pfn);
1403 
1404 	p = pfn_to_online_page(pfn);
1405 	if (!p) {
1406 		if (pfn_valid(pfn)) {
1407 			pgmap = get_dev_pagemap(pfn, NULL);
1408 			if (pgmap)
1409 				return memory_failure_dev_pagemap(pfn, flags,
1410 								  pgmap);
1411 		}
1412 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1413 			pfn);
1414 		return -ENXIO;
1415 	}
1416 
1417 try_again:
1418 	if (PageHuge(p))
1419 		return memory_failure_hugetlb(pfn, flags);
1420 	if (TestSetPageHWPoison(p)) {
1421 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1422 			pfn);
1423 		return 0;
1424 	}
1425 
1426 	orig_head = hpage = compound_head(p);
1427 	num_poisoned_pages_inc();
1428 
1429 	/*
1430 	 * We need/can do nothing about count=0 pages.
1431 	 * 1) it's a free page, and therefore in safe hand:
1432 	 *    prep_new_page() will be the gate keeper.
1433 	 * 2) it's part of a non-compound high order page.
1434 	 *    Implies some kernel user: cannot stop them from
1435 	 *    R/W the page; let's pray that the page has been
1436 	 *    used and will be freed some time later.
1437 	 * In fact it's dangerous to directly bump up page count from 0,
1438 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1439 	 */
1440 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1441 		if (is_free_buddy_page(p)) {
1442 			if (take_page_off_buddy(p)) {
1443 				page_ref_inc(p);
1444 				res = MF_RECOVERED;
1445 			} else {
1446 				/* We lost the race, try again */
1447 				if (retry) {
1448 					ClearPageHWPoison(p);
1449 					num_poisoned_pages_dec();
1450 					retry = false;
1451 					goto try_again;
1452 				}
1453 				res = MF_FAILED;
1454 			}
1455 			action_result(pfn, MF_MSG_BUDDY, res);
1456 			return res == MF_RECOVERED ? 0 : -EBUSY;
1457 		} else {
1458 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1459 			return -EBUSY;
1460 		}
1461 	}
1462 
1463 	if (PageTransHuge(hpage)) {
1464 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1465 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1466 			return -EBUSY;
1467 		}
1468 		VM_BUG_ON_PAGE(!page_count(p), p);
1469 	}
1470 
1471 	/*
1472 	 * We ignore non-LRU pages for good reasons.
1473 	 * - PG_locked is only well defined for LRU pages and a few others
1474 	 * - to avoid races with __SetPageLocked()
1475 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1476 	 * The check (unnecessarily) ignores LRU pages being isolated and
1477 	 * walked by the page reclaim code, however that's not a big loss.
1478 	 */
1479 	shake_page(p, 0);
1480 
1481 	lock_page(p);
1482 
1483 	/*
1484 	 * The page could have changed compound pages during the locking.
1485 	 * If this happens just bail out.
1486 	 */
1487 	if (PageCompound(p) && compound_head(p) != orig_head) {
1488 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1489 		res = -EBUSY;
1490 		goto out;
1491 	}
1492 
1493 	/*
1494 	 * We use page flags to determine what action should be taken, but
1495 	 * the flags can be modified by the error containment action.  One
1496 	 * example is an mlocked page, where PG_mlocked is cleared by
1497 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1498 	 * correctly, we save a copy of the page flags at this time.
1499 	 */
1500 	page_flags = p->flags;
1501 
1502 	/*
1503 	 * unpoison always clear PG_hwpoison inside page lock
1504 	 */
1505 	if (!PageHWPoison(p)) {
1506 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1507 		num_poisoned_pages_dec();
1508 		unlock_page(p);
1509 		put_page(p);
1510 		return 0;
1511 	}
1512 	if (hwpoison_filter(p)) {
1513 		if (TestClearPageHWPoison(p))
1514 			num_poisoned_pages_dec();
1515 		unlock_page(p);
1516 		put_page(p);
1517 		return 0;
1518 	}
1519 
1520 	if (!PageTransTail(p) && !PageLRU(p))
1521 		goto identify_page_state;
1522 
1523 	/*
1524 	 * It's very difficult to mess with pages currently under IO
1525 	 * and in many cases impossible, so we just avoid it here.
1526 	 */
1527 	wait_on_page_writeback(p);
1528 
1529 	/*
1530 	 * Now take care of user space mappings.
1531 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1532 	 */
1533 	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1534 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1535 		res = -EBUSY;
1536 		goto out;
1537 	}
1538 
1539 	/*
1540 	 * Torn down by someone else?
1541 	 */
1542 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1543 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1544 		res = -EBUSY;
1545 		goto out;
1546 	}
1547 
1548 identify_page_state:
1549 	res = identify_page_state(pfn, p, page_flags);
1550 out:
1551 	unlock_page(p);
1552 	return res;
1553 }
1554 EXPORT_SYMBOL_GPL(memory_failure);
1555 
1556 #define MEMORY_FAILURE_FIFO_ORDER	4
1557 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1558 
1559 struct memory_failure_entry {
1560 	unsigned long pfn;
1561 	int flags;
1562 };
1563 
1564 struct memory_failure_cpu {
1565 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1566 		      MEMORY_FAILURE_FIFO_SIZE);
1567 	spinlock_t lock;
1568 	struct work_struct work;
1569 };
1570 
1571 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1572 
1573 /**
1574  * memory_failure_queue - Schedule handling memory failure of a page.
1575  * @pfn: Page Number of the corrupted page
1576  * @flags: Flags for memory failure handling
1577  *
1578  * This function is called by the low level hardware error handler
1579  * when it detects hardware memory corruption of a page. It schedules
1580  * the recovering of error page, including dropping pages, killing
1581  * processes etc.
1582  *
1583  * The function is primarily of use for corruptions that
1584  * happen outside the current execution context (e.g. when
1585  * detected by a background scrubber)
1586  *
1587  * Can run in IRQ context.
1588  */
1589 void memory_failure_queue(unsigned long pfn, int flags)
1590 {
1591 	struct memory_failure_cpu *mf_cpu;
1592 	unsigned long proc_flags;
1593 	struct memory_failure_entry entry = {
1594 		.pfn =		pfn,
1595 		.flags =	flags,
1596 	};
1597 
1598 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1599 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1600 	if (kfifo_put(&mf_cpu->fifo, entry))
1601 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1602 	else
1603 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1604 		       pfn);
1605 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1606 	put_cpu_var(memory_failure_cpu);
1607 }
1608 EXPORT_SYMBOL_GPL(memory_failure_queue);
1609 
1610 static void memory_failure_work_func(struct work_struct *work)
1611 {
1612 	struct memory_failure_cpu *mf_cpu;
1613 	struct memory_failure_entry entry = { 0, };
1614 	unsigned long proc_flags;
1615 	int gotten;
1616 
1617 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1618 	for (;;) {
1619 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1620 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1621 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1622 		if (!gotten)
1623 			break;
1624 		if (entry.flags & MF_SOFT_OFFLINE)
1625 			soft_offline_page(entry.pfn, entry.flags);
1626 		else
1627 			memory_failure(entry.pfn, entry.flags);
1628 	}
1629 }
1630 
1631 /*
1632  * Process memory_failure work queued on the specified CPU.
1633  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1634  */
1635 void memory_failure_queue_kick(int cpu)
1636 {
1637 	struct memory_failure_cpu *mf_cpu;
1638 
1639 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1640 	cancel_work_sync(&mf_cpu->work);
1641 	memory_failure_work_func(&mf_cpu->work);
1642 }
1643 
1644 static int __init memory_failure_init(void)
1645 {
1646 	struct memory_failure_cpu *mf_cpu;
1647 	int cpu;
1648 
1649 	for_each_possible_cpu(cpu) {
1650 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1651 		spin_lock_init(&mf_cpu->lock);
1652 		INIT_KFIFO(mf_cpu->fifo);
1653 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1654 	}
1655 
1656 	return 0;
1657 }
1658 core_initcall(memory_failure_init);
1659 
1660 #define unpoison_pr_info(fmt, pfn, rs)			\
1661 ({							\
1662 	if (__ratelimit(rs))				\
1663 		pr_info(fmt, pfn);			\
1664 })
1665 
1666 /**
1667  * unpoison_memory - Unpoison a previously poisoned page
1668  * @pfn: Page number of the to be unpoisoned page
1669  *
1670  * Software-unpoison a page that has been poisoned by
1671  * memory_failure() earlier.
1672  *
1673  * This is only done on the software-level, so it only works
1674  * for linux injected failures, not real hardware failures
1675  *
1676  * Returns 0 for success, otherwise -errno.
1677  */
1678 int unpoison_memory(unsigned long pfn)
1679 {
1680 	struct page *page;
1681 	struct page *p;
1682 	int freeit = 0;
1683 	unsigned long flags = 0;
1684 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1685 					DEFAULT_RATELIMIT_BURST);
1686 
1687 	if (!pfn_valid(pfn))
1688 		return -ENXIO;
1689 
1690 	p = pfn_to_page(pfn);
1691 	page = compound_head(p);
1692 
1693 	if (!PageHWPoison(p)) {
1694 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1695 				 pfn, &unpoison_rs);
1696 		return 0;
1697 	}
1698 
1699 	if (page_count(page) > 1) {
1700 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1701 				 pfn, &unpoison_rs);
1702 		return 0;
1703 	}
1704 
1705 	if (page_mapped(page)) {
1706 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1707 				 pfn, &unpoison_rs);
1708 		return 0;
1709 	}
1710 
1711 	if (page_mapping(page)) {
1712 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1713 				 pfn, &unpoison_rs);
1714 		return 0;
1715 	}
1716 
1717 	/*
1718 	 * unpoison_memory() can encounter thp only when the thp is being
1719 	 * worked by memory_failure() and the page lock is not held yet.
1720 	 * In such case, we yield to memory_failure() and make unpoison fail.
1721 	 */
1722 	if (!PageHuge(page) && PageTransHuge(page)) {
1723 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1724 				 pfn, &unpoison_rs);
1725 		return 0;
1726 	}
1727 
1728 	if (!get_hwpoison_page(p, flags, 0)) {
1729 		if (TestClearPageHWPoison(p))
1730 			num_poisoned_pages_dec();
1731 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1732 				 pfn, &unpoison_rs);
1733 		return 0;
1734 	}
1735 
1736 	lock_page(page);
1737 	/*
1738 	 * This test is racy because PG_hwpoison is set outside of page lock.
1739 	 * That's acceptable because that won't trigger kernel panic. Instead,
1740 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1741 	 * the free buddy page pool.
1742 	 */
1743 	if (TestClearPageHWPoison(page)) {
1744 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1745 				 pfn, &unpoison_rs);
1746 		num_poisoned_pages_dec();
1747 		freeit = 1;
1748 	}
1749 	unlock_page(page);
1750 
1751 	put_page(page);
1752 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1753 		put_page(page);
1754 
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(unpoison_memory);
1758 
1759 static bool isolate_page(struct page *page, struct list_head *pagelist)
1760 {
1761 	bool isolated = false;
1762 	bool lru = PageLRU(page);
1763 
1764 	if (PageHuge(page)) {
1765 		isolated = isolate_huge_page(page, pagelist);
1766 	} else {
1767 		if (lru)
1768 			isolated = !isolate_lru_page(page);
1769 		else
1770 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1771 
1772 		if (isolated)
1773 			list_add(&page->lru, pagelist);
1774 	}
1775 
1776 	if (isolated && lru)
1777 		inc_node_page_state(page, NR_ISOLATED_ANON +
1778 				    page_is_file_lru(page));
1779 
1780 	/*
1781 	 * If we succeed to isolate the page, we grabbed another refcount on
1782 	 * the page, so we can safely drop the one we got from get_any_pages().
1783 	 * If we failed to isolate the page, it means that we cannot go further
1784 	 * and we will return an error, so drop the reference we got from
1785 	 * get_any_pages() as well.
1786 	 */
1787 	put_page(page);
1788 	return isolated;
1789 }
1790 
1791 /*
1792  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1793  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1794  * If the page is mapped, it migrates the contents over.
1795  */
1796 static int __soft_offline_page(struct page *page)
1797 {
1798 	int ret = 0;
1799 	unsigned long pfn = page_to_pfn(page);
1800 	struct page *hpage = compound_head(page);
1801 	char const *msg_page[] = {"page", "hugepage"};
1802 	bool huge = PageHuge(page);
1803 	LIST_HEAD(pagelist);
1804 	struct migration_target_control mtc = {
1805 		.nid = NUMA_NO_NODE,
1806 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1807 	};
1808 
1809 	/*
1810 	 * Check PageHWPoison again inside page lock because PageHWPoison
1811 	 * is set by memory_failure() outside page lock. Note that
1812 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1813 	 * so there's no race between soft_offline_page() and memory_failure().
1814 	 */
1815 	lock_page(page);
1816 	if (!PageHuge(page))
1817 		wait_on_page_writeback(page);
1818 	if (PageHWPoison(page)) {
1819 		unlock_page(page);
1820 		put_page(page);
1821 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1822 		return 0;
1823 	}
1824 
1825 	if (!PageHuge(page))
1826 		/*
1827 		 * Try to invalidate first. This should work for
1828 		 * non dirty unmapped page cache pages.
1829 		 */
1830 		ret = invalidate_inode_page(page);
1831 	unlock_page(page);
1832 
1833 	/*
1834 	 * RED-PEN would be better to keep it isolated here, but we
1835 	 * would need to fix isolation locking first.
1836 	 */
1837 	if (ret) {
1838 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1839 		page_handle_poison(page, false, true);
1840 		return 0;
1841 	}
1842 
1843 	if (isolate_page(hpage, &pagelist)) {
1844 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1845 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1846 		if (!ret) {
1847 			bool release = !huge;
1848 
1849 			if (!page_handle_poison(page, huge, release))
1850 				ret = -EBUSY;
1851 		} else {
1852 			if (!list_empty(&pagelist))
1853 				putback_movable_pages(&pagelist);
1854 
1855 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1856 				pfn, msg_page[huge], ret, page->flags, &page->flags);
1857 			if (ret > 0)
1858 				ret = -EBUSY;
1859 		}
1860 	} else {
1861 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1862 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1863 		ret = -EBUSY;
1864 	}
1865 	return ret;
1866 }
1867 
1868 static int soft_offline_in_use_page(struct page *page)
1869 {
1870 	struct page *hpage = compound_head(page);
1871 
1872 	if (!PageHuge(page) && PageTransHuge(hpage))
1873 		if (try_to_split_thp_page(page, "soft offline") < 0)
1874 			return -EBUSY;
1875 	return __soft_offline_page(page);
1876 }
1877 
1878 static int soft_offline_free_page(struct page *page)
1879 {
1880 	int rc = 0;
1881 
1882 	if (!page_handle_poison(page, true, false))
1883 		rc = -EBUSY;
1884 
1885 	return rc;
1886 }
1887 
1888 static void put_ref_page(struct page *page)
1889 {
1890 	if (page)
1891 		put_page(page);
1892 }
1893 
1894 /**
1895  * soft_offline_page - Soft offline a page.
1896  * @pfn: pfn to soft-offline
1897  * @flags: flags. Same as memory_failure().
1898  *
1899  * Returns 0 on success, otherwise negated errno.
1900  *
1901  * Soft offline a page, by migration or invalidation,
1902  * without killing anything. This is for the case when
1903  * a page is not corrupted yet (so it's still valid to access),
1904  * but has had a number of corrected errors and is better taken
1905  * out.
1906  *
1907  * The actual policy on when to do that is maintained by
1908  * user space.
1909  *
1910  * This should never impact any application or cause data loss,
1911  * however it might take some time.
1912  *
1913  * This is not a 100% solution for all memory, but tries to be
1914  * ``good enough'' for the majority of memory.
1915  */
1916 int soft_offline_page(unsigned long pfn, int flags)
1917 {
1918 	int ret;
1919 	bool try_again = true;
1920 	struct page *page, *ref_page = NULL;
1921 
1922 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1923 
1924 	if (!pfn_valid(pfn))
1925 		return -ENXIO;
1926 	if (flags & MF_COUNT_INCREASED)
1927 		ref_page = pfn_to_page(pfn);
1928 
1929 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1930 	page = pfn_to_online_page(pfn);
1931 	if (!page) {
1932 		put_ref_page(ref_page);
1933 		return -EIO;
1934 	}
1935 
1936 	if (PageHWPoison(page)) {
1937 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1938 		put_ref_page(ref_page);
1939 		return 0;
1940 	}
1941 
1942 retry:
1943 	get_online_mems();
1944 	ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1945 	put_online_mems();
1946 
1947 	if (ret > 0) {
1948 		ret = soft_offline_in_use_page(page);
1949 	} else if (ret == 0) {
1950 		if (soft_offline_free_page(page) && try_again) {
1951 			try_again = false;
1952 			goto retry;
1953 		}
1954 	} else if (ret == -EIO) {
1955 		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1956 			 __func__, pfn, page->flags, &page->flags);
1957 	}
1958 
1959 	return ret;
1960 }
1961