xref: /openbmc/linux/mm/memory-failure.c (revision 84744377)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 			unsigned long pfn, struct page *page, int flags)
196 {
197 	struct siginfo si;
198 	int ret;
199 
200 	printk(KERN_ERR
201 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 		pfn, t->comm, t->pid);
203 	si.si_signo = SIGBUS;
204 	si.si_errno = 0;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
210 
211 	if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 		si.si_code = BUS_MCEERR_AR;
213 		ret = force_sig_info(SIGBUS, &si, t);
214 	} else {
215 		/*
216 		 * Don't use force here, it's convenient if the signal
217 		 * can be temporarily blocked.
218 		 * This could cause a loop when the user sets SIGBUS
219 		 * to SIG_IGN, but hopefully no one will do that?
220 		 */
221 		si.si_code = BUS_MCEERR_AO;
222 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
223 	}
224 	if (ret < 0)
225 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 		       t->comm, t->pid, ret);
227 	return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
234 void shake_page(struct page *p, int access)
235 {
236 	if (!PageSlab(p)) {
237 		lru_add_drain_all();
238 		if (PageLRU(p))
239 			return;
240 		drain_all_pages();
241 		if (PageLRU(p) || is_free_buddy_page(p))
242 			return;
243 	}
244 
245 	/*
246 	 * Only call shrink_slab here (which would also shrink other caches) if
247 	 * access is not potentially fatal.
248 	 */
249 	if (access) {
250 		int nr;
251 		int nid = page_to_nid(p);
252 		do {
253 			struct shrink_control shrink = {
254 				.gfp_mask = GFP_KERNEL,
255 			};
256 			node_set(nid, shrink.nodes_to_scan);
257 
258 			nr = shrink_slab(&shrink, 1000, 1000);
259 			if (page_count(p) == 1)
260 				break;
261 		} while (nr > 10);
262 	}
263 }
264 EXPORT_SYMBOL_GPL(shake_page);
265 
266 /*
267  * Kill all processes that have a poisoned page mapped and then isolate
268  * the page.
269  *
270  * General strategy:
271  * Find all processes having the page mapped and kill them.
272  * But we keep a page reference around so that the page is not
273  * actually freed yet.
274  * Then stash the page away
275  *
276  * There's no convenient way to get back to mapped processes
277  * from the VMAs. So do a brute-force search over all
278  * running processes.
279  *
280  * Remember that machine checks are not common (or rather
281  * if they are common you have other problems), so this shouldn't
282  * be a performance issue.
283  *
284  * Also there are some races possible while we get from the
285  * error detection to actually handle it.
286  */
287 
288 struct to_kill {
289 	struct list_head nd;
290 	struct task_struct *tsk;
291 	unsigned long addr;
292 	char addr_valid;
293 };
294 
295 /*
296  * Failure handling: if we can't find or can't kill a process there's
297  * not much we can do.	We just print a message and ignore otherwise.
298  */
299 
300 /*
301  * Schedule a process for later kill.
302  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
303  * TBD would GFP_NOIO be enough?
304  */
305 static void add_to_kill(struct task_struct *tsk, struct page *p,
306 		       struct vm_area_struct *vma,
307 		       struct list_head *to_kill,
308 		       struct to_kill **tkc)
309 {
310 	struct to_kill *tk;
311 
312 	if (*tkc) {
313 		tk = *tkc;
314 		*tkc = NULL;
315 	} else {
316 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
317 		if (!tk) {
318 			printk(KERN_ERR
319 		"MCE: Out of memory while machine check handling\n");
320 			return;
321 		}
322 	}
323 	tk->addr = page_address_in_vma(p, vma);
324 	tk->addr_valid = 1;
325 
326 	/*
327 	 * In theory we don't have to kill when the page was
328 	 * munmaped. But it could be also a mremap. Since that's
329 	 * likely very rare kill anyways just out of paranoia, but use
330 	 * a SIGKILL because the error is not contained anymore.
331 	 */
332 	if (tk->addr == -EFAULT) {
333 		pr_info("MCE: Unable to find user space address %lx in %s\n",
334 			page_to_pfn(p), tsk->comm);
335 		tk->addr_valid = 0;
336 	}
337 	get_task_struct(tsk);
338 	tk->tsk = tsk;
339 	list_add_tail(&tk->nd, to_kill);
340 }
341 
342 /*
343  * Kill the processes that have been collected earlier.
344  *
345  * Only do anything when DOIT is set, otherwise just free the list
346  * (this is used for clean pages which do not need killing)
347  * Also when FAIL is set do a force kill because something went
348  * wrong earlier.
349  */
350 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
351 			  int fail, struct page *page, unsigned long pfn,
352 			  int flags)
353 {
354 	struct to_kill *tk, *next;
355 
356 	list_for_each_entry_safe (tk, next, to_kill, nd) {
357 		if (forcekill) {
358 			/*
359 			 * In case something went wrong with munmapping
360 			 * make sure the process doesn't catch the
361 			 * signal and then access the memory. Just kill it.
362 			 */
363 			if (fail || tk->addr_valid == 0) {
364 				printk(KERN_ERR
365 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
366 					pfn, tk->tsk->comm, tk->tsk->pid);
367 				force_sig(SIGKILL, tk->tsk);
368 			}
369 
370 			/*
371 			 * In theory the process could have mapped
372 			 * something else on the address in-between. We could
373 			 * check for that, but we need to tell the
374 			 * process anyways.
375 			 */
376 			else if (kill_proc(tk->tsk, tk->addr, trapno,
377 					      pfn, page, flags) < 0)
378 				printk(KERN_ERR
379 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
380 					pfn, tk->tsk->comm, tk->tsk->pid);
381 		}
382 		put_task_struct(tk->tsk);
383 		kfree(tk);
384 	}
385 }
386 
387 static int task_early_kill(struct task_struct *tsk)
388 {
389 	if (!tsk->mm)
390 		return 0;
391 	if (tsk->flags & PF_MCE_PROCESS)
392 		return !!(tsk->flags & PF_MCE_EARLY);
393 	return sysctl_memory_failure_early_kill;
394 }
395 
396 /*
397  * Collect processes when the error hit an anonymous page.
398  */
399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 			      struct to_kill **tkc)
401 {
402 	struct vm_area_struct *vma;
403 	struct task_struct *tsk;
404 	struct anon_vma *av;
405 	pgoff_t pgoff;
406 
407 	av = page_lock_anon_vma_read(page);
408 	if (av == NULL)	/* Not actually mapped anymore */
409 		return;
410 
411 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
412 	read_lock(&tasklist_lock);
413 	for_each_process (tsk) {
414 		struct anon_vma_chain *vmac;
415 
416 		if (!task_early_kill(tsk))
417 			continue;
418 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 					       pgoff, pgoff) {
420 			vma = vmac->vma;
421 			if (!page_mapped_in_vma(page, vma))
422 				continue;
423 			if (vma->vm_mm == tsk->mm)
424 				add_to_kill(tsk, page, vma, to_kill, tkc);
425 		}
426 	}
427 	read_unlock(&tasklist_lock);
428 	page_unlock_anon_vma_read(av);
429 }
430 
431 /*
432  * Collect processes when the error hit a file mapped page.
433  */
434 static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 			      struct to_kill **tkc)
436 {
437 	struct vm_area_struct *vma;
438 	struct task_struct *tsk;
439 	struct address_space *mapping = page->mapping;
440 
441 	mutex_lock(&mapping->i_mmap_mutex);
442 	read_lock(&tasklist_lock);
443 	for_each_process(tsk) {
444 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
445 
446 		if (!task_early_kill(tsk))
447 			continue;
448 
449 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 				      pgoff) {
451 			/*
452 			 * Send early kill signal to tasks where a vma covers
453 			 * the page but the corrupted page is not necessarily
454 			 * mapped it in its pte.
455 			 * Assume applications who requested early kill want
456 			 * to be informed of all such data corruptions.
457 			 */
458 			if (vma->vm_mm == tsk->mm)
459 				add_to_kill(tsk, page, vma, to_kill, tkc);
460 		}
461 	}
462 	read_unlock(&tasklist_lock);
463 	mutex_unlock(&mapping->i_mmap_mutex);
464 }
465 
466 /*
467  * Collect the processes who have the corrupted page mapped to kill.
468  * This is done in two steps for locking reasons.
469  * First preallocate one tokill structure outside the spin locks,
470  * so that we can kill at least one process reasonably reliable.
471  */
472 static void collect_procs(struct page *page, struct list_head *tokill)
473 {
474 	struct to_kill *tk;
475 
476 	if (!page->mapping)
477 		return;
478 
479 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
480 	if (!tk)
481 		return;
482 	if (PageAnon(page))
483 		collect_procs_anon(page, tokill, &tk);
484 	else
485 		collect_procs_file(page, tokill, &tk);
486 	kfree(tk);
487 }
488 
489 /*
490  * Error handlers for various types of pages.
491  */
492 
493 enum outcome {
494 	IGNORED,	/* Error: cannot be handled */
495 	FAILED,		/* Error: handling failed */
496 	DELAYED,	/* Will be handled later */
497 	RECOVERED,	/* Successfully recovered */
498 };
499 
500 static const char *action_name[] = {
501 	[IGNORED] = "Ignored",
502 	[FAILED] = "Failed",
503 	[DELAYED] = "Delayed",
504 	[RECOVERED] = "Recovered",
505 };
506 
507 /*
508  * XXX: It is possible that a page is isolated from LRU cache,
509  * and then kept in swap cache or failed to remove from page cache.
510  * The page count will stop it from being freed by unpoison.
511  * Stress tests should be aware of this memory leak problem.
512  */
513 static int delete_from_lru_cache(struct page *p)
514 {
515 	if (!isolate_lru_page(p)) {
516 		/*
517 		 * Clear sensible page flags, so that the buddy system won't
518 		 * complain when the page is unpoison-and-freed.
519 		 */
520 		ClearPageActive(p);
521 		ClearPageUnevictable(p);
522 		/*
523 		 * drop the page count elevated by isolate_lru_page()
524 		 */
525 		page_cache_release(p);
526 		return 0;
527 	}
528 	return -EIO;
529 }
530 
531 /*
532  * Error hit kernel page.
533  * Do nothing, try to be lucky and not touch this instead. For a few cases we
534  * could be more sophisticated.
535  */
536 static int me_kernel(struct page *p, unsigned long pfn)
537 {
538 	return IGNORED;
539 }
540 
541 /*
542  * Page in unknown state. Do nothing.
543  */
544 static int me_unknown(struct page *p, unsigned long pfn)
545 {
546 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
547 	return FAILED;
548 }
549 
550 /*
551  * Clean (or cleaned) page cache page.
552  */
553 static int me_pagecache_clean(struct page *p, unsigned long pfn)
554 {
555 	int err;
556 	int ret = FAILED;
557 	struct address_space *mapping;
558 
559 	delete_from_lru_cache(p);
560 
561 	/*
562 	 * For anonymous pages we're done the only reference left
563 	 * should be the one m_f() holds.
564 	 */
565 	if (PageAnon(p))
566 		return RECOVERED;
567 
568 	/*
569 	 * Now truncate the page in the page cache. This is really
570 	 * more like a "temporary hole punch"
571 	 * Don't do this for block devices when someone else
572 	 * has a reference, because it could be file system metadata
573 	 * and that's not safe to truncate.
574 	 */
575 	mapping = page_mapping(p);
576 	if (!mapping) {
577 		/*
578 		 * Page has been teared down in the meanwhile
579 		 */
580 		return FAILED;
581 	}
582 
583 	/*
584 	 * Truncation is a bit tricky. Enable it per file system for now.
585 	 *
586 	 * Open: to take i_mutex or not for this? Right now we don't.
587 	 */
588 	if (mapping->a_ops->error_remove_page) {
589 		err = mapping->a_ops->error_remove_page(mapping, p);
590 		if (err != 0) {
591 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
592 					pfn, err);
593 		} else if (page_has_private(p) &&
594 				!try_to_release_page(p, GFP_NOIO)) {
595 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
596 		} else {
597 			ret = RECOVERED;
598 		}
599 	} else {
600 		/*
601 		 * If the file system doesn't support it just invalidate
602 		 * This fails on dirty or anything with private pages
603 		 */
604 		if (invalidate_inode_page(p))
605 			ret = RECOVERED;
606 		else
607 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
608 				pfn);
609 	}
610 	return ret;
611 }
612 
613 /*
614  * Dirty pagecache page
615  * Issues: when the error hit a hole page the error is not properly
616  * propagated.
617  */
618 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
619 {
620 	struct address_space *mapping = page_mapping(p);
621 
622 	SetPageError(p);
623 	/* TBD: print more information about the file. */
624 	if (mapping) {
625 		/*
626 		 * IO error will be reported by write(), fsync(), etc.
627 		 * who check the mapping.
628 		 * This way the application knows that something went
629 		 * wrong with its dirty file data.
630 		 *
631 		 * There's one open issue:
632 		 *
633 		 * The EIO will be only reported on the next IO
634 		 * operation and then cleared through the IO map.
635 		 * Normally Linux has two mechanisms to pass IO error
636 		 * first through the AS_EIO flag in the address space
637 		 * and then through the PageError flag in the page.
638 		 * Since we drop pages on memory failure handling the
639 		 * only mechanism open to use is through AS_AIO.
640 		 *
641 		 * This has the disadvantage that it gets cleared on
642 		 * the first operation that returns an error, while
643 		 * the PageError bit is more sticky and only cleared
644 		 * when the page is reread or dropped.  If an
645 		 * application assumes it will always get error on
646 		 * fsync, but does other operations on the fd before
647 		 * and the page is dropped between then the error
648 		 * will not be properly reported.
649 		 *
650 		 * This can already happen even without hwpoisoned
651 		 * pages: first on metadata IO errors (which only
652 		 * report through AS_EIO) or when the page is dropped
653 		 * at the wrong time.
654 		 *
655 		 * So right now we assume that the application DTRT on
656 		 * the first EIO, but we're not worse than other parts
657 		 * of the kernel.
658 		 */
659 		mapping_set_error(mapping, EIO);
660 	}
661 
662 	return me_pagecache_clean(p, pfn);
663 }
664 
665 /*
666  * Clean and dirty swap cache.
667  *
668  * Dirty swap cache page is tricky to handle. The page could live both in page
669  * cache and swap cache(ie. page is freshly swapped in). So it could be
670  * referenced concurrently by 2 types of PTEs:
671  * normal PTEs and swap PTEs. We try to handle them consistently by calling
672  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
673  * and then
674  *      - clear dirty bit to prevent IO
675  *      - remove from LRU
676  *      - but keep in the swap cache, so that when we return to it on
677  *        a later page fault, we know the application is accessing
678  *        corrupted data and shall be killed (we installed simple
679  *        interception code in do_swap_page to catch it).
680  *
681  * Clean swap cache pages can be directly isolated. A later page fault will
682  * bring in the known good data from disk.
683  */
684 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
685 {
686 	ClearPageDirty(p);
687 	/* Trigger EIO in shmem: */
688 	ClearPageUptodate(p);
689 
690 	if (!delete_from_lru_cache(p))
691 		return DELAYED;
692 	else
693 		return FAILED;
694 }
695 
696 static int me_swapcache_clean(struct page *p, unsigned long pfn)
697 {
698 	delete_from_swap_cache(p);
699 
700 	if (!delete_from_lru_cache(p))
701 		return RECOVERED;
702 	else
703 		return FAILED;
704 }
705 
706 /*
707  * Huge pages. Needs work.
708  * Issues:
709  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
710  *   To narrow down kill region to one page, we need to break up pmd.
711  */
712 static int me_huge_page(struct page *p, unsigned long pfn)
713 {
714 	int res = 0;
715 	struct page *hpage = compound_head(p);
716 	/*
717 	 * We can safely recover from error on free or reserved (i.e.
718 	 * not in-use) hugepage by dequeuing it from freelist.
719 	 * To check whether a hugepage is in-use or not, we can't use
720 	 * page->lru because it can be used in other hugepage operations,
721 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
722 	 * So instead we use page_mapping() and PageAnon().
723 	 * We assume that this function is called with page lock held,
724 	 * so there is no race between isolation and mapping/unmapping.
725 	 */
726 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
727 		res = dequeue_hwpoisoned_huge_page(hpage);
728 		if (!res)
729 			return RECOVERED;
730 	}
731 	return DELAYED;
732 }
733 
734 /*
735  * Various page states we can handle.
736  *
737  * A page state is defined by its current page->flags bits.
738  * The table matches them in order and calls the right handler.
739  *
740  * This is quite tricky because we can access page at any time
741  * in its live cycle, so all accesses have to be extremely careful.
742  *
743  * This is not complete. More states could be added.
744  * For any missing state don't attempt recovery.
745  */
746 
747 #define dirty		(1UL << PG_dirty)
748 #define sc		(1UL << PG_swapcache)
749 #define unevict		(1UL << PG_unevictable)
750 #define mlock		(1UL << PG_mlocked)
751 #define writeback	(1UL << PG_writeback)
752 #define lru		(1UL << PG_lru)
753 #define swapbacked	(1UL << PG_swapbacked)
754 #define head		(1UL << PG_head)
755 #define tail		(1UL << PG_tail)
756 #define compound	(1UL << PG_compound)
757 #define slab		(1UL << PG_slab)
758 #define reserved	(1UL << PG_reserved)
759 
760 static struct page_state {
761 	unsigned long mask;
762 	unsigned long res;
763 	char *msg;
764 	int (*action)(struct page *p, unsigned long pfn);
765 } error_states[] = {
766 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
767 	/*
768 	 * free pages are specially detected outside this table:
769 	 * PG_buddy pages only make a small fraction of all free pages.
770 	 */
771 
772 	/*
773 	 * Could in theory check if slab page is free or if we can drop
774 	 * currently unused objects without touching them. But just
775 	 * treat it as standard kernel for now.
776 	 */
777 	{ slab,		slab,		"kernel slab",	me_kernel },
778 
779 #ifdef CONFIG_PAGEFLAGS_EXTENDED
780 	{ head,		head,		"huge",		me_huge_page },
781 	{ tail,		tail,		"huge",		me_huge_page },
782 #else
783 	{ compound,	compound,	"huge",		me_huge_page },
784 #endif
785 
786 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
787 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
788 
789 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
790 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
791 
792 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
793 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
794 
795 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
796 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
797 
798 	/*
799 	 * Catchall entry: must be at end.
800 	 */
801 	{ 0,		0,		"unknown page state",	me_unknown },
802 };
803 
804 #undef dirty
805 #undef sc
806 #undef unevict
807 #undef mlock
808 #undef writeback
809 #undef lru
810 #undef swapbacked
811 #undef head
812 #undef tail
813 #undef compound
814 #undef slab
815 #undef reserved
816 
817 /*
818  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
819  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
820  */
821 static void action_result(unsigned long pfn, char *msg, int result)
822 {
823 	pr_err("MCE %#lx: %s page recovery: %s\n",
824 		pfn, msg, action_name[result]);
825 }
826 
827 static int page_action(struct page_state *ps, struct page *p,
828 			unsigned long pfn)
829 {
830 	int result;
831 	int count;
832 
833 	result = ps->action(p, pfn);
834 	action_result(pfn, ps->msg, result);
835 
836 	count = page_count(p) - 1;
837 	if (ps->action == me_swapcache_dirty && result == DELAYED)
838 		count--;
839 	if (count != 0) {
840 		printk(KERN_ERR
841 		       "MCE %#lx: %s page still referenced by %d users\n",
842 		       pfn, ps->msg, count);
843 		result = FAILED;
844 	}
845 
846 	/* Could do more checks here if page looks ok */
847 	/*
848 	 * Could adjust zone counters here to correct for the missing page.
849 	 */
850 
851 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
852 }
853 
854 /*
855  * Do all that is necessary to remove user space mappings. Unmap
856  * the pages and send SIGBUS to the processes if the data was dirty.
857  */
858 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
859 				  int trapno, int flags, struct page **hpagep)
860 {
861 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
862 	struct address_space *mapping;
863 	LIST_HEAD(tokill);
864 	int ret;
865 	int kill = 1, forcekill;
866 	struct page *hpage = *hpagep;
867 	struct page *ppage;
868 
869 	if (PageReserved(p) || PageSlab(p))
870 		return SWAP_SUCCESS;
871 
872 	/*
873 	 * This check implies we don't kill processes if their pages
874 	 * are in the swap cache early. Those are always late kills.
875 	 */
876 	if (!page_mapped(hpage))
877 		return SWAP_SUCCESS;
878 
879 	if (PageKsm(p))
880 		return SWAP_FAIL;
881 
882 	if (PageSwapCache(p)) {
883 		printk(KERN_ERR
884 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
885 		ttu |= TTU_IGNORE_HWPOISON;
886 	}
887 
888 	/*
889 	 * Propagate the dirty bit from PTEs to struct page first, because we
890 	 * need this to decide if we should kill or just drop the page.
891 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
892 	 * be called inside page lock (it's recommended but not enforced).
893 	 */
894 	mapping = page_mapping(hpage);
895 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
896 	    mapping_cap_writeback_dirty(mapping)) {
897 		if (page_mkclean(hpage)) {
898 			SetPageDirty(hpage);
899 		} else {
900 			kill = 0;
901 			ttu |= TTU_IGNORE_HWPOISON;
902 			printk(KERN_INFO
903 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
904 				pfn);
905 		}
906 	}
907 
908 	/*
909 	 * ppage: poisoned page
910 	 *   if p is regular page(4k page)
911 	 *        ppage == real poisoned page;
912 	 *   else p is hugetlb or THP, ppage == head page.
913 	 */
914 	ppage = hpage;
915 
916 	if (PageTransHuge(hpage)) {
917 		/*
918 		 * Verify that this isn't a hugetlbfs head page, the check for
919 		 * PageAnon is just for avoid tripping a split_huge_page
920 		 * internal debug check, as split_huge_page refuses to deal with
921 		 * anything that isn't an anon page. PageAnon can't go away fro
922 		 * under us because we hold a refcount on the hpage, without a
923 		 * refcount on the hpage. split_huge_page can't be safely called
924 		 * in the first place, having a refcount on the tail isn't
925 		 * enough * to be safe.
926 		 */
927 		if (!PageHuge(hpage) && PageAnon(hpage)) {
928 			if (unlikely(split_huge_page(hpage))) {
929 				/*
930 				 * FIXME: if splitting THP is failed, it is
931 				 * better to stop the following operation rather
932 				 * than causing panic by unmapping. System might
933 				 * survive if the page is freed later.
934 				 */
935 				printk(KERN_INFO
936 					"MCE %#lx: failed to split THP\n", pfn);
937 
938 				BUG_ON(!PageHWPoison(p));
939 				return SWAP_FAIL;
940 			}
941 			/*
942 			 * We pinned the head page for hwpoison handling,
943 			 * now we split the thp and we are interested in
944 			 * the hwpoisoned raw page, so move the refcount
945 			 * to it. Similarly, page lock is shifted.
946 			 */
947 			if (hpage != p) {
948 				put_page(hpage);
949 				get_page(p);
950 				lock_page(p);
951 				unlock_page(hpage);
952 				*hpagep = p;
953 			}
954 			/* THP is split, so ppage should be the real poisoned page. */
955 			ppage = p;
956 		}
957 	}
958 
959 	/*
960 	 * First collect all the processes that have the page
961 	 * mapped in dirty form.  This has to be done before try_to_unmap,
962 	 * because ttu takes the rmap data structures down.
963 	 *
964 	 * Error handling: We ignore errors here because
965 	 * there's nothing that can be done.
966 	 */
967 	if (kill)
968 		collect_procs(ppage, &tokill);
969 
970 	ret = try_to_unmap(ppage, ttu);
971 	if (ret != SWAP_SUCCESS)
972 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
973 				pfn, page_mapcount(ppage));
974 
975 	/*
976 	 * Now that the dirty bit has been propagated to the
977 	 * struct page and all unmaps done we can decide if
978 	 * killing is needed or not.  Only kill when the page
979 	 * was dirty or the process is not restartable,
980 	 * otherwise the tokill list is merely
981 	 * freed.  When there was a problem unmapping earlier
982 	 * use a more force-full uncatchable kill to prevent
983 	 * any accesses to the poisoned memory.
984 	 */
985 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
986 	kill_procs(&tokill, forcekill, trapno,
987 		      ret != SWAP_SUCCESS, p, pfn, flags);
988 
989 	return ret;
990 }
991 
992 static void set_page_hwpoison_huge_page(struct page *hpage)
993 {
994 	int i;
995 	int nr_pages = 1 << compound_order(hpage);
996 	for (i = 0; i < nr_pages; i++)
997 		SetPageHWPoison(hpage + i);
998 }
999 
1000 static void clear_page_hwpoison_huge_page(struct page *hpage)
1001 {
1002 	int i;
1003 	int nr_pages = 1 << compound_order(hpage);
1004 	for (i = 0; i < nr_pages; i++)
1005 		ClearPageHWPoison(hpage + i);
1006 }
1007 
1008 /**
1009  * memory_failure - Handle memory failure of a page.
1010  * @pfn: Page Number of the corrupted page
1011  * @trapno: Trap number reported in the signal to user space.
1012  * @flags: fine tune action taken
1013  *
1014  * This function is called by the low level machine check code
1015  * of an architecture when it detects hardware memory corruption
1016  * of a page. It tries its best to recover, which includes
1017  * dropping pages, killing processes etc.
1018  *
1019  * The function is primarily of use for corruptions that
1020  * happen outside the current execution context (e.g. when
1021  * detected by a background scrubber)
1022  *
1023  * Must run in process context (e.g. a work queue) with interrupts
1024  * enabled and no spinlocks hold.
1025  */
1026 int memory_failure(unsigned long pfn, int trapno, int flags)
1027 {
1028 	struct page_state *ps;
1029 	struct page *p;
1030 	struct page *hpage;
1031 	int res;
1032 	unsigned int nr_pages;
1033 	unsigned long page_flags;
1034 
1035 	if (!sysctl_memory_failure_recovery)
1036 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1037 
1038 	if (!pfn_valid(pfn)) {
1039 		printk(KERN_ERR
1040 		       "MCE %#lx: memory outside kernel control\n",
1041 		       pfn);
1042 		return -ENXIO;
1043 	}
1044 
1045 	p = pfn_to_page(pfn);
1046 	hpage = compound_head(p);
1047 	if (TestSetPageHWPoison(p)) {
1048 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1049 		return 0;
1050 	}
1051 
1052 	/*
1053 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1054 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1055 	 * transparent hugepages, they are supposed to be split and error
1056 	 * measurement is done in normal page units.  So nr_pages should be one
1057 	 * in this case.
1058 	 */
1059 	if (PageHuge(p))
1060 		nr_pages = 1 << compound_order(hpage);
1061 	else /* normal page or thp */
1062 		nr_pages = 1;
1063 	atomic_long_add(nr_pages, &num_poisoned_pages);
1064 
1065 	/*
1066 	 * We need/can do nothing about count=0 pages.
1067 	 * 1) it's a free page, and therefore in safe hand:
1068 	 *    prep_new_page() will be the gate keeper.
1069 	 * 2) it's a free hugepage, which is also safe:
1070 	 *    an affected hugepage will be dequeued from hugepage freelist,
1071 	 *    so there's no concern about reusing it ever after.
1072 	 * 3) it's part of a non-compound high order page.
1073 	 *    Implies some kernel user: cannot stop them from
1074 	 *    R/W the page; let's pray that the page has been
1075 	 *    used and will be freed some time later.
1076 	 * In fact it's dangerous to directly bump up page count from 0,
1077 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1078 	 */
1079 	if (!(flags & MF_COUNT_INCREASED) &&
1080 		!get_page_unless_zero(hpage)) {
1081 		if (is_free_buddy_page(p)) {
1082 			action_result(pfn, "free buddy", DELAYED);
1083 			return 0;
1084 		} else if (PageHuge(hpage)) {
1085 			/*
1086 			 * Check "just unpoisoned", "filter hit", and
1087 			 * "race with other subpage."
1088 			 */
1089 			lock_page(hpage);
1090 			if (!PageHWPoison(hpage)
1091 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1093 				atomic_long_sub(nr_pages, &num_poisoned_pages);
1094 				return 0;
1095 			}
1096 			set_page_hwpoison_huge_page(hpage);
1097 			res = dequeue_hwpoisoned_huge_page(hpage);
1098 			action_result(pfn, "free huge",
1099 				      res ? IGNORED : DELAYED);
1100 			unlock_page(hpage);
1101 			return res;
1102 		} else {
1103 			action_result(pfn, "high order kernel", IGNORED);
1104 			return -EBUSY;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * We ignore non-LRU pages for good reasons.
1110 	 * - PG_locked is only well defined for LRU pages and a few others
1111 	 * - to avoid races with __set_page_locked()
1112 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1113 	 * The check (unnecessarily) ignores LRU pages being isolated and
1114 	 * walked by the page reclaim code, however that's not a big loss.
1115 	 */
1116 	if (!PageHuge(p) && !PageTransTail(p)) {
1117 		if (!PageLRU(p))
1118 			shake_page(p, 0);
1119 		if (!PageLRU(p)) {
1120 			/*
1121 			 * shake_page could have turned it free.
1122 			 */
1123 			if (is_free_buddy_page(p)) {
1124 				if (flags & MF_COUNT_INCREASED)
1125 					action_result(pfn, "free buddy", DELAYED);
1126 				else
1127 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1128 				return 0;
1129 			}
1130 			action_result(pfn, "non LRU", IGNORED);
1131 			put_page(p);
1132 			return -EBUSY;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Lock the page and wait for writeback to finish.
1138 	 * It's very difficult to mess with pages currently under IO
1139 	 * and in many cases impossible, so we just avoid it here.
1140 	 */
1141 	lock_page(hpage);
1142 
1143 	/*
1144 	 * We use page flags to determine what action should be taken, but
1145 	 * the flags can be modified by the error containment action.  One
1146 	 * example is an mlocked page, where PG_mlocked is cleared by
1147 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1148 	 * correctly, we save a copy of the page flags at this time.
1149 	 */
1150 	page_flags = p->flags;
1151 
1152 	/*
1153 	 * unpoison always clear PG_hwpoison inside page lock
1154 	 */
1155 	if (!PageHWPoison(p)) {
1156 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1157 		res = 0;
1158 		goto out;
1159 	}
1160 	if (hwpoison_filter(p)) {
1161 		if (TestClearPageHWPoison(p))
1162 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1163 		unlock_page(hpage);
1164 		put_page(hpage);
1165 		return 0;
1166 	}
1167 
1168 	/*
1169 	 * For error on the tail page, we should set PG_hwpoison
1170 	 * on the head page to show that the hugepage is hwpoisoned
1171 	 */
1172 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1173 		action_result(pfn, "hugepage already hardware poisoned",
1174 				IGNORED);
1175 		unlock_page(hpage);
1176 		put_page(hpage);
1177 		return 0;
1178 	}
1179 	/*
1180 	 * Set PG_hwpoison on all pages in an error hugepage,
1181 	 * because containment is done in hugepage unit for now.
1182 	 * Since we have done TestSetPageHWPoison() for the head page with
1183 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1184 	 */
1185 	if (PageHuge(p))
1186 		set_page_hwpoison_huge_page(hpage);
1187 
1188 	wait_on_page_writeback(p);
1189 
1190 	/*
1191 	 * Now take care of user space mappings.
1192 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1193 	 *
1194 	 * When the raw error page is thp tail page, hpage points to the raw
1195 	 * page after thp split.
1196 	 */
1197 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1198 	    != SWAP_SUCCESS) {
1199 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1200 		res = -EBUSY;
1201 		goto out;
1202 	}
1203 
1204 	/*
1205 	 * Torn down by someone else?
1206 	 */
1207 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1208 		action_result(pfn, "already truncated LRU", IGNORED);
1209 		res = -EBUSY;
1210 		goto out;
1211 	}
1212 
1213 	res = -EBUSY;
1214 	/*
1215 	 * The first check uses the current page flags which may not have any
1216 	 * relevant information. The second check with the saved page flagss is
1217 	 * carried out only if the first check can't determine the page status.
1218 	 */
1219 	for (ps = error_states;; ps++)
1220 		if ((p->flags & ps->mask) == ps->res)
1221 			break;
1222 
1223 	page_flags |= (p->flags & (1UL << PG_dirty));
1224 
1225 	if (!ps->mask)
1226 		for (ps = error_states;; ps++)
1227 			if ((page_flags & ps->mask) == ps->res)
1228 				break;
1229 	res = page_action(ps, p, pfn);
1230 out:
1231 	unlock_page(hpage);
1232 	return res;
1233 }
1234 EXPORT_SYMBOL_GPL(memory_failure);
1235 
1236 #define MEMORY_FAILURE_FIFO_ORDER	4
1237 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1238 
1239 struct memory_failure_entry {
1240 	unsigned long pfn;
1241 	int trapno;
1242 	int flags;
1243 };
1244 
1245 struct memory_failure_cpu {
1246 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1247 		      MEMORY_FAILURE_FIFO_SIZE);
1248 	spinlock_t lock;
1249 	struct work_struct work;
1250 };
1251 
1252 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1253 
1254 /**
1255  * memory_failure_queue - Schedule handling memory failure of a page.
1256  * @pfn: Page Number of the corrupted page
1257  * @trapno: Trap number reported in the signal to user space.
1258  * @flags: Flags for memory failure handling
1259  *
1260  * This function is called by the low level hardware error handler
1261  * when it detects hardware memory corruption of a page. It schedules
1262  * the recovering of error page, including dropping pages, killing
1263  * processes etc.
1264  *
1265  * The function is primarily of use for corruptions that
1266  * happen outside the current execution context (e.g. when
1267  * detected by a background scrubber)
1268  *
1269  * Can run in IRQ context.
1270  */
1271 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1272 {
1273 	struct memory_failure_cpu *mf_cpu;
1274 	unsigned long proc_flags;
1275 	struct memory_failure_entry entry = {
1276 		.pfn =		pfn,
1277 		.trapno =	trapno,
1278 		.flags =	flags,
1279 	};
1280 
1281 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1282 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1283 	if (kfifo_put(&mf_cpu->fifo, entry))
1284 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1285 	else
1286 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1287 		       pfn);
1288 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1289 	put_cpu_var(memory_failure_cpu);
1290 }
1291 EXPORT_SYMBOL_GPL(memory_failure_queue);
1292 
1293 static void memory_failure_work_func(struct work_struct *work)
1294 {
1295 	struct memory_failure_cpu *mf_cpu;
1296 	struct memory_failure_entry entry = { 0, };
1297 	unsigned long proc_flags;
1298 	int gotten;
1299 
1300 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1301 	for (;;) {
1302 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1303 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1304 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1305 		if (!gotten)
1306 			break;
1307 		if (entry.flags & MF_SOFT_OFFLINE)
1308 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1309 		else
1310 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1311 	}
1312 }
1313 
1314 static int __init memory_failure_init(void)
1315 {
1316 	struct memory_failure_cpu *mf_cpu;
1317 	int cpu;
1318 
1319 	for_each_possible_cpu(cpu) {
1320 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1321 		spin_lock_init(&mf_cpu->lock);
1322 		INIT_KFIFO(mf_cpu->fifo);
1323 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1324 	}
1325 
1326 	return 0;
1327 }
1328 core_initcall(memory_failure_init);
1329 
1330 /**
1331  * unpoison_memory - Unpoison a previously poisoned page
1332  * @pfn: Page number of the to be unpoisoned page
1333  *
1334  * Software-unpoison a page that has been poisoned by
1335  * memory_failure() earlier.
1336  *
1337  * This is only done on the software-level, so it only works
1338  * for linux injected failures, not real hardware failures
1339  *
1340  * Returns 0 for success, otherwise -errno.
1341  */
1342 int unpoison_memory(unsigned long pfn)
1343 {
1344 	struct page *page;
1345 	struct page *p;
1346 	int freeit = 0;
1347 	unsigned int nr_pages;
1348 
1349 	if (!pfn_valid(pfn))
1350 		return -ENXIO;
1351 
1352 	p = pfn_to_page(pfn);
1353 	page = compound_head(p);
1354 
1355 	if (!PageHWPoison(p)) {
1356 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1357 		return 0;
1358 	}
1359 
1360 	/*
1361 	 * unpoison_memory() can encounter thp only when the thp is being
1362 	 * worked by memory_failure() and the page lock is not held yet.
1363 	 * In such case, we yield to memory_failure() and make unpoison fail.
1364 	 */
1365 	if (!PageHuge(page) && PageTransHuge(page)) {
1366 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1367 			return 0;
1368 	}
1369 
1370 	nr_pages = 1 << compound_order(page);
1371 
1372 	if (!get_page_unless_zero(page)) {
1373 		/*
1374 		 * Since HWPoisoned hugepage should have non-zero refcount,
1375 		 * race between memory failure and unpoison seems to happen.
1376 		 * In such case unpoison fails and memory failure runs
1377 		 * to the end.
1378 		 */
1379 		if (PageHuge(page)) {
1380 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1381 			return 0;
1382 		}
1383 		if (TestClearPageHWPoison(p))
1384 			atomic_long_dec(&num_poisoned_pages);
1385 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1386 		return 0;
1387 	}
1388 
1389 	lock_page(page);
1390 	/*
1391 	 * This test is racy because PG_hwpoison is set outside of page lock.
1392 	 * That's acceptable because that won't trigger kernel panic. Instead,
1393 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1394 	 * the free buddy page pool.
1395 	 */
1396 	if (TestClearPageHWPoison(page)) {
1397 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1398 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1399 		freeit = 1;
1400 		if (PageHuge(page))
1401 			clear_page_hwpoison_huge_page(page);
1402 	}
1403 	unlock_page(page);
1404 
1405 	put_page(page);
1406 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1407 		put_page(page);
1408 
1409 	return 0;
1410 }
1411 EXPORT_SYMBOL(unpoison_memory);
1412 
1413 static struct page *new_page(struct page *p, unsigned long private, int **x)
1414 {
1415 	int nid = page_to_nid(p);
1416 	if (PageHuge(p))
1417 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1418 						   nid);
1419 	else
1420 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1421 }
1422 
1423 /*
1424  * Safely get reference count of an arbitrary page.
1425  * Returns 0 for a free page, -EIO for a zero refcount page
1426  * that is not free, and 1 for any other page type.
1427  * For 1 the page is returned with increased page count, otherwise not.
1428  */
1429 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1430 {
1431 	int ret;
1432 
1433 	if (flags & MF_COUNT_INCREASED)
1434 		return 1;
1435 
1436 	/*
1437 	 * When the target page is a free hugepage, just remove it
1438 	 * from free hugepage list.
1439 	 */
1440 	if (!get_page_unless_zero(compound_head(p))) {
1441 		if (PageHuge(p)) {
1442 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1443 			ret = 0;
1444 		} else if (is_free_buddy_page(p)) {
1445 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1446 			ret = 0;
1447 		} else {
1448 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1449 				__func__, pfn, p->flags);
1450 			ret = -EIO;
1451 		}
1452 	} else {
1453 		/* Not a free page */
1454 		ret = 1;
1455 	}
1456 	return ret;
1457 }
1458 
1459 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1460 {
1461 	int ret = __get_any_page(page, pfn, flags);
1462 
1463 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1464 		/*
1465 		 * Try to free it.
1466 		 */
1467 		put_page(page);
1468 		shake_page(page, 1);
1469 
1470 		/*
1471 		 * Did it turn free?
1472 		 */
1473 		ret = __get_any_page(page, pfn, 0);
1474 		if (!PageLRU(page)) {
1475 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1476 				pfn, page->flags);
1477 			return -EIO;
1478 		}
1479 	}
1480 	return ret;
1481 }
1482 
1483 static int soft_offline_huge_page(struct page *page, int flags)
1484 {
1485 	int ret;
1486 	unsigned long pfn = page_to_pfn(page);
1487 	struct page *hpage = compound_head(page);
1488 	LIST_HEAD(pagelist);
1489 
1490 	/*
1491 	 * This double-check of PageHWPoison is to avoid the race with
1492 	 * memory_failure(). See also comment in __soft_offline_page().
1493 	 */
1494 	lock_page(hpage);
1495 	if (PageHWPoison(hpage)) {
1496 		unlock_page(hpage);
1497 		put_page(hpage);
1498 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1499 		return -EBUSY;
1500 	}
1501 	unlock_page(hpage);
1502 
1503 	/* Keep page count to indicate a given hugepage is isolated. */
1504 	list_move(&hpage->lru, &pagelist);
1505 	ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1506 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1507 	if (ret) {
1508 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1509 			pfn, ret, page->flags);
1510 		/*
1511 		 * We know that soft_offline_huge_page() tries to migrate
1512 		 * only one hugepage pointed to by hpage, so we need not
1513 		 * run through the pagelist here.
1514 		 */
1515 		putback_active_hugepage(hpage);
1516 		if (ret > 0)
1517 			ret = -EIO;
1518 	} else {
1519 		/* overcommit hugetlb page will be freed to buddy */
1520 		if (PageHuge(page)) {
1521 			set_page_hwpoison_huge_page(hpage);
1522 			dequeue_hwpoisoned_huge_page(hpage);
1523 			atomic_long_add(1 << compound_order(hpage),
1524 					&num_poisoned_pages);
1525 		} else {
1526 			SetPageHWPoison(page);
1527 			atomic_long_inc(&num_poisoned_pages);
1528 		}
1529 	}
1530 	return ret;
1531 }
1532 
1533 static int __soft_offline_page(struct page *page, int flags)
1534 {
1535 	int ret;
1536 	unsigned long pfn = page_to_pfn(page);
1537 
1538 	/*
1539 	 * Check PageHWPoison again inside page lock because PageHWPoison
1540 	 * is set by memory_failure() outside page lock. Note that
1541 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1542 	 * so there's no race between soft_offline_page() and memory_failure().
1543 	 */
1544 	lock_page(page);
1545 	wait_on_page_writeback(page);
1546 	if (PageHWPoison(page)) {
1547 		unlock_page(page);
1548 		put_page(page);
1549 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1550 		return -EBUSY;
1551 	}
1552 	/*
1553 	 * Try to invalidate first. This should work for
1554 	 * non dirty unmapped page cache pages.
1555 	 */
1556 	ret = invalidate_inode_page(page);
1557 	unlock_page(page);
1558 	/*
1559 	 * RED-PEN would be better to keep it isolated here, but we
1560 	 * would need to fix isolation locking first.
1561 	 */
1562 	if (ret == 1) {
1563 		put_page(page);
1564 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1565 		SetPageHWPoison(page);
1566 		atomic_long_inc(&num_poisoned_pages);
1567 		return 0;
1568 	}
1569 
1570 	/*
1571 	 * Simple invalidation didn't work.
1572 	 * Try to migrate to a new page instead. migrate.c
1573 	 * handles a large number of cases for us.
1574 	 */
1575 	ret = isolate_lru_page(page);
1576 	/*
1577 	 * Drop page reference which is came from get_any_page()
1578 	 * successful isolate_lru_page() already took another one.
1579 	 */
1580 	put_page(page);
1581 	if (!ret) {
1582 		LIST_HEAD(pagelist);
1583 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1584 					page_is_file_cache(page));
1585 		list_add(&page->lru, &pagelist);
1586 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1587 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1588 		if (ret) {
1589 			if (!list_empty(&pagelist)) {
1590 				list_del(&page->lru);
1591 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1592 						page_is_file_cache(page));
1593 				putback_lru_page(page);
1594 			}
1595 
1596 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1597 				pfn, ret, page->flags);
1598 			if (ret > 0)
1599 				ret = -EIO;
1600 		} else {
1601 			/*
1602 			 * After page migration succeeds, the source page can
1603 			 * be trapped in pagevec and actual freeing is delayed.
1604 			 * Freeing code works differently based on PG_hwpoison,
1605 			 * so there's a race. We need to make sure that the
1606 			 * source page should be freed back to buddy before
1607 			 * setting PG_hwpoison.
1608 			 */
1609 			if (!is_free_buddy_page(page))
1610 				lru_add_drain_all();
1611 			if (!is_free_buddy_page(page))
1612 				drain_all_pages();
1613 			SetPageHWPoison(page);
1614 			if (!is_free_buddy_page(page))
1615 				pr_info("soft offline: %#lx: page leaked\n",
1616 					pfn);
1617 			atomic_long_inc(&num_poisoned_pages);
1618 		}
1619 	} else {
1620 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1621 			pfn, ret, page_count(page), page->flags);
1622 	}
1623 	return ret;
1624 }
1625 
1626 /**
1627  * soft_offline_page - Soft offline a page.
1628  * @page: page to offline
1629  * @flags: flags. Same as memory_failure().
1630  *
1631  * Returns 0 on success, otherwise negated errno.
1632  *
1633  * Soft offline a page, by migration or invalidation,
1634  * without killing anything. This is for the case when
1635  * a page is not corrupted yet (so it's still valid to access),
1636  * but has had a number of corrected errors and is better taken
1637  * out.
1638  *
1639  * The actual policy on when to do that is maintained by
1640  * user space.
1641  *
1642  * This should never impact any application or cause data loss,
1643  * however it might take some time.
1644  *
1645  * This is not a 100% solution for all memory, but tries to be
1646  * ``good enough'' for the majority of memory.
1647  */
1648 int soft_offline_page(struct page *page, int flags)
1649 {
1650 	int ret;
1651 	unsigned long pfn = page_to_pfn(page);
1652 	struct page *hpage = compound_trans_head(page);
1653 
1654 	if (PageHWPoison(page)) {
1655 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1656 		return -EBUSY;
1657 	}
1658 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1659 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1660 			pr_info("soft offline: %#lx: failed to split THP\n",
1661 				pfn);
1662 			return -EBUSY;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1668 	 * This is a big hammer, a better would be nicer.
1669 	 */
1670 	lock_memory_hotplug();
1671 
1672 	/*
1673 	 * Isolate the page, so that it doesn't get reallocated if it
1674 	 * was free. This flag should be kept set until the source page
1675 	 * is freed and PG_hwpoison on it is set.
1676 	 */
1677 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1678 		set_migratetype_isolate(page, true);
1679 
1680 	ret = get_any_page(page, pfn, flags);
1681 	unlock_memory_hotplug();
1682 	if (ret > 0) { /* for in-use pages */
1683 		if (PageHuge(page))
1684 			ret = soft_offline_huge_page(page, flags);
1685 		else
1686 			ret = __soft_offline_page(page, flags);
1687 	} else if (ret == 0) { /* for free pages */
1688 		if (PageHuge(page)) {
1689 			set_page_hwpoison_huge_page(hpage);
1690 			dequeue_hwpoisoned_huge_page(hpage);
1691 			atomic_long_add(1 << compound_order(hpage),
1692 					&num_poisoned_pages);
1693 		} else {
1694 			SetPageHWPoison(page);
1695 			atomic_long_inc(&num_poisoned_pages);
1696 		}
1697 	}
1698 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1699 	return ret;
1700 }
1701