xref: /openbmc/linux/mm/memory-failure.c (revision 7ce05074)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 static bool __page_handle_poison(struct page *page)
70 {
71 	bool ret;
72 
73 	zone_pcp_disable(page_zone(page));
74 	ret = dissolve_free_huge_page(page);
75 	if (!ret)
76 		ret = take_page_off_buddy(page);
77 	zone_pcp_enable(page_zone(page));
78 
79 	return ret;
80 }
81 
82 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83 {
84 	if (hugepage_or_freepage) {
85 		/*
86 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 		 * returns 0 for non-hugetlb pages as well.
88 		 */
89 		if (!__page_handle_poison(page))
90 			/*
91 			 * We could fail to take off the target page from buddy
92 			 * for example due to racy page allocation, but that's
93 			 * acceptable because soft-offlined page is not broken
94 			 * and if someone really want to use it, they should
95 			 * take it.
96 			 */
97 			return false;
98 	}
99 
100 	SetPageHWPoison(page);
101 	if (release)
102 		put_page(page);
103 	page_ref_inc(page);
104 	num_poisoned_pages_inc();
105 
106 	return true;
107 }
108 
109 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110 
111 u32 hwpoison_filter_enable = 0;
112 u32 hwpoison_filter_dev_major = ~0U;
113 u32 hwpoison_filter_dev_minor = ~0U;
114 u64 hwpoison_filter_flags_mask;
115 u64 hwpoison_filter_flags_value;
116 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121 
122 static int hwpoison_filter_dev(struct page *p)
123 {
124 	struct address_space *mapping;
125 	dev_t dev;
126 
127 	if (hwpoison_filter_dev_major == ~0U &&
128 	    hwpoison_filter_dev_minor == ~0U)
129 		return 0;
130 
131 	/*
132 	 * page_mapping() does not accept slab pages.
133 	 */
134 	if (PageSlab(p))
135 		return -EINVAL;
136 
137 	mapping = page_mapping(p);
138 	if (mapping == NULL || mapping->host == NULL)
139 		return -EINVAL;
140 
141 	dev = mapping->host->i_sb->s_dev;
142 	if (hwpoison_filter_dev_major != ~0U &&
143 	    hwpoison_filter_dev_major != MAJOR(dev))
144 		return -EINVAL;
145 	if (hwpoison_filter_dev_minor != ~0U &&
146 	    hwpoison_filter_dev_minor != MINOR(dev))
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 
152 static int hwpoison_filter_flags(struct page *p)
153 {
154 	if (!hwpoison_filter_flags_mask)
155 		return 0;
156 
157 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 				    hwpoison_filter_flags_value)
159 		return 0;
160 	else
161 		return -EINVAL;
162 }
163 
164 /*
165  * This allows stress tests to limit test scope to a collection of tasks
166  * by putting them under some memcg. This prevents killing unrelated/important
167  * processes such as /sbin/init. Note that the target task may share clean
168  * pages with init (eg. libc text), which is harmless. If the target task
169  * share _dirty_ pages with another task B, the test scheme must make sure B
170  * is also included in the memcg. At last, due to race conditions this filter
171  * can only guarantee that the page either belongs to the memcg tasks, or is
172  * a freed page.
173  */
174 #ifdef CONFIG_MEMCG
175 u64 hwpoison_filter_memcg;
176 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177 static int hwpoison_filter_task(struct page *p)
178 {
179 	if (!hwpoison_filter_memcg)
180 		return 0;
181 
182 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 #else
188 static int hwpoison_filter_task(struct page *p) { return 0; }
189 #endif
190 
191 int hwpoison_filter(struct page *p)
192 {
193 	if (!hwpoison_filter_enable)
194 		return 0;
195 
196 	if (hwpoison_filter_dev(p))
197 		return -EINVAL;
198 
199 	if (hwpoison_filter_flags(p))
200 		return -EINVAL;
201 
202 	if (hwpoison_filter_task(p))
203 		return -EINVAL;
204 
205 	return 0;
206 }
207 #else
208 int hwpoison_filter(struct page *p)
209 {
210 	return 0;
211 }
212 #endif
213 
214 EXPORT_SYMBOL_GPL(hwpoison_filter);
215 
216 /*
217  * Kill all processes that have a poisoned page mapped and then isolate
218  * the page.
219  *
220  * General strategy:
221  * Find all processes having the page mapped and kill them.
222  * But we keep a page reference around so that the page is not
223  * actually freed yet.
224  * Then stash the page away
225  *
226  * There's no convenient way to get back to mapped processes
227  * from the VMAs. So do a brute-force search over all
228  * running processes.
229  *
230  * Remember that machine checks are not common (or rather
231  * if they are common you have other problems), so this shouldn't
232  * be a performance issue.
233  *
234  * Also there are some races possible while we get from the
235  * error detection to actually handle it.
236  */
237 
238 struct to_kill {
239 	struct list_head nd;
240 	struct task_struct *tsk;
241 	unsigned long addr;
242 	short size_shift;
243 };
244 
245 /*
246  * Send all the processes who have the page mapped a signal.
247  * ``action optional'' if they are not immediately affected by the error
248  * ``action required'' if error happened in current execution context
249  */
250 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251 {
252 	struct task_struct *t = tk->tsk;
253 	short addr_lsb = tk->size_shift;
254 	int ret = 0;
255 
256 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 			pfn, t->comm, t->pid);
258 
259 	if (flags & MF_ACTION_REQUIRED) {
260 		if (t == current)
261 			ret = force_sig_mceerr(BUS_MCEERR_AR,
262 					 (void __user *)tk->addr, addr_lsb);
263 		else
264 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 				addr_lsb, t);
267 	} else {
268 		/*
269 		 * Don't use force here, it's convenient if the signal
270 		 * can be temporarily blocked.
271 		 * This could cause a loop when the user sets SIGBUS
272 		 * to SIG_IGN, but hopefully no one will do that?
273 		 */
274 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 				      addr_lsb, t);  /* synchronous? */
276 	}
277 	if (ret < 0)
278 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 			t->comm, t->pid, ret);
280 	return ret;
281 }
282 
283 /*
284  * Unknown page type encountered. Try to check whether it can turn PageLRU by
285  * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286  */
287 void shake_page(struct page *p, int access)
288 {
289 	if (PageHuge(p))
290 		return;
291 
292 	if (!PageSlab(p)) {
293 		lru_add_drain_all();
294 		if (PageLRU(p) || is_free_buddy_page(p))
295 			return;
296 	}
297 
298 	/*
299 	 * Only call shrink_node_slabs here (which would also shrink
300 	 * other caches) if access is not potentially fatal.
301 	 */
302 	if (access)
303 		drop_slab_node(page_to_nid(p));
304 }
305 EXPORT_SYMBOL_GPL(shake_page);
306 
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 		struct vm_area_struct *vma)
309 {
310 	unsigned long address = vma_address(page, vma);
311 	pgd_t *pgd;
312 	p4d_t *p4d;
313 	pud_t *pud;
314 	pmd_t *pmd;
315 	pte_t *pte;
316 
317 	pgd = pgd_offset(vma->vm_mm, address);
318 	if (!pgd_present(*pgd))
319 		return 0;
320 	p4d = p4d_offset(pgd, address);
321 	if (!p4d_present(*p4d))
322 		return 0;
323 	pud = pud_offset(p4d, address);
324 	if (!pud_present(*pud))
325 		return 0;
326 	if (pud_devmap(*pud))
327 		return PUD_SHIFT;
328 	pmd = pmd_offset(pud, address);
329 	if (!pmd_present(*pmd))
330 		return 0;
331 	if (pmd_devmap(*pmd))
332 		return PMD_SHIFT;
333 	pte = pte_offset_map(pmd, address);
334 	if (!pte_present(*pte))
335 		return 0;
336 	if (pte_devmap(*pte))
337 		return PAGE_SHIFT;
338 	return 0;
339 }
340 
341 /*
342  * Failure handling: if we can't find or can't kill a process there's
343  * not much we can do.	We just print a message and ignore otherwise.
344  */
345 
346 /*
347  * Schedule a process for later kill.
348  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349  */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 		       struct vm_area_struct *vma,
352 		       struct list_head *to_kill)
353 {
354 	struct to_kill *tk;
355 
356 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 	if (!tk) {
358 		pr_err("Memory failure: Out of memory while machine check handling\n");
359 		return;
360 	}
361 
362 	tk->addr = page_address_in_vma(p, vma);
363 	if (is_zone_device_page(p))
364 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 	else
366 		tk->size_shift = page_shift(compound_head(p));
367 
368 	/*
369 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 	 * so "tk->size_shift == 0" effectively checks no mapping on
372 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 	 * to a process' address space, it's possible not all N VMAs
374 	 * contain mappings for the page, but at least one VMA does.
375 	 * Only deliver SIGBUS with payload derived from the VMA that
376 	 * has a mapping for the page.
377 	 */
378 	if (tk->addr == -EFAULT) {
379 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 			page_to_pfn(p), tsk->comm);
381 	} else if (tk->size_shift == 0) {
382 		kfree(tk);
383 		return;
384 	}
385 
386 	get_task_struct(tsk);
387 	tk->tsk = tsk;
388 	list_add_tail(&tk->nd, to_kill);
389 }
390 
391 /*
392  * Kill the processes that have been collected earlier.
393  *
394  * Only do anything when DOIT is set, otherwise just free the list
395  * (this is used for clean pages which do not need killing)
396  * Also when FAIL is set do a force kill because something went
397  * wrong earlier.
398  */
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 		unsigned long pfn, int flags)
401 {
402 	struct to_kill *tk, *next;
403 
404 	list_for_each_entry_safe (tk, next, to_kill, nd) {
405 		if (forcekill) {
406 			/*
407 			 * In case something went wrong with munmapping
408 			 * make sure the process doesn't catch the
409 			 * signal and then access the memory. Just kill it.
410 			 */
411 			if (fail || tk->addr == -EFAULT) {
412 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 				       pfn, tk->tsk->comm, tk->tsk->pid);
414 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 						 tk->tsk, PIDTYPE_PID);
416 			}
417 
418 			/*
419 			 * In theory the process could have mapped
420 			 * something else on the address in-between. We could
421 			 * check for that, but we need to tell the
422 			 * process anyways.
423 			 */
424 			else if (kill_proc(tk, pfn, flags) < 0)
425 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 				       pfn, tk->tsk->comm, tk->tsk->pid);
427 		}
428 		put_task_struct(tk->tsk);
429 		kfree(tk);
430 	}
431 }
432 
433 /*
434  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435  * on behalf of the thread group. Return task_struct of the (first found)
436  * dedicated thread if found, and return NULL otherwise.
437  *
438  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439  * have to call rcu_read_lock/unlock() in this function.
440  */
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(tsk, t) {
446 		if (t->flags & PF_MCE_PROCESS) {
447 			if (t->flags & PF_MCE_EARLY)
448 				return t;
449 		} else {
450 			if (sysctl_memory_failure_early_kill)
451 				return t;
452 		}
453 	}
454 	return NULL;
455 }
456 
457 /*
458  * Determine whether a given process is "early kill" process which expects
459  * to be signaled when some page under the process is hwpoisoned.
460  * Return task_struct of the dedicated thread (main thread unless explicitly
461  * specified) if the process is "early kill" and otherwise returns NULL.
462  *
463  * Note that the above is true for Action Optional case. For Action Required
464  * case, it's only meaningful to the current thread which need to be signaled
465  * with SIGBUS, this error is Action Optional for other non current
466  * processes sharing the same error page,if the process is "early kill", the
467  * task_struct of the dedicated thread will also be returned.
468  */
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
470 					   int force_early)
471 {
472 	if (!tsk->mm)
473 		return NULL;
474 	/*
475 	 * Comparing ->mm here because current task might represent
476 	 * a subthread, while tsk always points to the main thread.
477 	 */
478 	if (force_early && tsk->mm == current->mm)
479 		return current;
480 
481 	return find_early_kill_thread(tsk);
482 }
483 
484 /*
485  * Collect processes when the error hit an anonymous page.
486  */
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 				int force_early)
489 {
490 	struct vm_area_struct *vma;
491 	struct task_struct *tsk;
492 	struct anon_vma *av;
493 	pgoff_t pgoff;
494 
495 	av = page_lock_anon_vma_read(page);
496 	if (av == NULL)	/* Not actually mapped anymore */
497 		return;
498 
499 	pgoff = page_to_pgoff(page);
500 	read_lock(&tasklist_lock);
501 	for_each_process (tsk) {
502 		struct anon_vma_chain *vmac;
503 		struct task_struct *t = task_early_kill(tsk, force_early);
504 
505 		if (!t)
506 			continue;
507 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 					       pgoff, pgoff) {
509 			vma = vmac->vma;
510 			if (!page_mapped_in_vma(page, vma))
511 				continue;
512 			if (vma->vm_mm == t->mm)
513 				add_to_kill(t, page, vma, to_kill);
514 		}
515 	}
516 	read_unlock(&tasklist_lock);
517 	page_unlock_anon_vma_read(av);
518 }
519 
520 /*
521  * Collect processes when the error hit a file mapped page.
522  */
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 				int force_early)
525 {
526 	struct vm_area_struct *vma;
527 	struct task_struct *tsk;
528 	struct address_space *mapping = page->mapping;
529 	pgoff_t pgoff;
530 
531 	i_mmap_lock_read(mapping);
532 	read_lock(&tasklist_lock);
533 	pgoff = page_to_pgoff(page);
534 	for_each_process(tsk) {
535 		struct task_struct *t = task_early_kill(tsk, force_early);
536 
537 		if (!t)
538 			continue;
539 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 				      pgoff) {
541 			/*
542 			 * Send early kill signal to tasks where a vma covers
543 			 * the page but the corrupted page is not necessarily
544 			 * mapped it in its pte.
545 			 * Assume applications who requested early kill want
546 			 * to be informed of all such data corruptions.
547 			 */
548 			if (vma->vm_mm == t->mm)
549 				add_to_kill(t, page, vma, to_kill);
550 		}
551 	}
552 	read_unlock(&tasklist_lock);
553 	i_mmap_unlock_read(mapping);
554 }
555 
556 /*
557  * Collect the processes who have the corrupted page mapped to kill.
558  */
559 static void collect_procs(struct page *page, struct list_head *tokill,
560 				int force_early)
561 {
562 	if (!page->mapping)
563 		return;
564 
565 	if (PageAnon(page))
566 		collect_procs_anon(page, tokill, force_early);
567 	else
568 		collect_procs_file(page, tokill, force_early);
569 }
570 
571 struct hwp_walk {
572 	struct to_kill tk;
573 	unsigned long pfn;
574 	int flags;
575 };
576 
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578 {
579 	tk->addr = addr;
580 	tk->size_shift = shift;
581 }
582 
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 				unsigned long poisoned_pfn, struct to_kill *tk)
585 {
586 	unsigned long pfn = 0;
587 
588 	if (pte_present(pte)) {
589 		pfn = pte_pfn(pte);
590 	} else {
591 		swp_entry_t swp = pte_to_swp_entry(pte);
592 
593 		if (is_hwpoison_entry(swp))
594 			pfn = hwpoison_entry_to_pfn(swp);
595 	}
596 
597 	if (!pfn || pfn != poisoned_pfn)
598 		return 0;
599 
600 	set_to_kill(tk, addr, shift);
601 	return 1;
602 }
603 
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 				      struct hwp_walk *hwp)
607 {
608 	pmd_t pmd = *pmdp;
609 	unsigned long pfn;
610 	unsigned long hwpoison_vaddr;
611 
612 	if (!pmd_present(pmd))
613 		return 0;
614 	pfn = pmd_pfn(pmd);
615 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 		return 1;
619 	}
620 	return 0;
621 }
622 #else
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 				      struct hwp_walk *hwp)
625 {
626 	return 0;
627 }
628 #endif
629 
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 			      unsigned long end, struct mm_walk *walk)
632 {
633 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 	int ret = 0;
635 	pte_t *ptep;
636 	spinlock_t *ptl;
637 
638 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 	if (ptl) {
640 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 		spin_unlock(ptl);
642 		goto out;
643 	}
644 
645 	if (pmd_trans_unstable(pmdp))
646 		goto out;
647 
648 	ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 					     hwp->pfn, &hwp->tk);
652 		if (ret == 1)
653 			break;
654 	}
655 	pte_unmap_unlock(ptep - 1, ptl);
656 out:
657 	cond_resched();
658 	return ret;
659 }
660 
661 #ifdef CONFIG_HUGETLB_PAGE
662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 			    unsigned long addr, unsigned long end,
664 			    struct mm_walk *walk)
665 {
666 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 	pte_t pte = huge_ptep_get(ptep);
668 	struct hstate *h = hstate_vma(walk->vma);
669 
670 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 				      hwp->pfn, &hwp->tk);
672 }
673 #else
674 #define hwpoison_hugetlb_range	NULL
675 #endif
676 
677 static struct mm_walk_ops hwp_walk_ops = {
678 	.pmd_entry = hwpoison_pte_range,
679 	.hugetlb_entry = hwpoison_hugetlb_range,
680 };
681 
682 /*
683  * Sends SIGBUS to the current process with error info.
684  *
685  * This function is intended to handle "Action Required" MCEs on already
686  * hardware poisoned pages. They could happen, for example, when
687  * memory_failure() failed to unmap the error page at the first call, or
688  * when multiple local machine checks happened on different CPUs.
689  *
690  * MCE handler currently has no easy access to the error virtual address,
691  * so this function walks page table to find it. The returned virtual address
692  * is proper in most cases, but it could be wrong when the application
693  * process has multiple entries mapping the error page.
694  */
695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 				  int flags)
697 {
698 	int ret;
699 	struct hwp_walk priv = {
700 		.pfn = pfn,
701 	};
702 	priv.tk.tsk = p;
703 
704 	mmap_read_lock(p->mm);
705 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 			      (void *)&priv);
707 	if (ret == 1 && priv.tk.addr)
708 		kill_proc(&priv.tk, pfn, flags);
709 	mmap_read_unlock(p->mm);
710 	return ret ? -EFAULT : -EHWPOISON;
711 }
712 
713 static const char *action_name[] = {
714 	[MF_IGNORED] = "Ignored",
715 	[MF_FAILED] = "Failed",
716 	[MF_DELAYED] = "Delayed",
717 	[MF_RECOVERED] = "Recovered",
718 };
719 
720 static const char * const action_page_types[] = {
721 	[MF_MSG_KERNEL]			= "reserved kernel page",
722 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
723 	[MF_MSG_SLAB]			= "kernel slab page",
724 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
725 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
726 	[MF_MSG_HUGE]			= "huge page",
727 	[MF_MSG_FREE_HUGE]		= "free huge page",
728 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
729 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
730 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
731 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
732 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
733 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
734 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
735 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
736 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
737 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
738 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
739 	[MF_MSG_BUDDY]			= "free buddy page",
740 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
741 	[MF_MSG_DAX]			= "dax page",
742 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
743 	[MF_MSG_UNKNOWN]		= "unknown page",
744 };
745 
746 /*
747  * XXX: It is possible that a page is isolated from LRU cache,
748  * and then kept in swap cache or failed to remove from page cache.
749  * The page count will stop it from being freed by unpoison.
750  * Stress tests should be aware of this memory leak problem.
751  */
752 static int delete_from_lru_cache(struct page *p)
753 {
754 	if (!isolate_lru_page(p)) {
755 		/*
756 		 * Clear sensible page flags, so that the buddy system won't
757 		 * complain when the page is unpoison-and-freed.
758 		 */
759 		ClearPageActive(p);
760 		ClearPageUnevictable(p);
761 
762 		/*
763 		 * Poisoned page might never drop its ref count to 0 so we have
764 		 * to uncharge it manually from its memcg.
765 		 */
766 		mem_cgroup_uncharge(p);
767 
768 		/*
769 		 * drop the page count elevated by isolate_lru_page()
770 		 */
771 		put_page(p);
772 		return 0;
773 	}
774 	return -EIO;
775 }
776 
777 static int truncate_error_page(struct page *p, unsigned long pfn,
778 				struct address_space *mapping)
779 {
780 	int ret = MF_FAILED;
781 
782 	if (mapping->a_ops->error_remove_page) {
783 		int err = mapping->a_ops->error_remove_page(mapping, p);
784 
785 		if (err != 0) {
786 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 				pfn, err);
788 		} else if (page_has_private(p) &&
789 			   !try_to_release_page(p, GFP_NOIO)) {
790 			pr_info("Memory failure: %#lx: failed to release buffers\n",
791 				pfn);
792 		} else {
793 			ret = MF_RECOVERED;
794 		}
795 	} else {
796 		/*
797 		 * If the file system doesn't support it just invalidate
798 		 * This fails on dirty or anything with private pages
799 		 */
800 		if (invalidate_inode_page(p))
801 			ret = MF_RECOVERED;
802 		else
803 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 				pfn);
805 	}
806 
807 	return ret;
808 }
809 
810 /*
811  * Error hit kernel page.
812  * Do nothing, try to be lucky and not touch this instead. For a few cases we
813  * could be more sophisticated.
814  */
815 static int me_kernel(struct page *p, unsigned long pfn)
816 {
817 	unlock_page(p);
818 	return MF_IGNORED;
819 }
820 
821 /*
822  * Page in unknown state. Do nothing.
823  */
824 static int me_unknown(struct page *p, unsigned long pfn)
825 {
826 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 	unlock_page(p);
828 	return MF_FAILED;
829 }
830 
831 /*
832  * Clean (or cleaned) page cache page.
833  */
834 static int me_pagecache_clean(struct page *p, unsigned long pfn)
835 {
836 	int ret;
837 	struct address_space *mapping;
838 
839 	delete_from_lru_cache(p);
840 
841 	/*
842 	 * For anonymous pages we're done the only reference left
843 	 * should be the one m_f() holds.
844 	 */
845 	if (PageAnon(p)) {
846 		ret = MF_RECOVERED;
847 		goto out;
848 	}
849 
850 	/*
851 	 * Now truncate the page in the page cache. This is really
852 	 * more like a "temporary hole punch"
853 	 * Don't do this for block devices when someone else
854 	 * has a reference, because it could be file system metadata
855 	 * and that's not safe to truncate.
856 	 */
857 	mapping = page_mapping(p);
858 	if (!mapping) {
859 		/*
860 		 * Page has been teared down in the meanwhile
861 		 */
862 		ret = MF_FAILED;
863 		goto out;
864 	}
865 
866 	/*
867 	 * Truncation is a bit tricky. Enable it per file system for now.
868 	 *
869 	 * Open: to take i_mutex or not for this? Right now we don't.
870 	 */
871 	ret = truncate_error_page(p, pfn, mapping);
872 out:
873 	unlock_page(p);
874 	return ret;
875 }
876 
877 /*
878  * Dirty pagecache page
879  * Issues: when the error hit a hole page the error is not properly
880  * propagated.
881  */
882 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883 {
884 	struct address_space *mapping = page_mapping(p);
885 
886 	SetPageError(p);
887 	/* TBD: print more information about the file. */
888 	if (mapping) {
889 		/*
890 		 * IO error will be reported by write(), fsync(), etc.
891 		 * who check the mapping.
892 		 * This way the application knows that something went
893 		 * wrong with its dirty file data.
894 		 *
895 		 * There's one open issue:
896 		 *
897 		 * The EIO will be only reported on the next IO
898 		 * operation and then cleared through the IO map.
899 		 * Normally Linux has two mechanisms to pass IO error
900 		 * first through the AS_EIO flag in the address space
901 		 * and then through the PageError flag in the page.
902 		 * Since we drop pages on memory failure handling the
903 		 * only mechanism open to use is through AS_AIO.
904 		 *
905 		 * This has the disadvantage that it gets cleared on
906 		 * the first operation that returns an error, while
907 		 * the PageError bit is more sticky and only cleared
908 		 * when the page is reread or dropped.  If an
909 		 * application assumes it will always get error on
910 		 * fsync, but does other operations on the fd before
911 		 * and the page is dropped between then the error
912 		 * will not be properly reported.
913 		 *
914 		 * This can already happen even without hwpoisoned
915 		 * pages: first on metadata IO errors (which only
916 		 * report through AS_EIO) or when the page is dropped
917 		 * at the wrong time.
918 		 *
919 		 * So right now we assume that the application DTRT on
920 		 * the first EIO, but we're not worse than other parts
921 		 * of the kernel.
922 		 */
923 		mapping_set_error(mapping, -EIO);
924 	}
925 
926 	return me_pagecache_clean(p, pfn);
927 }
928 
929 /*
930  * Clean and dirty swap cache.
931  *
932  * Dirty swap cache page is tricky to handle. The page could live both in page
933  * cache and swap cache(ie. page is freshly swapped in). So it could be
934  * referenced concurrently by 2 types of PTEs:
935  * normal PTEs and swap PTEs. We try to handle them consistently by calling
936  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937  * and then
938  *      - clear dirty bit to prevent IO
939  *      - remove from LRU
940  *      - but keep in the swap cache, so that when we return to it on
941  *        a later page fault, we know the application is accessing
942  *        corrupted data and shall be killed (we installed simple
943  *        interception code in do_swap_page to catch it).
944  *
945  * Clean swap cache pages can be directly isolated. A later page fault will
946  * bring in the known good data from disk.
947  */
948 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949 {
950 	int ret;
951 
952 	ClearPageDirty(p);
953 	/* Trigger EIO in shmem: */
954 	ClearPageUptodate(p);
955 
956 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 	unlock_page(p);
958 	return ret;
959 }
960 
961 static int me_swapcache_clean(struct page *p, unsigned long pfn)
962 {
963 	int ret;
964 
965 	delete_from_swap_cache(p);
966 
967 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 	unlock_page(p);
969 	return ret;
970 }
971 
972 /*
973  * Huge pages. Needs work.
974  * Issues:
975  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976  *   To narrow down kill region to one page, we need to break up pmd.
977  */
978 static int me_huge_page(struct page *p, unsigned long pfn)
979 {
980 	int res;
981 	struct page *hpage = compound_head(p);
982 	struct address_space *mapping;
983 
984 	if (!PageHuge(hpage))
985 		return MF_DELAYED;
986 
987 	mapping = page_mapping(hpage);
988 	if (mapping) {
989 		res = truncate_error_page(hpage, pfn, mapping);
990 		unlock_page(hpage);
991 	} else {
992 		res = MF_FAILED;
993 		unlock_page(hpage);
994 		/*
995 		 * migration entry prevents later access on error anonymous
996 		 * hugepage, so we can free and dissolve it into buddy to
997 		 * save healthy subpages.
998 		 */
999 		if (PageAnon(hpage))
1000 			put_page(hpage);
1001 		if (__page_handle_poison(p)) {
1002 			page_ref_inc(p);
1003 			res = MF_RECOVERED;
1004 		}
1005 	}
1006 
1007 	return res;
1008 }
1009 
1010 /*
1011  * Various page states we can handle.
1012  *
1013  * A page state is defined by its current page->flags bits.
1014  * The table matches them in order and calls the right handler.
1015  *
1016  * This is quite tricky because we can access page at any time
1017  * in its live cycle, so all accesses have to be extremely careful.
1018  *
1019  * This is not complete. More states could be added.
1020  * For any missing state don't attempt recovery.
1021  */
1022 
1023 #define dirty		(1UL << PG_dirty)
1024 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025 #define unevict		(1UL << PG_unevictable)
1026 #define mlock		(1UL << PG_mlocked)
1027 #define lru		(1UL << PG_lru)
1028 #define head		(1UL << PG_head)
1029 #define slab		(1UL << PG_slab)
1030 #define reserved	(1UL << PG_reserved)
1031 
1032 static struct page_state {
1033 	unsigned long mask;
1034 	unsigned long res;
1035 	enum mf_action_page_type type;
1036 
1037 	/* Callback ->action() has to unlock the relevant page inside it. */
1038 	int (*action)(struct page *p, unsigned long pfn);
1039 } error_states[] = {
1040 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1041 	/*
1042 	 * free pages are specially detected outside this table:
1043 	 * PG_buddy pages only make a small fraction of all free pages.
1044 	 */
1045 
1046 	/*
1047 	 * Could in theory check if slab page is free or if we can drop
1048 	 * currently unused objects without touching them. But just
1049 	 * treat it as standard kernel for now.
1050 	 */
1051 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1052 
1053 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1054 
1055 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1056 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1057 
1058 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1059 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1060 
1061 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1062 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1063 
1064 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1065 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1066 
1067 	/*
1068 	 * Catchall entry: must be at end.
1069 	 */
1070 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1071 };
1072 
1073 #undef dirty
1074 #undef sc
1075 #undef unevict
1076 #undef mlock
1077 #undef lru
1078 #undef head
1079 #undef slab
1080 #undef reserved
1081 
1082 /*
1083  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085  */
1086 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 			  enum mf_result result)
1088 {
1089 	trace_memory_failure_event(pfn, type, result);
1090 
1091 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 		pfn, action_page_types[type], action_name[result]);
1093 }
1094 
1095 static int page_action(struct page_state *ps, struct page *p,
1096 			unsigned long pfn)
1097 {
1098 	int result;
1099 	int count;
1100 
1101 	/* page p should be unlocked after returning from ps->action().  */
1102 	result = ps->action(p, pfn);
1103 
1104 	count = page_count(p) - 1;
1105 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 		count--;
1107 	if (count > 0) {
1108 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 		       pfn, action_page_types[ps->type], count);
1110 		result = MF_FAILED;
1111 	}
1112 	action_result(pfn, ps->type, result);
1113 
1114 	/* Could do more checks here if page looks ok */
1115 	/*
1116 	 * Could adjust zone counters here to correct for the missing page.
1117 	 */
1118 
1119 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120 }
1121 
1122 /*
1123  * Return true if a page type of a given page is supported by hwpoison
1124  * mechanism (while handling could fail), otherwise false.  This function
1125  * does not return true for hugetlb or device memory pages, so it's assumed
1126  * to be called only in the context where we never have such pages.
1127  */
1128 static inline bool HWPoisonHandlable(struct page *page)
1129 {
1130 	return PageLRU(page) || __PageMovable(page);
1131 }
1132 
1133 static int __get_hwpoison_page(struct page *page)
1134 {
1135 	struct page *head = compound_head(page);
1136 	int ret = 0;
1137 	bool hugetlb = false;
1138 
1139 	ret = get_hwpoison_huge_page(head, &hugetlb);
1140 	if (hugetlb)
1141 		return ret;
1142 
1143 	/*
1144 	 * This check prevents from calling get_hwpoison_unless_zero()
1145 	 * for any unsupported type of page in order to reduce the risk of
1146 	 * unexpected races caused by taking a page refcount.
1147 	 */
1148 	if (!HWPoisonHandlable(head))
1149 		return 0;
1150 
1151 	if (PageTransHuge(head)) {
1152 		/*
1153 		 * Non anonymous thp exists only in allocation/free time. We
1154 		 * can't handle such a case correctly, so let's give it up.
1155 		 * This should be better than triggering BUG_ON when kernel
1156 		 * tries to touch the "partially handled" page.
1157 		 */
1158 		if (!PageAnon(head)) {
1159 			pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 				page_to_pfn(page));
1161 			return 0;
1162 		}
1163 	}
1164 
1165 	if (get_page_unless_zero(head)) {
1166 		if (head == compound_head(page))
1167 			return 1;
1168 
1169 		pr_info("Memory failure: %#lx cannot catch tail\n",
1170 			page_to_pfn(page));
1171 		put_page(head);
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 static int get_any_page(struct page *p, unsigned long flags)
1178 {
1179 	int ret = 0, pass = 0;
1180 	bool count_increased = false;
1181 
1182 	if (flags & MF_COUNT_INCREASED)
1183 		count_increased = true;
1184 
1185 try_again:
1186 	if (!count_increased) {
1187 		ret = __get_hwpoison_page(p);
1188 		if (!ret) {
1189 			if (page_count(p)) {
1190 				/* We raced with an allocation, retry. */
1191 				if (pass++ < 3)
1192 					goto try_again;
1193 				ret = -EBUSY;
1194 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 				/* We raced with put_page, retry. */
1196 				if (pass++ < 3)
1197 					goto try_again;
1198 				ret = -EIO;
1199 			}
1200 			goto out;
1201 		} else if (ret == -EBUSY) {
1202 			/* We raced with freeing huge page to buddy, retry. */
1203 			if (pass++ < 3)
1204 				goto try_again;
1205 			goto out;
1206 		}
1207 	}
1208 
1209 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1210 		ret = 1;
1211 	} else {
1212 		/*
1213 		 * A page we cannot handle. Check whether we can turn
1214 		 * it into something we can handle.
1215 		 */
1216 		if (pass++ < 3) {
1217 			put_page(p);
1218 			shake_page(p, 1);
1219 			count_increased = false;
1220 			goto try_again;
1221 		}
1222 		put_page(p);
1223 		ret = -EIO;
1224 	}
1225 out:
1226 	return ret;
1227 }
1228 
1229 /**
1230  * get_hwpoison_page() - Get refcount for memory error handling
1231  * @p:		Raw error page (hit by memory error)
1232  * @flags:	Flags controlling behavior of error handling
1233  *
1234  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1235  * error on it, after checking that the error page is in a well-defined state
1236  * (defined as a page-type we can successfully handle the memor error on it,
1237  * such as LRU page and hugetlb page).
1238  *
1239  * Memory error handling could be triggered at any time on any type of page,
1240  * so it's prone to race with typical memory management lifecycle (like
1241  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1242  * extra care for the error page's state (as done in __get_hwpoison_page()),
1243  * and has some retry logic in get_any_page().
1244  *
1245  * Return: 0 on failure,
1246  *         1 on success for in-use pages in a well-defined state,
1247  *         -EIO for pages on which we can not handle memory errors,
1248  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1249  *         operations like allocation and free.
1250  */
1251 static int get_hwpoison_page(struct page *p, unsigned long flags)
1252 {
1253 	int ret;
1254 
1255 	zone_pcp_disable(page_zone(p));
1256 	ret = get_any_page(p, flags);
1257 	zone_pcp_enable(page_zone(p));
1258 
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Do all that is necessary to remove user space mappings. Unmap
1264  * the pages and send SIGBUS to the processes if the data was dirty.
1265  */
1266 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1267 				  int flags, struct page **hpagep)
1268 {
1269 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1270 	struct address_space *mapping;
1271 	LIST_HEAD(tokill);
1272 	bool unmap_success;
1273 	int kill = 1, forcekill;
1274 	struct page *hpage = *hpagep;
1275 	bool mlocked = PageMlocked(hpage);
1276 
1277 	/*
1278 	 * Here we are interested only in user-mapped pages, so skip any
1279 	 * other types of pages.
1280 	 */
1281 	if (PageReserved(p) || PageSlab(p))
1282 		return true;
1283 	if (!(PageLRU(hpage) || PageHuge(p)))
1284 		return true;
1285 
1286 	/*
1287 	 * This check implies we don't kill processes if their pages
1288 	 * are in the swap cache early. Those are always late kills.
1289 	 */
1290 	if (!page_mapped(hpage))
1291 		return true;
1292 
1293 	if (PageKsm(p)) {
1294 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1295 		return false;
1296 	}
1297 
1298 	if (PageSwapCache(p)) {
1299 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1300 			pfn);
1301 		ttu |= TTU_IGNORE_HWPOISON;
1302 	}
1303 
1304 	/*
1305 	 * Propagate the dirty bit from PTEs to struct page first, because we
1306 	 * need this to decide if we should kill or just drop the page.
1307 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1308 	 * be called inside page lock (it's recommended but not enforced).
1309 	 */
1310 	mapping = page_mapping(hpage);
1311 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1312 	    mapping_can_writeback(mapping)) {
1313 		if (page_mkclean(hpage)) {
1314 			SetPageDirty(hpage);
1315 		} else {
1316 			kill = 0;
1317 			ttu |= TTU_IGNORE_HWPOISON;
1318 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1319 				pfn);
1320 		}
1321 	}
1322 
1323 	/*
1324 	 * First collect all the processes that have the page
1325 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1326 	 * because ttu takes the rmap data structures down.
1327 	 *
1328 	 * Error handling: We ignore errors here because
1329 	 * there's nothing that can be done.
1330 	 */
1331 	if (kill)
1332 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1333 
1334 	if (!PageHuge(hpage)) {
1335 		try_to_unmap(hpage, ttu);
1336 	} else {
1337 		if (!PageAnon(hpage)) {
1338 			/*
1339 			 * For hugetlb pages in shared mappings, try_to_unmap
1340 			 * could potentially call huge_pmd_unshare.  Because of
1341 			 * this, take semaphore in write mode here and set
1342 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1343 			 * at this higher level.
1344 			 */
1345 			mapping = hugetlb_page_mapping_lock_write(hpage);
1346 			if (mapping) {
1347 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1348 				i_mmap_unlock_write(mapping);
1349 			} else
1350 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1351 		} else {
1352 			try_to_unmap(hpage, ttu);
1353 		}
1354 	}
1355 
1356 	unmap_success = !page_mapped(hpage);
1357 	if (!unmap_success)
1358 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1359 		       pfn, page_mapcount(hpage));
1360 
1361 	/*
1362 	 * try_to_unmap() might put mlocked page in lru cache, so call
1363 	 * shake_page() again to ensure that it's flushed.
1364 	 */
1365 	if (mlocked)
1366 		shake_page(hpage, 0);
1367 
1368 	/*
1369 	 * Now that the dirty bit has been propagated to the
1370 	 * struct page and all unmaps done we can decide if
1371 	 * killing is needed or not.  Only kill when the page
1372 	 * was dirty or the process is not restartable,
1373 	 * otherwise the tokill list is merely
1374 	 * freed.  When there was a problem unmapping earlier
1375 	 * use a more force-full uncatchable kill to prevent
1376 	 * any accesses to the poisoned memory.
1377 	 */
1378 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1379 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1380 
1381 	return unmap_success;
1382 }
1383 
1384 static int identify_page_state(unsigned long pfn, struct page *p,
1385 				unsigned long page_flags)
1386 {
1387 	struct page_state *ps;
1388 
1389 	/*
1390 	 * The first check uses the current page flags which may not have any
1391 	 * relevant information. The second check with the saved page flags is
1392 	 * carried out only if the first check can't determine the page status.
1393 	 */
1394 	for (ps = error_states;; ps++)
1395 		if ((p->flags & ps->mask) == ps->res)
1396 			break;
1397 
1398 	page_flags |= (p->flags & (1UL << PG_dirty));
1399 
1400 	if (!ps->mask)
1401 		for (ps = error_states;; ps++)
1402 			if ((page_flags & ps->mask) == ps->res)
1403 				break;
1404 	return page_action(ps, p, pfn);
1405 }
1406 
1407 static int try_to_split_thp_page(struct page *page, const char *msg)
1408 {
1409 	lock_page(page);
1410 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1411 		unsigned long pfn = page_to_pfn(page);
1412 
1413 		unlock_page(page);
1414 		if (!PageAnon(page))
1415 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1416 		else
1417 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1418 		put_page(page);
1419 		return -EBUSY;
1420 	}
1421 	unlock_page(page);
1422 
1423 	return 0;
1424 }
1425 
1426 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1427 {
1428 	struct page *p = pfn_to_page(pfn);
1429 	struct page *head = compound_head(p);
1430 	int res;
1431 	unsigned long page_flags;
1432 
1433 	if (TestSetPageHWPoison(head)) {
1434 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1435 		       pfn);
1436 		res = -EHWPOISON;
1437 		if (flags & MF_ACTION_REQUIRED)
1438 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1439 		return res;
1440 	}
1441 
1442 	num_poisoned_pages_inc();
1443 
1444 	if (!(flags & MF_COUNT_INCREASED)) {
1445 		res = get_hwpoison_page(p, flags);
1446 		if (!res) {
1447 			/*
1448 			 * Check "filter hit" and "race with other subpage."
1449 			 */
1450 			lock_page(head);
1451 			if (PageHWPoison(head)) {
1452 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1453 				    || (p != head && TestSetPageHWPoison(head))) {
1454 					num_poisoned_pages_dec();
1455 					unlock_page(head);
1456 					return 0;
1457 				}
1458 			}
1459 			unlock_page(head);
1460 			res = MF_FAILED;
1461 			if (__page_handle_poison(p)) {
1462 				page_ref_inc(p);
1463 				res = MF_RECOVERED;
1464 			}
1465 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1466 			return res == MF_RECOVERED ? 0 : -EBUSY;
1467 		} else if (res < 0) {
1468 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1469 			return -EBUSY;
1470 		}
1471 	}
1472 
1473 	lock_page(head);
1474 	page_flags = head->flags;
1475 
1476 	if (!PageHWPoison(head)) {
1477 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1478 		num_poisoned_pages_dec();
1479 		unlock_page(head);
1480 		put_page(head);
1481 		return 0;
1482 	}
1483 
1484 	/*
1485 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1486 	 * simply disable it. In order to make it work properly, we need
1487 	 * make sure that:
1488 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1489 	 *    entry properly works, and
1490 	 *  - other mm code walking over page table is aware of pud-aligned
1491 	 *    hwpoison entries.
1492 	 */
1493 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1494 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1495 		res = -EBUSY;
1496 		goto out;
1497 	}
1498 
1499 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1500 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1501 		res = -EBUSY;
1502 		goto out;
1503 	}
1504 
1505 	return identify_page_state(pfn, p, page_flags);
1506 out:
1507 	unlock_page(head);
1508 	return res;
1509 }
1510 
1511 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1512 		struct dev_pagemap *pgmap)
1513 {
1514 	struct page *page = pfn_to_page(pfn);
1515 	const bool unmap_success = true;
1516 	unsigned long size = 0;
1517 	struct to_kill *tk;
1518 	LIST_HEAD(tokill);
1519 	int rc = -EBUSY;
1520 	loff_t start;
1521 	dax_entry_t cookie;
1522 
1523 	if (flags & MF_COUNT_INCREASED)
1524 		/*
1525 		 * Drop the extra refcount in case we come from madvise().
1526 		 */
1527 		put_page(page);
1528 
1529 	/* device metadata space is not recoverable */
1530 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1531 		rc = -ENXIO;
1532 		goto out;
1533 	}
1534 
1535 	/*
1536 	 * Prevent the inode from being freed while we are interrogating
1537 	 * the address_space, typically this would be handled by
1538 	 * lock_page(), but dax pages do not use the page lock. This
1539 	 * also prevents changes to the mapping of this pfn until
1540 	 * poison signaling is complete.
1541 	 */
1542 	cookie = dax_lock_page(page);
1543 	if (!cookie)
1544 		goto out;
1545 
1546 	if (hwpoison_filter(page)) {
1547 		rc = 0;
1548 		goto unlock;
1549 	}
1550 
1551 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1552 		/*
1553 		 * TODO: Handle HMM pages which may need coordination
1554 		 * with device-side memory.
1555 		 */
1556 		goto unlock;
1557 	}
1558 
1559 	/*
1560 	 * Use this flag as an indication that the dax page has been
1561 	 * remapped UC to prevent speculative consumption of poison.
1562 	 */
1563 	SetPageHWPoison(page);
1564 
1565 	/*
1566 	 * Unlike System-RAM there is no possibility to swap in a
1567 	 * different physical page at a given virtual address, so all
1568 	 * userspace consumption of ZONE_DEVICE memory necessitates
1569 	 * SIGBUS (i.e. MF_MUST_KILL)
1570 	 */
1571 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1572 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1573 
1574 	list_for_each_entry(tk, &tokill, nd)
1575 		if (tk->size_shift)
1576 			size = max(size, 1UL << tk->size_shift);
1577 	if (size) {
1578 		/*
1579 		 * Unmap the largest mapping to avoid breaking up
1580 		 * device-dax mappings which are constant size. The
1581 		 * actual size of the mapping being torn down is
1582 		 * communicated in siginfo, see kill_proc()
1583 		 */
1584 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1585 		unmap_mapping_range(page->mapping, start, size, 0);
1586 	}
1587 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1588 	rc = 0;
1589 unlock:
1590 	dax_unlock_page(page, cookie);
1591 out:
1592 	/* drop pgmap ref acquired in caller */
1593 	put_dev_pagemap(pgmap);
1594 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1595 	return rc;
1596 }
1597 
1598 /**
1599  * memory_failure - Handle memory failure of a page.
1600  * @pfn: Page Number of the corrupted page
1601  * @flags: fine tune action taken
1602  *
1603  * This function is called by the low level machine check code
1604  * of an architecture when it detects hardware memory corruption
1605  * of a page. It tries its best to recover, which includes
1606  * dropping pages, killing processes etc.
1607  *
1608  * The function is primarily of use for corruptions that
1609  * happen outside the current execution context (e.g. when
1610  * detected by a background scrubber)
1611  *
1612  * Must run in process context (e.g. a work queue) with interrupts
1613  * enabled and no spinlocks hold.
1614  */
1615 int memory_failure(unsigned long pfn, int flags)
1616 {
1617 	struct page *p;
1618 	struct page *hpage;
1619 	struct page *orig_head;
1620 	struct dev_pagemap *pgmap;
1621 	int res = 0;
1622 	unsigned long page_flags;
1623 	bool retry = true;
1624 	static DEFINE_MUTEX(mf_mutex);
1625 
1626 	if (!sysctl_memory_failure_recovery)
1627 		panic("Memory failure on page %lx", pfn);
1628 
1629 	p = pfn_to_online_page(pfn);
1630 	if (!p) {
1631 		if (pfn_valid(pfn)) {
1632 			pgmap = get_dev_pagemap(pfn, NULL);
1633 			if (pgmap)
1634 				return memory_failure_dev_pagemap(pfn, flags,
1635 								  pgmap);
1636 		}
1637 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1638 			pfn);
1639 		return -ENXIO;
1640 	}
1641 
1642 	mutex_lock(&mf_mutex);
1643 
1644 try_again:
1645 	if (PageHuge(p)) {
1646 		res = memory_failure_hugetlb(pfn, flags);
1647 		goto unlock_mutex;
1648 	}
1649 
1650 	if (TestSetPageHWPoison(p)) {
1651 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1652 			pfn);
1653 		res = -EHWPOISON;
1654 		if (flags & MF_ACTION_REQUIRED)
1655 			res = kill_accessing_process(current, pfn, flags);
1656 		goto unlock_mutex;
1657 	}
1658 
1659 	orig_head = hpage = compound_head(p);
1660 	num_poisoned_pages_inc();
1661 
1662 	/*
1663 	 * We need/can do nothing about count=0 pages.
1664 	 * 1) it's a free page, and therefore in safe hand:
1665 	 *    prep_new_page() will be the gate keeper.
1666 	 * 2) it's part of a non-compound high order page.
1667 	 *    Implies some kernel user: cannot stop them from
1668 	 *    R/W the page; let's pray that the page has been
1669 	 *    used and will be freed some time later.
1670 	 * In fact it's dangerous to directly bump up page count from 0,
1671 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1672 	 */
1673 	if (!(flags & MF_COUNT_INCREASED)) {
1674 		res = get_hwpoison_page(p, flags);
1675 		if (!res) {
1676 			if (is_free_buddy_page(p)) {
1677 				if (take_page_off_buddy(p)) {
1678 					page_ref_inc(p);
1679 					res = MF_RECOVERED;
1680 				} else {
1681 					/* We lost the race, try again */
1682 					if (retry) {
1683 						ClearPageHWPoison(p);
1684 						num_poisoned_pages_dec();
1685 						retry = false;
1686 						goto try_again;
1687 					}
1688 					res = MF_FAILED;
1689 				}
1690 				action_result(pfn, MF_MSG_BUDDY, res);
1691 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1692 			} else {
1693 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1694 				res = -EBUSY;
1695 			}
1696 			goto unlock_mutex;
1697 		} else if (res < 0) {
1698 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1699 			res = -EBUSY;
1700 			goto unlock_mutex;
1701 		}
1702 	}
1703 
1704 	if (PageTransHuge(hpage)) {
1705 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1706 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1707 			res = -EBUSY;
1708 			goto unlock_mutex;
1709 		}
1710 		VM_BUG_ON_PAGE(!page_count(p), p);
1711 	}
1712 
1713 	/*
1714 	 * We ignore non-LRU pages for good reasons.
1715 	 * - PG_locked is only well defined for LRU pages and a few others
1716 	 * - to avoid races with __SetPageLocked()
1717 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1718 	 * The check (unnecessarily) ignores LRU pages being isolated and
1719 	 * walked by the page reclaim code, however that's not a big loss.
1720 	 */
1721 	shake_page(p, 0);
1722 
1723 	lock_page(p);
1724 
1725 	/*
1726 	 * The page could have changed compound pages during the locking.
1727 	 * If this happens just bail out.
1728 	 */
1729 	if (PageCompound(p) && compound_head(p) != orig_head) {
1730 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1731 		res = -EBUSY;
1732 		goto unlock_page;
1733 	}
1734 
1735 	/*
1736 	 * We use page flags to determine what action should be taken, but
1737 	 * the flags can be modified by the error containment action.  One
1738 	 * example is an mlocked page, where PG_mlocked is cleared by
1739 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1740 	 * correctly, we save a copy of the page flags at this time.
1741 	 */
1742 	page_flags = p->flags;
1743 
1744 	/*
1745 	 * unpoison always clear PG_hwpoison inside page lock
1746 	 */
1747 	if (!PageHWPoison(p)) {
1748 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1749 		num_poisoned_pages_dec();
1750 		unlock_page(p);
1751 		put_page(p);
1752 		goto unlock_mutex;
1753 	}
1754 	if (hwpoison_filter(p)) {
1755 		if (TestClearPageHWPoison(p))
1756 			num_poisoned_pages_dec();
1757 		unlock_page(p);
1758 		put_page(p);
1759 		goto unlock_mutex;
1760 	}
1761 
1762 	/*
1763 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1764 	 * page_lock. We need wait writeback completion for this page or it
1765 	 * may trigger vfs BUG while evict inode.
1766 	 */
1767 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1768 		goto identify_page_state;
1769 
1770 	/*
1771 	 * It's very difficult to mess with pages currently under IO
1772 	 * and in many cases impossible, so we just avoid it here.
1773 	 */
1774 	wait_on_page_writeback(p);
1775 
1776 	/*
1777 	 * Now take care of user space mappings.
1778 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1779 	 */
1780 	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1781 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1782 		res = -EBUSY;
1783 		goto unlock_page;
1784 	}
1785 
1786 	/*
1787 	 * Torn down by someone else?
1788 	 */
1789 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1790 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1791 		res = -EBUSY;
1792 		goto unlock_page;
1793 	}
1794 
1795 identify_page_state:
1796 	res = identify_page_state(pfn, p, page_flags);
1797 	mutex_unlock(&mf_mutex);
1798 	return res;
1799 unlock_page:
1800 	unlock_page(p);
1801 unlock_mutex:
1802 	mutex_unlock(&mf_mutex);
1803 	return res;
1804 }
1805 EXPORT_SYMBOL_GPL(memory_failure);
1806 
1807 #define MEMORY_FAILURE_FIFO_ORDER	4
1808 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1809 
1810 struct memory_failure_entry {
1811 	unsigned long pfn;
1812 	int flags;
1813 };
1814 
1815 struct memory_failure_cpu {
1816 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1817 		      MEMORY_FAILURE_FIFO_SIZE);
1818 	spinlock_t lock;
1819 	struct work_struct work;
1820 };
1821 
1822 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1823 
1824 /**
1825  * memory_failure_queue - Schedule handling memory failure of a page.
1826  * @pfn: Page Number of the corrupted page
1827  * @flags: Flags for memory failure handling
1828  *
1829  * This function is called by the low level hardware error handler
1830  * when it detects hardware memory corruption of a page. It schedules
1831  * the recovering of error page, including dropping pages, killing
1832  * processes etc.
1833  *
1834  * The function is primarily of use for corruptions that
1835  * happen outside the current execution context (e.g. when
1836  * detected by a background scrubber)
1837  *
1838  * Can run in IRQ context.
1839  */
1840 void memory_failure_queue(unsigned long pfn, int flags)
1841 {
1842 	struct memory_failure_cpu *mf_cpu;
1843 	unsigned long proc_flags;
1844 	struct memory_failure_entry entry = {
1845 		.pfn =		pfn,
1846 		.flags =	flags,
1847 	};
1848 
1849 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1850 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1851 	if (kfifo_put(&mf_cpu->fifo, entry))
1852 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1853 	else
1854 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1855 		       pfn);
1856 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1857 	put_cpu_var(memory_failure_cpu);
1858 }
1859 EXPORT_SYMBOL_GPL(memory_failure_queue);
1860 
1861 static void memory_failure_work_func(struct work_struct *work)
1862 {
1863 	struct memory_failure_cpu *mf_cpu;
1864 	struct memory_failure_entry entry = { 0, };
1865 	unsigned long proc_flags;
1866 	int gotten;
1867 
1868 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1869 	for (;;) {
1870 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1871 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1872 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1873 		if (!gotten)
1874 			break;
1875 		if (entry.flags & MF_SOFT_OFFLINE)
1876 			soft_offline_page(entry.pfn, entry.flags);
1877 		else
1878 			memory_failure(entry.pfn, entry.flags);
1879 	}
1880 }
1881 
1882 /*
1883  * Process memory_failure work queued on the specified CPU.
1884  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1885  */
1886 void memory_failure_queue_kick(int cpu)
1887 {
1888 	struct memory_failure_cpu *mf_cpu;
1889 
1890 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1891 	cancel_work_sync(&mf_cpu->work);
1892 	memory_failure_work_func(&mf_cpu->work);
1893 }
1894 
1895 static int __init memory_failure_init(void)
1896 {
1897 	struct memory_failure_cpu *mf_cpu;
1898 	int cpu;
1899 
1900 	for_each_possible_cpu(cpu) {
1901 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1902 		spin_lock_init(&mf_cpu->lock);
1903 		INIT_KFIFO(mf_cpu->fifo);
1904 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1905 	}
1906 
1907 	return 0;
1908 }
1909 core_initcall(memory_failure_init);
1910 
1911 #define unpoison_pr_info(fmt, pfn, rs)			\
1912 ({							\
1913 	if (__ratelimit(rs))				\
1914 		pr_info(fmt, pfn);			\
1915 })
1916 
1917 /**
1918  * unpoison_memory - Unpoison a previously poisoned page
1919  * @pfn: Page number of the to be unpoisoned page
1920  *
1921  * Software-unpoison a page that has been poisoned by
1922  * memory_failure() earlier.
1923  *
1924  * This is only done on the software-level, so it only works
1925  * for linux injected failures, not real hardware failures
1926  *
1927  * Returns 0 for success, otherwise -errno.
1928  */
1929 int unpoison_memory(unsigned long pfn)
1930 {
1931 	struct page *page;
1932 	struct page *p;
1933 	int freeit = 0;
1934 	unsigned long flags = 0;
1935 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1936 					DEFAULT_RATELIMIT_BURST);
1937 
1938 	if (!pfn_valid(pfn))
1939 		return -ENXIO;
1940 
1941 	p = pfn_to_page(pfn);
1942 	page = compound_head(p);
1943 
1944 	if (!PageHWPoison(p)) {
1945 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1946 				 pfn, &unpoison_rs);
1947 		return 0;
1948 	}
1949 
1950 	if (page_count(page) > 1) {
1951 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1952 				 pfn, &unpoison_rs);
1953 		return 0;
1954 	}
1955 
1956 	if (page_mapped(page)) {
1957 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1958 				 pfn, &unpoison_rs);
1959 		return 0;
1960 	}
1961 
1962 	if (page_mapping(page)) {
1963 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1964 				 pfn, &unpoison_rs);
1965 		return 0;
1966 	}
1967 
1968 	/*
1969 	 * unpoison_memory() can encounter thp only when the thp is being
1970 	 * worked by memory_failure() and the page lock is not held yet.
1971 	 * In such case, we yield to memory_failure() and make unpoison fail.
1972 	 */
1973 	if (!PageHuge(page) && PageTransHuge(page)) {
1974 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1975 				 pfn, &unpoison_rs);
1976 		return 0;
1977 	}
1978 
1979 	if (!get_hwpoison_page(p, flags)) {
1980 		if (TestClearPageHWPoison(p))
1981 			num_poisoned_pages_dec();
1982 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1983 				 pfn, &unpoison_rs);
1984 		return 0;
1985 	}
1986 
1987 	lock_page(page);
1988 	/*
1989 	 * This test is racy because PG_hwpoison is set outside of page lock.
1990 	 * That's acceptable because that won't trigger kernel panic. Instead,
1991 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1992 	 * the free buddy page pool.
1993 	 */
1994 	if (TestClearPageHWPoison(page)) {
1995 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1996 				 pfn, &unpoison_rs);
1997 		num_poisoned_pages_dec();
1998 		freeit = 1;
1999 	}
2000 	unlock_page(page);
2001 
2002 	put_page(page);
2003 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2004 		put_page(page);
2005 
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(unpoison_memory);
2009 
2010 static bool isolate_page(struct page *page, struct list_head *pagelist)
2011 {
2012 	bool isolated = false;
2013 	bool lru = PageLRU(page);
2014 
2015 	if (PageHuge(page)) {
2016 		isolated = isolate_huge_page(page, pagelist);
2017 	} else {
2018 		if (lru)
2019 			isolated = !isolate_lru_page(page);
2020 		else
2021 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2022 
2023 		if (isolated)
2024 			list_add(&page->lru, pagelist);
2025 	}
2026 
2027 	if (isolated && lru)
2028 		inc_node_page_state(page, NR_ISOLATED_ANON +
2029 				    page_is_file_lru(page));
2030 
2031 	/*
2032 	 * If we succeed to isolate the page, we grabbed another refcount on
2033 	 * the page, so we can safely drop the one we got from get_any_pages().
2034 	 * If we failed to isolate the page, it means that we cannot go further
2035 	 * and we will return an error, so drop the reference we got from
2036 	 * get_any_pages() as well.
2037 	 */
2038 	put_page(page);
2039 	return isolated;
2040 }
2041 
2042 /*
2043  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2044  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2045  * If the page is mapped, it migrates the contents over.
2046  */
2047 static int __soft_offline_page(struct page *page)
2048 {
2049 	int ret = 0;
2050 	unsigned long pfn = page_to_pfn(page);
2051 	struct page *hpage = compound_head(page);
2052 	char const *msg_page[] = {"page", "hugepage"};
2053 	bool huge = PageHuge(page);
2054 	LIST_HEAD(pagelist);
2055 	struct migration_target_control mtc = {
2056 		.nid = NUMA_NO_NODE,
2057 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2058 	};
2059 
2060 	/*
2061 	 * Check PageHWPoison again inside page lock because PageHWPoison
2062 	 * is set by memory_failure() outside page lock. Note that
2063 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2064 	 * so there's no race between soft_offline_page() and memory_failure().
2065 	 */
2066 	lock_page(page);
2067 	if (!PageHuge(page))
2068 		wait_on_page_writeback(page);
2069 	if (PageHWPoison(page)) {
2070 		unlock_page(page);
2071 		put_page(page);
2072 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2073 		return 0;
2074 	}
2075 
2076 	if (!PageHuge(page))
2077 		/*
2078 		 * Try to invalidate first. This should work for
2079 		 * non dirty unmapped page cache pages.
2080 		 */
2081 		ret = invalidate_inode_page(page);
2082 	unlock_page(page);
2083 
2084 	/*
2085 	 * RED-PEN would be better to keep it isolated here, but we
2086 	 * would need to fix isolation locking first.
2087 	 */
2088 	if (ret) {
2089 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2090 		page_handle_poison(page, false, true);
2091 		return 0;
2092 	}
2093 
2094 	if (isolate_page(hpage, &pagelist)) {
2095 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2096 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2097 		if (!ret) {
2098 			bool release = !huge;
2099 
2100 			if (!page_handle_poison(page, huge, release))
2101 				ret = -EBUSY;
2102 		} else {
2103 			if (!list_empty(&pagelist))
2104 				putback_movable_pages(&pagelist);
2105 
2106 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2107 				pfn, msg_page[huge], ret, page->flags, &page->flags);
2108 			if (ret > 0)
2109 				ret = -EBUSY;
2110 		}
2111 	} else {
2112 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2113 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2114 		ret = -EBUSY;
2115 	}
2116 	return ret;
2117 }
2118 
2119 static int soft_offline_in_use_page(struct page *page)
2120 {
2121 	struct page *hpage = compound_head(page);
2122 
2123 	if (!PageHuge(page) && PageTransHuge(hpage))
2124 		if (try_to_split_thp_page(page, "soft offline") < 0)
2125 			return -EBUSY;
2126 	return __soft_offline_page(page);
2127 }
2128 
2129 static int soft_offline_free_page(struct page *page)
2130 {
2131 	int rc = 0;
2132 
2133 	if (!page_handle_poison(page, true, false))
2134 		rc = -EBUSY;
2135 
2136 	return rc;
2137 }
2138 
2139 static void put_ref_page(struct page *page)
2140 {
2141 	if (page)
2142 		put_page(page);
2143 }
2144 
2145 /**
2146  * soft_offline_page - Soft offline a page.
2147  * @pfn: pfn to soft-offline
2148  * @flags: flags. Same as memory_failure().
2149  *
2150  * Returns 0 on success, otherwise negated errno.
2151  *
2152  * Soft offline a page, by migration or invalidation,
2153  * without killing anything. This is for the case when
2154  * a page is not corrupted yet (so it's still valid to access),
2155  * but has had a number of corrected errors and is better taken
2156  * out.
2157  *
2158  * The actual policy on when to do that is maintained by
2159  * user space.
2160  *
2161  * This should never impact any application or cause data loss,
2162  * however it might take some time.
2163  *
2164  * This is not a 100% solution for all memory, but tries to be
2165  * ``good enough'' for the majority of memory.
2166  */
2167 int soft_offline_page(unsigned long pfn, int flags)
2168 {
2169 	int ret;
2170 	bool try_again = true;
2171 	struct page *page, *ref_page = NULL;
2172 
2173 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2174 
2175 	if (!pfn_valid(pfn))
2176 		return -ENXIO;
2177 	if (flags & MF_COUNT_INCREASED)
2178 		ref_page = pfn_to_page(pfn);
2179 
2180 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2181 	page = pfn_to_online_page(pfn);
2182 	if (!page) {
2183 		put_ref_page(ref_page);
2184 		return -EIO;
2185 	}
2186 
2187 	if (PageHWPoison(page)) {
2188 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2189 		put_ref_page(ref_page);
2190 		return 0;
2191 	}
2192 
2193 retry:
2194 	get_online_mems();
2195 	ret = get_hwpoison_page(page, flags);
2196 	put_online_mems();
2197 
2198 	if (ret > 0) {
2199 		ret = soft_offline_in_use_page(page);
2200 	} else if (ret == 0) {
2201 		if (soft_offline_free_page(page) && try_again) {
2202 			try_again = false;
2203 			goto retry;
2204 		}
2205 	} else if (ret == -EIO) {
2206 		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2207 			 __func__, pfn, page->flags, &page->flags);
2208 	}
2209 
2210 	return ret;
2211 }
2212