xref: /openbmc/linux/mm/memory-failure.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret;
214 
215 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 		pfn, t->comm, t->pid);
217 
218 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220 				       addr_lsb);
221 	} else {
222 		/*
223 		 * Don't use force here, it's convenient if the signal
224 		 * can be temporarily blocked.
225 		 * This could cause a loop when the user sets SIGBUS
226 		 * to SIG_IGN, but hopefully no one will do that?
227 		 */
228 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229 				      addr_lsb, t);  /* synchronous? */
230 	}
231 	if (ret < 0)
232 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233 			t->comm, t->pid, ret);
234 	return ret;
235 }
236 
237 /*
238  * When a unknown page type is encountered drain as many buffers as possible
239  * in the hope to turn the page into a LRU or free page, which we can handle.
240  */
241 void shake_page(struct page *p, int access)
242 {
243 	if (PageHuge(p))
244 		return;
245 
246 	if (!PageSlab(p)) {
247 		lru_add_drain_all();
248 		if (PageLRU(p))
249 			return;
250 		drain_all_pages(page_zone(p));
251 		if (PageLRU(p) || is_free_buddy_page(p))
252 			return;
253 	}
254 
255 	/*
256 	 * Only call shrink_node_slabs here (which would also shrink
257 	 * other caches) if access is not potentially fatal.
258 	 */
259 	if (access)
260 		drop_slab_node(page_to_nid(p));
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 		struct vm_area_struct *vma)
266 {
267 	unsigned long address = vma_address(page, vma);
268 	pgd_t *pgd;
269 	p4d_t *p4d;
270 	pud_t *pud;
271 	pmd_t *pmd;
272 	pte_t *pte;
273 
274 	pgd = pgd_offset(vma->vm_mm, address);
275 	if (!pgd_present(*pgd))
276 		return 0;
277 	p4d = p4d_offset(pgd, address);
278 	if (!p4d_present(*p4d))
279 		return 0;
280 	pud = pud_offset(p4d, address);
281 	if (!pud_present(*pud))
282 		return 0;
283 	if (pud_devmap(*pud))
284 		return PUD_SHIFT;
285 	pmd = pmd_offset(pud, address);
286 	if (!pmd_present(*pmd))
287 		return 0;
288 	if (pmd_devmap(*pmd))
289 		return PMD_SHIFT;
290 	pte = pte_offset_map(pmd, address);
291 	if (!pte_present(*pte))
292 		return 0;
293 	if (pte_devmap(*pte))
294 		return PAGE_SHIFT;
295 	return 0;
296 }
297 
298 /*
299  * Failure handling: if we can't find or can't kill a process there's
300  * not much we can do.	We just print a message and ignore otherwise.
301  */
302 
303 /*
304  * Schedule a process for later kill.
305  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
306  */
307 static void add_to_kill(struct task_struct *tsk, struct page *p,
308 		       struct vm_area_struct *vma,
309 		       struct list_head *to_kill)
310 {
311 	struct to_kill *tk;
312 
313 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
314 	if (!tk) {
315 		pr_err("Memory failure: Out of memory while machine check handling\n");
316 		return;
317 	}
318 
319 	tk->addr = page_address_in_vma(p, vma);
320 	if (is_zone_device_page(p))
321 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
322 	else
323 		tk->size_shift = page_shift(compound_head(p));
324 
325 	/*
326 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
327 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
328 	 * so "tk->size_shift == 0" effectively checks no mapping on
329 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
330 	 * to a process' address space, it's possible not all N VMAs
331 	 * contain mappings for the page, but at least one VMA does.
332 	 * Only deliver SIGBUS with payload derived from the VMA that
333 	 * has a mapping for the page.
334 	 */
335 	if (tk->addr == -EFAULT) {
336 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
337 			page_to_pfn(p), tsk->comm);
338 	} else if (tk->size_shift == 0) {
339 		kfree(tk);
340 		return;
341 	}
342 
343 	get_task_struct(tsk);
344 	tk->tsk = tsk;
345 	list_add_tail(&tk->nd, to_kill);
346 }
347 
348 /*
349  * Kill the processes that have been collected earlier.
350  *
351  * Only do anything when DOIT is set, otherwise just free the list
352  * (this is used for clean pages which do not need killing)
353  * Also when FAIL is set do a force kill because something went
354  * wrong earlier.
355  */
356 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
357 		unsigned long pfn, int flags)
358 {
359 	struct to_kill *tk, *next;
360 
361 	list_for_each_entry_safe (tk, next, to_kill, nd) {
362 		if (forcekill) {
363 			/*
364 			 * In case something went wrong with munmapping
365 			 * make sure the process doesn't catch the
366 			 * signal and then access the memory. Just kill it.
367 			 */
368 			if (fail || tk->addr == -EFAULT) {
369 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
370 				       pfn, tk->tsk->comm, tk->tsk->pid);
371 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
372 						 tk->tsk, PIDTYPE_PID);
373 			}
374 
375 			/*
376 			 * In theory the process could have mapped
377 			 * something else on the address in-between. We could
378 			 * check for that, but we need to tell the
379 			 * process anyways.
380 			 */
381 			else if (kill_proc(tk, pfn, flags) < 0)
382 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
383 				       pfn, tk->tsk->comm, tk->tsk->pid);
384 		}
385 		put_task_struct(tk->tsk);
386 		kfree(tk);
387 	}
388 }
389 
390 /*
391  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
392  * on behalf of the thread group. Return task_struct of the (first found)
393  * dedicated thread if found, and return NULL otherwise.
394  *
395  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
396  * have to call rcu_read_lock/unlock() in this function.
397  */
398 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
399 {
400 	struct task_struct *t;
401 
402 	for_each_thread(tsk, t)
403 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
404 			return t;
405 	return NULL;
406 }
407 
408 /*
409  * Determine whether a given process is "early kill" process which expects
410  * to be signaled when some page under the process is hwpoisoned.
411  * Return task_struct of the dedicated thread (main thread unless explicitly
412  * specified) if the process is "early kill," and otherwise returns NULL.
413  */
414 static struct task_struct *task_early_kill(struct task_struct *tsk,
415 					   int force_early)
416 {
417 	struct task_struct *t;
418 	if (!tsk->mm)
419 		return NULL;
420 	if (force_early)
421 		return tsk;
422 	t = find_early_kill_thread(tsk);
423 	if (t)
424 		return t;
425 	if (sysctl_memory_failure_early_kill)
426 		return tsk;
427 	return NULL;
428 }
429 
430 /*
431  * Collect processes when the error hit an anonymous page.
432  */
433 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
434 				int force_early)
435 {
436 	struct vm_area_struct *vma;
437 	struct task_struct *tsk;
438 	struct anon_vma *av;
439 	pgoff_t pgoff;
440 
441 	av = page_lock_anon_vma_read(page);
442 	if (av == NULL)	/* Not actually mapped anymore */
443 		return;
444 
445 	pgoff = page_to_pgoff(page);
446 	read_lock(&tasklist_lock);
447 	for_each_process (tsk) {
448 		struct anon_vma_chain *vmac;
449 		struct task_struct *t = task_early_kill(tsk, force_early);
450 
451 		if (!t)
452 			continue;
453 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
454 					       pgoff, pgoff) {
455 			vma = vmac->vma;
456 			if (!page_mapped_in_vma(page, vma))
457 				continue;
458 			if (vma->vm_mm == t->mm)
459 				add_to_kill(t, page, vma, to_kill);
460 		}
461 	}
462 	read_unlock(&tasklist_lock);
463 	page_unlock_anon_vma_read(av);
464 }
465 
466 /*
467  * Collect processes when the error hit a file mapped page.
468  */
469 static void collect_procs_file(struct page *page, struct list_head *to_kill,
470 				int force_early)
471 {
472 	struct vm_area_struct *vma;
473 	struct task_struct *tsk;
474 	struct address_space *mapping = page->mapping;
475 
476 	i_mmap_lock_read(mapping);
477 	read_lock(&tasklist_lock);
478 	for_each_process(tsk) {
479 		pgoff_t pgoff = page_to_pgoff(page);
480 		struct task_struct *t = task_early_kill(tsk, force_early);
481 
482 		if (!t)
483 			continue;
484 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
485 				      pgoff) {
486 			/*
487 			 * Send early kill signal to tasks where a vma covers
488 			 * the page but the corrupted page is not necessarily
489 			 * mapped it in its pte.
490 			 * Assume applications who requested early kill want
491 			 * to be informed of all such data corruptions.
492 			 */
493 			if (vma->vm_mm == t->mm)
494 				add_to_kill(t, page, vma, to_kill);
495 		}
496 	}
497 	read_unlock(&tasklist_lock);
498 	i_mmap_unlock_read(mapping);
499 }
500 
501 /*
502  * Collect the processes who have the corrupted page mapped to kill.
503  */
504 static void collect_procs(struct page *page, struct list_head *tokill,
505 				int force_early)
506 {
507 	if (!page->mapping)
508 		return;
509 
510 	if (PageAnon(page))
511 		collect_procs_anon(page, tokill, force_early);
512 	else
513 		collect_procs_file(page, tokill, force_early);
514 }
515 
516 static const char *action_name[] = {
517 	[MF_IGNORED] = "Ignored",
518 	[MF_FAILED] = "Failed",
519 	[MF_DELAYED] = "Delayed",
520 	[MF_RECOVERED] = "Recovered",
521 };
522 
523 static const char * const action_page_types[] = {
524 	[MF_MSG_KERNEL]			= "reserved kernel page",
525 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
526 	[MF_MSG_SLAB]			= "kernel slab page",
527 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
528 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
529 	[MF_MSG_HUGE]			= "huge page",
530 	[MF_MSG_FREE_HUGE]		= "free huge page",
531 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
532 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
533 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
534 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
535 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
536 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
537 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
538 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
539 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
540 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
541 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
542 	[MF_MSG_BUDDY]			= "free buddy page",
543 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
544 	[MF_MSG_DAX]			= "dax page",
545 	[MF_MSG_UNKNOWN]		= "unknown page",
546 };
547 
548 /*
549  * XXX: It is possible that a page is isolated from LRU cache,
550  * and then kept in swap cache or failed to remove from page cache.
551  * The page count will stop it from being freed by unpoison.
552  * Stress tests should be aware of this memory leak problem.
553  */
554 static int delete_from_lru_cache(struct page *p)
555 {
556 	if (!isolate_lru_page(p)) {
557 		/*
558 		 * Clear sensible page flags, so that the buddy system won't
559 		 * complain when the page is unpoison-and-freed.
560 		 */
561 		ClearPageActive(p);
562 		ClearPageUnevictable(p);
563 
564 		/*
565 		 * Poisoned page might never drop its ref count to 0 so we have
566 		 * to uncharge it manually from its memcg.
567 		 */
568 		mem_cgroup_uncharge(p);
569 
570 		/*
571 		 * drop the page count elevated by isolate_lru_page()
572 		 */
573 		put_page(p);
574 		return 0;
575 	}
576 	return -EIO;
577 }
578 
579 static int truncate_error_page(struct page *p, unsigned long pfn,
580 				struct address_space *mapping)
581 {
582 	int ret = MF_FAILED;
583 
584 	if (mapping->a_ops->error_remove_page) {
585 		int err = mapping->a_ops->error_remove_page(mapping, p);
586 
587 		if (err != 0) {
588 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
589 				pfn, err);
590 		} else if (page_has_private(p) &&
591 			   !try_to_release_page(p, GFP_NOIO)) {
592 			pr_info("Memory failure: %#lx: failed to release buffers\n",
593 				pfn);
594 		} else {
595 			ret = MF_RECOVERED;
596 		}
597 	} else {
598 		/*
599 		 * If the file system doesn't support it just invalidate
600 		 * This fails on dirty or anything with private pages
601 		 */
602 		if (invalidate_inode_page(p))
603 			ret = MF_RECOVERED;
604 		else
605 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
606 				pfn);
607 	}
608 
609 	return ret;
610 }
611 
612 /*
613  * Error hit kernel page.
614  * Do nothing, try to be lucky and not touch this instead. For a few cases we
615  * could be more sophisticated.
616  */
617 static int me_kernel(struct page *p, unsigned long pfn)
618 {
619 	return MF_IGNORED;
620 }
621 
622 /*
623  * Page in unknown state. Do nothing.
624  */
625 static int me_unknown(struct page *p, unsigned long pfn)
626 {
627 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
628 	return MF_FAILED;
629 }
630 
631 /*
632  * Clean (or cleaned) page cache page.
633  */
634 static int me_pagecache_clean(struct page *p, unsigned long pfn)
635 {
636 	struct address_space *mapping;
637 
638 	delete_from_lru_cache(p);
639 
640 	/*
641 	 * For anonymous pages we're done the only reference left
642 	 * should be the one m_f() holds.
643 	 */
644 	if (PageAnon(p))
645 		return MF_RECOVERED;
646 
647 	/*
648 	 * Now truncate the page in the page cache. This is really
649 	 * more like a "temporary hole punch"
650 	 * Don't do this for block devices when someone else
651 	 * has a reference, because it could be file system metadata
652 	 * and that's not safe to truncate.
653 	 */
654 	mapping = page_mapping(p);
655 	if (!mapping) {
656 		/*
657 		 * Page has been teared down in the meanwhile
658 		 */
659 		return MF_FAILED;
660 	}
661 
662 	/*
663 	 * Truncation is a bit tricky. Enable it per file system for now.
664 	 *
665 	 * Open: to take i_mutex or not for this? Right now we don't.
666 	 */
667 	return truncate_error_page(p, pfn, mapping);
668 }
669 
670 /*
671  * Dirty pagecache page
672  * Issues: when the error hit a hole page the error is not properly
673  * propagated.
674  */
675 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
676 {
677 	struct address_space *mapping = page_mapping(p);
678 
679 	SetPageError(p);
680 	/* TBD: print more information about the file. */
681 	if (mapping) {
682 		/*
683 		 * IO error will be reported by write(), fsync(), etc.
684 		 * who check the mapping.
685 		 * This way the application knows that something went
686 		 * wrong with its dirty file data.
687 		 *
688 		 * There's one open issue:
689 		 *
690 		 * The EIO will be only reported on the next IO
691 		 * operation and then cleared through the IO map.
692 		 * Normally Linux has two mechanisms to pass IO error
693 		 * first through the AS_EIO flag in the address space
694 		 * and then through the PageError flag in the page.
695 		 * Since we drop pages on memory failure handling the
696 		 * only mechanism open to use is through AS_AIO.
697 		 *
698 		 * This has the disadvantage that it gets cleared on
699 		 * the first operation that returns an error, while
700 		 * the PageError bit is more sticky and only cleared
701 		 * when the page is reread or dropped.  If an
702 		 * application assumes it will always get error on
703 		 * fsync, but does other operations on the fd before
704 		 * and the page is dropped between then the error
705 		 * will not be properly reported.
706 		 *
707 		 * This can already happen even without hwpoisoned
708 		 * pages: first on metadata IO errors (which only
709 		 * report through AS_EIO) or when the page is dropped
710 		 * at the wrong time.
711 		 *
712 		 * So right now we assume that the application DTRT on
713 		 * the first EIO, but we're not worse than other parts
714 		 * of the kernel.
715 		 */
716 		mapping_set_error(mapping, -EIO);
717 	}
718 
719 	return me_pagecache_clean(p, pfn);
720 }
721 
722 /*
723  * Clean and dirty swap cache.
724  *
725  * Dirty swap cache page is tricky to handle. The page could live both in page
726  * cache and swap cache(ie. page is freshly swapped in). So it could be
727  * referenced concurrently by 2 types of PTEs:
728  * normal PTEs and swap PTEs. We try to handle them consistently by calling
729  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
730  * and then
731  *      - clear dirty bit to prevent IO
732  *      - remove from LRU
733  *      - but keep in the swap cache, so that when we return to it on
734  *        a later page fault, we know the application is accessing
735  *        corrupted data and shall be killed (we installed simple
736  *        interception code in do_swap_page to catch it).
737  *
738  * Clean swap cache pages can be directly isolated. A later page fault will
739  * bring in the known good data from disk.
740  */
741 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
742 {
743 	ClearPageDirty(p);
744 	/* Trigger EIO in shmem: */
745 	ClearPageUptodate(p);
746 
747 	if (!delete_from_lru_cache(p))
748 		return MF_DELAYED;
749 	else
750 		return MF_FAILED;
751 }
752 
753 static int me_swapcache_clean(struct page *p, unsigned long pfn)
754 {
755 	delete_from_swap_cache(p);
756 
757 	if (!delete_from_lru_cache(p))
758 		return MF_RECOVERED;
759 	else
760 		return MF_FAILED;
761 }
762 
763 /*
764  * Huge pages. Needs work.
765  * Issues:
766  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
767  *   To narrow down kill region to one page, we need to break up pmd.
768  */
769 static int me_huge_page(struct page *p, unsigned long pfn)
770 {
771 	int res = 0;
772 	struct page *hpage = compound_head(p);
773 	struct address_space *mapping;
774 
775 	if (!PageHuge(hpage))
776 		return MF_DELAYED;
777 
778 	mapping = page_mapping(hpage);
779 	if (mapping) {
780 		res = truncate_error_page(hpage, pfn, mapping);
781 	} else {
782 		unlock_page(hpage);
783 		/*
784 		 * migration entry prevents later access on error anonymous
785 		 * hugepage, so we can free and dissolve it into buddy to
786 		 * save healthy subpages.
787 		 */
788 		if (PageAnon(hpage))
789 			put_page(hpage);
790 		dissolve_free_huge_page(p);
791 		res = MF_RECOVERED;
792 		lock_page(hpage);
793 	}
794 
795 	return res;
796 }
797 
798 /*
799  * Various page states we can handle.
800  *
801  * A page state is defined by its current page->flags bits.
802  * The table matches them in order and calls the right handler.
803  *
804  * This is quite tricky because we can access page at any time
805  * in its live cycle, so all accesses have to be extremely careful.
806  *
807  * This is not complete. More states could be added.
808  * For any missing state don't attempt recovery.
809  */
810 
811 #define dirty		(1UL << PG_dirty)
812 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
813 #define unevict		(1UL << PG_unevictable)
814 #define mlock		(1UL << PG_mlocked)
815 #define writeback	(1UL << PG_writeback)
816 #define lru		(1UL << PG_lru)
817 #define head		(1UL << PG_head)
818 #define slab		(1UL << PG_slab)
819 #define reserved	(1UL << PG_reserved)
820 
821 static struct page_state {
822 	unsigned long mask;
823 	unsigned long res;
824 	enum mf_action_page_type type;
825 	int (*action)(struct page *p, unsigned long pfn);
826 } error_states[] = {
827 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
828 	/*
829 	 * free pages are specially detected outside this table:
830 	 * PG_buddy pages only make a small fraction of all free pages.
831 	 */
832 
833 	/*
834 	 * Could in theory check if slab page is free or if we can drop
835 	 * currently unused objects without touching them. But just
836 	 * treat it as standard kernel for now.
837 	 */
838 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
839 
840 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
841 
842 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
843 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
844 
845 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
846 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
847 
848 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
849 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
850 
851 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
852 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
853 
854 	/*
855 	 * Catchall entry: must be at end.
856 	 */
857 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
858 };
859 
860 #undef dirty
861 #undef sc
862 #undef unevict
863 #undef mlock
864 #undef writeback
865 #undef lru
866 #undef head
867 #undef slab
868 #undef reserved
869 
870 /*
871  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
872  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
873  */
874 static void action_result(unsigned long pfn, enum mf_action_page_type type,
875 			  enum mf_result result)
876 {
877 	trace_memory_failure_event(pfn, type, result);
878 
879 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
880 		pfn, action_page_types[type], action_name[result]);
881 }
882 
883 static int page_action(struct page_state *ps, struct page *p,
884 			unsigned long pfn)
885 {
886 	int result;
887 	int count;
888 
889 	result = ps->action(p, pfn);
890 
891 	count = page_count(p) - 1;
892 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
893 		count--;
894 	if (count > 0) {
895 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
896 		       pfn, action_page_types[ps->type], count);
897 		result = MF_FAILED;
898 	}
899 	action_result(pfn, ps->type, result);
900 
901 	/* Could do more checks here if page looks ok */
902 	/*
903 	 * Could adjust zone counters here to correct for the missing page.
904 	 */
905 
906 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
907 }
908 
909 /**
910  * get_hwpoison_page() - Get refcount for memory error handling:
911  * @page:	raw error page (hit by memory error)
912  *
913  * Return: return 0 if failed to grab the refcount, otherwise true (some
914  * non-zero value.)
915  */
916 int get_hwpoison_page(struct page *page)
917 {
918 	struct page *head = compound_head(page);
919 
920 	if (!PageHuge(head) && PageTransHuge(head)) {
921 		/*
922 		 * Non anonymous thp exists only in allocation/free time. We
923 		 * can't handle such a case correctly, so let's give it up.
924 		 * This should be better than triggering BUG_ON when kernel
925 		 * tries to touch the "partially handled" page.
926 		 */
927 		if (!PageAnon(head)) {
928 			pr_err("Memory failure: %#lx: non anonymous thp\n",
929 				page_to_pfn(page));
930 			return 0;
931 		}
932 	}
933 
934 	if (get_page_unless_zero(head)) {
935 		if (head == compound_head(page))
936 			return 1;
937 
938 		pr_info("Memory failure: %#lx cannot catch tail\n",
939 			page_to_pfn(page));
940 		put_page(head);
941 	}
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(get_hwpoison_page);
946 
947 /*
948  * Do all that is necessary to remove user space mappings. Unmap
949  * the pages and send SIGBUS to the processes if the data was dirty.
950  */
951 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
952 				  int flags, struct page **hpagep)
953 {
954 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 	struct address_space *mapping;
956 	LIST_HEAD(tokill);
957 	bool unmap_success;
958 	int kill = 1, forcekill;
959 	struct page *hpage = *hpagep;
960 	bool mlocked = PageMlocked(hpage);
961 
962 	/*
963 	 * Here we are interested only in user-mapped pages, so skip any
964 	 * other types of pages.
965 	 */
966 	if (PageReserved(p) || PageSlab(p))
967 		return true;
968 	if (!(PageLRU(hpage) || PageHuge(p)))
969 		return true;
970 
971 	/*
972 	 * This check implies we don't kill processes if their pages
973 	 * are in the swap cache early. Those are always late kills.
974 	 */
975 	if (!page_mapped(hpage))
976 		return true;
977 
978 	if (PageKsm(p)) {
979 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
980 		return false;
981 	}
982 
983 	if (PageSwapCache(p)) {
984 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
985 			pfn);
986 		ttu |= TTU_IGNORE_HWPOISON;
987 	}
988 
989 	/*
990 	 * Propagate the dirty bit from PTEs to struct page first, because we
991 	 * need this to decide if we should kill or just drop the page.
992 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
993 	 * be called inside page lock (it's recommended but not enforced).
994 	 */
995 	mapping = page_mapping(hpage);
996 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
997 	    mapping_cap_writeback_dirty(mapping)) {
998 		if (page_mkclean(hpage)) {
999 			SetPageDirty(hpage);
1000 		} else {
1001 			kill = 0;
1002 			ttu |= TTU_IGNORE_HWPOISON;
1003 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1004 				pfn);
1005 		}
1006 	}
1007 
1008 	/*
1009 	 * First collect all the processes that have the page
1010 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1011 	 * because ttu takes the rmap data structures down.
1012 	 *
1013 	 * Error handling: We ignore errors here because
1014 	 * there's nothing that can be done.
1015 	 */
1016 	if (kill)
1017 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1018 
1019 	unmap_success = try_to_unmap(hpage, ttu);
1020 	if (!unmap_success)
1021 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1022 		       pfn, page_mapcount(hpage));
1023 
1024 	/*
1025 	 * try_to_unmap() might put mlocked page in lru cache, so call
1026 	 * shake_page() again to ensure that it's flushed.
1027 	 */
1028 	if (mlocked)
1029 		shake_page(hpage, 0);
1030 
1031 	/*
1032 	 * Now that the dirty bit has been propagated to the
1033 	 * struct page and all unmaps done we can decide if
1034 	 * killing is needed or not.  Only kill when the page
1035 	 * was dirty or the process is not restartable,
1036 	 * otherwise the tokill list is merely
1037 	 * freed.  When there was a problem unmapping earlier
1038 	 * use a more force-full uncatchable kill to prevent
1039 	 * any accesses to the poisoned memory.
1040 	 */
1041 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1042 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1043 
1044 	return unmap_success;
1045 }
1046 
1047 static int identify_page_state(unsigned long pfn, struct page *p,
1048 				unsigned long page_flags)
1049 {
1050 	struct page_state *ps;
1051 
1052 	/*
1053 	 * The first check uses the current page flags which may not have any
1054 	 * relevant information. The second check with the saved page flags is
1055 	 * carried out only if the first check can't determine the page status.
1056 	 */
1057 	for (ps = error_states;; ps++)
1058 		if ((p->flags & ps->mask) == ps->res)
1059 			break;
1060 
1061 	page_flags |= (p->flags & (1UL << PG_dirty));
1062 
1063 	if (!ps->mask)
1064 		for (ps = error_states;; ps++)
1065 			if ((page_flags & ps->mask) == ps->res)
1066 				break;
1067 	return page_action(ps, p, pfn);
1068 }
1069 
1070 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1071 {
1072 	struct page *p = pfn_to_page(pfn);
1073 	struct page *head = compound_head(p);
1074 	int res;
1075 	unsigned long page_flags;
1076 
1077 	if (TestSetPageHWPoison(head)) {
1078 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1079 		       pfn);
1080 		return 0;
1081 	}
1082 
1083 	num_poisoned_pages_inc();
1084 
1085 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1086 		/*
1087 		 * Check "filter hit" and "race with other subpage."
1088 		 */
1089 		lock_page(head);
1090 		if (PageHWPoison(head)) {
1091 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 			    || (p != head && TestSetPageHWPoison(head))) {
1093 				num_poisoned_pages_dec();
1094 				unlock_page(head);
1095 				return 0;
1096 			}
1097 		}
1098 		unlock_page(head);
1099 		dissolve_free_huge_page(p);
1100 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1101 		return 0;
1102 	}
1103 
1104 	lock_page(head);
1105 	page_flags = head->flags;
1106 
1107 	if (!PageHWPoison(head)) {
1108 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1109 		num_poisoned_pages_dec();
1110 		unlock_page(head);
1111 		put_hwpoison_page(head);
1112 		return 0;
1113 	}
1114 
1115 	/*
1116 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1117 	 * simply disable it. In order to make it work properly, we need
1118 	 * make sure that:
1119 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1120 	 *    entry properly works, and
1121 	 *  - other mm code walking over page table is aware of pud-aligned
1122 	 *    hwpoison entries.
1123 	 */
1124 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1125 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1126 		res = -EBUSY;
1127 		goto out;
1128 	}
1129 
1130 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1131 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1132 		res = -EBUSY;
1133 		goto out;
1134 	}
1135 
1136 	res = identify_page_state(pfn, p, page_flags);
1137 out:
1138 	unlock_page(head);
1139 	return res;
1140 }
1141 
1142 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1143 		struct dev_pagemap *pgmap)
1144 {
1145 	struct page *page = pfn_to_page(pfn);
1146 	const bool unmap_success = true;
1147 	unsigned long size = 0;
1148 	struct to_kill *tk;
1149 	LIST_HEAD(tokill);
1150 	int rc = -EBUSY;
1151 	loff_t start;
1152 	dax_entry_t cookie;
1153 
1154 	/*
1155 	 * Prevent the inode from being freed while we are interrogating
1156 	 * the address_space, typically this would be handled by
1157 	 * lock_page(), but dax pages do not use the page lock. This
1158 	 * also prevents changes to the mapping of this pfn until
1159 	 * poison signaling is complete.
1160 	 */
1161 	cookie = dax_lock_page(page);
1162 	if (!cookie)
1163 		goto out;
1164 
1165 	if (hwpoison_filter(page)) {
1166 		rc = 0;
1167 		goto unlock;
1168 	}
1169 
1170 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1171 		/*
1172 		 * TODO: Handle HMM pages which may need coordination
1173 		 * with device-side memory.
1174 		 */
1175 		goto unlock;
1176 	}
1177 
1178 	/*
1179 	 * Use this flag as an indication that the dax page has been
1180 	 * remapped UC to prevent speculative consumption of poison.
1181 	 */
1182 	SetPageHWPoison(page);
1183 
1184 	/*
1185 	 * Unlike System-RAM there is no possibility to swap in a
1186 	 * different physical page at a given virtual address, so all
1187 	 * userspace consumption of ZONE_DEVICE memory necessitates
1188 	 * SIGBUS (i.e. MF_MUST_KILL)
1189 	 */
1190 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1191 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1192 
1193 	list_for_each_entry(tk, &tokill, nd)
1194 		if (tk->size_shift)
1195 			size = max(size, 1UL << tk->size_shift);
1196 	if (size) {
1197 		/*
1198 		 * Unmap the largest mapping to avoid breaking up
1199 		 * device-dax mappings which are constant size. The
1200 		 * actual size of the mapping being torn down is
1201 		 * communicated in siginfo, see kill_proc()
1202 		 */
1203 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1204 		unmap_mapping_range(page->mapping, start, start + size, 0);
1205 	}
1206 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1207 	rc = 0;
1208 unlock:
1209 	dax_unlock_page(page, cookie);
1210 out:
1211 	/* drop pgmap ref acquired in caller */
1212 	put_dev_pagemap(pgmap);
1213 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1214 	return rc;
1215 }
1216 
1217 /**
1218  * memory_failure - Handle memory failure of a page.
1219  * @pfn: Page Number of the corrupted page
1220  * @flags: fine tune action taken
1221  *
1222  * This function is called by the low level machine check code
1223  * of an architecture when it detects hardware memory corruption
1224  * of a page. It tries its best to recover, which includes
1225  * dropping pages, killing processes etc.
1226  *
1227  * The function is primarily of use for corruptions that
1228  * happen outside the current execution context (e.g. when
1229  * detected by a background scrubber)
1230  *
1231  * Must run in process context (e.g. a work queue) with interrupts
1232  * enabled and no spinlocks hold.
1233  */
1234 int memory_failure(unsigned long pfn, int flags)
1235 {
1236 	struct page *p;
1237 	struct page *hpage;
1238 	struct page *orig_head;
1239 	struct dev_pagemap *pgmap;
1240 	int res;
1241 	unsigned long page_flags;
1242 
1243 	if (!sysctl_memory_failure_recovery)
1244 		panic("Memory failure on page %lx", pfn);
1245 
1246 	p = pfn_to_online_page(pfn);
1247 	if (!p) {
1248 		if (pfn_valid(pfn)) {
1249 			pgmap = get_dev_pagemap(pfn, NULL);
1250 			if (pgmap)
1251 				return memory_failure_dev_pagemap(pfn, flags,
1252 								  pgmap);
1253 		}
1254 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1255 			pfn);
1256 		return -ENXIO;
1257 	}
1258 
1259 	if (PageHuge(p))
1260 		return memory_failure_hugetlb(pfn, flags);
1261 	if (TestSetPageHWPoison(p)) {
1262 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1263 			pfn);
1264 		return 0;
1265 	}
1266 
1267 	orig_head = hpage = compound_head(p);
1268 	num_poisoned_pages_inc();
1269 
1270 	/*
1271 	 * We need/can do nothing about count=0 pages.
1272 	 * 1) it's a free page, and therefore in safe hand:
1273 	 *    prep_new_page() will be the gate keeper.
1274 	 * 2) it's part of a non-compound high order page.
1275 	 *    Implies some kernel user: cannot stop them from
1276 	 *    R/W the page; let's pray that the page has been
1277 	 *    used and will be freed some time later.
1278 	 * In fact it's dangerous to directly bump up page count from 0,
1279 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1280 	 */
1281 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1282 		if (is_free_buddy_page(p)) {
1283 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1284 			return 0;
1285 		} else {
1286 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1287 			return -EBUSY;
1288 		}
1289 	}
1290 
1291 	if (PageTransHuge(hpage)) {
1292 		lock_page(p);
1293 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1294 			unlock_page(p);
1295 			if (!PageAnon(p))
1296 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1297 					pfn);
1298 			else
1299 				pr_err("Memory failure: %#lx: thp split failed\n",
1300 					pfn);
1301 			if (TestClearPageHWPoison(p))
1302 				num_poisoned_pages_dec();
1303 			put_hwpoison_page(p);
1304 			return -EBUSY;
1305 		}
1306 		unlock_page(p);
1307 		VM_BUG_ON_PAGE(!page_count(p), p);
1308 		hpage = compound_head(p);
1309 	}
1310 
1311 	/*
1312 	 * We ignore non-LRU pages for good reasons.
1313 	 * - PG_locked is only well defined for LRU pages and a few others
1314 	 * - to avoid races with __SetPageLocked()
1315 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1316 	 * The check (unnecessarily) ignores LRU pages being isolated and
1317 	 * walked by the page reclaim code, however that's not a big loss.
1318 	 */
1319 	shake_page(p, 0);
1320 	/* shake_page could have turned it free. */
1321 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1322 		if (flags & MF_COUNT_INCREASED)
1323 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1324 		else
1325 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1326 		return 0;
1327 	}
1328 
1329 	lock_page(p);
1330 
1331 	/*
1332 	 * The page could have changed compound pages during the locking.
1333 	 * If this happens just bail out.
1334 	 */
1335 	if (PageCompound(p) && compound_head(p) != orig_head) {
1336 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1337 		res = -EBUSY;
1338 		goto out;
1339 	}
1340 
1341 	/*
1342 	 * We use page flags to determine what action should be taken, but
1343 	 * the flags can be modified by the error containment action.  One
1344 	 * example is an mlocked page, where PG_mlocked is cleared by
1345 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1346 	 * correctly, we save a copy of the page flags at this time.
1347 	 */
1348 	if (PageHuge(p))
1349 		page_flags = hpage->flags;
1350 	else
1351 		page_flags = p->flags;
1352 
1353 	/*
1354 	 * unpoison always clear PG_hwpoison inside page lock
1355 	 */
1356 	if (!PageHWPoison(p)) {
1357 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1358 		num_poisoned_pages_dec();
1359 		unlock_page(p);
1360 		put_hwpoison_page(p);
1361 		return 0;
1362 	}
1363 	if (hwpoison_filter(p)) {
1364 		if (TestClearPageHWPoison(p))
1365 			num_poisoned_pages_dec();
1366 		unlock_page(p);
1367 		put_hwpoison_page(p);
1368 		return 0;
1369 	}
1370 
1371 	if (!PageTransTail(p) && !PageLRU(p))
1372 		goto identify_page_state;
1373 
1374 	/*
1375 	 * It's very difficult to mess with pages currently under IO
1376 	 * and in many cases impossible, so we just avoid it here.
1377 	 */
1378 	wait_on_page_writeback(p);
1379 
1380 	/*
1381 	 * Now take care of user space mappings.
1382 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1383 	 *
1384 	 * When the raw error page is thp tail page, hpage points to the raw
1385 	 * page after thp split.
1386 	 */
1387 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1388 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1389 		res = -EBUSY;
1390 		goto out;
1391 	}
1392 
1393 	/*
1394 	 * Torn down by someone else?
1395 	 */
1396 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1397 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1398 		res = -EBUSY;
1399 		goto out;
1400 	}
1401 
1402 identify_page_state:
1403 	res = identify_page_state(pfn, p, page_flags);
1404 out:
1405 	unlock_page(p);
1406 	return res;
1407 }
1408 EXPORT_SYMBOL_GPL(memory_failure);
1409 
1410 #define MEMORY_FAILURE_FIFO_ORDER	4
1411 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1412 
1413 struct memory_failure_entry {
1414 	unsigned long pfn;
1415 	int flags;
1416 };
1417 
1418 struct memory_failure_cpu {
1419 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1420 		      MEMORY_FAILURE_FIFO_SIZE);
1421 	spinlock_t lock;
1422 	struct work_struct work;
1423 };
1424 
1425 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1426 
1427 /**
1428  * memory_failure_queue - Schedule handling memory failure of a page.
1429  * @pfn: Page Number of the corrupted page
1430  * @flags: Flags for memory failure handling
1431  *
1432  * This function is called by the low level hardware error handler
1433  * when it detects hardware memory corruption of a page. It schedules
1434  * the recovering of error page, including dropping pages, killing
1435  * processes etc.
1436  *
1437  * The function is primarily of use for corruptions that
1438  * happen outside the current execution context (e.g. when
1439  * detected by a background scrubber)
1440  *
1441  * Can run in IRQ context.
1442  */
1443 void memory_failure_queue(unsigned long pfn, int flags)
1444 {
1445 	struct memory_failure_cpu *mf_cpu;
1446 	unsigned long proc_flags;
1447 	struct memory_failure_entry entry = {
1448 		.pfn =		pfn,
1449 		.flags =	flags,
1450 	};
1451 
1452 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1453 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1454 	if (kfifo_put(&mf_cpu->fifo, entry))
1455 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1456 	else
1457 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1458 		       pfn);
1459 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1460 	put_cpu_var(memory_failure_cpu);
1461 }
1462 EXPORT_SYMBOL_GPL(memory_failure_queue);
1463 
1464 static void memory_failure_work_func(struct work_struct *work)
1465 {
1466 	struct memory_failure_cpu *mf_cpu;
1467 	struct memory_failure_entry entry = { 0, };
1468 	unsigned long proc_flags;
1469 	int gotten;
1470 
1471 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1472 	for (;;) {
1473 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1474 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1475 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1476 		if (!gotten)
1477 			break;
1478 		if (entry.flags & MF_SOFT_OFFLINE)
1479 			soft_offline_page(entry.pfn, entry.flags);
1480 		else
1481 			memory_failure(entry.pfn, entry.flags);
1482 	}
1483 }
1484 
1485 static int __init memory_failure_init(void)
1486 {
1487 	struct memory_failure_cpu *mf_cpu;
1488 	int cpu;
1489 
1490 	for_each_possible_cpu(cpu) {
1491 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1492 		spin_lock_init(&mf_cpu->lock);
1493 		INIT_KFIFO(mf_cpu->fifo);
1494 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1495 	}
1496 
1497 	return 0;
1498 }
1499 core_initcall(memory_failure_init);
1500 
1501 #define unpoison_pr_info(fmt, pfn, rs)			\
1502 ({							\
1503 	if (__ratelimit(rs))				\
1504 		pr_info(fmt, pfn);			\
1505 })
1506 
1507 /**
1508  * unpoison_memory - Unpoison a previously poisoned page
1509  * @pfn: Page number of the to be unpoisoned page
1510  *
1511  * Software-unpoison a page that has been poisoned by
1512  * memory_failure() earlier.
1513  *
1514  * This is only done on the software-level, so it only works
1515  * for linux injected failures, not real hardware failures
1516  *
1517  * Returns 0 for success, otherwise -errno.
1518  */
1519 int unpoison_memory(unsigned long pfn)
1520 {
1521 	struct page *page;
1522 	struct page *p;
1523 	int freeit = 0;
1524 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1525 					DEFAULT_RATELIMIT_BURST);
1526 
1527 	if (!pfn_valid(pfn))
1528 		return -ENXIO;
1529 
1530 	p = pfn_to_page(pfn);
1531 	page = compound_head(p);
1532 
1533 	if (!PageHWPoison(p)) {
1534 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1535 				 pfn, &unpoison_rs);
1536 		return 0;
1537 	}
1538 
1539 	if (page_count(page) > 1) {
1540 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1541 				 pfn, &unpoison_rs);
1542 		return 0;
1543 	}
1544 
1545 	if (page_mapped(page)) {
1546 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1547 				 pfn, &unpoison_rs);
1548 		return 0;
1549 	}
1550 
1551 	if (page_mapping(page)) {
1552 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1553 				 pfn, &unpoison_rs);
1554 		return 0;
1555 	}
1556 
1557 	/*
1558 	 * unpoison_memory() can encounter thp only when the thp is being
1559 	 * worked by memory_failure() and the page lock is not held yet.
1560 	 * In such case, we yield to memory_failure() and make unpoison fail.
1561 	 */
1562 	if (!PageHuge(page) && PageTransHuge(page)) {
1563 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1564 				 pfn, &unpoison_rs);
1565 		return 0;
1566 	}
1567 
1568 	if (!get_hwpoison_page(p)) {
1569 		if (TestClearPageHWPoison(p))
1570 			num_poisoned_pages_dec();
1571 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1572 				 pfn, &unpoison_rs);
1573 		return 0;
1574 	}
1575 
1576 	lock_page(page);
1577 	/*
1578 	 * This test is racy because PG_hwpoison is set outside of page lock.
1579 	 * That's acceptable because that won't trigger kernel panic. Instead,
1580 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1581 	 * the free buddy page pool.
1582 	 */
1583 	if (TestClearPageHWPoison(page)) {
1584 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1585 				 pfn, &unpoison_rs);
1586 		num_poisoned_pages_dec();
1587 		freeit = 1;
1588 	}
1589 	unlock_page(page);
1590 
1591 	put_hwpoison_page(page);
1592 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1593 		put_hwpoison_page(page);
1594 
1595 	return 0;
1596 }
1597 EXPORT_SYMBOL(unpoison_memory);
1598 
1599 static struct page *new_page(struct page *p, unsigned long private)
1600 {
1601 	int nid = page_to_nid(p);
1602 
1603 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1604 }
1605 
1606 /*
1607  * Safely get reference count of an arbitrary page.
1608  * Returns 0 for a free page, -EIO for a zero refcount page
1609  * that is not free, and 1 for any other page type.
1610  * For 1 the page is returned with increased page count, otherwise not.
1611  */
1612 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1613 {
1614 	int ret;
1615 
1616 	if (flags & MF_COUNT_INCREASED)
1617 		return 1;
1618 
1619 	/*
1620 	 * When the target page is a free hugepage, just remove it
1621 	 * from free hugepage list.
1622 	 */
1623 	if (!get_hwpoison_page(p)) {
1624 		if (PageHuge(p)) {
1625 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1626 			ret = 0;
1627 		} else if (is_free_buddy_page(p)) {
1628 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1629 			ret = 0;
1630 		} else {
1631 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1632 				__func__, pfn, p->flags);
1633 			ret = -EIO;
1634 		}
1635 	} else {
1636 		/* Not a free page */
1637 		ret = 1;
1638 	}
1639 	return ret;
1640 }
1641 
1642 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1643 {
1644 	int ret = __get_any_page(page, pfn, flags);
1645 
1646 	if (ret == 1 && !PageHuge(page) &&
1647 	    !PageLRU(page) && !__PageMovable(page)) {
1648 		/*
1649 		 * Try to free it.
1650 		 */
1651 		put_hwpoison_page(page);
1652 		shake_page(page, 1);
1653 
1654 		/*
1655 		 * Did it turn free?
1656 		 */
1657 		ret = __get_any_page(page, pfn, 0);
1658 		if (ret == 1 && !PageLRU(page)) {
1659 			/* Drop page reference which is from __get_any_page() */
1660 			put_hwpoison_page(page);
1661 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1662 				pfn, page->flags, &page->flags);
1663 			return -EIO;
1664 		}
1665 	}
1666 	return ret;
1667 }
1668 
1669 static int soft_offline_huge_page(struct page *page, int flags)
1670 {
1671 	int ret;
1672 	unsigned long pfn = page_to_pfn(page);
1673 	struct page *hpage = compound_head(page);
1674 	LIST_HEAD(pagelist);
1675 
1676 	/*
1677 	 * This double-check of PageHWPoison is to avoid the race with
1678 	 * memory_failure(). See also comment in __soft_offline_page().
1679 	 */
1680 	lock_page(hpage);
1681 	if (PageHWPoison(hpage)) {
1682 		unlock_page(hpage);
1683 		put_hwpoison_page(hpage);
1684 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1685 		return -EBUSY;
1686 	}
1687 	unlock_page(hpage);
1688 
1689 	ret = isolate_huge_page(hpage, &pagelist);
1690 	/*
1691 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1692 	 * so need to drop one here.
1693 	 */
1694 	put_hwpoison_page(hpage);
1695 	if (!ret) {
1696 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1697 		return -EBUSY;
1698 	}
1699 
1700 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1701 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1702 	if (ret) {
1703 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1704 			pfn, ret, page->flags, &page->flags);
1705 		if (!list_empty(&pagelist))
1706 			putback_movable_pages(&pagelist);
1707 		if (ret > 0)
1708 			ret = -EIO;
1709 	} else {
1710 		/*
1711 		 * We set PG_hwpoison only when the migration source hugepage
1712 		 * was successfully dissolved, because otherwise hwpoisoned
1713 		 * hugepage remains on free hugepage list, then userspace will
1714 		 * find it as SIGBUS by allocation failure. That's not expected
1715 		 * in soft-offlining.
1716 		 */
1717 		ret = dissolve_free_huge_page(page);
1718 		if (!ret) {
1719 			if (set_hwpoison_free_buddy_page(page))
1720 				num_poisoned_pages_inc();
1721 			else
1722 				ret = -EBUSY;
1723 		}
1724 	}
1725 	return ret;
1726 }
1727 
1728 static int __soft_offline_page(struct page *page, int flags)
1729 {
1730 	int ret;
1731 	unsigned long pfn = page_to_pfn(page);
1732 
1733 	/*
1734 	 * Check PageHWPoison again inside page lock because PageHWPoison
1735 	 * is set by memory_failure() outside page lock. Note that
1736 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1737 	 * so there's no race between soft_offline_page() and memory_failure().
1738 	 */
1739 	lock_page(page);
1740 	wait_on_page_writeback(page);
1741 	if (PageHWPoison(page)) {
1742 		unlock_page(page);
1743 		put_hwpoison_page(page);
1744 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1745 		return -EBUSY;
1746 	}
1747 	/*
1748 	 * Try to invalidate first. This should work for
1749 	 * non dirty unmapped page cache pages.
1750 	 */
1751 	ret = invalidate_inode_page(page);
1752 	unlock_page(page);
1753 	/*
1754 	 * RED-PEN would be better to keep it isolated here, but we
1755 	 * would need to fix isolation locking first.
1756 	 */
1757 	if (ret == 1) {
1758 		put_hwpoison_page(page);
1759 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1760 		SetPageHWPoison(page);
1761 		num_poisoned_pages_inc();
1762 		return 0;
1763 	}
1764 
1765 	/*
1766 	 * Simple invalidation didn't work.
1767 	 * Try to migrate to a new page instead. migrate.c
1768 	 * handles a large number of cases for us.
1769 	 */
1770 	if (PageLRU(page))
1771 		ret = isolate_lru_page(page);
1772 	else
1773 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1774 	/*
1775 	 * Drop page reference which is came from get_any_page()
1776 	 * successful isolate_lru_page() already took another one.
1777 	 */
1778 	put_hwpoison_page(page);
1779 	if (!ret) {
1780 		LIST_HEAD(pagelist);
1781 		/*
1782 		 * After isolated lru page, the PageLRU will be cleared,
1783 		 * so use !__PageMovable instead for LRU page's mapping
1784 		 * cannot have PAGE_MAPPING_MOVABLE.
1785 		 */
1786 		if (!__PageMovable(page))
1787 			inc_node_page_state(page, NR_ISOLATED_ANON +
1788 						page_is_file_cache(page));
1789 		list_add(&page->lru, &pagelist);
1790 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1791 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1792 		if (ret) {
1793 			if (!list_empty(&pagelist))
1794 				putback_movable_pages(&pagelist);
1795 
1796 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1797 				pfn, ret, page->flags, &page->flags);
1798 			if (ret > 0)
1799 				ret = -EIO;
1800 		}
1801 	} else {
1802 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1803 			pfn, ret, page_count(page), page->flags, &page->flags);
1804 	}
1805 	return ret;
1806 }
1807 
1808 static int soft_offline_in_use_page(struct page *page, int flags)
1809 {
1810 	int ret;
1811 	int mt;
1812 	struct page *hpage = compound_head(page);
1813 
1814 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1815 		lock_page(page);
1816 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1817 			unlock_page(page);
1818 			if (!PageAnon(page))
1819 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1820 			else
1821 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1822 			put_hwpoison_page(page);
1823 			return -EBUSY;
1824 		}
1825 		unlock_page(page);
1826 	}
1827 
1828 	/*
1829 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1830 	 * to free list immediately (not via pcplist) when released after
1831 	 * successful page migration. Otherwise we can't guarantee that the
1832 	 * page is really free after put_page() returns, so
1833 	 * set_hwpoison_free_buddy_page() highly likely fails.
1834 	 */
1835 	mt = get_pageblock_migratetype(page);
1836 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1837 	if (PageHuge(page))
1838 		ret = soft_offline_huge_page(page, flags);
1839 	else
1840 		ret = __soft_offline_page(page, flags);
1841 	set_pageblock_migratetype(page, mt);
1842 	return ret;
1843 }
1844 
1845 static int soft_offline_free_page(struct page *page)
1846 {
1847 	int rc = dissolve_free_huge_page(page);
1848 
1849 	if (!rc) {
1850 		if (set_hwpoison_free_buddy_page(page))
1851 			num_poisoned_pages_inc();
1852 		else
1853 			rc = -EBUSY;
1854 	}
1855 	return rc;
1856 }
1857 
1858 /**
1859  * soft_offline_page - Soft offline a page.
1860  * @pfn: pfn to soft-offline
1861  * @flags: flags. Same as memory_failure().
1862  *
1863  * Returns 0 on success, otherwise negated errno.
1864  *
1865  * Soft offline a page, by migration or invalidation,
1866  * without killing anything. This is for the case when
1867  * a page is not corrupted yet (so it's still valid to access),
1868  * but has had a number of corrected errors and is better taken
1869  * out.
1870  *
1871  * The actual policy on when to do that is maintained by
1872  * user space.
1873  *
1874  * This should never impact any application or cause data loss,
1875  * however it might take some time.
1876  *
1877  * This is not a 100% solution for all memory, but tries to be
1878  * ``good enough'' for the majority of memory.
1879  */
1880 int soft_offline_page(unsigned long pfn, int flags)
1881 {
1882 	int ret;
1883 	struct page *page;
1884 
1885 	if (!pfn_valid(pfn))
1886 		return -ENXIO;
1887 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1888 	page = pfn_to_online_page(pfn);
1889 	if (!page)
1890 		return -EIO;
1891 
1892 	if (PageHWPoison(page)) {
1893 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1894 		if (flags & MF_COUNT_INCREASED)
1895 			put_hwpoison_page(page);
1896 		return -EBUSY;
1897 	}
1898 
1899 	get_online_mems();
1900 	ret = get_any_page(page, pfn, flags);
1901 	put_online_mems();
1902 
1903 	if (ret > 0)
1904 		ret = soft_offline_in_use_page(page, flags);
1905 	else if (ret == 0)
1906 		ret = soft_offline_free_page(page);
1907 
1908 	return ret;
1909 }
1910