xref: /openbmc/linux/mm/memory-failure.c (revision 7b6d864b)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 			unsigned long pfn, struct page *page, int flags)
196 {
197 	struct siginfo si;
198 	int ret;
199 
200 	printk(KERN_ERR
201 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 		pfn, t->comm, t->pid);
203 	si.si_signo = SIGBUS;
204 	si.si_errno = 0;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 
211 	if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 		si.si_code = BUS_MCEERR_AR;
213 		ret = force_sig_info(SIGBUS, &si, t);
214 	} else {
215 		/*
216 		 * Don't use force here, it's convenient if the signal
217 		 * can be temporarily blocked.
218 		 * This could cause a loop when the user sets SIGBUS
219 		 * to SIG_IGN, but hopefully no one will do that?
220 		 */
221 		si.si_code = BUS_MCEERR_AO;
222 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
223 	}
224 	if (ret < 0)
225 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 		       t->comm, t->pid, ret);
227 	return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
234 void shake_page(struct page *p, int access)
235 {
236 	if (!PageSlab(p)) {
237 		lru_add_drain_all();
238 		if (PageLRU(p))
239 			return;
240 		drain_all_pages();
241 		if (PageLRU(p) || is_free_buddy_page(p))
242 			return;
243 	}
244 
245 	/*
246 	 * Only call shrink_slab here (which would also shrink other caches) if
247 	 * access is not potentially fatal.
248 	 */
249 	if (access) {
250 		int nr;
251 		do {
252 			struct shrink_control shrink = {
253 				.gfp_mask = GFP_KERNEL,
254 			};
255 
256 			nr = shrink_slab(&shrink, 1000, 1000);
257 			if (page_count(p) == 1)
258 				break;
259 		} while (nr > 10);
260 	}
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 /*
265  * Kill all processes that have a poisoned page mapped and then isolate
266  * the page.
267  *
268  * General strategy:
269  * Find all processes having the page mapped and kill them.
270  * But we keep a page reference around so that the page is not
271  * actually freed yet.
272  * Then stash the page away
273  *
274  * There's no convenient way to get back to mapped processes
275  * from the VMAs. So do a brute-force search over all
276  * running processes.
277  *
278  * Remember that machine checks are not common (or rather
279  * if they are common you have other problems), so this shouldn't
280  * be a performance issue.
281  *
282  * Also there are some races possible while we get from the
283  * error detection to actually handle it.
284  */
285 
286 struct to_kill {
287 	struct list_head nd;
288 	struct task_struct *tsk;
289 	unsigned long addr;
290 	char addr_valid;
291 };
292 
293 /*
294  * Failure handling: if we can't find or can't kill a process there's
295  * not much we can do.	We just print a message and ignore otherwise.
296  */
297 
298 /*
299  * Schedule a process for later kill.
300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301  * TBD would GFP_NOIO be enough?
302  */
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 		       struct vm_area_struct *vma,
305 		       struct list_head *to_kill,
306 		       struct to_kill **tkc)
307 {
308 	struct to_kill *tk;
309 
310 	if (*tkc) {
311 		tk = *tkc;
312 		*tkc = NULL;
313 	} else {
314 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 		if (!tk) {
316 			printk(KERN_ERR
317 		"MCE: Out of memory while machine check handling\n");
318 			return;
319 		}
320 	}
321 	tk->addr = page_address_in_vma(p, vma);
322 	tk->addr_valid = 1;
323 
324 	/*
325 	 * In theory we don't have to kill when the page was
326 	 * munmaped. But it could be also a mremap. Since that's
327 	 * likely very rare kill anyways just out of paranoia, but use
328 	 * a SIGKILL because the error is not contained anymore.
329 	 */
330 	if (tk->addr == -EFAULT) {
331 		pr_info("MCE: Unable to find user space address %lx in %s\n",
332 			page_to_pfn(p), tsk->comm);
333 		tk->addr_valid = 0;
334 	}
335 	get_task_struct(tsk);
336 	tk->tsk = tsk;
337 	list_add_tail(&tk->nd, to_kill);
338 }
339 
340 /*
341  * Kill the processes that have been collected earlier.
342  *
343  * Only do anything when DOIT is set, otherwise just free the list
344  * (this is used for clean pages which do not need killing)
345  * Also when FAIL is set do a force kill because something went
346  * wrong earlier.
347  */
348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 			  int fail, struct page *page, unsigned long pfn,
350 			  int flags)
351 {
352 	struct to_kill *tk, *next;
353 
354 	list_for_each_entry_safe (tk, next, to_kill, nd) {
355 		if (forcekill) {
356 			/*
357 			 * In case something went wrong with munmapping
358 			 * make sure the process doesn't catch the
359 			 * signal and then access the memory. Just kill it.
360 			 */
361 			if (fail || tk->addr_valid == 0) {
362 				printk(KERN_ERR
363 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 				force_sig(SIGKILL, tk->tsk);
366 			}
367 
368 			/*
369 			 * In theory the process could have mapped
370 			 * something else on the address in-between. We could
371 			 * check for that, but we need to tell the
372 			 * process anyways.
373 			 */
374 			else if (kill_proc(tk->tsk, tk->addr, trapno,
375 					      pfn, page, flags) < 0)
376 				printk(KERN_ERR
377 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 					pfn, tk->tsk->comm, tk->tsk->pid);
379 		}
380 		put_task_struct(tk->tsk);
381 		kfree(tk);
382 	}
383 }
384 
385 static int task_early_kill(struct task_struct *tsk)
386 {
387 	if (!tsk->mm)
388 		return 0;
389 	if (tsk->flags & PF_MCE_PROCESS)
390 		return !!(tsk->flags & PF_MCE_EARLY);
391 	return sysctl_memory_failure_early_kill;
392 }
393 
394 /*
395  * Collect processes when the error hit an anonymous page.
396  */
397 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 			      struct to_kill **tkc)
399 {
400 	struct vm_area_struct *vma;
401 	struct task_struct *tsk;
402 	struct anon_vma *av;
403 	pgoff_t pgoff;
404 
405 	av = page_lock_anon_vma_read(page);
406 	if (av == NULL)	/* Not actually mapped anymore */
407 		return;
408 
409 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
410 	read_lock(&tasklist_lock);
411 	for_each_process (tsk) {
412 		struct anon_vma_chain *vmac;
413 
414 		if (!task_early_kill(tsk))
415 			continue;
416 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
417 					       pgoff, pgoff) {
418 			vma = vmac->vma;
419 			if (!page_mapped_in_vma(page, vma))
420 				continue;
421 			if (vma->vm_mm == tsk->mm)
422 				add_to_kill(tsk, page, vma, to_kill, tkc);
423 		}
424 	}
425 	read_unlock(&tasklist_lock);
426 	page_unlock_anon_vma_read(av);
427 }
428 
429 /*
430  * Collect processes when the error hit a file mapped page.
431  */
432 static void collect_procs_file(struct page *page, struct list_head *to_kill,
433 			      struct to_kill **tkc)
434 {
435 	struct vm_area_struct *vma;
436 	struct task_struct *tsk;
437 	struct address_space *mapping = page->mapping;
438 
439 	mutex_lock(&mapping->i_mmap_mutex);
440 	read_lock(&tasklist_lock);
441 	for_each_process(tsk) {
442 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 
444 		if (!task_early_kill(tsk))
445 			continue;
446 
447 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
448 				      pgoff) {
449 			/*
450 			 * Send early kill signal to tasks where a vma covers
451 			 * the page but the corrupted page is not necessarily
452 			 * mapped it in its pte.
453 			 * Assume applications who requested early kill want
454 			 * to be informed of all such data corruptions.
455 			 */
456 			if (vma->vm_mm == tsk->mm)
457 				add_to_kill(tsk, page, vma, to_kill, tkc);
458 		}
459 	}
460 	read_unlock(&tasklist_lock);
461 	mutex_unlock(&mapping->i_mmap_mutex);
462 }
463 
464 /*
465  * Collect the processes who have the corrupted page mapped to kill.
466  * This is done in two steps for locking reasons.
467  * First preallocate one tokill structure outside the spin locks,
468  * so that we can kill at least one process reasonably reliable.
469  */
470 static void collect_procs(struct page *page, struct list_head *tokill)
471 {
472 	struct to_kill *tk;
473 
474 	if (!page->mapping)
475 		return;
476 
477 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
478 	if (!tk)
479 		return;
480 	if (PageAnon(page))
481 		collect_procs_anon(page, tokill, &tk);
482 	else
483 		collect_procs_file(page, tokill, &tk);
484 	kfree(tk);
485 }
486 
487 /*
488  * Error handlers for various types of pages.
489  */
490 
491 enum outcome {
492 	IGNORED,	/* Error: cannot be handled */
493 	FAILED,		/* Error: handling failed */
494 	DELAYED,	/* Will be handled later */
495 	RECOVERED,	/* Successfully recovered */
496 };
497 
498 static const char *action_name[] = {
499 	[IGNORED] = "Ignored",
500 	[FAILED] = "Failed",
501 	[DELAYED] = "Delayed",
502 	[RECOVERED] = "Recovered",
503 };
504 
505 /*
506  * XXX: It is possible that a page is isolated from LRU cache,
507  * and then kept in swap cache or failed to remove from page cache.
508  * The page count will stop it from being freed by unpoison.
509  * Stress tests should be aware of this memory leak problem.
510  */
511 static int delete_from_lru_cache(struct page *p)
512 {
513 	if (!isolate_lru_page(p)) {
514 		/*
515 		 * Clear sensible page flags, so that the buddy system won't
516 		 * complain when the page is unpoison-and-freed.
517 		 */
518 		ClearPageActive(p);
519 		ClearPageUnevictable(p);
520 		/*
521 		 * drop the page count elevated by isolate_lru_page()
522 		 */
523 		page_cache_release(p);
524 		return 0;
525 	}
526 	return -EIO;
527 }
528 
529 /*
530  * Error hit kernel page.
531  * Do nothing, try to be lucky and not touch this instead. For a few cases we
532  * could be more sophisticated.
533  */
534 static int me_kernel(struct page *p, unsigned long pfn)
535 {
536 	return IGNORED;
537 }
538 
539 /*
540  * Page in unknown state. Do nothing.
541  */
542 static int me_unknown(struct page *p, unsigned long pfn)
543 {
544 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
545 	return FAILED;
546 }
547 
548 /*
549  * Clean (or cleaned) page cache page.
550  */
551 static int me_pagecache_clean(struct page *p, unsigned long pfn)
552 {
553 	int err;
554 	int ret = FAILED;
555 	struct address_space *mapping;
556 
557 	delete_from_lru_cache(p);
558 
559 	/*
560 	 * For anonymous pages we're done the only reference left
561 	 * should be the one m_f() holds.
562 	 */
563 	if (PageAnon(p))
564 		return RECOVERED;
565 
566 	/*
567 	 * Now truncate the page in the page cache. This is really
568 	 * more like a "temporary hole punch"
569 	 * Don't do this for block devices when someone else
570 	 * has a reference, because it could be file system metadata
571 	 * and that's not safe to truncate.
572 	 */
573 	mapping = page_mapping(p);
574 	if (!mapping) {
575 		/*
576 		 * Page has been teared down in the meanwhile
577 		 */
578 		return FAILED;
579 	}
580 
581 	/*
582 	 * Truncation is a bit tricky. Enable it per file system for now.
583 	 *
584 	 * Open: to take i_mutex or not for this? Right now we don't.
585 	 */
586 	if (mapping->a_ops->error_remove_page) {
587 		err = mapping->a_ops->error_remove_page(mapping, p);
588 		if (err != 0) {
589 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
590 					pfn, err);
591 		} else if (page_has_private(p) &&
592 				!try_to_release_page(p, GFP_NOIO)) {
593 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
594 		} else {
595 			ret = RECOVERED;
596 		}
597 	} else {
598 		/*
599 		 * If the file system doesn't support it just invalidate
600 		 * This fails on dirty or anything with private pages
601 		 */
602 		if (invalidate_inode_page(p))
603 			ret = RECOVERED;
604 		else
605 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
606 				pfn);
607 	}
608 	return ret;
609 }
610 
611 /*
612  * Dirty cache page page
613  * Issues: when the error hit a hole page the error is not properly
614  * propagated.
615  */
616 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
617 {
618 	struct address_space *mapping = page_mapping(p);
619 
620 	SetPageError(p);
621 	/* TBD: print more information about the file. */
622 	if (mapping) {
623 		/*
624 		 * IO error will be reported by write(), fsync(), etc.
625 		 * who check the mapping.
626 		 * This way the application knows that something went
627 		 * wrong with its dirty file data.
628 		 *
629 		 * There's one open issue:
630 		 *
631 		 * The EIO will be only reported on the next IO
632 		 * operation and then cleared through the IO map.
633 		 * Normally Linux has two mechanisms to pass IO error
634 		 * first through the AS_EIO flag in the address space
635 		 * and then through the PageError flag in the page.
636 		 * Since we drop pages on memory failure handling the
637 		 * only mechanism open to use is through AS_AIO.
638 		 *
639 		 * This has the disadvantage that it gets cleared on
640 		 * the first operation that returns an error, while
641 		 * the PageError bit is more sticky and only cleared
642 		 * when the page is reread or dropped.  If an
643 		 * application assumes it will always get error on
644 		 * fsync, but does other operations on the fd before
645 		 * and the page is dropped between then the error
646 		 * will not be properly reported.
647 		 *
648 		 * This can already happen even without hwpoisoned
649 		 * pages: first on metadata IO errors (which only
650 		 * report through AS_EIO) or when the page is dropped
651 		 * at the wrong time.
652 		 *
653 		 * So right now we assume that the application DTRT on
654 		 * the first EIO, but we're not worse than other parts
655 		 * of the kernel.
656 		 */
657 		mapping_set_error(mapping, EIO);
658 	}
659 
660 	return me_pagecache_clean(p, pfn);
661 }
662 
663 /*
664  * Clean and dirty swap cache.
665  *
666  * Dirty swap cache page is tricky to handle. The page could live both in page
667  * cache and swap cache(ie. page is freshly swapped in). So it could be
668  * referenced concurrently by 2 types of PTEs:
669  * normal PTEs and swap PTEs. We try to handle them consistently by calling
670  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
671  * and then
672  *      - clear dirty bit to prevent IO
673  *      - remove from LRU
674  *      - but keep in the swap cache, so that when we return to it on
675  *        a later page fault, we know the application is accessing
676  *        corrupted data and shall be killed (we installed simple
677  *        interception code in do_swap_page to catch it).
678  *
679  * Clean swap cache pages can be directly isolated. A later page fault will
680  * bring in the known good data from disk.
681  */
682 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
683 {
684 	ClearPageDirty(p);
685 	/* Trigger EIO in shmem: */
686 	ClearPageUptodate(p);
687 
688 	if (!delete_from_lru_cache(p))
689 		return DELAYED;
690 	else
691 		return FAILED;
692 }
693 
694 static int me_swapcache_clean(struct page *p, unsigned long pfn)
695 {
696 	delete_from_swap_cache(p);
697 
698 	if (!delete_from_lru_cache(p))
699 		return RECOVERED;
700 	else
701 		return FAILED;
702 }
703 
704 /*
705  * Huge pages. Needs work.
706  * Issues:
707  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
708  *   To narrow down kill region to one page, we need to break up pmd.
709  */
710 static int me_huge_page(struct page *p, unsigned long pfn)
711 {
712 	int res = 0;
713 	struct page *hpage = compound_head(p);
714 	/*
715 	 * We can safely recover from error on free or reserved (i.e.
716 	 * not in-use) hugepage by dequeuing it from freelist.
717 	 * To check whether a hugepage is in-use or not, we can't use
718 	 * page->lru because it can be used in other hugepage operations,
719 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
720 	 * So instead we use page_mapping() and PageAnon().
721 	 * We assume that this function is called with page lock held,
722 	 * so there is no race between isolation and mapping/unmapping.
723 	 */
724 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
725 		res = dequeue_hwpoisoned_huge_page(hpage);
726 		if (!res)
727 			return RECOVERED;
728 	}
729 	return DELAYED;
730 }
731 
732 /*
733  * Various page states we can handle.
734  *
735  * A page state is defined by its current page->flags bits.
736  * The table matches them in order and calls the right handler.
737  *
738  * This is quite tricky because we can access page at any time
739  * in its live cycle, so all accesses have to be extremely careful.
740  *
741  * This is not complete. More states could be added.
742  * For any missing state don't attempt recovery.
743  */
744 
745 #define dirty		(1UL << PG_dirty)
746 #define sc		(1UL << PG_swapcache)
747 #define unevict		(1UL << PG_unevictable)
748 #define mlock		(1UL << PG_mlocked)
749 #define writeback	(1UL << PG_writeback)
750 #define lru		(1UL << PG_lru)
751 #define swapbacked	(1UL << PG_swapbacked)
752 #define head		(1UL << PG_head)
753 #define tail		(1UL << PG_tail)
754 #define compound	(1UL << PG_compound)
755 #define slab		(1UL << PG_slab)
756 #define reserved	(1UL << PG_reserved)
757 
758 static struct page_state {
759 	unsigned long mask;
760 	unsigned long res;
761 	char *msg;
762 	int (*action)(struct page *p, unsigned long pfn);
763 } error_states[] = {
764 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
765 	/*
766 	 * free pages are specially detected outside this table:
767 	 * PG_buddy pages only make a small fraction of all free pages.
768 	 */
769 
770 	/*
771 	 * Could in theory check if slab page is free or if we can drop
772 	 * currently unused objects without touching them. But just
773 	 * treat it as standard kernel for now.
774 	 */
775 	{ slab,		slab,		"kernel slab",	me_kernel },
776 
777 #ifdef CONFIG_PAGEFLAGS_EXTENDED
778 	{ head,		head,		"huge",		me_huge_page },
779 	{ tail,		tail,		"huge",		me_huge_page },
780 #else
781 	{ compound,	compound,	"huge",		me_huge_page },
782 #endif
783 
784 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
785 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
786 
787 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
788 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
789 
790 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
791 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
792 
793 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
794 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
795 
796 	/*
797 	 * Catchall entry: must be at end.
798 	 */
799 	{ 0,		0,		"unknown page state",	me_unknown },
800 };
801 
802 #undef dirty
803 #undef sc
804 #undef unevict
805 #undef mlock
806 #undef writeback
807 #undef lru
808 #undef swapbacked
809 #undef head
810 #undef tail
811 #undef compound
812 #undef slab
813 #undef reserved
814 
815 /*
816  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
817  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
818  */
819 static void action_result(unsigned long pfn, char *msg, int result)
820 {
821 	pr_err("MCE %#lx: %s page recovery: %s\n",
822 		pfn, msg, action_name[result]);
823 }
824 
825 static int page_action(struct page_state *ps, struct page *p,
826 			unsigned long pfn)
827 {
828 	int result;
829 	int count;
830 
831 	result = ps->action(p, pfn);
832 	action_result(pfn, ps->msg, result);
833 
834 	count = page_count(p) - 1;
835 	if (ps->action == me_swapcache_dirty && result == DELAYED)
836 		count--;
837 	if (count != 0) {
838 		printk(KERN_ERR
839 		       "MCE %#lx: %s page still referenced by %d users\n",
840 		       pfn, ps->msg, count);
841 		result = FAILED;
842 	}
843 
844 	/* Could do more checks here if page looks ok */
845 	/*
846 	 * Could adjust zone counters here to correct for the missing page.
847 	 */
848 
849 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
850 }
851 
852 /*
853  * Do all that is necessary to remove user space mappings. Unmap
854  * the pages and send SIGBUS to the processes if the data was dirty.
855  */
856 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
857 				  int trapno, int flags)
858 {
859 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
860 	struct address_space *mapping;
861 	LIST_HEAD(tokill);
862 	int ret;
863 	int kill = 1, forcekill;
864 	struct page *hpage = compound_head(p);
865 	struct page *ppage;
866 
867 	if (PageReserved(p) || PageSlab(p))
868 		return SWAP_SUCCESS;
869 
870 	/*
871 	 * This check implies we don't kill processes if their pages
872 	 * are in the swap cache early. Those are always late kills.
873 	 */
874 	if (!page_mapped(hpage))
875 		return SWAP_SUCCESS;
876 
877 	if (PageKsm(p))
878 		return SWAP_FAIL;
879 
880 	if (PageSwapCache(p)) {
881 		printk(KERN_ERR
882 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
883 		ttu |= TTU_IGNORE_HWPOISON;
884 	}
885 
886 	/*
887 	 * Propagate the dirty bit from PTEs to struct page first, because we
888 	 * need this to decide if we should kill or just drop the page.
889 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
890 	 * be called inside page lock (it's recommended but not enforced).
891 	 */
892 	mapping = page_mapping(hpage);
893 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
894 	    mapping_cap_writeback_dirty(mapping)) {
895 		if (page_mkclean(hpage)) {
896 			SetPageDirty(hpage);
897 		} else {
898 			kill = 0;
899 			ttu |= TTU_IGNORE_HWPOISON;
900 			printk(KERN_INFO
901 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
902 				pfn);
903 		}
904 	}
905 
906 	/*
907 	 * ppage: poisoned page
908 	 *   if p is regular page(4k page)
909 	 *        ppage == real poisoned page;
910 	 *   else p is hugetlb or THP, ppage == head page.
911 	 */
912 	ppage = hpage;
913 
914 	if (PageTransHuge(hpage)) {
915 		/*
916 		 * Verify that this isn't a hugetlbfs head page, the check for
917 		 * PageAnon is just for avoid tripping a split_huge_page
918 		 * internal debug check, as split_huge_page refuses to deal with
919 		 * anything that isn't an anon page. PageAnon can't go away fro
920 		 * under us because we hold a refcount on the hpage, without a
921 		 * refcount on the hpage. split_huge_page can't be safely called
922 		 * in the first place, having a refcount on the tail isn't
923 		 * enough * to be safe.
924 		 */
925 		if (!PageHuge(hpage) && PageAnon(hpage)) {
926 			if (unlikely(split_huge_page(hpage))) {
927 				/*
928 				 * FIXME: if splitting THP is failed, it is
929 				 * better to stop the following operation rather
930 				 * than causing panic by unmapping. System might
931 				 * survive if the page is freed later.
932 				 */
933 				printk(KERN_INFO
934 					"MCE %#lx: failed to split THP\n", pfn);
935 
936 				BUG_ON(!PageHWPoison(p));
937 				return SWAP_FAIL;
938 			}
939 			/* THP is split, so ppage should be the real poisoned page. */
940 			ppage = p;
941 		}
942 	}
943 
944 	/*
945 	 * First collect all the processes that have the page
946 	 * mapped in dirty form.  This has to be done before try_to_unmap,
947 	 * because ttu takes the rmap data structures down.
948 	 *
949 	 * Error handling: We ignore errors here because
950 	 * there's nothing that can be done.
951 	 */
952 	if (kill)
953 		collect_procs(ppage, &tokill);
954 
955 	if (hpage != ppage)
956 		lock_page(ppage);
957 
958 	ret = try_to_unmap(ppage, ttu);
959 	if (ret != SWAP_SUCCESS)
960 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
961 				pfn, page_mapcount(ppage));
962 
963 	if (hpage != ppage)
964 		unlock_page(ppage);
965 
966 	/*
967 	 * Now that the dirty bit has been propagated to the
968 	 * struct page and all unmaps done we can decide if
969 	 * killing is needed or not.  Only kill when the page
970 	 * was dirty or the process is not restartable,
971 	 * otherwise the tokill list is merely
972 	 * freed.  When there was a problem unmapping earlier
973 	 * use a more force-full uncatchable kill to prevent
974 	 * any accesses to the poisoned memory.
975 	 */
976 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
977 	kill_procs(&tokill, forcekill, trapno,
978 		      ret != SWAP_SUCCESS, p, pfn, flags);
979 
980 	return ret;
981 }
982 
983 static void set_page_hwpoison_huge_page(struct page *hpage)
984 {
985 	int i;
986 	int nr_pages = 1 << compound_trans_order(hpage);
987 	for (i = 0; i < nr_pages; i++)
988 		SetPageHWPoison(hpage + i);
989 }
990 
991 static void clear_page_hwpoison_huge_page(struct page *hpage)
992 {
993 	int i;
994 	int nr_pages = 1 << compound_trans_order(hpage);
995 	for (i = 0; i < nr_pages; i++)
996 		ClearPageHWPoison(hpage + i);
997 }
998 
999 /**
1000  * memory_failure - Handle memory failure of a page.
1001  * @pfn: Page Number of the corrupted page
1002  * @trapno: Trap number reported in the signal to user space.
1003  * @flags: fine tune action taken
1004  *
1005  * This function is called by the low level machine check code
1006  * of an architecture when it detects hardware memory corruption
1007  * of a page. It tries its best to recover, which includes
1008  * dropping pages, killing processes etc.
1009  *
1010  * The function is primarily of use for corruptions that
1011  * happen outside the current execution context (e.g. when
1012  * detected by a background scrubber)
1013  *
1014  * Must run in process context (e.g. a work queue) with interrupts
1015  * enabled and no spinlocks hold.
1016  */
1017 int memory_failure(unsigned long pfn, int trapno, int flags)
1018 {
1019 	struct page_state *ps;
1020 	struct page *p;
1021 	struct page *hpage;
1022 	int res;
1023 	unsigned int nr_pages;
1024 	unsigned long page_flags;
1025 
1026 	if (!sysctl_memory_failure_recovery)
1027 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1028 
1029 	if (!pfn_valid(pfn)) {
1030 		printk(KERN_ERR
1031 		       "MCE %#lx: memory outside kernel control\n",
1032 		       pfn);
1033 		return -ENXIO;
1034 	}
1035 
1036 	p = pfn_to_page(pfn);
1037 	hpage = compound_head(p);
1038 	if (TestSetPageHWPoison(p)) {
1039 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1040 		return 0;
1041 	}
1042 
1043 	/*
1044 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1045 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1046 	 * transparent hugepages, they are supposed to be split and error
1047 	 * measurement is done in normal page units.  So nr_pages should be one
1048 	 * in this case.
1049 	 */
1050 	if (PageHuge(p))
1051 		nr_pages = 1 << compound_order(hpage);
1052 	else /* normal page or thp */
1053 		nr_pages = 1;
1054 	atomic_long_add(nr_pages, &num_poisoned_pages);
1055 
1056 	/*
1057 	 * We need/can do nothing about count=0 pages.
1058 	 * 1) it's a free page, and therefore in safe hand:
1059 	 *    prep_new_page() will be the gate keeper.
1060 	 * 2) it's a free hugepage, which is also safe:
1061 	 *    an affected hugepage will be dequeued from hugepage freelist,
1062 	 *    so there's no concern about reusing it ever after.
1063 	 * 3) it's part of a non-compound high order page.
1064 	 *    Implies some kernel user: cannot stop them from
1065 	 *    R/W the page; let's pray that the page has been
1066 	 *    used and will be freed some time later.
1067 	 * In fact it's dangerous to directly bump up page count from 0,
1068 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1069 	 */
1070 	if (!(flags & MF_COUNT_INCREASED) &&
1071 		!get_page_unless_zero(hpage)) {
1072 		if (is_free_buddy_page(p)) {
1073 			action_result(pfn, "free buddy", DELAYED);
1074 			return 0;
1075 		} else if (PageHuge(hpage)) {
1076 			/*
1077 			 * Check "just unpoisoned", "filter hit", and
1078 			 * "race with other subpage."
1079 			 */
1080 			lock_page(hpage);
1081 			if (!PageHWPoison(hpage)
1082 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1083 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1084 				atomic_long_sub(nr_pages, &num_poisoned_pages);
1085 				return 0;
1086 			}
1087 			set_page_hwpoison_huge_page(hpage);
1088 			res = dequeue_hwpoisoned_huge_page(hpage);
1089 			action_result(pfn, "free huge",
1090 				      res ? IGNORED : DELAYED);
1091 			unlock_page(hpage);
1092 			return res;
1093 		} else {
1094 			action_result(pfn, "high order kernel", IGNORED);
1095 			return -EBUSY;
1096 		}
1097 	}
1098 
1099 	/*
1100 	 * We ignore non-LRU pages for good reasons.
1101 	 * - PG_locked is only well defined for LRU pages and a few others
1102 	 * - to avoid races with __set_page_locked()
1103 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1104 	 * The check (unnecessarily) ignores LRU pages being isolated and
1105 	 * walked by the page reclaim code, however that's not a big loss.
1106 	 */
1107 	if (!PageHuge(p) && !PageTransTail(p)) {
1108 		if (!PageLRU(p))
1109 			shake_page(p, 0);
1110 		if (!PageLRU(p)) {
1111 			/*
1112 			 * shake_page could have turned it free.
1113 			 */
1114 			if (is_free_buddy_page(p)) {
1115 				action_result(pfn, "free buddy, 2nd try",
1116 						DELAYED);
1117 				return 0;
1118 			}
1119 			action_result(pfn, "non LRU", IGNORED);
1120 			put_page(p);
1121 			return -EBUSY;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Lock the page and wait for writeback to finish.
1127 	 * It's very difficult to mess with pages currently under IO
1128 	 * and in many cases impossible, so we just avoid it here.
1129 	 */
1130 	lock_page(hpage);
1131 
1132 	/*
1133 	 * We use page flags to determine what action should be taken, but
1134 	 * the flags can be modified by the error containment action.  One
1135 	 * example is an mlocked page, where PG_mlocked is cleared by
1136 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1137 	 * correctly, we save a copy of the page flags at this time.
1138 	 */
1139 	page_flags = p->flags;
1140 
1141 	/*
1142 	 * unpoison always clear PG_hwpoison inside page lock
1143 	 */
1144 	if (!PageHWPoison(p)) {
1145 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1146 		res = 0;
1147 		goto out;
1148 	}
1149 	if (hwpoison_filter(p)) {
1150 		if (TestClearPageHWPoison(p))
1151 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1152 		unlock_page(hpage);
1153 		put_page(hpage);
1154 		return 0;
1155 	}
1156 
1157 	/*
1158 	 * For error on the tail page, we should set PG_hwpoison
1159 	 * on the head page to show that the hugepage is hwpoisoned
1160 	 */
1161 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1162 		action_result(pfn, "hugepage already hardware poisoned",
1163 				IGNORED);
1164 		unlock_page(hpage);
1165 		put_page(hpage);
1166 		return 0;
1167 	}
1168 	/*
1169 	 * Set PG_hwpoison on all pages in an error hugepage,
1170 	 * because containment is done in hugepage unit for now.
1171 	 * Since we have done TestSetPageHWPoison() for the head page with
1172 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1173 	 */
1174 	if (PageHuge(p))
1175 		set_page_hwpoison_huge_page(hpage);
1176 
1177 	wait_on_page_writeback(p);
1178 
1179 	/*
1180 	 * Now take care of user space mappings.
1181 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1182 	 */
1183 	if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1184 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1185 		res = -EBUSY;
1186 		goto out;
1187 	}
1188 
1189 	/*
1190 	 * Torn down by someone else?
1191 	 */
1192 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1193 		action_result(pfn, "already truncated LRU", IGNORED);
1194 		res = -EBUSY;
1195 		goto out;
1196 	}
1197 
1198 	res = -EBUSY;
1199 	/*
1200 	 * The first check uses the current page flags which may not have any
1201 	 * relevant information. The second check with the saved page flagss is
1202 	 * carried out only if the first check can't determine the page status.
1203 	 */
1204 	for (ps = error_states;; ps++)
1205 		if ((p->flags & ps->mask) == ps->res)
1206 			break;
1207 	if (!ps->mask)
1208 		for (ps = error_states;; ps++)
1209 			if ((page_flags & ps->mask) == ps->res)
1210 				break;
1211 	res = page_action(ps, p, pfn);
1212 out:
1213 	unlock_page(hpage);
1214 	return res;
1215 }
1216 EXPORT_SYMBOL_GPL(memory_failure);
1217 
1218 #define MEMORY_FAILURE_FIFO_ORDER	4
1219 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1220 
1221 struct memory_failure_entry {
1222 	unsigned long pfn;
1223 	int trapno;
1224 	int flags;
1225 };
1226 
1227 struct memory_failure_cpu {
1228 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1229 		      MEMORY_FAILURE_FIFO_SIZE);
1230 	spinlock_t lock;
1231 	struct work_struct work;
1232 };
1233 
1234 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1235 
1236 /**
1237  * memory_failure_queue - Schedule handling memory failure of a page.
1238  * @pfn: Page Number of the corrupted page
1239  * @trapno: Trap number reported in the signal to user space.
1240  * @flags: Flags for memory failure handling
1241  *
1242  * This function is called by the low level hardware error handler
1243  * when it detects hardware memory corruption of a page. It schedules
1244  * the recovering of error page, including dropping pages, killing
1245  * processes etc.
1246  *
1247  * The function is primarily of use for corruptions that
1248  * happen outside the current execution context (e.g. when
1249  * detected by a background scrubber)
1250  *
1251  * Can run in IRQ context.
1252  */
1253 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1254 {
1255 	struct memory_failure_cpu *mf_cpu;
1256 	unsigned long proc_flags;
1257 	struct memory_failure_entry entry = {
1258 		.pfn =		pfn,
1259 		.trapno =	trapno,
1260 		.flags =	flags,
1261 	};
1262 
1263 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1264 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1265 	if (kfifo_put(&mf_cpu->fifo, &entry))
1266 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1267 	else
1268 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1269 		       pfn);
1270 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1271 	put_cpu_var(memory_failure_cpu);
1272 }
1273 EXPORT_SYMBOL_GPL(memory_failure_queue);
1274 
1275 static void memory_failure_work_func(struct work_struct *work)
1276 {
1277 	struct memory_failure_cpu *mf_cpu;
1278 	struct memory_failure_entry entry = { 0, };
1279 	unsigned long proc_flags;
1280 	int gotten;
1281 
1282 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1283 	for (;;) {
1284 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1285 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1286 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1287 		if (!gotten)
1288 			break;
1289 		memory_failure(entry.pfn, entry.trapno, entry.flags);
1290 	}
1291 }
1292 
1293 static int __init memory_failure_init(void)
1294 {
1295 	struct memory_failure_cpu *mf_cpu;
1296 	int cpu;
1297 
1298 	for_each_possible_cpu(cpu) {
1299 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1300 		spin_lock_init(&mf_cpu->lock);
1301 		INIT_KFIFO(mf_cpu->fifo);
1302 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1303 	}
1304 
1305 	return 0;
1306 }
1307 core_initcall(memory_failure_init);
1308 
1309 /**
1310  * unpoison_memory - Unpoison a previously poisoned page
1311  * @pfn: Page number of the to be unpoisoned page
1312  *
1313  * Software-unpoison a page that has been poisoned by
1314  * memory_failure() earlier.
1315  *
1316  * This is only done on the software-level, so it only works
1317  * for linux injected failures, not real hardware failures
1318  *
1319  * Returns 0 for success, otherwise -errno.
1320  */
1321 int unpoison_memory(unsigned long pfn)
1322 {
1323 	struct page *page;
1324 	struct page *p;
1325 	int freeit = 0;
1326 	unsigned int nr_pages;
1327 
1328 	if (!pfn_valid(pfn))
1329 		return -ENXIO;
1330 
1331 	p = pfn_to_page(pfn);
1332 	page = compound_head(p);
1333 
1334 	if (!PageHWPoison(p)) {
1335 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1336 		return 0;
1337 	}
1338 
1339 	nr_pages = 1 << compound_trans_order(page);
1340 
1341 	if (!get_page_unless_zero(page)) {
1342 		/*
1343 		 * Since HWPoisoned hugepage should have non-zero refcount,
1344 		 * race between memory failure and unpoison seems to happen.
1345 		 * In such case unpoison fails and memory failure runs
1346 		 * to the end.
1347 		 */
1348 		if (PageHuge(page)) {
1349 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1350 			return 0;
1351 		}
1352 		if (TestClearPageHWPoison(p))
1353 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1354 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1355 		return 0;
1356 	}
1357 
1358 	lock_page(page);
1359 	/*
1360 	 * This test is racy because PG_hwpoison is set outside of page lock.
1361 	 * That's acceptable because that won't trigger kernel panic. Instead,
1362 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1363 	 * the free buddy page pool.
1364 	 */
1365 	if (TestClearPageHWPoison(page)) {
1366 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1367 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1368 		freeit = 1;
1369 		if (PageHuge(page))
1370 			clear_page_hwpoison_huge_page(page);
1371 	}
1372 	unlock_page(page);
1373 
1374 	put_page(page);
1375 	if (freeit)
1376 		put_page(page);
1377 
1378 	return 0;
1379 }
1380 EXPORT_SYMBOL(unpoison_memory);
1381 
1382 static struct page *new_page(struct page *p, unsigned long private, int **x)
1383 {
1384 	int nid = page_to_nid(p);
1385 	if (PageHuge(p))
1386 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1387 						   nid);
1388 	else
1389 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1390 }
1391 
1392 /*
1393  * Safely get reference count of an arbitrary page.
1394  * Returns 0 for a free page, -EIO for a zero refcount page
1395  * that is not free, and 1 for any other page type.
1396  * For 1 the page is returned with increased page count, otherwise not.
1397  */
1398 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1399 {
1400 	int ret;
1401 
1402 	if (flags & MF_COUNT_INCREASED)
1403 		return 1;
1404 
1405 	/*
1406 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1407 	 * This is a big hammer, a better would be nicer.
1408 	 */
1409 	lock_memory_hotplug();
1410 
1411 	/*
1412 	 * Isolate the page, so that it doesn't get reallocated if it
1413 	 * was free. This flag should be kept set until the source page
1414 	 * is freed and PG_hwpoison on it is set.
1415 	 */
1416 	set_migratetype_isolate(p, true);
1417 	/*
1418 	 * When the target page is a free hugepage, just remove it
1419 	 * from free hugepage list.
1420 	 */
1421 	if (!get_page_unless_zero(compound_head(p))) {
1422 		if (PageHuge(p)) {
1423 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1424 			ret = 0;
1425 		} else if (is_free_buddy_page(p)) {
1426 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1427 			ret = 0;
1428 		} else {
1429 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1430 				__func__, pfn, p->flags);
1431 			ret = -EIO;
1432 		}
1433 	} else {
1434 		/* Not a free page */
1435 		ret = 1;
1436 	}
1437 	unlock_memory_hotplug();
1438 	return ret;
1439 }
1440 
1441 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1442 {
1443 	int ret = __get_any_page(page, pfn, flags);
1444 
1445 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1446 		/*
1447 		 * Try to free it.
1448 		 */
1449 		put_page(page);
1450 		shake_page(page, 1);
1451 
1452 		/*
1453 		 * Did it turn free?
1454 		 */
1455 		ret = __get_any_page(page, pfn, 0);
1456 		if (!PageLRU(page)) {
1457 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1458 				pfn, page->flags);
1459 			return -EIO;
1460 		}
1461 	}
1462 	return ret;
1463 }
1464 
1465 static int soft_offline_huge_page(struct page *page, int flags)
1466 {
1467 	int ret;
1468 	unsigned long pfn = page_to_pfn(page);
1469 	struct page *hpage = compound_head(page);
1470 
1471 	/*
1472 	 * This double-check of PageHWPoison is to avoid the race with
1473 	 * memory_failure(). See also comment in __soft_offline_page().
1474 	 */
1475 	lock_page(hpage);
1476 	if (PageHWPoison(hpage)) {
1477 		unlock_page(hpage);
1478 		put_page(hpage);
1479 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1480 		return -EBUSY;
1481 	}
1482 	unlock_page(hpage);
1483 
1484 	/* Keep page count to indicate a given hugepage is isolated. */
1485 	ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
1486 				MIGRATE_SYNC);
1487 	put_page(hpage);
1488 	if (ret) {
1489 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1490 			pfn, ret, page->flags);
1491 	} else {
1492 		set_page_hwpoison_huge_page(hpage);
1493 		dequeue_hwpoisoned_huge_page(hpage);
1494 		atomic_long_add(1 << compound_trans_order(hpage),
1495 				&num_poisoned_pages);
1496 	}
1497 	return ret;
1498 }
1499 
1500 static int __soft_offline_page(struct page *page, int flags);
1501 
1502 /**
1503  * soft_offline_page - Soft offline a page.
1504  * @page: page to offline
1505  * @flags: flags. Same as memory_failure().
1506  *
1507  * Returns 0 on success, otherwise negated errno.
1508  *
1509  * Soft offline a page, by migration or invalidation,
1510  * without killing anything. This is for the case when
1511  * a page is not corrupted yet (so it's still valid to access),
1512  * but has had a number of corrected errors and is better taken
1513  * out.
1514  *
1515  * The actual policy on when to do that is maintained by
1516  * user space.
1517  *
1518  * This should never impact any application or cause data loss,
1519  * however it might take some time.
1520  *
1521  * This is not a 100% solution for all memory, but tries to be
1522  * ``good enough'' for the majority of memory.
1523  */
1524 int soft_offline_page(struct page *page, int flags)
1525 {
1526 	int ret;
1527 	unsigned long pfn = page_to_pfn(page);
1528 	struct page *hpage = compound_trans_head(page);
1529 
1530 	if (PageHWPoison(page)) {
1531 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1532 		return -EBUSY;
1533 	}
1534 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1535 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1536 			pr_info("soft offline: %#lx: failed to split THP\n",
1537 				pfn);
1538 			return -EBUSY;
1539 		}
1540 	}
1541 
1542 	ret = get_any_page(page, pfn, flags);
1543 	if (ret < 0)
1544 		return ret;
1545 	if (ret) { /* for in-use pages */
1546 		if (PageHuge(page))
1547 			ret = soft_offline_huge_page(page, flags);
1548 		else
1549 			ret = __soft_offline_page(page, flags);
1550 	} else { /* for free pages */
1551 		if (PageHuge(page)) {
1552 			set_page_hwpoison_huge_page(hpage);
1553 			dequeue_hwpoisoned_huge_page(hpage);
1554 			atomic_long_add(1 << compound_trans_order(hpage),
1555 					&num_poisoned_pages);
1556 		} else {
1557 			SetPageHWPoison(page);
1558 			atomic_long_inc(&num_poisoned_pages);
1559 		}
1560 	}
1561 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1562 	return ret;
1563 }
1564 
1565 static int __soft_offline_page(struct page *page, int flags)
1566 {
1567 	int ret;
1568 	unsigned long pfn = page_to_pfn(page);
1569 
1570 	/*
1571 	 * Check PageHWPoison again inside page lock because PageHWPoison
1572 	 * is set by memory_failure() outside page lock. Note that
1573 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1574 	 * so there's no race between soft_offline_page() and memory_failure().
1575 	 */
1576 	lock_page(page);
1577 	wait_on_page_writeback(page);
1578 	if (PageHWPoison(page)) {
1579 		unlock_page(page);
1580 		put_page(page);
1581 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1582 		return -EBUSY;
1583 	}
1584 	/*
1585 	 * Try to invalidate first. This should work for
1586 	 * non dirty unmapped page cache pages.
1587 	 */
1588 	ret = invalidate_inode_page(page);
1589 	unlock_page(page);
1590 	/*
1591 	 * RED-PEN would be better to keep it isolated here, but we
1592 	 * would need to fix isolation locking first.
1593 	 */
1594 	if (ret == 1) {
1595 		put_page(page);
1596 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1597 		SetPageHWPoison(page);
1598 		atomic_long_inc(&num_poisoned_pages);
1599 		return 0;
1600 	}
1601 
1602 	/*
1603 	 * Simple invalidation didn't work.
1604 	 * Try to migrate to a new page instead. migrate.c
1605 	 * handles a large number of cases for us.
1606 	 */
1607 	ret = isolate_lru_page(page);
1608 	/*
1609 	 * Drop page reference which is came from get_any_page()
1610 	 * successful isolate_lru_page() already took another one.
1611 	 */
1612 	put_page(page);
1613 	if (!ret) {
1614 		LIST_HEAD(pagelist);
1615 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1616 					page_is_file_cache(page));
1617 		list_add(&page->lru, &pagelist);
1618 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1619 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1620 		if (ret) {
1621 			putback_lru_pages(&pagelist);
1622 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1623 				pfn, ret, page->flags);
1624 			if (ret > 0)
1625 				ret = -EIO;
1626 		} else {
1627 			/*
1628 			 * After page migration succeeds, the source page can
1629 			 * be trapped in pagevec and actual freeing is delayed.
1630 			 * Freeing code works differently based on PG_hwpoison,
1631 			 * so there's a race. We need to make sure that the
1632 			 * source page should be freed back to buddy before
1633 			 * setting PG_hwpoison.
1634 			 */
1635 			if (!is_free_buddy_page(page))
1636 				lru_add_drain_all();
1637 			if (!is_free_buddy_page(page))
1638 				drain_all_pages();
1639 			SetPageHWPoison(page);
1640 			if (!is_free_buddy_page(page))
1641 				pr_info("soft offline: %#lx: page leaked\n",
1642 					pfn);
1643 			atomic_long_inc(&num_poisoned_pages);
1644 		}
1645 	} else {
1646 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1647 			pfn, ret, page_count(page), page->flags);
1648 	}
1649 	return ret;
1650 }
1651