1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 /* root_mem_cgroup has NULL dentries */ 149 if (!css->cgroup->dentry) 150 return -EINVAL; 151 152 ino = css->cgroup->dentry->d_inode->i_ino; 153 css_put(css); 154 155 if (ino != hwpoison_filter_memcg) 156 return -EINVAL; 157 158 return 0; 159 } 160 #else 161 static int hwpoison_filter_task(struct page *p) { return 0; } 162 #endif 163 164 int hwpoison_filter(struct page *p) 165 { 166 if (!hwpoison_filter_enable) 167 return 0; 168 169 if (hwpoison_filter_dev(p)) 170 return -EINVAL; 171 172 if (hwpoison_filter_flags(p)) 173 return -EINVAL; 174 175 if (hwpoison_filter_task(p)) 176 return -EINVAL; 177 178 return 0; 179 } 180 #else 181 int hwpoison_filter(struct page *p) 182 { 183 return 0; 184 } 185 #endif 186 187 EXPORT_SYMBOL_GPL(hwpoison_filter); 188 189 /* 190 * Send all the processes who have the page mapped a signal. 191 * ``action optional'' if they are not immediately affected by the error 192 * ``action required'' if error happened in current execution context 193 */ 194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 195 unsigned long pfn, struct page *page, int flags) 196 { 197 struct siginfo si; 198 int ret; 199 200 printk(KERN_ERR 201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 202 pfn, t->comm, t->pid); 203 si.si_signo = SIGBUS; 204 si.si_errno = 0; 205 si.si_addr = (void *)addr; 206 #ifdef __ARCH_SI_TRAPNO 207 si.si_trapno = trapno; 208 #endif 209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; 210 211 if ((flags & MF_ACTION_REQUIRED) && t == current) { 212 si.si_code = BUS_MCEERR_AR; 213 ret = force_sig_info(SIGBUS, &si, t); 214 } else { 215 /* 216 * Don't use force here, it's convenient if the signal 217 * can be temporarily blocked. 218 * This could cause a loop when the user sets SIGBUS 219 * to SIG_IGN, but hopefully no one will do that? 220 */ 221 si.si_code = BUS_MCEERR_AO; 222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 223 } 224 if (ret < 0) 225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 226 t->comm, t->pid, ret); 227 return ret; 228 } 229 230 /* 231 * When a unknown page type is encountered drain as many buffers as possible 232 * in the hope to turn the page into a LRU or free page, which we can handle. 233 */ 234 void shake_page(struct page *p, int access) 235 { 236 if (!PageSlab(p)) { 237 lru_add_drain_all(); 238 if (PageLRU(p)) 239 return; 240 drain_all_pages(); 241 if (PageLRU(p) || is_free_buddy_page(p)) 242 return; 243 } 244 245 /* 246 * Only call shrink_slab here (which would also shrink other caches) if 247 * access is not potentially fatal. 248 */ 249 if (access) { 250 int nr; 251 do { 252 struct shrink_control shrink = { 253 .gfp_mask = GFP_KERNEL, 254 }; 255 256 nr = shrink_slab(&shrink, 1000, 1000); 257 if (page_count(p) == 1) 258 break; 259 } while (nr > 10); 260 } 261 } 262 EXPORT_SYMBOL_GPL(shake_page); 263 264 /* 265 * Kill all processes that have a poisoned page mapped and then isolate 266 * the page. 267 * 268 * General strategy: 269 * Find all processes having the page mapped and kill them. 270 * But we keep a page reference around so that the page is not 271 * actually freed yet. 272 * Then stash the page away 273 * 274 * There's no convenient way to get back to mapped processes 275 * from the VMAs. So do a brute-force search over all 276 * running processes. 277 * 278 * Remember that machine checks are not common (or rather 279 * if they are common you have other problems), so this shouldn't 280 * be a performance issue. 281 * 282 * Also there are some races possible while we get from the 283 * error detection to actually handle it. 284 */ 285 286 struct to_kill { 287 struct list_head nd; 288 struct task_struct *tsk; 289 unsigned long addr; 290 char addr_valid; 291 }; 292 293 /* 294 * Failure handling: if we can't find or can't kill a process there's 295 * not much we can do. We just print a message and ignore otherwise. 296 */ 297 298 /* 299 * Schedule a process for later kill. 300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 301 * TBD would GFP_NOIO be enough? 302 */ 303 static void add_to_kill(struct task_struct *tsk, struct page *p, 304 struct vm_area_struct *vma, 305 struct list_head *to_kill, 306 struct to_kill **tkc) 307 { 308 struct to_kill *tk; 309 310 if (*tkc) { 311 tk = *tkc; 312 *tkc = NULL; 313 } else { 314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 315 if (!tk) { 316 printk(KERN_ERR 317 "MCE: Out of memory while machine check handling\n"); 318 return; 319 } 320 } 321 tk->addr = page_address_in_vma(p, vma); 322 tk->addr_valid = 1; 323 324 /* 325 * In theory we don't have to kill when the page was 326 * munmaped. But it could be also a mremap. Since that's 327 * likely very rare kill anyways just out of paranoia, but use 328 * a SIGKILL because the error is not contained anymore. 329 */ 330 if (tk->addr == -EFAULT) { 331 pr_info("MCE: Unable to find user space address %lx in %s\n", 332 page_to_pfn(p), tsk->comm); 333 tk->addr_valid = 0; 334 } 335 get_task_struct(tsk); 336 tk->tsk = tsk; 337 list_add_tail(&tk->nd, to_kill); 338 } 339 340 /* 341 * Kill the processes that have been collected earlier. 342 * 343 * Only do anything when DOIT is set, otherwise just free the list 344 * (this is used for clean pages which do not need killing) 345 * Also when FAIL is set do a force kill because something went 346 * wrong earlier. 347 */ 348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 349 int fail, struct page *page, unsigned long pfn, 350 int flags) 351 { 352 struct to_kill *tk, *next; 353 354 list_for_each_entry_safe (tk, next, to_kill, nd) { 355 if (forcekill) { 356 /* 357 * In case something went wrong with munmapping 358 * make sure the process doesn't catch the 359 * signal and then access the memory. Just kill it. 360 */ 361 if (fail || tk->addr_valid == 0) { 362 printk(KERN_ERR 363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 364 pfn, tk->tsk->comm, tk->tsk->pid); 365 force_sig(SIGKILL, tk->tsk); 366 } 367 368 /* 369 * In theory the process could have mapped 370 * something else on the address in-between. We could 371 * check for that, but we need to tell the 372 * process anyways. 373 */ 374 else if (kill_proc(tk->tsk, tk->addr, trapno, 375 pfn, page, flags) < 0) 376 printk(KERN_ERR 377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 378 pfn, tk->tsk->comm, tk->tsk->pid); 379 } 380 put_task_struct(tk->tsk); 381 kfree(tk); 382 } 383 } 384 385 static int task_early_kill(struct task_struct *tsk) 386 { 387 if (!tsk->mm) 388 return 0; 389 if (tsk->flags & PF_MCE_PROCESS) 390 return !!(tsk->flags & PF_MCE_EARLY); 391 return sysctl_memory_failure_early_kill; 392 } 393 394 /* 395 * Collect processes when the error hit an anonymous page. 396 */ 397 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 398 struct to_kill **tkc) 399 { 400 struct vm_area_struct *vma; 401 struct task_struct *tsk; 402 struct anon_vma *av; 403 pgoff_t pgoff; 404 405 av = page_lock_anon_vma_read(page); 406 if (av == NULL) /* Not actually mapped anymore */ 407 return; 408 409 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 410 read_lock(&tasklist_lock); 411 for_each_process (tsk) { 412 struct anon_vma_chain *vmac; 413 414 if (!task_early_kill(tsk)) 415 continue; 416 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 417 pgoff, pgoff) { 418 vma = vmac->vma; 419 if (!page_mapped_in_vma(page, vma)) 420 continue; 421 if (vma->vm_mm == tsk->mm) 422 add_to_kill(tsk, page, vma, to_kill, tkc); 423 } 424 } 425 read_unlock(&tasklist_lock); 426 page_unlock_anon_vma_read(av); 427 } 428 429 /* 430 * Collect processes when the error hit a file mapped page. 431 */ 432 static void collect_procs_file(struct page *page, struct list_head *to_kill, 433 struct to_kill **tkc) 434 { 435 struct vm_area_struct *vma; 436 struct task_struct *tsk; 437 struct address_space *mapping = page->mapping; 438 439 mutex_lock(&mapping->i_mmap_mutex); 440 read_lock(&tasklist_lock); 441 for_each_process(tsk) { 442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 443 444 if (!task_early_kill(tsk)) 445 continue; 446 447 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 448 pgoff) { 449 /* 450 * Send early kill signal to tasks where a vma covers 451 * the page but the corrupted page is not necessarily 452 * mapped it in its pte. 453 * Assume applications who requested early kill want 454 * to be informed of all such data corruptions. 455 */ 456 if (vma->vm_mm == tsk->mm) 457 add_to_kill(tsk, page, vma, to_kill, tkc); 458 } 459 } 460 read_unlock(&tasklist_lock); 461 mutex_unlock(&mapping->i_mmap_mutex); 462 } 463 464 /* 465 * Collect the processes who have the corrupted page mapped to kill. 466 * This is done in two steps for locking reasons. 467 * First preallocate one tokill structure outside the spin locks, 468 * so that we can kill at least one process reasonably reliable. 469 */ 470 static void collect_procs(struct page *page, struct list_head *tokill) 471 { 472 struct to_kill *tk; 473 474 if (!page->mapping) 475 return; 476 477 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 478 if (!tk) 479 return; 480 if (PageAnon(page)) 481 collect_procs_anon(page, tokill, &tk); 482 else 483 collect_procs_file(page, tokill, &tk); 484 kfree(tk); 485 } 486 487 /* 488 * Error handlers for various types of pages. 489 */ 490 491 enum outcome { 492 IGNORED, /* Error: cannot be handled */ 493 FAILED, /* Error: handling failed */ 494 DELAYED, /* Will be handled later */ 495 RECOVERED, /* Successfully recovered */ 496 }; 497 498 static const char *action_name[] = { 499 [IGNORED] = "Ignored", 500 [FAILED] = "Failed", 501 [DELAYED] = "Delayed", 502 [RECOVERED] = "Recovered", 503 }; 504 505 /* 506 * XXX: It is possible that a page is isolated from LRU cache, 507 * and then kept in swap cache or failed to remove from page cache. 508 * The page count will stop it from being freed by unpoison. 509 * Stress tests should be aware of this memory leak problem. 510 */ 511 static int delete_from_lru_cache(struct page *p) 512 { 513 if (!isolate_lru_page(p)) { 514 /* 515 * Clear sensible page flags, so that the buddy system won't 516 * complain when the page is unpoison-and-freed. 517 */ 518 ClearPageActive(p); 519 ClearPageUnevictable(p); 520 /* 521 * drop the page count elevated by isolate_lru_page() 522 */ 523 page_cache_release(p); 524 return 0; 525 } 526 return -EIO; 527 } 528 529 /* 530 * Error hit kernel page. 531 * Do nothing, try to be lucky and not touch this instead. For a few cases we 532 * could be more sophisticated. 533 */ 534 static int me_kernel(struct page *p, unsigned long pfn) 535 { 536 return IGNORED; 537 } 538 539 /* 540 * Page in unknown state. Do nothing. 541 */ 542 static int me_unknown(struct page *p, unsigned long pfn) 543 { 544 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 545 return FAILED; 546 } 547 548 /* 549 * Clean (or cleaned) page cache page. 550 */ 551 static int me_pagecache_clean(struct page *p, unsigned long pfn) 552 { 553 int err; 554 int ret = FAILED; 555 struct address_space *mapping; 556 557 delete_from_lru_cache(p); 558 559 /* 560 * For anonymous pages we're done the only reference left 561 * should be the one m_f() holds. 562 */ 563 if (PageAnon(p)) 564 return RECOVERED; 565 566 /* 567 * Now truncate the page in the page cache. This is really 568 * more like a "temporary hole punch" 569 * Don't do this for block devices when someone else 570 * has a reference, because it could be file system metadata 571 * and that's not safe to truncate. 572 */ 573 mapping = page_mapping(p); 574 if (!mapping) { 575 /* 576 * Page has been teared down in the meanwhile 577 */ 578 return FAILED; 579 } 580 581 /* 582 * Truncation is a bit tricky. Enable it per file system for now. 583 * 584 * Open: to take i_mutex or not for this? Right now we don't. 585 */ 586 if (mapping->a_ops->error_remove_page) { 587 err = mapping->a_ops->error_remove_page(mapping, p); 588 if (err != 0) { 589 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 590 pfn, err); 591 } else if (page_has_private(p) && 592 !try_to_release_page(p, GFP_NOIO)) { 593 pr_info("MCE %#lx: failed to release buffers\n", pfn); 594 } else { 595 ret = RECOVERED; 596 } 597 } else { 598 /* 599 * If the file system doesn't support it just invalidate 600 * This fails on dirty or anything with private pages 601 */ 602 if (invalidate_inode_page(p)) 603 ret = RECOVERED; 604 else 605 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 606 pfn); 607 } 608 return ret; 609 } 610 611 /* 612 * Dirty cache page page 613 * Issues: when the error hit a hole page the error is not properly 614 * propagated. 615 */ 616 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 617 { 618 struct address_space *mapping = page_mapping(p); 619 620 SetPageError(p); 621 /* TBD: print more information about the file. */ 622 if (mapping) { 623 /* 624 * IO error will be reported by write(), fsync(), etc. 625 * who check the mapping. 626 * This way the application knows that something went 627 * wrong with its dirty file data. 628 * 629 * There's one open issue: 630 * 631 * The EIO will be only reported on the next IO 632 * operation and then cleared through the IO map. 633 * Normally Linux has two mechanisms to pass IO error 634 * first through the AS_EIO flag in the address space 635 * and then through the PageError flag in the page. 636 * Since we drop pages on memory failure handling the 637 * only mechanism open to use is through AS_AIO. 638 * 639 * This has the disadvantage that it gets cleared on 640 * the first operation that returns an error, while 641 * the PageError bit is more sticky and only cleared 642 * when the page is reread or dropped. If an 643 * application assumes it will always get error on 644 * fsync, but does other operations on the fd before 645 * and the page is dropped between then the error 646 * will not be properly reported. 647 * 648 * This can already happen even without hwpoisoned 649 * pages: first on metadata IO errors (which only 650 * report through AS_EIO) or when the page is dropped 651 * at the wrong time. 652 * 653 * So right now we assume that the application DTRT on 654 * the first EIO, but we're not worse than other parts 655 * of the kernel. 656 */ 657 mapping_set_error(mapping, EIO); 658 } 659 660 return me_pagecache_clean(p, pfn); 661 } 662 663 /* 664 * Clean and dirty swap cache. 665 * 666 * Dirty swap cache page is tricky to handle. The page could live both in page 667 * cache and swap cache(ie. page is freshly swapped in). So it could be 668 * referenced concurrently by 2 types of PTEs: 669 * normal PTEs and swap PTEs. We try to handle them consistently by calling 670 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 671 * and then 672 * - clear dirty bit to prevent IO 673 * - remove from LRU 674 * - but keep in the swap cache, so that when we return to it on 675 * a later page fault, we know the application is accessing 676 * corrupted data and shall be killed (we installed simple 677 * interception code in do_swap_page to catch it). 678 * 679 * Clean swap cache pages can be directly isolated. A later page fault will 680 * bring in the known good data from disk. 681 */ 682 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 683 { 684 ClearPageDirty(p); 685 /* Trigger EIO in shmem: */ 686 ClearPageUptodate(p); 687 688 if (!delete_from_lru_cache(p)) 689 return DELAYED; 690 else 691 return FAILED; 692 } 693 694 static int me_swapcache_clean(struct page *p, unsigned long pfn) 695 { 696 delete_from_swap_cache(p); 697 698 if (!delete_from_lru_cache(p)) 699 return RECOVERED; 700 else 701 return FAILED; 702 } 703 704 /* 705 * Huge pages. Needs work. 706 * Issues: 707 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 708 * To narrow down kill region to one page, we need to break up pmd. 709 */ 710 static int me_huge_page(struct page *p, unsigned long pfn) 711 { 712 int res = 0; 713 struct page *hpage = compound_head(p); 714 /* 715 * We can safely recover from error on free or reserved (i.e. 716 * not in-use) hugepage by dequeuing it from freelist. 717 * To check whether a hugepage is in-use or not, we can't use 718 * page->lru because it can be used in other hugepage operations, 719 * such as __unmap_hugepage_range() and gather_surplus_pages(). 720 * So instead we use page_mapping() and PageAnon(). 721 * We assume that this function is called with page lock held, 722 * so there is no race between isolation and mapping/unmapping. 723 */ 724 if (!(page_mapping(hpage) || PageAnon(hpage))) { 725 res = dequeue_hwpoisoned_huge_page(hpage); 726 if (!res) 727 return RECOVERED; 728 } 729 return DELAYED; 730 } 731 732 /* 733 * Various page states we can handle. 734 * 735 * A page state is defined by its current page->flags bits. 736 * The table matches them in order and calls the right handler. 737 * 738 * This is quite tricky because we can access page at any time 739 * in its live cycle, so all accesses have to be extremely careful. 740 * 741 * This is not complete. More states could be added. 742 * For any missing state don't attempt recovery. 743 */ 744 745 #define dirty (1UL << PG_dirty) 746 #define sc (1UL << PG_swapcache) 747 #define unevict (1UL << PG_unevictable) 748 #define mlock (1UL << PG_mlocked) 749 #define writeback (1UL << PG_writeback) 750 #define lru (1UL << PG_lru) 751 #define swapbacked (1UL << PG_swapbacked) 752 #define head (1UL << PG_head) 753 #define tail (1UL << PG_tail) 754 #define compound (1UL << PG_compound) 755 #define slab (1UL << PG_slab) 756 #define reserved (1UL << PG_reserved) 757 758 static struct page_state { 759 unsigned long mask; 760 unsigned long res; 761 char *msg; 762 int (*action)(struct page *p, unsigned long pfn); 763 } error_states[] = { 764 { reserved, reserved, "reserved kernel", me_kernel }, 765 /* 766 * free pages are specially detected outside this table: 767 * PG_buddy pages only make a small fraction of all free pages. 768 */ 769 770 /* 771 * Could in theory check if slab page is free or if we can drop 772 * currently unused objects without touching them. But just 773 * treat it as standard kernel for now. 774 */ 775 { slab, slab, "kernel slab", me_kernel }, 776 777 #ifdef CONFIG_PAGEFLAGS_EXTENDED 778 { head, head, "huge", me_huge_page }, 779 { tail, tail, "huge", me_huge_page }, 780 #else 781 { compound, compound, "huge", me_huge_page }, 782 #endif 783 784 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 785 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 786 787 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 788 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean }, 789 790 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 791 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean }, 792 793 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 794 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 795 796 /* 797 * Catchall entry: must be at end. 798 */ 799 { 0, 0, "unknown page state", me_unknown }, 800 }; 801 802 #undef dirty 803 #undef sc 804 #undef unevict 805 #undef mlock 806 #undef writeback 807 #undef lru 808 #undef swapbacked 809 #undef head 810 #undef tail 811 #undef compound 812 #undef slab 813 #undef reserved 814 815 /* 816 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 817 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 818 */ 819 static void action_result(unsigned long pfn, char *msg, int result) 820 { 821 pr_err("MCE %#lx: %s page recovery: %s\n", 822 pfn, msg, action_name[result]); 823 } 824 825 static int page_action(struct page_state *ps, struct page *p, 826 unsigned long pfn) 827 { 828 int result; 829 int count; 830 831 result = ps->action(p, pfn); 832 action_result(pfn, ps->msg, result); 833 834 count = page_count(p) - 1; 835 if (ps->action == me_swapcache_dirty && result == DELAYED) 836 count--; 837 if (count != 0) { 838 printk(KERN_ERR 839 "MCE %#lx: %s page still referenced by %d users\n", 840 pfn, ps->msg, count); 841 result = FAILED; 842 } 843 844 /* Could do more checks here if page looks ok */ 845 /* 846 * Could adjust zone counters here to correct for the missing page. 847 */ 848 849 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 850 } 851 852 /* 853 * Do all that is necessary to remove user space mappings. Unmap 854 * the pages and send SIGBUS to the processes if the data was dirty. 855 */ 856 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 857 int trapno, int flags) 858 { 859 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 860 struct address_space *mapping; 861 LIST_HEAD(tokill); 862 int ret; 863 int kill = 1, forcekill; 864 struct page *hpage = compound_head(p); 865 struct page *ppage; 866 867 if (PageReserved(p) || PageSlab(p)) 868 return SWAP_SUCCESS; 869 870 /* 871 * This check implies we don't kill processes if their pages 872 * are in the swap cache early. Those are always late kills. 873 */ 874 if (!page_mapped(hpage)) 875 return SWAP_SUCCESS; 876 877 if (PageKsm(p)) 878 return SWAP_FAIL; 879 880 if (PageSwapCache(p)) { 881 printk(KERN_ERR 882 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 883 ttu |= TTU_IGNORE_HWPOISON; 884 } 885 886 /* 887 * Propagate the dirty bit from PTEs to struct page first, because we 888 * need this to decide if we should kill or just drop the page. 889 * XXX: the dirty test could be racy: set_page_dirty() may not always 890 * be called inside page lock (it's recommended but not enforced). 891 */ 892 mapping = page_mapping(hpage); 893 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 894 mapping_cap_writeback_dirty(mapping)) { 895 if (page_mkclean(hpage)) { 896 SetPageDirty(hpage); 897 } else { 898 kill = 0; 899 ttu |= TTU_IGNORE_HWPOISON; 900 printk(KERN_INFO 901 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 902 pfn); 903 } 904 } 905 906 /* 907 * ppage: poisoned page 908 * if p is regular page(4k page) 909 * ppage == real poisoned page; 910 * else p is hugetlb or THP, ppage == head page. 911 */ 912 ppage = hpage; 913 914 if (PageTransHuge(hpage)) { 915 /* 916 * Verify that this isn't a hugetlbfs head page, the check for 917 * PageAnon is just for avoid tripping a split_huge_page 918 * internal debug check, as split_huge_page refuses to deal with 919 * anything that isn't an anon page. PageAnon can't go away fro 920 * under us because we hold a refcount on the hpage, without a 921 * refcount on the hpage. split_huge_page can't be safely called 922 * in the first place, having a refcount on the tail isn't 923 * enough * to be safe. 924 */ 925 if (!PageHuge(hpage) && PageAnon(hpage)) { 926 if (unlikely(split_huge_page(hpage))) { 927 /* 928 * FIXME: if splitting THP is failed, it is 929 * better to stop the following operation rather 930 * than causing panic by unmapping. System might 931 * survive if the page is freed later. 932 */ 933 printk(KERN_INFO 934 "MCE %#lx: failed to split THP\n", pfn); 935 936 BUG_ON(!PageHWPoison(p)); 937 return SWAP_FAIL; 938 } 939 /* THP is split, so ppage should be the real poisoned page. */ 940 ppage = p; 941 } 942 } 943 944 /* 945 * First collect all the processes that have the page 946 * mapped in dirty form. This has to be done before try_to_unmap, 947 * because ttu takes the rmap data structures down. 948 * 949 * Error handling: We ignore errors here because 950 * there's nothing that can be done. 951 */ 952 if (kill) 953 collect_procs(ppage, &tokill); 954 955 if (hpage != ppage) 956 lock_page(ppage); 957 958 ret = try_to_unmap(ppage, ttu); 959 if (ret != SWAP_SUCCESS) 960 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 961 pfn, page_mapcount(ppage)); 962 963 if (hpage != ppage) 964 unlock_page(ppage); 965 966 /* 967 * Now that the dirty bit has been propagated to the 968 * struct page and all unmaps done we can decide if 969 * killing is needed or not. Only kill when the page 970 * was dirty or the process is not restartable, 971 * otherwise the tokill list is merely 972 * freed. When there was a problem unmapping earlier 973 * use a more force-full uncatchable kill to prevent 974 * any accesses to the poisoned memory. 975 */ 976 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 977 kill_procs(&tokill, forcekill, trapno, 978 ret != SWAP_SUCCESS, p, pfn, flags); 979 980 return ret; 981 } 982 983 static void set_page_hwpoison_huge_page(struct page *hpage) 984 { 985 int i; 986 int nr_pages = 1 << compound_trans_order(hpage); 987 for (i = 0; i < nr_pages; i++) 988 SetPageHWPoison(hpage + i); 989 } 990 991 static void clear_page_hwpoison_huge_page(struct page *hpage) 992 { 993 int i; 994 int nr_pages = 1 << compound_trans_order(hpage); 995 for (i = 0; i < nr_pages; i++) 996 ClearPageHWPoison(hpage + i); 997 } 998 999 /** 1000 * memory_failure - Handle memory failure of a page. 1001 * @pfn: Page Number of the corrupted page 1002 * @trapno: Trap number reported in the signal to user space. 1003 * @flags: fine tune action taken 1004 * 1005 * This function is called by the low level machine check code 1006 * of an architecture when it detects hardware memory corruption 1007 * of a page. It tries its best to recover, which includes 1008 * dropping pages, killing processes etc. 1009 * 1010 * The function is primarily of use for corruptions that 1011 * happen outside the current execution context (e.g. when 1012 * detected by a background scrubber) 1013 * 1014 * Must run in process context (e.g. a work queue) with interrupts 1015 * enabled and no spinlocks hold. 1016 */ 1017 int memory_failure(unsigned long pfn, int trapno, int flags) 1018 { 1019 struct page_state *ps; 1020 struct page *p; 1021 struct page *hpage; 1022 int res; 1023 unsigned int nr_pages; 1024 unsigned long page_flags; 1025 1026 if (!sysctl_memory_failure_recovery) 1027 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1028 1029 if (!pfn_valid(pfn)) { 1030 printk(KERN_ERR 1031 "MCE %#lx: memory outside kernel control\n", 1032 pfn); 1033 return -ENXIO; 1034 } 1035 1036 p = pfn_to_page(pfn); 1037 hpage = compound_head(p); 1038 if (TestSetPageHWPoison(p)) { 1039 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1040 return 0; 1041 } 1042 1043 /* 1044 * Currently errors on hugetlbfs pages are measured in hugepage units, 1045 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1046 * transparent hugepages, they are supposed to be split and error 1047 * measurement is done in normal page units. So nr_pages should be one 1048 * in this case. 1049 */ 1050 if (PageHuge(p)) 1051 nr_pages = 1 << compound_order(hpage); 1052 else /* normal page or thp */ 1053 nr_pages = 1; 1054 atomic_long_add(nr_pages, &num_poisoned_pages); 1055 1056 /* 1057 * We need/can do nothing about count=0 pages. 1058 * 1) it's a free page, and therefore in safe hand: 1059 * prep_new_page() will be the gate keeper. 1060 * 2) it's a free hugepage, which is also safe: 1061 * an affected hugepage will be dequeued from hugepage freelist, 1062 * so there's no concern about reusing it ever after. 1063 * 3) it's part of a non-compound high order page. 1064 * Implies some kernel user: cannot stop them from 1065 * R/W the page; let's pray that the page has been 1066 * used and will be freed some time later. 1067 * In fact it's dangerous to directly bump up page count from 0, 1068 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1069 */ 1070 if (!(flags & MF_COUNT_INCREASED) && 1071 !get_page_unless_zero(hpage)) { 1072 if (is_free_buddy_page(p)) { 1073 action_result(pfn, "free buddy", DELAYED); 1074 return 0; 1075 } else if (PageHuge(hpage)) { 1076 /* 1077 * Check "just unpoisoned", "filter hit", and 1078 * "race with other subpage." 1079 */ 1080 lock_page(hpage); 1081 if (!PageHWPoison(hpage) 1082 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1083 || (p != hpage && TestSetPageHWPoison(hpage))) { 1084 atomic_long_sub(nr_pages, &num_poisoned_pages); 1085 return 0; 1086 } 1087 set_page_hwpoison_huge_page(hpage); 1088 res = dequeue_hwpoisoned_huge_page(hpage); 1089 action_result(pfn, "free huge", 1090 res ? IGNORED : DELAYED); 1091 unlock_page(hpage); 1092 return res; 1093 } else { 1094 action_result(pfn, "high order kernel", IGNORED); 1095 return -EBUSY; 1096 } 1097 } 1098 1099 /* 1100 * We ignore non-LRU pages for good reasons. 1101 * - PG_locked is only well defined for LRU pages and a few others 1102 * - to avoid races with __set_page_locked() 1103 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1104 * The check (unnecessarily) ignores LRU pages being isolated and 1105 * walked by the page reclaim code, however that's not a big loss. 1106 */ 1107 if (!PageHuge(p) && !PageTransTail(p)) { 1108 if (!PageLRU(p)) 1109 shake_page(p, 0); 1110 if (!PageLRU(p)) { 1111 /* 1112 * shake_page could have turned it free. 1113 */ 1114 if (is_free_buddy_page(p)) { 1115 action_result(pfn, "free buddy, 2nd try", 1116 DELAYED); 1117 return 0; 1118 } 1119 action_result(pfn, "non LRU", IGNORED); 1120 put_page(p); 1121 return -EBUSY; 1122 } 1123 } 1124 1125 /* 1126 * Lock the page and wait for writeback to finish. 1127 * It's very difficult to mess with pages currently under IO 1128 * and in many cases impossible, so we just avoid it here. 1129 */ 1130 lock_page(hpage); 1131 1132 /* 1133 * We use page flags to determine what action should be taken, but 1134 * the flags can be modified by the error containment action. One 1135 * example is an mlocked page, where PG_mlocked is cleared by 1136 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1137 * correctly, we save a copy of the page flags at this time. 1138 */ 1139 page_flags = p->flags; 1140 1141 /* 1142 * unpoison always clear PG_hwpoison inside page lock 1143 */ 1144 if (!PageHWPoison(p)) { 1145 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1146 res = 0; 1147 goto out; 1148 } 1149 if (hwpoison_filter(p)) { 1150 if (TestClearPageHWPoison(p)) 1151 atomic_long_sub(nr_pages, &num_poisoned_pages); 1152 unlock_page(hpage); 1153 put_page(hpage); 1154 return 0; 1155 } 1156 1157 /* 1158 * For error on the tail page, we should set PG_hwpoison 1159 * on the head page to show that the hugepage is hwpoisoned 1160 */ 1161 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1162 action_result(pfn, "hugepage already hardware poisoned", 1163 IGNORED); 1164 unlock_page(hpage); 1165 put_page(hpage); 1166 return 0; 1167 } 1168 /* 1169 * Set PG_hwpoison on all pages in an error hugepage, 1170 * because containment is done in hugepage unit for now. 1171 * Since we have done TestSetPageHWPoison() for the head page with 1172 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1173 */ 1174 if (PageHuge(p)) 1175 set_page_hwpoison_huge_page(hpage); 1176 1177 wait_on_page_writeback(p); 1178 1179 /* 1180 * Now take care of user space mappings. 1181 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1182 */ 1183 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) { 1184 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1185 res = -EBUSY; 1186 goto out; 1187 } 1188 1189 /* 1190 * Torn down by someone else? 1191 */ 1192 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1193 action_result(pfn, "already truncated LRU", IGNORED); 1194 res = -EBUSY; 1195 goto out; 1196 } 1197 1198 res = -EBUSY; 1199 /* 1200 * The first check uses the current page flags which may not have any 1201 * relevant information. The second check with the saved page flagss is 1202 * carried out only if the first check can't determine the page status. 1203 */ 1204 for (ps = error_states;; ps++) 1205 if ((p->flags & ps->mask) == ps->res) 1206 break; 1207 if (!ps->mask) 1208 for (ps = error_states;; ps++) 1209 if ((page_flags & ps->mask) == ps->res) 1210 break; 1211 res = page_action(ps, p, pfn); 1212 out: 1213 unlock_page(hpage); 1214 return res; 1215 } 1216 EXPORT_SYMBOL_GPL(memory_failure); 1217 1218 #define MEMORY_FAILURE_FIFO_ORDER 4 1219 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1220 1221 struct memory_failure_entry { 1222 unsigned long pfn; 1223 int trapno; 1224 int flags; 1225 }; 1226 1227 struct memory_failure_cpu { 1228 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1229 MEMORY_FAILURE_FIFO_SIZE); 1230 spinlock_t lock; 1231 struct work_struct work; 1232 }; 1233 1234 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1235 1236 /** 1237 * memory_failure_queue - Schedule handling memory failure of a page. 1238 * @pfn: Page Number of the corrupted page 1239 * @trapno: Trap number reported in the signal to user space. 1240 * @flags: Flags for memory failure handling 1241 * 1242 * This function is called by the low level hardware error handler 1243 * when it detects hardware memory corruption of a page. It schedules 1244 * the recovering of error page, including dropping pages, killing 1245 * processes etc. 1246 * 1247 * The function is primarily of use for corruptions that 1248 * happen outside the current execution context (e.g. when 1249 * detected by a background scrubber) 1250 * 1251 * Can run in IRQ context. 1252 */ 1253 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1254 { 1255 struct memory_failure_cpu *mf_cpu; 1256 unsigned long proc_flags; 1257 struct memory_failure_entry entry = { 1258 .pfn = pfn, 1259 .trapno = trapno, 1260 .flags = flags, 1261 }; 1262 1263 mf_cpu = &get_cpu_var(memory_failure_cpu); 1264 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1265 if (kfifo_put(&mf_cpu->fifo, &entry)) 1266 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1267 else 1268 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n", 1269 pfn); 1270 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1271 put_cpu_var(memory_failure_cpu); 1272 } 1273 EXPORT_SYMBOL_GPL(memory_failure_queue); 1274 1275 static void memory_failure_work_func(struct work_struct *work) 1276 { 1277 struct memory_failure_cpu *mf_cpu; 1278 struct memory_failure_entry entry = { 0, }; 1279 unsigned long proc_flags; 1280 int gotten; 1281 1282 mf_cpu = &__get_cpu_var(memory_failure_cpu); 1283 for (;;) { 1284 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1285 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1286 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1287 if (!gotten) 1288 break; 1289 memory_failure(entry.pfn, entry.trapno, entry.flags); 1290 } 1291 } 1292 1293 static int __init memory_failure_init(void) 1294 { 1295 struct memory_failure_cpu *mf_cpu; 1296 int cpu; 1297 1298 for_each_possible_cpu(cpu) { 1299 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1300 spin_lock_init(&mf_cpu->lock); 1301 INIT_KFIFO(mf_cpu->fifo); 1302 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1303 } 1304 1305 return 0; 1306 } 1307 core_initcall(memory_failure_init); 1308 1309 /** 1310 * unpoison_memory - Unpoison a previously poisoned page 1311 * @pfn: Page number of the to be unpoisoned page 1312 * 1313 * Software-unpoison a page that has been poisoned by 1314 * memory_failure() earlier. 1315 * 1316 * This is only done on the software-level, so it only works 1317 * for linux injected failures, not real hardware failures 1318 * 1319 * Returns 0 for success, otherwise -errno. 1320 */ 1321 int unpoison_memory(unsigned long pfn) 1322 { 1323 struct page *page; 1324 struct page *p; 1325 int freeit = 0; 1326 unsigned int nr_pages; 1327 1328 if (!pfn_valid(pfn)) 1329 return -ENXIO; 1330 1331 p = pfn_to_page(pfn); 1332 page = compound_head(p); 1333 1334 if (!PageHWPoison(p)) { 1335 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1336 return 0; 1337 } 1338 1339 nr_pages = 1 << compound_trans_order(page); 1340 1341 if (!get_page_unless_zero(page)) { 1342 /* 1343 * Since HWPoisoned hugepage should have non-zero refcount, 1344 * race between memory failure and unpoison seems to happen. 1345 * In such case unpoison fails and memory failure runs 1346 * to the end. 1347 */ 1348 if (PageHuge(page)) { 1349 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1350 return 0; 1351 } 1352 if (TestClearPageHWPoison(p)) 1353 atomic_long_sub(nr_pages, &num_poisoned_pages); 1354 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1355 return 0; 1356 } 1357 1358 lock_page(page); 1359 /* 1360 * This test is racy because PG_hwpoison is set outside of page lock. 1361 * That's acceptable because that won't trigger kernel panic. Instead, 1362 * the PG_hwpoison page will be caught and isolated on the entrance to 1363 * the free buddy page pool. 1364 */ 1365 if (TestClearPageHWPoison(page)) { 1366 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1367 atomic_long_sub(nr_pages, &num_poisoned_pages); 1368 freeit = 1; 1369 if (PageHuge(page)) 1370 clear_page_hwpoison_huge_page(page); 1371 } 1372 unlock_page(page); 1373 1374 put_page(page); 1375 if (freeit) 1376 put_page(page); 1377 1378 return 0; 1379 } 1380 EXPORT_SYMBOL(unpoison_memory); 1381 1382 static struct page *new_page(struct page *p, unsigned long private, int **x) 1383 { 1384 int nid = page_to_nid(p); 1385 if (PageHuge(p)) 1386 return alloc_huge_page_node(page_hstate(compound_head(p)), 1387 nid); 1388 else 1389 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1390 } 1391 1392 /* 1393 * Safely get reference count of an arbitrary page. 1394 * Returns 0 for a free page, -EIO for a zero refcount page 1395 * that is not free, and 1 for any other page type. 1396 * For 1 the page is returned with increased page count, otherwise not. 1397 */ 1398 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1399 { 1400 int ret; 1401 1402 if (flags & MF_COUNT_INCREASED) 1403 return 1; 1404 1405 /* 1406 * The lock_memory_hotplug prevents a race with memory hotplug. 1407 * This is a big hammer, a better would be nicer. 1408 */ 1409 lock_memory_hotplug(); 1410 1411 /* 1412 * Isolate the page, so that it doesn't get reallocated if it 1413 * was free. This flag should be kept set until the source page 1414 * is freed and PG_hwpoison on it is set. 1415 */ 1416 set_migratetype_isolate(p, true); 1417 /* 1418 * When the target page is a free hugepage, just remove it 1419 * from free hugepage list. 1420 */ 1421 if (!get_page_unless_zero(compound_head(p))) { 1422 if (PageHuge(p)) { 1423 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1424 ret = 0; 1425 } else if (is_free_buddy_page(p)) { 1426 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1427 ret = 0; 1428 } else { 1429 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1430 __func__, pfn, p->flags); 1431 ret = -EIO; 1432 } 1433 } else { 1434 /* Not a free page */ 1435 ret = 1; 1436 } 1437 unlock_memory_hotplug(); 1438 return ret; 1439 } 1440 1441 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1442 { 1443 int ret = __get_any_page(page, pfn, flags); 1444 1445 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1446 /* 1447 * Try to free it. 1448 */ 1449 put_page(page); 1450 shake_page(page, 1); 1451 1452 /* 1453 * Did it turn free? 1454 */ 1455 ret = __get_any_page(page, pfn, 0); 1456 if (!PageLRU(page)) { 1457 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1458 pfn, page->flags); 1459 return -EIO; 1460 } 1461 } 1462 return ret; 1463 } 1464 1465 static int soft_offline_huge_page(struct page *page, int flags) 1466 { 1467 int ret; 1468 unsigned long pfn = page_to_pfn(page); 1469 struct page *hpage = compound_head(page); 1470 1471 /* 1472 * This double-check of PageHWPoison is to avoid the race with 1473 * memory_failure(). See also comment in __soft_offline_page(). 1474 */ 1475 lock_page(hpage); 1476 if (PageHWPoison(hpage)) { 1477 unlock_page(hpage); 1478 put_page(hpage); 1479 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1480 return -EBUSY; 1481 } 1482 unlock_page(hpage); 1483 1484 /* Keep page count to indicate a given hugepage is isolated. */ 1485 ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, 1486 MIGRATE_SYNC); 1487 put_page(hpage); 1488 if (ret) { 1489 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1490 pfn, ret, page->flags); 1491 } else { 1492 set_page_hwpoison_huge_page(hpage); 1493 dequeue_hwpoisoned_huge_page(hpage); 1494 atomic_long_add(1 << compound_trans_order(hpage), 1495 &num_poisoned_pages); 1496 } 1497 return ret; 1498 } 1499 1500 static int __soft_offline_page(struct page *page, int flags); 1501 1502 /** 1503 * soft_offline_page - Soft offline a page. 1504 * @page: page to offline 1505 * @flags: flags. Same as memory_failure(). 1506 * 1507 * Returns 0 on success, otherwise negated errno. 1508 * 1509 * Soft offline a page, by migration or invalidation, 1510 * without killing anything. This is for the case when 1511 * a page is not corrupted yet (so it's still valid to access), 1512 * but has had a number of corrected errors and is better taken 1513 * out. 1514 * 1515 * The actual policy on when to do that is maintained by 1516 * user space. 1517 * 1518 * This should never impact any application or cause data loss, 1519 * however it might take some time. 1520 * 1521 * This is not a 100% solution for all memory, but tries to be 1522 * ``good enough'' for the majority of memory. 1523 */ 1524 int soft_offline_page(struct page *page, int flags) 1525 { 1526 int ret; 1527 unsigned long pfn = page_to_pfn(page); 1528 struct page *hpage = compound_trans_head(page); 1529 1530 if (PageHWPoison(page)) { 1531 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1532 return -EBUSY; 1533 } 1534 if (!PageHuge(page) && PageTransHuge(hpage)) { 1535 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1536 pr_info("soft offline: %#lx: failed to split THP\n", 1537 pfn); 1538 return -EBUSY; 1539 } 1540 } 1541 1542 ret = get_any_page(page, pfn, flags); 1543 if (ret < 0) 1544 return ret; 1545 if (ret) { /* for in-use pages */ 1546 if (PageHuge(page)) 1547 ret = soft_offline_huge_page(page, flags); 1548 else 1549 ret = __soft_offline_page(page, flags); 1550 } else { /* for free pages */ 1551 if (PageHuge(page)) { 1552 set_page_hwpoison_huge_page(hpage); 1553 dequeue_hwpoisoned_huge_page(hpage); 1554 atomic_long_add(1 << compound_trans_order(hpage), 1555 &num_poisoned_pages); 1556 } else { 1557 SetPageHWPoison(page); 1558 atomic_long_inc(&num_poisoned_pages); 1559 } 1560 } 1561 unset_migratetype_isolate(page, MIGRATE_MOVABLE); 1562 return ret; 1563 } 1564 1565 static int __soft_offline_page(struct page *page, int flags) 1566 { 1567 int ret; 1568 unsigned long pfn = page_to_pfn(page); 1569 1570 /* 1571 * Check PageHWPoison again inside page lock because PageHWPoison 1572 * is set by memory_failure() outside page lock. Note that 1573 * memory_failure() also double-checks PageHWPoison inside page lock, 1574 * so there's no race between soft_offline_page() and memory_failure(). 1575 */ 1576 lock_page(page); 1577 wait_on_page_writeback(page); 1578 if (PageHWPoison(page)) { 1579 unlock_page(page); 1580 put_page(page); 1581 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1582 return -EBUSY; 1583 } 1584 /* 1585 * Try to invalidate first. This should work for 1586 * non dirty unmapped page cache pages. 1587 */ 1588 ret = invalidate_inode_page(page); 1589 unlock_page(page); 1590 /* 1591 * RED-PEN would be better to keep it isolated here, but we 1592 * would need to fix isolation locking first. 1593 */ 1594 if (ret == 1) { 1595 put_page(page); 1596 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1597 SetPageHWPoison(page); 1598 atomic_long_inc(&num_poisoned_pages); 1599 return 0; 1600 } 1601 1602 /* 1603 * Simple invalidation didn't work. 1604 * Try to migrate to a new page instead. migrate.c 1605 * handles a large number of cases for us. 1606 */ 1607 ret = isolate_lru_page(page); 1608 /* 1609 * Drop page reference which is came from get_any_page() 1610 * successful isolate_lru_page() already took another one. 1611 */ 1612 put_page(page); 1613 if (!ret) { 1614 LIST_HEAD(pagelist); 1615 inc_zone_page_state(page, NR_ISOLATED_ANON + 1616 page_is_file_cache(page)); 1617 list_add(&page->lru, &pagelist); 1618 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1619 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1620 if (ret) { 1621 putback_lru_pages(&pagelist); 1622 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1623 pfn, ret, page->flags); 1624 if (ret > 0) 1625 ret = -EIO; 1626 } else { 1627 /* 1628 * After page migration succeeds, the source page can 1629 * be trapped in pagevec and actual freeing is delayed. 1630 * Freeing code works differently based on PG_hwpoison, 1631 * so there's a race. We need to make sure that the 1632 * source page should be freed back to buddy before 1633 * setting PG_hwpoison. 1634 */ 1635 if (!is_free_buddy_page(page)) 1636 lru_add_drain_all(); 1637 if (!is_free_buddy_page(page)) 1638 drain_all_pages(); 1639 SetPageHWPoison(page); 1640 if (!is_free_buddy_page(page)) 1641 pr_info("soft offline: %#lx: page leaked\n", 1642 pfn); 1643 atomic_long_inc(&num_poisoned_pages); 1644 } 1645 } else { 1646 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1647 pfn, ret, page_count(page), page->flags); 1648 } 1649 return ret; 1650 } 1651