xref: /openbmc/linux/mm/memory-failure.c (revision 7b3a3558)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 	{ }
145 };
146 
147 /*
148  * Return values:
149  *   1:   the page is dissolved (if needed) and taken off from buddy,
150  *   0:   the page is dissolved (if needed) and not taken off from buddy,
151  *   < 0: failed to dissolve.
152  */
153 static int __page_handle_poison(struct page *page)
154 {
155 	int ret;
156 
157 	/*
158 	 * zone_pcp_disable() can't be used here. It will
159 	 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161 	 * optimization is enabled. This will break current lock dependency
162 	 * chain and leads to deadlock.
163 	 * Disabling pcp before dissolving the page was a deterministic
164 	 * approach because we made sure that those pages cannot end up in any
165 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
166 	 * but nothing guarantees that those pages do not get back to a PCP
167 	 * queue if we need to refill those.
168 	 */
169 	ret = dissolve_free_huge_page(page);
170 	if (!ret) {
171 		drain_all_pages(page_zone(page));
172 		ret = take_page_off_buddy(page);
173 	}
174 
175 	return ret;
176 }
177 
178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 {
180 	if (hugepage_or_freepage) {
181 		/*
182 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
183 		 * returns 0 for non-hugetlb pages as well.
184 		 */
185 		if (__page_handle_poison(page) <= 0)
186 			/*
187 			 * We could fail to take off the target page from buddy
188 			 * for example due to racy page allocation, but that's
189 			 * acceptable because soft-offlined page is not broken
190 			 * and if someone really want to use it, they should
191 			 * take it.
192 			 */
193 			return false;
194 	}
195 
196 	SetPageHWPoison(page);
197 	if (release)
198 		put_page(page);
199 	page_ref_inc(page);
200 	num_poisoned_pages_inc(page_to_pfn(page));
201 
202 	return true;
203 }
204 
205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206 
207 u32 hwpoison_filter_enable = 0;
208 u32 hwpoison_filter_dev_major = ~0U;
209 u32 hwpoison_filter_dev_minor = ~0U;
210 u64 hwpoison_filter_flags_mask;
211 u64 hwpoison_filter_flags_value;
212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217 
218 static int hwpoison_filter_dev(struct page *p)
219 {
220 	struct address_space *mapping;
221 	dev_t dev;
222 
223 	if (hwpoison_filter_dev_major == ~0U &&
224 	    hwpoison_filter_dev_minor == ~0U)
225 		return 0;
226 
227 	mapping = page_mapping(p);
228 	if (mapping == NULL || mapping->host == NULL)
229 		return -EINVAL;
230 
231 	dev = mapping->host->i_sb->s_dev;
232 	if (hwpoison_filter_dev_major != ~0U &&
233 	    hwpoison_filter_dev_major != MAJOR(dev))
234 		return -EINVAL;
235 	if (hwpoison_filter_dev_minor != ~0U &&
236 	    hwpoison_filter_dev_minor != MINOR(dev))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 static int hwpoison_filter_flags(struct page *p)
243 {
244 	if (!hwpoison_filter_flags_mask)
245 		return 0;
246 
247 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 				    hwpoison_filter_flags_value)
249 		return 0;
250 	else
251 		return -EINVAL;
252 }
253 
254 /*
255  * This allows stress tests to limit test scope to a collection of tasks
256  * by putting them under some memcg. This prevents killing unrelated/important
257  * processes such as /sbin/init. Note that the target task may share clean
258  * pages with init (eg. libc text), which is harmless. If the target task
259  * share _dirty_ pages with another task B, the test scheme must make sure B
260  * is also included in the memcg. At last, due to race conditions this filter
261  * can only guarantee that the page either belongs to the memcg tasks, or is
262  * a freed page.
263  */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267 static int hwpoison_filter_task(struct page *p)
268 {
269 	if (!hwpoison_filter_memcg)
270 		return 0;
271 
272 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 		return -EINVAL;
274 
275 	return 0;
276 }
277 #else
278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280 
281 int hwpoison_filter(struct page *p)
282 {
283 	if (!hwpoison_filter_enable)
284 		return 0;
285 
286 	if (hwpoison_filter_dev(p))
287 		return -EINVAL;
288 
289 	if (hwpoison_filter_flags(p))
290 		return -EINVAL;
291 
292 	if (hwpoison_filter_task(p))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 #else
298 int hwpoison_filter(struct page *p)
299 {
300 	return 0;
301 }
302 #endif
303 
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 
306 /*
307  * Kill all processes that have a poisoned page mapped and then isolate
308  * the page.
309  *
310  * General strategy:
311  * Find all processes having the page mapped and kill them.
312  * But we keep a page reference around so that the page is not
313  * actually freed yet.
314  * Then stash the page away
315  *
316  * There's no convenient way to get back to mapped processes
317  * from the VMAs. So do a brute-force search over all
318  * running processes.
319  *
320  * Remember that machine checks are not common (or rather
321  * if they are common you have other problems), so this shouldn't
322  * be a performance issue.
323  *
324  * Also there are some races possible while we get from the
325  * error detection to actually handle it.
326  */
327 
328 struct to_kill {
329 	struct list_head nd;
330 	struct task_struct *tsk;
331 	unsigned long addr;
332 	short size_shift;
333 };
334 
335 /*
336  * Send all the processes who have the page mapped a signal.
337  * ``action optional'' if they are not immediately affected by the error
338  * ``action required'' if error happened in current execution context
339  */
340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 	struct task_struct *t = tk->tsk;
343 	short addr_lsb = tk->size_shift;
344 	int ret = 0;
345 
346 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 			pfn, t->comm, t->pid);
348 
349 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 		ret = force_sig_mceerr(BUS_MCEERR_AR,
351 				 (void __user *)tk->addr, addr_lsb);
352 	else
353 		/*
354 		 * Signal other processes sharing the page if they have
355 		 * PF_MCE_EARLY set.
356 		 * Don't use force here, it's convenient if the signal
357 		 * can be temporarily blocked.
358 		 * This could cause a loop when the user sets SIGBUS
359 		 * to SIG_IGN, but hopefully no one will do that?
360 		 */
361 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 				      addr_lsb, t);
363 	if (ret < 0)
364 		pr_info("Error sending signal to %s:%d: %d\n",
365 			t->comm, t->pid, ret);
366 	return ret;
367 }
368 
369 /*
370  * Unknown page type encountered. Try to check whether it can turn PageLRU by
371  * lru_add_drain_all.
372  */
373 void shake_page(struct page *p)
374 {
375 	if (PageHuge(p))
376 		return;
377 	/*
378 	 * TODO: Could shrink slab caches here if a lightweight range-based
379 	 * shrinker will be available.
380 	 */
381 	if (PageSlab(p))
382 		return;
383 
384 	lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_page);
387 
388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389 		unsigned long address)
390 {
391 	unsigned long ret = 0;
392 	pgd_t *pgd;
393 	p4d_t *p4d;
394 	pud_t *pud;
395 	pmd_t *pmd;
396 	pte_t *pte;
397 	pte_t ptent;
398 
399 	VM_BUG_ON_VMA(address == -EFAULT, vma);
400 	pgd = pgd_offset(vma->vm_mm, address);
401 	if (!pgd_present(*pgd))
402 		return 0;
403 	p4d = p4d_offset(pgd, address);
404 	if (!p4d_present(*p4d))
405 		return 0;
406 	pud = pud_offset(p4d, address);
407 	if (!pud_present(*pud))
408 		return 0;
409 	if (pud_devmap(*pud))
410 		return PUD_SHIFT;
411 	pmd = pmd_offset(pud, address);
412 	if (!pmd_present(*pmd))
413 		return 0;
414 	if (pmd_devmap(*pmd))
415 		return PMD_SHIFT;
416 	pte = pte_offset_map(pmd, address);
417 	if (!pte)
418 		return 0;
419 	ptent = ptep_get(pte);
420 	if (pte_present(ptent) && pte_devmap(ptent))
421 		ret = PAGE_SHIFT;
422 	pte_unmap(pte);
423 	return ret;
424 }
425 
426 /*
427  * Failure handling: if we can't find or can't kill a process there's
428  * not much we can do.	We just print a message and ignore otherwise.
429  */
430 
431 #define FSDAX_INVALID_PGOFF ULONG_MAX
432 
433 /*
434  * Schedule a process for later kill.
435  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436  *
437  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438  * filesystem with a memory failure handler has claimed the
439  * memory_failure event. In all other cases, page->index and
440  * page->mapping are sufficient for mapping the page back to its
441  * corresponding user virtual address.
442  */
443 static void __add_to_kill(struct task_struct *tsk, struct page *p,
444 			  struct vm_area_struct *vma, struct list_head *to_kill,
445 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 {
447 	struct to_kill *tk;
448 
449 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450 	if (!tk) {
451 		pr_err("Out of memory while machine check handling\n");
452 		return;
453 	}
454 
455 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456 	if (is_zone_device_page(p)) {
457 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460 	} else
461 		tk->size_shift = page_shift(compound_head(p));
462 
463 	/*
464 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466 	 * so "tk->size_shift == 0" effectively checks no mapping on
467 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468 	 * to a process' address space, it's possible not all N VMAs
469 	 * contain mappings for the page, but at least one VMA does.
470 	 * Only deliver SIGBUS with payload derived from the VMA that
471 	 * has a mapping for the page.
472 	 */
473 	if (tk->addr == -EFAULT) {
474 		pr_info("Unable to find user space address %lx in %s\n",
475 			page_to_pfn(p), tsk->comm);
476 	} else if (tk->size_shift == 0) {
477 		kfree(tk);
478 		return;
479 	}
480 
481 	get_task_struct(tsk);
482 	tk->tsk = tsk;
483 	list_add_tail(&tk->nd, to_kill);
484 }
485 
486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487 				  struct vm_area_struct *vma,
488 				  struct list_head *to_kill)
489 {
490 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 }
492 
493 #ifdef CONFIG_KSM
494 static bool task_in_to_kill_list(struct list_head *to_kill,
495 				 struct task_struct *tsk)
496 {
497 	struct to_kill *tk, *next;
498 
499 	list_for_each_entry_safe(tk, next, to_kill, nd) {
500 		if (tk->tsk == tsk)
501 			return true;
502 	}
503 
504 	return false;
505 }
506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507 		     struct vm_area_struct *vma, struct list_head *to_kill,
508 		     unsigned long ksm_addr)
509 {
510 	if (!task_in_to_kill_list(to_kill, tsk))
511 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 }
513 #endif
514 /*
515  * Kill the processes that have been collected earlier.
516  *
517  * Only do anything when FORCEKILL is set, otherwise just free the
518  * list (this is used for clean pages which do not need killing)
519  * Also when FAIL is set do a force kill because something went
520  * wrong earlier.
521  */
522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523 		unsigned long pfn, int flags)
524 {
525 	struct to_kill *tk, *next;
526 
527 	list_for_each_entry_safe(tk, next, to_kill, nd) {
528 		if (forcekill) {
529 			/*
530 			 * In case something went wrong with munmapping
531 			 * make sure the process doesn't catch the
532 			 * signal and then access the memory. Just kill it.
533 			 */
534 			if (fail || tk->addr == -EFAULT) {
535 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536 				       pfn, tk->tsk->comm, tk->tsk->pid);
537 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538 						 tk->tsk, PIDTYPE_PID);
539 			}
540 
541 			/*
542 			 * In theory the process could have mapped
543 			 * something else on the address in-between. We could
544 			 * check for that, but we need to tell the
545 			 * process anyways.
546 			 */
547 			else if (kill_proc(tk, pfn, flags) < 0)
548 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549 				       pfn, tk->tsk->comm, tk->tsk->pid);
550 		}
551 		list_del(&tk->nd);
552 		put_task_struct(tk->tsk);
553 		kfree(tk);
554 	}
555 }
556 
557 /*
558  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559  * on behalf of the thread group. Return task_struct of the (first found)
560  * dedicated thread if found, and return NULL otherwise.
561  *
562  * We already hold rcu lock in the caller, so we don't have to call
563  * rcu_read_lock/unlock() in this function.
564  */
565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 {
567 	struct task_struct *t;
568 
569 	for_each_thread(tsk, t) {
570 		if (t->flags & PF_MCE_PROCESS) {
571 			if (t->flags & PF_MCE_EARLY)
572 				return t;
573 		} else {
574 			if (sysctl_memory_failure_early_kill)
575 				return t;
576 		}
577 	}
578 	return NULL;
579 }
580 
581 /*
582  * Determine whether a given process is "early kill" process which expects
583  * to be signaled when some page under the process is hwpoisoned.
584  * Return task_struct of the dedicated thread (main thread unless explicitly
585  * specified) if the process is "early kill" and otherwise returns NULL.
586  *
587  * Note that the above is true for Action Optional case. For Action Required
588  * case, it's only meaningful to the current thread which need to be signaled
589  * with SIGBUS, this error is Action Optional for other non current
590  * processes sharing the same error page,if the process is "early kill", the
591  * task_struct of the dedicated thread will also be returned.
592  */
593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 {
595 	if (!tsk->mm)
596 		return NULL;
597 	/*
598 	 * Comparing ->mm here because current task might represent
599 	 * a subthread, while tsk always points to the main thread.
600 	 */
601 	if (force_early && tsk->mm == current->mm)
602 		return current;
603 
604 	return find_early_kill_thread(tsk);
605 }
606 
607 /*
608  * Collect processes when the error hit an anonymous page.
609  */
610 static void collect_procs_anon(struct folio *folio, struct page *page,
611 		struct list_head *to_kill, int force_early)
612 {
613 	struct vm_area_struct *vma;
614 	struct task_struct *tsk;
615 	struct anon_vma *av;
616 	pgoff_t pgoff;
617 
618 	av = folio_lock_anon_vma_read(folio, NULL);
619 	if (av == NULL)	/* Not actually mapped anymore */
620 		return;
621 
622 	pgoff = page_to_pgoff(page);
623 	rcu_read_lock();
624 	for_each_process(tsk) {
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 
628 		if (!t)
629 			continue;
630 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 					       pgoff, pgoff) {
632 			vma = vmac->vma;
633 			if (vma->vm_mm != t->mm)
634 				continue;
635 			if (!page_mapped_in_vma(page, vma))
636 				continue;
637 			add_to_kill_anon_file(t, page, vma, to_kill);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(struct folio *folio, struct page *page,
648 		struct list_head *to_kill, int force_early)
649 {
650 	struct vm_area_struct *vma;
651 	struct task_struct *tsk;
652 	struct address_space *mapping = folio->mapping;
653 	pgoff_t pgoff;
654 
655 	i_mmap_lock_read(mapping);
656 	rcu_read_lock();
657 	pgoff = page_to_pgoff(page);
658 	for_each_process(tsk) {
659 		struct task_struct *t = task_early_kill(tsk, force_early);
660 
661 		if (!t)
662 			continue;
663 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 				      pgoff) {
665 			/*
666 			 * Send early kill signal to tasks where a vma covers
667 			 * the page but the corrupted page is not necessarily
668 			 * mapped in its pte.
669 			 * Assume applications who requested early kill want
670 			 * to be informed of all such data corruptions.
671 			 */
672 			if (vma->vm_mm == t->mm)
673 				add_to_kill_anon_file(t, page, vma, to_kill);
674 		}
675 	}
676 	rcu_read_unlock();
677 	i_mmap_unlock_read(mapping);
678 }
679 
680 #ifdef CONFIG_FS_DAX
681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682 			      struct vm_area_struct *vma,
683 			      struct list_head *to_kill, pgoff_t pgoff)
684 {
685 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686 }
687 
688 /*
689  * Collect processes when the error hit a fsdax page.
690  */
691 static void collect_procs_fsdax(struct page *page,
692 		struct address_space *mapping, pgoff_t pgoff,
693 		struct list_head *to_kill)
694 {
695 	struct vm_area_struct *vma;
696 	struct task_struct *tsk;
697 
698 	i_mmap_lock_read(mapping);
699 	rcu_read_lock();
700 	for_each_process(tsk) {
701 		struct task_struct *t = task_early_kill(tsk, true);
702 
703 		if (!t)
704 			continue;
705 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
706 			if (vma->vm_mm == t->mm)
707 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
708 		}
709 	}
710 	rcu_read_unlock();
711 	i_mmap_unlock_read(mapping);
712 }
713 #endif /* CONFIG_FS_DAX */
714 
715 /*
716  * Collect the processes who have the corrupted page mapped to kill.
717  */
718 static void collect_procs(struct folio *folio, struct page *page,
719 		struct list_head *tokill, int force_early)
720 {
721 	if (!folio->mapping)
722 		return;
723 	if (unlikely(PageKsm(page)))
724 		collect_procs_ksm(page, tokill, force_early);
725 	else if (PageAnon(page))
726 		collect_procs_anon(folio, page, tokill, force_early);
727 	else
728 		collect_procs_file(folio, page, tokill, force_early);
729 }
730 
731 struct hwpoison_walk {
732 	struct to_kill tk;
733 	unsigned long pfn;
734 	int flags;
735 };
736 
737 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
738 {
739 	tk->addr = addr;
740 	tk->size_shift = shift;
741 }
742 
743 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
744 				unsigned long poisoned_pfn, struct to_kill *tk)
745 {
746 	unsigned long pfn = 0;
747 
748 	if (pte_present(pte)) {
749 		pfn = pte_pfn(pte);
750 	} else {
751 		swp_entry_t swp = pte_to_swp_entry(pte);
752 
753 		if (is_hwpoison_entry(swp))
754 			pfn = swp_offset_pfn(swp);
755 	}
756 
757 	if (!pfn || pfn != poisoned_pfn)
758 		return 0;
759 
760 	set_to_kill(tk, addr, shift);
761 	return 1;
762 }
763 
764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
765 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
766 				      struct hwpoison_walk *hwp)
767 {
768 	pmd_t pmd = *pmdp;
769 	unsigned long pfn;
770 	unsigned long hwpoison_vaddr;
771 
772 	if (!pmd_present(pmd))
773 		return 0;
774 	pfn = pmd_pfn(pmd);
775 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
776 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
777 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
778 		return 1;
779 	}
780 	return 0;
781 }
782 #else
783 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
784 				      struct hwpoison_walk *hwp)
785 {
786 	return 0;
787 }
788 #endif
789 
790 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
791 			      unsigned long end, struct mm_walk *walk)
792 {
793 	struct hwpoison_walk *hwp = walk->private;
794 	int ret = 0;
795 	pte_t *ptep, *mapped_pte;
796 	spinlock_t *ptl;
797 
798 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
799 	if (ptl) {
800 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
801 		spin_unlock(ptl);
802 		goto out;
803 	}
804 
805 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
806 						addr, &ptl);
807 	if (!ptep)
808 		goto out;
809 
810 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
811 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
812 					     hwp->pfn, &hwp->tk);
813 		if (ret == 1)
814 			break;
815 	}
816 	pte_unmap_unlock(mapped_pte, ptl);
817 out:
818 	cond_resched();
819 	return ret;
820 }
821 
822 #ifdef CONFIG_HUGETLB_PAGE
823 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
824 			    unsigned long addr, unsigned long end,
825 			    struct mm_walk *walk)
826 {
827 	struct hwpoison_walk *hwp = walk->private;
828 	pte_t pte = huge_ptep_get(ptep);
829 	struct hstate *h = hstate_vma(walk->vma);
830 
831 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
832 				      hwp->pfn, &hwp->tk);
833 }
834 #else
835 #define hwpoison_hugetlb_range	NULL
836 #endif
837 
838 static const struct mm_walk_ops hwpoison_walk_ops = {
839 	.pmd_entry = hwpoison_pte_range,
840 	.hugetlb_entry = hwpoison_hugetlb_range,
841 	.walk_lock = PGWALK_RDLOCK,
842 };
843 
844 /*
845  * Sends SIGBUS to the current process with error info.
846  *
847  * This function is intended to handle "Action Required" MCEs on already
848  * hardware poisoned pages. They could happen, for example, when
849  * memory_failure() failed to unmap the error page at the first call, or
850  * when multiple local machine checks happened on different CPUs.
851  *
852  * MCE handler currently has no easy access to the error virtual address,
853  * so this function walks page table to find it. The returned virtual address
854  * is proper in most cases, but it could be wrong when the application
855  * process has multiple entries mapping the error page.
856  */
857 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
858 				  int flags)
859 {
860 	int ret;
861 	struct hwpoison_walk priv = {
862 		.pfn = pfn,
863 	};
864 	priv.tk.tsk = p;
865 
866 	if (!p->mm)
867 		return -EFAULT;
868 
869 	mmap_read_lock(p->mm);
870 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
871 			      (void *)&priv);
872 	if (ret == 1 && priv.tk.addr)
873 		kill_proc(&priv.tk, pfn, flags);
874 	else
875 		ret = 0;
876 	mmap_read_unlock(p->mm);
877 	return ret > 0 ? -EHWPOISON : -EFAULT;
878 }
879 
880 static const char *action_name[] = {
881 	[MF_IGNORED] = "Ignored",
882 	[MF_FAILED] = "Failed",
883 	[MF_DELAYED] = "Delayed",
884 	[MF_RECOVERED] = "Recovered",
885 };
886 
887 static const char * const action_page_types[] = {
888 	[MF_MSG_KERNEL]			= "reserved kernel page",
889 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
890 	[MF_MSG_SLAB]			= "kernel slab page",
891 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
892 	[MF_MSG_HUGE]			= "huge page",
893 	[MF_MSG_FREE_HUGE]		= "free huge page",
894 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
895 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
896 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
897 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
898 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
899 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
900 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
901 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
902 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
903 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
904 	[MF_MSG_BUDDY]			= "free buddy page",
905 	[MF_MSG_DAX]			= "dax page",
906 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
907 	[MF_MSG_UNKNOWN]		= "unknown page",
908 };
909 
910 /*
911  * XXX: It is possible that a page is isolated from LRU cache,
912  * and then kept in swap cache or failed to remove from page cache.
913  * The page count will stop it from being freed by unpoison.
914  * Stress tests should be aware of this memory leak problem.
915  */
916 static int delete_from_lru_cache(struct page *p)
917 {
918 	if (isolate_lru_page(p)) {
919 		/*
920 		 * Clear sensible page flags, so that the buddy system won't
921 		 * complain when the page is unpoison-and-freed.
922 		 */
923 		ClearPageActive(p);
924 		ClearPageUnevictable(p);
925 
926 		/*
927 		 * Poisoned page might never drop its ref count to 0 so we have
928 		 * to uncharge it manually from its memcg.
929 		 */
930 		mem_cgroup_uncharge(page_folio(p));
931 
932 		/*
933 		 * drop the page count elevated by isolate_lru_page()
934 		 */
935 		put_page(p);
936 		return 0;
937 	}
938 	return -EIO;
939 }
940 
941 static int truncate_error_page(struct page *p, unsigned long pfn,
942 				struct address_space *mapping)
943 {
944 	int ret = MF_FAILED;
945 
946 	if (mapping->a_ops->error_remove_page) {
947 		struct folio *folio = page_folio(p);
948 		int err = mapping->a_ops->error_remove_page(mapping, p);
949 
950 		if (err != 0)
951 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
952 		else if (!filemap_release_folio(folio, GFP_NOIO))
953 			pr_info("%#lx: failed to release buffers\n", pfn);
954 		else
955 			ret = MF_RECOVERED;
956 	} else {
957 		/*
958 		 * If the file system doesn't support it just invalidate
959 		 * This fails on dirty or anything with private pages
960 		 */
961 		if (invalidate_inode_page(p))
962 			ret = MF_RECOVERED;
963 		else
964 			pr_info("%#lx: Failed to invalidate\n",	pfn);
965 	}
966 
967 	return ret;
968 }
969 
970 struct page_state {
971 	unsigned long mask;
972 	unsigned long res;
973 	enum mf_action_page_type type;
974 
975 	/* Callback ->action() has to unlock the relevant page inside it. */
976 	int (*action)(struct page_state *ps, struct page *p);
977 };
978 
979 /*
980  * Return true if page is still referenced by others, otherwise return
981  * false.
982  *
983  * The extra_pins is true when one extra refcount is expected.
984  */
985 static bool has_extra_refcount(struct page_state *ps, struct page *p,
986 			       bool extra_pins)
987 {
988 	int count = page_count(p) - 1;
989 
990 	if (extra_pins)
991 		count -= 1;
992 
993 	if (count > 0) {
994 		pr_err("%#lx: %s still referenced by %d users\n",
995 		       page_to_pfn(p), action_page_types[ps->type], count);
996 		return true;
997 	}
998 
999 	return false;
1000 }
1001 
1002 /*
1003  * Error hit kernel page.
1004  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1005  * could be more sophisticated.
1006  */
1007 static int me_kernel(struct page_state *ps, struct page *p)
1008 {
1009 	unlock_page(p);
1010 	return MF_IGNORED;
1011 }
1012 
1013 /*
1014  * Page in unknown state. Do nothing.
1015  */
1016 static int me_unknown(struct page_state *ps, struct page *p)
1017 {
1018 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1019 	unlock_page(p);
1020 	return MF_FAILED;
1021 }
1022 
1023 /*
1024  * Clean (or cleaned) page cache page.
1025  */
1026 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1027 {
1028 	int ret;
1029 	struct address_space *mapping;
1030 	bool extra_pins;
1031 
1032 	delete_from_lru_cache(p);
1033 
1034 	/*
1035 	 * For anonymous pages we're done the only reference left
1036 	 * should be the one m_f() holds.
1037 	 */
1038 	if (PageAnon(p)) {
1039 		ret = MF_RECOVERED;
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * Now truncate the page in the page cache. This is really
1045 	 * more like a "temporary hole punch"
1046 	 * Don't do this for block devices when someone else
1047 	 * has a reference, because it could be file system metadata
1048 	 * and that's not safe to truncate.
1049 	 */
1050 	mapping = page_mapping(p);
1051 	if (!mapping) {
1052 		/*
1053 		 * Page has been teared down in the meanwhile
1054 		 */
1055 		ret = MF_FAILED;
1056 		goto out;
1057 	}
1058 
1059 	/*
1060 	 * The shmem page is kept in page cache instead of truncating
1061 	 * so is expected to have an extra refcount after error-handling.
1062 	 */
1063 	extra_pins = shmem_mapping(mapping);
1064 
1065 	/*
1066 	 * Truncation is a bit tricky. Enable it per file system for now.
1067 	 *
1068 	 * Open: to take i_rwsem or not for this? Right now we don't.
1069 	 */
1070 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1071 	if (has_extra_refcount(ps, p, extra_pins))
1072 		ret = MF_FAILED;
1073 
1074 out:
1075 	unlock_page(p);
1076 
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Dirty pagecache page
1082  * Issues: when the error hit a hole page the error is not properly
1083  * propagated.
1084  */
1085 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1086 {
1087 	struct address_space *mapping = page_mapping(p);
1088 
1089 	SetPageError(p);
1090 	/* TBD: print more information about the file. */
1091 	if (mapping) {
1092 		/*
1093 		 * IO error will be reported by write(), fsync(), etc.
1094 		 * who check the mapping.
1095 		 * This way the application knows that something went
1096 		 * wrong with its dirty file data.
1097 		 *
1098 		 * There's one open issue:
1099 		 *
1100 		 * The EIO will be only reported on the next IO
1101 		 * operation and then cleared through the IO map.
1102 		 * Normally Linux has two mechanisms to pass IO error
1103 		 * first through the AS_EIO flag in the address space
1104 		 * and then through the PageError flag in the page.
1105 		 * Since we drop pages on memory failure handling the
1106 		 * only mechanism open to use is through AS_AIO.
1107 		 *
1108 		 * This has the disadvantage that it gets cleared on
1109 		 * the first operation that returns an error, while
1110 		 * the PageError bit is more sticky and only cleared
1111 		 * when the page is reread or dropped.  If an
1112 		 * application assumes it will always get error on
1113 		 * fsync, but does other operations on the fd before
1114 		 * and the page is dropped between then the error
1115 		 * will not be properly reported.
1116 		 *
1117 		 * This can already happen even without hwpoisoned
1118 		 * pages: first on metadata IO errors (which only
1119 		 * report through AS_EIO) or when the page is dropped
1120 		 * at the wrong time.
1121 		 *
1122 		 * So right now we assume that the application DTRT on
1123 		 * the first EIO, but we're not worse than other parts
1124 		 * of the kernel.
1125 		 */
1126 		mapping_set_error(mapping, -EIO);
1127 	}
1128 
1129 	return me_pagecache_clean(ps, p);
1130 }
1131 
1132 /*
1133  * Clean and dirty swap cache.
1134  *
1135  * Dirty swap cache page is tricky to handle. The page could live both in page
1136  * cache and swap cache(ie. page is freshly swapped in). So it could be
1137  * referenced concurrently by 2 types of PTEs:
1138  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1139  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1140  * and then
1141  *      - clear dirty bit to prevent IO
1142  *      - remove from LRU
1143  *      - but keep in the swap cache, so that when we return to it on
1144  *        a later page fault, we know the application is accessing
1145  *        corrupted data and shall be killed (we installed simple
1146  *        interception code in do_swap_page to catch it).
1147  *
1148  * Clean swap cache pages can be directly isolated. A later page fault will
1149  * bring in the known good data from disk.
1150  */
1151 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1152 {
1153 	int ret;
1154 	bool extra_pins = false;
1155 
1156 	ClearPageDirty(p);
1157 	/* Trigger EIO in shmem: */
1158 	ClearPageUptodate(p);
1159 
1160 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1161 	unlock_page(p);
1162 
1163 	if (ret == MF_DELAYED)
1164 		extra_pins = true;
1165 
1166 	if (has_extra_refcount(ps, p, extra_pins))
1167 		ret = MF_FAILED;
1168 
1169 	return ret;
1170 }
1171 
1172 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1173 {
1174 	struct folio *folio = page_folio(p);
1175 	int ret;
1176 
1177 	delete_from_swap_cache(folio);
1178 
1179 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1180 	folio_unlock(folio);
1181 
1182 	if (has_extra_refcount(ps, p, false))
1183 		ret = MF_FAILED;
1184 
1185 	return ret;
1186 }
1187 
1188 /*
1189  * Huge pages. Needs work.
1190  * Issues:
1191  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1192  *   To narrow down kill region to one page, we need to break up pmd.
1193  */
1194 static int me_huge_page(struct page_state *ps, struct page *p)
1195 {
1196 	struct folio *folio = page_folio(p);
1197 	int res;
1198 	struct address_space *mapping;
1199 	bool extra_pins = false;
1200 
1201 	mapping = folio_mapping(folio);
1202 	if (mapping) {
1203 		res = truncate_error_page(&folio->page, page_to_pfn(p), mapping);
1204 		/* The page is kept in page cache. */
1205 		extra_pins = true;
1206 		folio_unlock(folio);
1207 	} else {
1208 		folio_unlock(folio);
1209 		/*
1210 		 * migration entry prevents later access on error hugepage,
1211 		 * so we can free and dissolve it into buddy to save healthy
1212 		 * subpages.
1213 		 */
1214 		folio_put(folio);
1215 		if (__page_handle_poison(p) > 0) {
1216 			page_ref_inc(p);
1217 			res = MF_RECOVERED;
1218 		} else {
1219 			res = MF_FAILED;
1220 		}
1221 	}
1222 
1223 	if (has_extra_refcount(ps, p, extra_pins))
1224 		res = MF_FAILED;
1225 
1226 	return res;
1227 }
1228 
1229 /*
1230  * Various page states we can handle.
1231  *
1232  * A page state is defined by its current page->flags bits.
1233  * The table matches them in order and calls the right handler.
1234  *
1235  * This is quite tricky because we can access page at any time
1236  * in its live cycle, so all accesses have to be extremely careful.
1237  *
1238  * This is not complete. More states could be added.
1239  * For any missing state don't attempt recovery.
1240  */
1241 
1242 #define dirty		(1UL << PG_dirty)
1243 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1244 #define unevict		(1UL << PG_unevictable)
1245 #define mlock		(1UL << PG_mlocked)
1246 #define lru		(1UL << PG_lru)
1247 #define head		(1UL << PG_head)
1248 #define slab		(1UL << PG_slab)
1249 #define reserved	(1UL << PG_reserved)
1250 
1251 static struct page_state error_states[] = {
1252 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1253 	/*
1254 	 * free pages are specially detected outside this table:
1255 	 * PG_buddy pages only make a small fraction of all free pages.
1256 	 */
1257 
1258 	/*
1259 	 * Could in theory check if slab page is free or if we can drop
1260 	 * currently unused objects without touching them. But just
1261 	 * treat it as standard kernel for now.
1262 	 */
1263 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1264 
1265 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1266 
1267 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1268 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1269 
1270 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1271 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1272 
1273 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1274 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1275 
1276 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1277 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1278 
1279 	/*
1280 	 * Catchall entry: must be at end.
1281 	 */
1282 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1283 };
1284 
1285 #undef dirty
1286 #undef sc
1287 #undef unevict
1288 #undef mlock
1289 #undef lru
1290 #undef head
1291 #undef slab
1292 #undef reserved
1293 
1294 static void update_per_node_mf_stats(unsigned long pfn,
1295 				     enum mf_result result)
1296 {
1297 	int nid = MAX_NUMNODES;
1298 	struct memory_failure_stats *mf_stats = NULL;
1299 
1300 	nid = pfn_to_nid(pfn);
1301 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1302 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1303 		return;
1304 	}
1305 
1306 	mf_stats = &NODE_DATA(nid)->mf_stats;
1307 	switch (result) {
1308 	case MF_IGNORED:
1309 		++mf_stats->ignored;
1310 		break;
1311 	case MF_FAILED:
1312 		++mf_stats->failed;
1313 		break;
1314 	case MF_DELAYED:
1315 		++mf_stats->delayed;
1316 		break;
1317 	case MF_RECOVERED:
1318 		++mf_stats->recovered;
1319 		break;
1320 	default:
1321 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1322 		break;
1323 	}
1324 	++mf_stats->total;
1325 }
1326 
1327 /*
1328  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1329  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1330  */
1331 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1332 			 enum mf_result result)
1333 {
1334 	trace_memory_failure_event(pfn, type, result);
1335 
1336 	num_poisoned_pages_inc(pfn);
1337 
1338 	update_per_node_mf_stats(pfn, result);
1339 
1340 	pr_err("%#lx: recovery action for %s: %s\n",
1341 		pfn, action_page_types[type], action_name[result]);
1342 
1343 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1344 }
1345 
1346 static int page_action(struct page_state *ps, struct page *p,
1347 			unsigned long pfn)
1348 {
1349 	int result;
1350 
1351 	/* page p should be unlocked after returning from ps->action().  */
1352 	result = ps->action(ps, p);
1353 
1354 	/* Could do more checks here if page looks ok */
1355 	/*
1356 	 * Could adjust zone counters here to correct for the missing page.
1357 	 */
1358 
1359 	return action_result(pfn, ps->type, result);
1360 }
1361 
1362 static inline bool PageHWPoisonTakenOff(struct page *page)
1363 {
1364 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1365 }
1366 
1367 void SetPageHWPoisonTakenOff(struct page *page)
1368 {
1369 	set_page_private(page, MAGIC_HWPOISON);
1370 }
1371 
1372 void ClearPageHWPoisonTakenOff(struct page *page)
1373 {
1374 	if (PageHWPoison(page))
1375 		set_page_private(page, 0);
1376 }
1377 
1378 /*
1379  * Return true if a page type of a given page is supported by hwpoison
1380  * mechanism (while handling could fail), otherwise false.  This function
1381  * does not return true for hugetlb or device memory pages, so it's assumed
1382  * to be called only in the context where we never have such pages.
1383  */
1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1385 {
1386 	/* Soft offline could migrate non-LRU movable pages */
1387 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 		return true;
1389 
1390 	return PageLRU(page) || is_free_buddy_page(page);
1391 }
1392 
1393 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1394 {
1395 	struct folio *folio = page_folio(page);
1396 	int ret = 0;
1397 	bool hugetlb = false;
1398 
1399 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400 	if (hugetlb) {
1401 		/* Make sure hugetlb demotion did not happen from under us. */
1402 		if (folio == page_folio(page))
1403 			return ret;
1404 		if (ret > 0) {
1405 			folio_put(folio);
1406 			folio = page_folio(page);
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * This check prevents from calling folio_try_get() for any
1412 	 * unsupported type of folio in order to reduce the risk of unexpected
1413 	 * races caused by taking a folio refcount.
1414 	 */
1415 	if (!HWPoisonHandlable(&folio->page, flags))
1416 		return -EBUSY;
1417 
1418 	if (folio_try_get(folio)) {
1419 		if (folio == page_folio(page))
1420 			return 1;
1421 
1422 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423 		folio_put(folio);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int get_any_page(struct page *p, unsigned long flags)
1430 {
1431 	int ret = 0, pass = 0;
1432 	bool count_increased = false;
1433 
1434 	if (flags & MF_COUNT_INCREASED)
1435 		count_increased = true;
1436 
1437 try_again:
1438 	if (!count_increased) {
1439 		ret = __get_hwpoison_page(p, flags);
1440 		if (!ret) {
1441 			if (page_count(p)) {
1442 				/* We raced with an allocation, retry. */
1443 				if (pass++ < 3)
1444 					goto try_again;
1445 				ret = -EBUSY;
1446 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1447 				/* We raced with put_page, retry. */
1448 				if (pass++ < 3)
1449 					goto try_again;
1450 				ret = -EIO;
1451 			}
1452 			goto out;
1453 		} else if (ret == -EBUSY) {
1454 			/*
1455 			 * We raced with (possibly temporary) unhandlable
1456 			 * page, retry.
1457 			 */
1458 			if (pass++ < 3) {
1459 				shake_page(p);
1460 				goto try_again;
1461 			}
1462 			ret = -EIO;
1463 			goto out;
1464 		}
1465 	}
1466 
1467 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1468 		ret = 1;
1469 	} else {
1470 		/*
1471 		 * A page we cannot handle. Check whether we can turn
1472 		 * it into something we can handle.
1473 		 */
1474 		if (pass++ < 3) {
1475 			put_page(p);
1476 			shake_page(p);
1477 			count_increased = false;
1478 			goto try_again;
1479 		}
1480 		put_page(p);
1481 		ret = -EIO;
1482 	}
1483 out:
1484 	if (ret == -EIO)
1485 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1486 
1487 	return ret;
1488 }
1489 
1490 static int __get_unpoison_page(struct page *page)
1491 {
1492 	struct folio *folio = page_folio(page);
1493 	int ret = 0;
1494 	bool hugetlb = false;
1495 
1496 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1497 	if (hugetlb) {
1498 		/* Make sure hugetlb demotion did not happen from under us. */
1499 		if (folio == page_folio(page))
1500 			return ret;
1501 		if (ret > 0)
1502 			folio_put(folio);
1503 	}
1504 
1505 	/*
1506 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1507 	 * but also isolated from buddy freelist, so need to identify the
1508 	 * state and have to cancel both operations to unpoison.
1509 	 */
1510 	if (PageHWPoisonTakenOff(page))
1511 		return -EHWPOISON;
1512 
1513 	return get_page_unless_zero(page) ? 1 : 0;
1514 }
1515 
1516 /**
1517  * get_hwpoison_page() - Get refcount for memory error handling
1518  * @p:		Raw error page (hit by memory error)
1519  * @flags:	Flags controlling behavior of error handling
1520  *
1521  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1522  * error on it, after checking that the error page is in a well-defined state
1523  * (defined as a page-type we can successfully handle the memory error on it,
1524  * such as LRU page and hugetlb page).
1525  *
1526  * Memory error handling could be triggered at any time on any type of page,
1527  * so it's prone to race with typical memory management lifecycle (like
1528  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1529  * extra care for the error page's state (as done in __get_hwpoison_page()),
1530  * and has some retry logic in get_any_page().
1531  *
1532  * When called from unpoison_memory(), the caller should already ensure that
1533  * the given page has PG_hwpoison. So it's never reused for other page
1534  * allocations, and __get_unpoison_page() never races with them.
1535  *
1536  * Return: 0 on failure,
1537  *         1 on success for in-use pages in a well-defined state,
1538  *         -EIO for pages on which we can not handle memory errors,
1539  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1540  *         operations like allocation and free,
1541  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1542  */
1543 static int get_hwpoison_page(struct page *p, unsigned long flags)
1544 {
1545 	int ret;
1546 
1547 	zone_pcp_disable(page_zone(p));
1548 	if (flags & MF_UNPOISON)
1549 		ret = __get_unpoison_page(p);
1550 	else
1551 		ret = get_any_page(p, flags);
1552 	zone_pcp_enable(page_zone(p));
1553 
1554 	return ret;
1555 }
1556 
1557 /*
1558  * Do all that is necessary to remove user space mappings. Unmap
1559  * the pages and send SIGBUS to the processes if the data was dirty.
1560  */
1561 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1562 				  int flags, struct page *hpage)
1563 {
1564 	struct folio *folio = page_folio(hpage);
1565 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1566 	struct address_space *mapping;
1567 	LIST_HEAD(tokill);
1568 	bool unmap_success;
1569 	int forcekill;
1570 	bool mlocked = PageMlocked(hpage);
1571 
1572 	/*
1573 	 * Here we are interested only in user-mapped pages, so skip any
1574 	 * other types of pages.
1575 	 */
1576 	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1577 		return true;
1578 	if (!(PageLRU(hpage) || PageHuge(p)))
1579 		return true;
1580 
1581 	/*
1582 	 * This check implies we don't kill processes if their pages
1583 	 * are in the swap cache early. Those are always late kills.
1584 	 */
1585 	if (!page_mapped(p))
1586 		return true;
1587 
1588 	if (PageSwapCache(p)) {
1589 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1590 		ttu &= ~TTU_HWPOISON;
1591 	}
1592 
1593 	/*
1594 	 * Propagate the dirty bit from PTEs to struct page first, because we
1595 	 * need this to decide if we should kill or just drop the page.
1596 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1597 	 * be called inside page lock (it's recommended but not enforced).
1598 	 */
1599 	mapping = page_mapping(hpage);
1600 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1601 	    mapping_can_writeback(mapping)) {
1602 		if (page_mkclean(hpage)) {
1603 			SetPageDirty(hpage);
1604 		} else {
1605 			ttu &= ~TTU_HWPOISON;
1606 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1607 				pfn);
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * First collect all the processes that have the page
1613 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1614 	 * because ttu takes the rmap data structures down.
1615 	 */
1616 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1617 
1618 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1619 		/*
1620 		 * For hugetlb pages in shared mappings, try_to_unmap
1621 		 * could potentially call huge_pmd_unshare.  Because of
1622 		 * this, take semaphore in write mode here and set
1623 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1624 		 * at this higher level.
1625 		 */
1626 		mapping = hugetlb_page_mapping_lock_write(hpage);
1627 		if (mapping) {
1628 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1629 			i_mmap_unlock_write(mapping);
1630 		} else
1631 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1632 	} else {
1633 		try_to_unmap(folio, ttu);
1634 	}
1635 
1636 	unmap_success = !page_mapped(p);
1637 	if (!unmap_success)
1638 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1639 		       pfn, page_mapcount(p));
1640 
1641 	/*
1642 	 * try_to_unmap() might put mlocked page in lru cache, so call
1643 	 * shake_page() again to ensure that it's flushed.
1644 	 */
1645 	if (mlocked)
1646 		shake_page(hpage);
1647 
1648 	/*
1649 	 * Now that the dirty bit has been propagated to the
1650 	 * struct page and all unmaps done we can decide if
1651 	 * killing is needed or not.  Only kill when the page
1652 	 * was dirty or the process is not restartable,
1653 	 * otherwise the tokill list is merely
1654 	 * freed.  When there was a problem unmapping earlier
1655 	 * use a more force-full uncatchable kill to prevent
1656 	 * any accesses to the poisoned memory.
1657 	 */
1658 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1659 		    !unmap_success;
1660 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1661 
1662 	return unmap_success;
1663 }
1664 
1665 static int identify_page_state(unsigned long pfn, struct page *p,
1666 				unsigned long page_flags)
1667 {
1668 	struct page_state *ps;
1669 
1670 	/*
1671 	 * The first check uses the current page flags which may not have any
1672 	 * relevant information. The second check with the saved page flags is
1673 	 * carried out only if the first check can't determine the page status.
1674 	 */
1675 	for (ps = error_states;; ps++)
1676 		if ((p->flags & ps->mask) == ps->res)
1677 			break;
1678 
1679 	page_flags |= (p->flags & (1UL << PG_dirty));
1680 
1681 	if (!ps->mask)
1682 		for (ps = error_states;; ps++)
1683 			if ((page_flags & ps->mask) == ps->res)
1684 				break;
1685 	return page_action(ps, p, pfn);
1686 }
1687 
1688 static int try_to_split_thp_page(struct page *page)
1689 {
1690 	int ret;
1691 
1692 	lock_page(page);
1693 	ret = split_huge_page(page);
1694 	unlock_page(page);
1695 
1696 	if (unlikely(ret))
1697 		put_page(page);
1698 
1699 	return ret;
1700 }
1701 
1702 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1703 		struct address_space *mapping, pgoff_t index, int flags)
1704 {
1705 	struct to_kill *tk;
1706 	unsigned long size = 0;
1707 
1708 	list_for_each_entry(tk, to_kill, nd)
1709 		if (tk->size_shift)
1710 			size = max(size, 1UL << tk->size_shift);
1711 
1712 	if (size) {
1713 		/*
1714 		 * Unmap the largest mapping to avoid breaking up device-dax
1715 		 * mappings which are constant size. The actual size of the
1716 		 * mapping being torn down is communicated in siginfo, see
1717 		 * kill_proc()
1718 		 */
1719 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1720 
1721 		unmap_mapping_range(mapping, start, size, 0);
1722 	}
1723 
1724 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1725 }
1726 
1727 /*
1728  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1729  * either do not claim or fails to claim a hwpoison event, or devdax.
1730  * The fsdax pages are initialized per base page, and the devdax pages
1731  * could be initialized either as base pages, or as compound pages with
1732  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1733  * hwpoison, such that, if a subpage of a compound page is poisoned,
1734  * simply mark the compound head page is by far sufficient.
1735  */
1736 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1737 		struct dev_pagemap *pgmap)
1738 {
1739 	struct folio *folio = pfn_folio(pfn);
1740 	LIST_HEAD(to_kill);
1741 	dax_entry_t cookie;
1742 	int rc = 0;
1743 
1744 	/*
1745 	 * Prevent the inode from being freed while we are interrogating
1746 	 * the address_space, typically this would be handled by
1747 	 * lock_page(), but dax pages do not use the page lock. This
1748 	 * also prevents changes to the mapping of this pfn until
1749 	 * poison signaling is complete.
1750 	 */
1751 	cookie = dax_lock_folio(folio);
1752 	if (!cookie)
1753 		return -EBUSY;
1754 
1755 	if (hwpoison_filter(&folio->page)) {
1756 		rc = -EOPNOTSUPP;
1757 		goto unlock;
1758 	}
1759 
1760 	switch (pgmap->type) {
1761 	case MEMORY_DEVICE_PRIVATE:
1762 	case MEMORY_DEVICE_COHERENT:
1763 		/*
1764 		 * TODO: Handle device pages which may need coordination
1765 		 * with device-side memory.
1766 		 */
1767 		rc = -ENXIO;
1768 		goto unlock;
1769 	default:
1770 		break;
1771 	}
1772 
1773 	/*
1774 	 * Use this flag as an indication that the dax page has been
1775 	 * remapped UC to prevent speculative consumption of poison.
1776 	 */
1777 	SetPageHWPoison(&folio->page);
1778 
1779 	/*
1780 	 * Unlike System-RAM there is no possibility to swap in a
1781 	 * different physical page at a given virtual address, so all
1782 	 * userspace consumption of ZONE_DEVICE memory necessitates
1783 	 * SIGBUS (i.e. MF_MUST_KILL)
1784 	 */
1785 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1786 	collect_procs(folio, &folio->page, &to_kill, true);
1787 
1788 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1789 unlock:
1790 	dax_unlock_folio(folio, cookie);
1791 	return rc;
1792 }
1793 
1794 #ifdef CONFIG_FS_DAX
1795 /**
1796  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1797  * @mapping:	address_space of the file in use
1798  * @index:	start pgoff of the range within the file
1799  * @count:	length of the range, in unit of PAGE_SIZE
1800  * @mf_flags:	memory failure flags
1801  */
1802 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1803 		unsigned long count, int mf_flags)
1804 {
1805 	LIST_HEAD(to_kill);
1806 	dax_entry_t cookie;
1807 	struct page *page;
1808 	size_t end = index + count;
1809 
1810 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1811 
1812 	for (; index < end; index++) {
1813 		page = NULL;
1814 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1815 		if (!cookie)
1816 			return -EBUSY;
1817 		if (!page)
1818 			goto unlock;
1819 
1820 		SetPageHWPoison(page);
1821 
1822 		collect_procs_fsdax(page, mapping, index, &to_kill);
1823 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1824 				index, mf_flags);
1825 unlock:
1826 		dax_unlock_mapping_entry(mapping, index, cookie);
1827 	}
1828 	return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1831 #endif /* CONFIG_FS_DAX */
1832 
1833 #ifdef CONFIG_HUGETLB_PAGE
1834 
1835 /*
1836  * Struct raw_hwp_page represents information about "raw error page",
1837  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1838  */
1839 struct raw_hwp_page {
1840 	struct llist_node node;
1841 	struct page *page;
1842 };
1843 
1844 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1845 {
1846 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1847 }
1848 
1849 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1850 {
1851 	struct llist_head *raw_hwp_head;
1852 	struct raw_hwp_page *p;
1853 	struct folio *folio = page_folio(page);
1854 	bool ret = false;
1855 
1856 	if (!folio_test_hwpoison(folio))
1857 		return false;
1858 
1859 	if (!folio_test_hugetlb(folio))
1860 		return PageHWPoison(page);
1861 
1862 	/*
1863 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1864 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1865 	 */
1866 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1867 		return true;
1868 
1869 	mutex_lock(&mf_mutex);
1870 
1871 	raw_hwp_head = raw_hwp_list_head(folio);
1872 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1873 		if (page == p->page) {
1874 			ret = true;
1875 			break;
1876 		}
1877 	}
1878 
1879 	mutex_unlock(&mf_mutex);
1880 
1881 	return ret;
1882 }
1883 
1884 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1885 {
1886 	struct llist_node *head;
1887 	struct raw_hwp_page *p, *next;
1888 	unsigned long count = 0;
1889 
1890 	head = llist_del_all(raw_hwp_list_head(folio));
1891 	llist_for_each_entry_safe(p, next, head, node) {
1892 		if (move_flag)
1893 			SetPageHWPoison(p->page);
1894 		else
1895 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1896 		kfree(p);
1897 		count++;
1898 	}
1899 	return count;
1900 }
1901 
1902 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1903 {
1904 	struct llist_head *head;
1905 	struct raw_hwp_page *raw_hwp;
1906 	struct raw_hwp_page *p, *next;
1907 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1908 
1909 	/*
1910 	 * Once the hwpoison hugepage has lost reliable raw error info,
1911 	 * there is little meaning to keep additional error info precisely,
1912 	 * so skip to add additional raw error info.
1913 	 */
1914 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1915 		return -EHWPOISON;
1916 	head = raw_hwp_list_head(folio);
1917 	llist_for_each_entry_safe(p, next, head->first, node) {
1918 		if (p->page == page)
1919 			return -EHWPOISON;
1920 	}
1921 
1922 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1923 	if (raw_hwp) {
1924 		raw_hwp->page = page;
1925 		llist_add(&raw_hwp->node, head);
1926 		/* the first error event will be counted in action_result(). */
1927 		if (ret)
1928 			num_poisoned_pages_inc(page_to_pfn(page));
1929 	} else {
1930 		/*
1931 		 * Failed to save raw error info.  We no longer trace all
1932 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1933 		 * this hwpoisoned hugepage.
1934 		 */
1935 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1936 		/*
1937 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1938 		 * used any more, so free it.
1939 		 */
1940 		__folio_free_raw_hwp(folio, false);
1941 	}
1942 	return ret;
1943 }
1944 
1945 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1946 {
1947 	/*
1948 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1949 	 * pages for tail pages are required but they don't exist.
1950 	 */
1951 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1952 		return 0;
1953 
1954 	/*
1955 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1956 	 * definition.
1957 	 */
1958 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1959 		return 0;
1960 
1961 	return __folio_free_raw_hwp(folio, move_flag);
1962 }
1963 
1964 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1965 {
1966 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1967 		return;
1968 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1969 		return;
1970 	folio_clear_hwpoison(folio);
1971 	folio_free_raw_hwp(folio, true);
1972 }
1973 
1974 /*
1975  * Called from hugetlb code with hugetlb_lock held.
1976  *
1977  * Return values:
1978  *   0             - free hugepage
1979  *   1             - in-use hugepage
1980  *   2             - not a hugepage
1981  *   -EBUSY        - the hugepage is busy (try to retry)
1982  *   -EHWPOISON    - the hugepage is already hwpoisoned
1983  */
1984 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1985 				 bool *migratable_cleared)
1986 {
1987 	struct page *page = pfn_to_page(pfn);
1988 	struct folio *folio = page_folio(page);
1989 	int ret = 2;	/* fallback to normal page handling */
1990 	bool count_increased = false;
1991 
1992 	if (!folio_test_hugetlb(folio))
1993 		goto out;
1994 
1995 	if (flags & MF_COUNT_INCREASED) {
1996 		ret = 1;
1997 		count_increased = true;
1998 	} else if (folio_test_hugetlb_freed(folio)) {
1999 		ret = 0;
2000 	} else if (folio_test_hugetlb_migratable(folio)) {
2001 		ret = folio_try_get(folio);
2002 		if (ret)
2003 			count_increased = true;
2004 	} else {
2005 		ret = -EBUSY;
2006 		if (!(flags & MF_NO_RETRY))
2007 			goto out;
2008 	}
2009 
2010 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2011 		ret = -EHWPOISON;
2012 		goto out;
2013 	}
2014 
2015 	/*
2016 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2017 	 * from being migrated by memory hotremove.
2018 	 */
2019 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2020 		folio_clear_hugetlb_migratable(folio);
2021 		*migratable_cleared = true;
2022 	}
2023 
2024 	return ret;
2025 out:
2026 	if (count_increased)
2027 		folio_put(folio);
2028 	return ret;
2029 }
2030 
2031 /*
2032  * Taking refcount of hugetlb pages needs extra care about race conditions
2033  * with basic operations like hugepage allocation/free/demotion.
2034  * So some of prechecks for hwpoison (pinning, and testing/setting
2035  * PageHWPoison) should be done in single hugetlb_lock range.
2036  */
2037 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2038 {
2039 	int res;
2040 	struct page *p = pfn_to_page(pfn);
2041 	struct folio *folio;
2042 	unsigned long page_flags;
2043 	bool migratable_cleared = false;
2044 
2045 	*hugetlb = 1;
2046 retry:
2047 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2048 	if (res == 2) { /* fallback to normal page handling */
2049 		*hugetlb = 0;
2050 		return 0;
2051 	} else if (res == -EHWPOISON) {
2052 		pr_err("%#lx: already hardware poisoned\n", pfn);
2053 		if (flags & MF_ACTION_REQUIRED) {
2054 			folio = page_folio(p);
2055 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2056 		}
2057 		return res;
2058 	} else if (res == -EBUSY) {
2059 		if (!(flags & MF_NO_RETRY)) {
2060 			flags |= MF_NO_RETRY;
2061 			goto retry;
2062 		}
2063 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2064 	}
2065 
2066 	folio = page_folio(p);
2067 	folio_lock(folio);
2068 
2069 	if (hwpoison_filter(p)) {
2070 		folio_clear_hugetlb_hwpoison(folio);
2071 		if (migratable_cleared)
2072 			folio_set_hugetlb_migratable(folio);
2073 		folio_unlock(folio);
2074 		if (res == 1)
2075 			folio_put(folio);
2076 		return -EOPNOTSUPP;
2077 	}
2078 
2079 	/*
2080 	 * Handling free hugepage.  The possible race with hugepage allocation
2081 	 * or demotion can be prevented by PageHWPoison flag.
2082 	 */
2083 	if (res == 0) {
2084 		folio_unlock(folio);
2085 		if (__page_handle_poison(p) > 0) {
2086 			page_ref_inc(p);
2087 			res = MF_RECOVERED;
2088 		} else {
2089 			res = MF_FAILED;
2090 		}
2091 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2092 	}
2093 
2094 	page_flags = folio->flags;
2095 
2096 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2097 		folio_unlock(folio);
2098 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2099 	}
2100 
2101 	return identify_page_state(pfn, p, page_flags);
2102 }
2103 
2104 #else
2105 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2106 {
2107 	return 0;
2108 }
2109 
2110 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2111 {
2112 	return 0;
2113 }
2114 #endif	/* CONFIG_HUGETLB_PAGE */
2115 
2116 /* Drop the extra refcount in case we come from madvise() */
2117 static void put_ref_page(unsigned long pfn, int flags)
2118 {
2119 	struct page *page;
2120 
2121 	if (!(flags & MF_COUNT_INCREASED))
2122 		return;
2123 
2124 	page = pfn_to_page(pfn);
2125 	if (page)
2126 		put_page(page);
2127 }
2128 
2129 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2130 		struct dev_pagemap *pgmap)
2131 {
2132 	int rc = -ENXIO;
2133 
2134 	/* device metadata space is not recoverable */
2135 	if (!pgmap_pfn_valid(pgmap, pfn))
2136 		goto out;
2137 
2138 	/*
2139 	 * Call driver's implementation to handle the memory failure, otherwise
2140 	 * fall back to generic handler.
2141 	 */
2142 	if (pgmap_has_memory_failure(pgmap)) {
2143 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2144 		/*
2145 		 * Fall back to generic handler too if operation is not
2146 		 * supported inside the driver/device/filesystem.
2147 		 */
2148 		if (rc != -EOPNOTSUPP)
2149 			goto out;
2150 	}
2151 
2152 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2153 out:
2154 	/* drop pgmap ref acquired in caller */
2155 	put_dev_pagemap(pgmap);
2156 	if (rc != -EOPNOTSUPP)
2157 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2158 	return rc;
2159 }
2160 
2161 /**
2162  * memory_failure - Handle memory failure of a page.
2163  * @pfn: Page Number of the corrupted page
2164  * @flags: fine tune action taken
2165  *
2166  * This function is called by the low level machine check code
2167  * of an architecture when it detects hardware memory corruption
2168  * of a page. It tries its best to recover, which includes
2169  * dropping pages, killing processes etc.
2170  *
2171  * The function is primarily of use for corruptions that
2172  * happen outside the current execution context (e.g. when
2173  * detected by a background scrubber)
2174  *
2175  * Must run in process context (e.g. a work queue) with interrupts
2176  * enabled and no spinlocks held.
2177  *
2178  * Return: 0 for successfully handled the memory error,
2179  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2180  *         < 0(except -EOPNOTSUPP) on failure.
2181  */
2182 int memory_failure(unsigned long pfn, int flags)
2183 {
2184 	struct page *p;
2185 	struct page *hpage;
2186 	struct dev_pagemap *pgmap;
2187 	int res = 0;
2188 	unsigned long page_flags;
2189 	bool retry = true;
2190 	int hugetlb = 0;
2191 
2192 	if (!sysctl_memory_failure_recovery)
2193 		panic("Memory failure on page %lx", pfn);
2194 
2195 	mutex_lock(&mf_mutex);
2196 
2197 	if (!(flags & MF_SW_SIMULATED))
2198 		hw_memory_failure = true;
2199 
2200 	p = pfn_to_online_page(pfn);
2201 	if (!p) {
2202 		res = arch_memory_failure(pfn, flags);
2203 		if (res == 0)
2204 			goto unlock_mutex;
2205 
2206 		if (pfn_valid(pfn)) {
2207 			pgmap = get_dev_pagemap(pfn, NULL);
2208 			put_ref_page(pfn, flags);
2209 			if (pgmap) {
2210 				res = memory_failure_dev_pagemap(pfn, flags,
2211 								 pgmap);
2212 				goto unlock_mutex;
2213 			}
2214 		}
2215 		pr_err("%#lx: memory outside kernel control\n", pfn);
2216 		res = -ENXIO;
2217 		goto unlock_mutex;
2218 	}
2219 
2220 try_again:
2221 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2222 	if (hugetlb)
2223 		goto unlock_mutex;
2224 
2225 	if (TestSetPageHWPoison(p)) {
2226 		pr_err("%#lx: already hardware poisoned\n", pfn);
2227 		res = -EHWPOISON;
2228 		if (flags & MF_ACTION_REQUIRED)
2229 			res = kill_accessing_process(current, pfn, flags);
2230 		if (flags & MF_COUNT_INCREASED)
2231 			put_page(p);
2232 		goto unlock_mutex;
2233 	}
2234 
2235 	/*
2236 	 * We need/can do nothing about count=0 pages.
2237 	 * 1) it's a free page, and therefore in safe hand:
2238 	 *    check_new_page() will be the gate keeper.
2239 	 * 2) it's part of a non-compound high order page.
2240 	 *    Implies some kernel user: cannot stop them from
2241 	 *    R/W the page; let's pray that the page has been
2242 	 *    used and will be freed some time later.
2243 	 * In fact it's dangerous to directly bump up page count from 0,
2244 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2245 	 */
2246 	if (!(flags & MF_COUNT_INCREASED)) {
2247 		res = get_hwpoison_page(p, flags);
2248 		if (!res) {
2249 			if (is_free_buddy_page(p)) {
2250 				if (take_page_off_buddy(p)) {
2251 					page_ref_inc(p);
2252 					res = MF_RECOVERED;
2253 				} else {
2254 					/* We lost the race, try again */
2255 					if (retry) {
2256 						ClearPageHWPoison(p);
2257 						retry = false;
2258 						goto try_again;
2259 					}
2260 					res = MF_FAILED;
2261 				}
2262 				res = action_result(pfn, MF_MSG_BUDDY, res);
2263 			} else {
2264 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2265 			}
2266 			goto unlock_mutex;
2267 		} else if (res < 0) {
2268 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2269 			goto unlock_mutex;
2270 		}
2271 	}
2272 
2273 	hpage = compound_head(p);
2274 	if (PageTransHuge(hpage)) {
2275 		/*
2276 		 * The flag must be set after the refcount is bumped
2277 		 * otherwise it may race with THP split.
2278 		 * And the flag can't be set in get_hwpoison_page() since
2279 		 * it is called by soft offline too and it is just called
2280 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2281 		 * place.
2282 		 *
2283 		 * Don't need care about the above error handling paths for
2284 		 * get_hwpoison_page() since they handle either free page
2285 		 * or unhandlable page.  The refcount is bumped iff the
2286 		 * page is a valid handlable page.
2287 		 */
2288 		SetPageHasHWPoisoned(hpage);
2289 		if (try_to_split_thp_page(p) < 0) {
2290 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2291 			goto unlock_mutex;
2292 		}
2293 		VM_BUG_ON_PAGE(!page_count(p), p);
2294 	}
2295 
2296 	/*
2297 	 * We ignore non-LRU pages for good reasons.
2298 	 * - PG_locked is only well defined for LRU pages and a few others
2299 	 * - to avoid races with __SetPageLocked()
2300 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2301 	 * The check (unnecessarily) ignores LRU pages being isolated and
2302 	 * walked by the page reclaim code, however that's not a big loss.
2303 	 */
2304 	shake_page(p);
2305 
2306 	lock_page(p);
2307 
2308 	/*
2309 	 * We're only intended to deal with the non-Compound page here.
2310 	 * However, the page could have changed compound pages due to
2311 	 * race window. If this happens, we could try again to hopefully
2312 	 * handle the page next round.
2313 	 */
2314 	if (PageCompound(p)) {
2315 		if (retry) {
2316 			ClearPageHWPoison(p);
2317 			unlock_page(p);
2318 			put_page(p);
2319 			flags &= ~MF_COUNT_INCREASED;
2320 			retry = false;
2321 			goto try_again;
2322 		}
2323 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2324 		goto unlock_page;
2325 	}
2326 
2327 	/*
2328 	 * We use page flags to determine what action should be taken, but
2329 	 * the flags can be modified by the error containment action.  One
2330 	 * example is an mlocked page, where PG_mlocked is cleared by
2331 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2332 	 * correctly, we save a copy of the page flags at this time.
2333 	 */
2334 	page_flags = p->flags;
2335 
2336 	if (hwpoison_filter(p)) {
2337 		ClearPageHWPoison(p);
2338 		unlock_page(p);
2339 		put_page(p);
2340 		res = -EOPNOTSUPP;
2341 		goto unlock_mutex;
2342 	}
2343 
2344 	/*
2345 	 * __munlock_folio() may clear a writeback page's LRU flag without
2346 	 * page_lock. We need wait writeback completion for this page or it
2347 	 * may trigger vfs BUG while evict inode.
2348 	 */
2349 	if (!PageLRU(p) && !PageWriteback(p))
2350 		goto identify_page_state;
2351 
2352 	/*
2353 	 * It's very difficult to mess with pages currently under IO
2354 	 * and in many cases impossible, so we just avoid it here.
2355 	 */
2356 	wait_on_page_writeback(p);
2357 
2358 	/*
2359 	 * Now take care of user space mappings.
2360 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2361 	 */
2362 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2363 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2364 		goto unlock_page;
2365 	}
2366 
2367 	/*
2368 	 * Torn down by someone else?
2369 	 */
2370 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2371 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2372 		goto unlock_page;
2373 	}
2374 
2375 identify_page_state:
2376 	res = identify_page_state(pfn, p, page_flags);
2377 	mutex_unlock(&mf_mutex);
2378 	return res;
2379 unlock_page:
2380 	unlock_page(p);
2381 unlock_mutex:
2382 	mutex_unlock(&mf_mutex);
2383 	return res;
2384 }
2385 EXPORT_SYMBOL_GPL(memory_failure);
2386 
2387 #define MEMORY_FAILURE_FIFO_ORDER	4
2388 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2389 
2390 struct memory_failure_entry {
2391 	unsigned long pfn;
2392 	int flags;
2393 };
2394 
2395 struct memory_failure_cpu {
2396 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2397 		      MEMORY_FAILURE_FIFO_SIZE);
2398 	raw_spinlock_t lock;
2399 	struct work_struct work;
2400 };
2401 
2402 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2403 
2404 /**
2405  * memory_failure_queue - Schedule handling memory failure of a page.
2406  * @pfn: Page Number of the corrupted page
2407  * @flags: Flags for memory failure handling
2408  *
2409  * This function is called by the low level hardware error handler
2410  * when it detects hardware memory corruption of a page. It schedules
2411  * the recovering of error page, including dropping pages, killing
2412  * processes etc.
2413  *
2414  * The function is primarily of use for corruptions that
2415  * happen outside the current execution context (e.g. when
2416  * detected by a background scrubber)
2417  *
2418  * Can run in IRQ context.
2419  */
2420 void memory_failure_queue(unsigned long pfn, int flags)
2421 {
2422 	struct memory_failure_cpu *mf_cpu;
2423 	unsigned long proc_flags;
2424 	bool buffer_overflow;
2425 	struct memory_failure_entry entry = {
2426 		.pfn =		pfn,
2427 		.flags =	flags,
2428 	};
2429 
2430 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2431 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2432 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2433 	if (!buffer_overflow)
2434 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2435 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2436 	put_cpu_var(memory_failure_cpu);
2437 	if (buffer_overflow)
2438 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2439 		       pfn);
2440 }
2441 EXPORT_SYMBOL_GPL(memory_failure_queue);
2442 
2443 static void memory_failure_work_func(struct work_struct *work)
2444 {
2445 	struct memory_failure_cpu *mf_cpu;
2446 	struct memory_failure_entry entry = { 0, };
2447 	unsigned long proc_flags;
2448 	int gotten;
2449 
2450 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2451 	for (;;) {
2452 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2453 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2454 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2455 		if (!gotten)
2456 			break;
2457 		if (entry.flags & MF_SOFT_OFFLINE)
2458 			soft_offline_page(entry.pfn, entry.flags);
2459 		else
2460 			memory_failure(entry.pfn, entry.flags);
2461 	}
2462 }
2463 
2464 /*
2465  * Process memory_failure work queued on the specified CPU.
2466  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2467  */
2468 void memory_failure_queue_kick(int cpu)
2469 {
2470 	struct memory_failure_cpu *mf_cpu;
2471 
2472 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2473 	cancel_work_sync(&mf_cpu->work);
2474 	memory_failure_work_func(&mf_cpu->work);
2475 }
2476 
2477 static int __init memory_failure_init(void)
2478 {
2479 	struct memory_failure_cpu *mf_cpu;
2480 	int cpu;
2481 
2482 	for_each_possible_cpu(cpu) {
2483 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2484 		raw_spin_lock_init(&mf_cpu->lock);
2485 		INIT_KFIFO(mf_cpu->fifo);
2486 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2487 	}
2488 
2489 	register_sysctl_init("vm", memory_failure_table);
2490 
2491 	return 0;
2492 }
2493 core_initcall(memory_failure_init);
2494 
2495 #undef pr_fmt
2496 #define pr_fmt(fmt)	"" fmt
2497 #define unpoison_pr_info(fmt, pfn, rs)			\
2498 ({							\
2499 	if (__ratelimit(rs))				\
2500 		pr_info(fmt, pfn);			\
2501 })
2502 
2503 /**
2504  * unpoison_memory - Unpoison a previously poisoned page
2505  * @pfn: Page number of the to be unpoisoned page
2506  *
2507  * Software-unpoison a page that has been poisoned by
2508  * memory_failure() earlier.
2509  *
2510  * This is only done on the software-level, so it only works
2511  * for linux injected failures, not real hardware failures
2512  *
2513  * Returns 0 for success, otherwise -errno.
2514  */
2515 int unpoison_memory(unsigned long pfn)
2516 {
2517 	struct folio *folio;
2518 	struct page *p;
2519 	int ret = -EBUSY, ghp;
2520 	unsigned long count = 1;
2521 	bool huge = false;
2522 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2523 					DEFAULT_RATELIMIT_BURST);
2524 
2525 	if (!pfn_valid(pfn))
2526 		return -ENXIO;
2527 
2528 	p = pfn_to_page(pfn);
2529 	folio = page_folio(p);
2530 
2531 	mutex_lock(&mf_mutex);
2532 
2533 	if (hw_memory_failure) {
2534 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2535 				 pfn, &unpoison_rs);
2536 		ret = -EOPNOTSUPP;
2537 		goto unlock_mutex;
2538 	}
2539 
2540 	if (is_huge_zero_page(&folio->page)) {
2541 		unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2542 				 pfn, &unpoison_rs);
2543 		ret = -EOPNOTSUPP;
2544 		goto unlock_mutex;
2545 	}
2546 
2547 	if (!PageHWPoison(p)) {
2548 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2549 				 pfn, &unpoison_rs);
2550 		goto unlock_mutex;
2551 	}
2552 
2553 	if (folio_ref_count(folio) > 1) {
2554 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2555 				 pfn, &unpoison_rs);
2556 		goto unlock_mutex;
2557 	}
2558 
2559 	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2560 	    folio_test_reserved(folio) || PageOffline(&folio->page))
2561 		goto unlock_mutex;
2562 
2563 	/*
2564 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2565 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2566 	 */
2567 	if (folio_mapped(folio)) {
2568 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2569 				 pfn, &unpoison_rs);
2570 		goto unlock_mutex;
2571 	}
2572 
2573 	if (folio_mapping(folio)) {
2574 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2575 				 pfn, &unpoison_rs);
2576 		goto unlock_mutex;
2577 	}
2578 
2579 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2580 	if (!ghp) {
2581 		if (PageHuge(p)) {
2582 			huge = true;
2583 			count = folio_free_raw_hwp(folio, false);
2584 			if (count == 0)
2585 				goto unlock_mutex;
2586 		}
2587 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2588 	} else if (ghp < 0) {
2589 		if (ghp == -EHWPOISON) {
2590 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2591 		} else {
2592 			ret = ghp;
2593 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2594 					 pfn, &unpoison_rs);
2595 		}
2596 	} else {
2597 		if (PageHuge(p)) {
2598 			huge = true;
2599 			count = folio_free_raw_hwp(folio, false);
2600 			if (count == 0) {
2601 				folio_put(folio);
2602 				goto unlock_mutex;
2603 			}
2604 		}
2605 
2606 		folio_put(folio);
2607 		if (TestClearPageHWPoison(p)) {
2608 			folio_put(folio);
2609 			ret = 0;
2610 		}
2611 	}
2612 
2613 unlock_mutex:
2614 	mutex_unlock(&mf_mutex);
2615 	if (!ret) {
2616 		if (!huge)
2617 			num_poisoned_pages_sub(pfn, 1);
2618 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2619 				 page_to_pfn(p), &unpoison_rs);
2620 	}
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL(unpoison_memory);
2624 
2625 static bool isolate_page(struct page *page, struct list_head *pagelist)
2626 {
2627 	bool isolated = false;
2628 
2629 	if (PageHuge(page)) {
2630 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2631 	} else {
2632 		bool lru = !__PageMovable(page);
2633 
2634 		if (lru)
2635 			isolated = isolate_lru_page(page);
2636 		else
2637 			isolated = isolate_movable_page(page,
2638 							ISOLATE_UNEVICTABLE);
2639 
2640 		if (isolated) {
2641 			list_add(&page->lru, pagelist);
2642 			if (lru)
2643 				inc_node_page_state(page, NR_ISOLATED_ANON +
2644 						    page_is_file_lru(page));
2645 		}
2646 	}
2647 
2648 	/*
2649 	 * If we succeed to isolate the page, we grabbed another refcount on
2650 	 * the page, so we can safely drop the one we got from get_any_page().
2651 	 * If we failed to isolate the page, it means that we cannot go further
2652 	 * and we will return an error, so drop the reference we got from
2653 	 * get_any_page() as well.
2654 	 */
2655 	put_page(page);
2656 	return isolated;
2657 }
2658 
2659 /*
2660  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2661  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2662  * If the page is mapped, it migrates the contents over.
2663  */
2664 static int soft_offline_in_use_page(struct page *page)
2665 {
2666 	long ret = 0;
2667 	unsigned long pfn = page_to_pfn(page);
2668 	struct page *hpage = compound_head(page);
2669 	char const *msg_page[] = {"page", "hugepage"};
2670 	bool huge = PageHuge(page);
2671 	LIST_HEAD(pagelist);
2672 	struct migration_target_control mtc = {
2673 		.nid = NUMA_NO_NODE,
2674 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2675 	};
2676 
2677 	if (!huge && PageTransHuge(hpage)) {
2678 		if (try_to_split_thp_page(page)) {
2679 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2680 			return -EBUSY;
2681 		}
2682 		hpage = page;
2683 	}
2684 
2685 	lock_page(page);
2686 	if (!huge)
2687 		wait_on_page_writeback(page);
2688 	if (PageHWPoison(page)) {
2689 		unlock_page(page);
2690 		put_page(page);
2691 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2692 		return 0;
2693 	}
2694 
2695 	if (!huge && PageLRU(page) && !PageSwapCache(page))
2696 		/*
2697 		 * Try to invalidate first. This should work for
2698 		 * non dirty unmapped page cache pages.
2699 		 */
2700 		ret = invalidate_inode_page(page);
2701 	unlock_page(page);
2702 
2703 	if (ret) {
2704 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2705 		page_handle_poison(page, false, true);
2706 		return 0;
2707 	}
2708 
2709 	if (isolate_page(hpage, &pagelist)) {
2710 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2711 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2712 		if (!ret) {
2713 			bool release = !huge;
2714 
2715 			if (!page_handle_poison(page, huge, release))
2716 				ret = -EBUSY;
2717 		} else {
2718 			if (!list_empty(&pagelist))
2719 				putback_movable_pages(&pagelist);
2720 
2721 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2722 				pfn, msg_page[huge], ret, &page->flags);
2723 			if (ret > 0)
2724 				ret = -EBUSY;
2725 		}
2726 	} else {
2727 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2728 			pfn, msg_page[huge], page_count(page), &page->flags);
2729 		ret = -EBUSY;
2730 	}
2731 	return ret;
2732 }
2733 
2734 /**
2735  * soft_offline_page - Soft offline a page.
2736  * @pfn: pfn to soft-offline
2737  * @flags: flags. Same as memory_failure().
2738  *
2739  * Returns 0 on success
2740  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2741  *         < 0 otherwise negated errno.
2742  *
2743  * Soft offline a page, by migration or invalidation,
2744  * without killing anything. This is for the case when
2745  * a page is not corrupted yet (so it's still valid to access),
2746  * but has had a number of corrected errors and is better taken
2747  * out.
2748  *
2749  * The actual policy on when to do that is maintained by
2750  * user space.
2751  *
2752  * This should never impact any application or cause data loss,
2753  * however it might take some time.
2754  *
2755  * This is not a 100% solution for all memory, but tries to be
2756  * ``good enough'' for the majority of memory.
2757  */
2758 int soft_offline_page(unsigned long pfn, int flags)
2759 {
2760 	int ret;
2761 	bool try_again = true;
2762 	struct page *page;
2763 
2764 	if (!pfn_valid(pfn)) {
2765 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2766 		return -ENXIO;
2767 	}
2768 
2769 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2770 	page = pfn_to_online_page(pfn);
2771 	if (!page) {
2772 		put_ref_page(pfn, flags);
2773 		return -EIO;
2774 	}
2775 
2776 	mutex_lock(&mf_mutex);
2777 
2778 	if (PageHWPoison(page)) {
2779 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2780 		put_ref_page(pfn, flags);
2781 		mutex_unlock(&mf_mutex);
2782 		return 0;
2783 	}
2784 
2785 retry:
2786 	get_online_mems();
2787 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2788 	put_online_mems();
2789 
2790 	if (hwpoison_filter(page)) {
2791 		if (ret > 0)
2792 			put_page(page);
2793 
2794 		mutex_unlock(&mf_mutex);
2795 		return -EOPNOTSUPP;
2796 	}
2797 
2798 	if (ret > 0) {
2799 		ret = soft_offline_in_use_page(page);
2800 	} else if (ret == 0) {
2801 		if (!page_handle_poison(page, true, false)) {
2802 			if (try_again) {
2803 				try_again = false;
2804 				flags &= ~MF_COUNT_INCREASED;
2805 				goto retry;
2806 			}
2807 			ret = -EBUSY;
2808 		}
2809 	}
2810 
2811 	mutex_unlock(&mf_mutex);
2812 
2813 	return ret;
2814 }
2815