1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include "swap.h" 66 #include "internal.h" 67 #include "ras/ras_event.h" 68 69 int sysctl_memory_failure_early_kill __read_mostly = 0; 70 71 int sysctl_memory_failure_recovery __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static bool __page_handle_poison(struct page *page) 78 { 79 int ret; 80 81 zone_pcp_disable(page_zone(page)); 82 ret = dissolve_free_huge_page(page); 83 if (!ret) 84 ret = take_page_off_buddy(page); 85 zone_pcp_enable(page_zone(page)); 86 87 return ret > 0; 88 } 89 90 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 91 { 92 if (hugepage_or_freepage) { 93 /* 94 * Doing this check for free pages is also fine since dissolve_free_huge_page 95 * returns 0 for non-hugetlb pages as well. 96 */ 97 if (!__page_handle_poison(page)) 98 /* 99 * We could fail to take off the target page from buddy 100 * for example due to racy page allocation, but that's 101 * acceptable because soft-offlined page is not broken 102 * and if someone really want to use it, they should 103 * take it. 104 */ 105 return false; 106 } 107 108 SetPageHWPoison(page); 109 if (release) 110 put_page(page); 111 page_ref_inc(page); 112 num_poisoned_pages_inc(); 113 114 return true; 115 } 116 117 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 118 119 u32 hwpoison_filter_enable = 0; 120 u32 hwpoison_filter_dev_major = ~0U; 121 u32 hwpoison_filter_dev_minor = ~0U; 122 u64 hwpoison_filter_flags_mask; 123 u64 hwpoison_filter_flags_value; 124 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 125 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 126 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 127 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 128 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 129 130 static int hwpoison_filter_dev(struct page *p) 131 { 132 struct address_space *mapping; 133 dev_t dev; 134 135 if (hwpoison_filter_dev_major == ~0U && 136 hwpoison_filter_dev_minor == ~0U) 137 return 0; 138 139 mapping = page_mapping(p); 140 if (mapping == NULL || mapping->host == NULL) 141 return -EINVAL; 142 143 dev = mapping->host->i_sb->s_dev; 144 if (hwpoison_filter_dev_major != ~0U && 145 hwpoison_filter_dev_major != MAJOR(dev)) 146 return -EINVAL; 147 if (hwpoison_filter_dev_minor != ~0U && 148 hwpoison_filter_dev_minor != MINOR(dev)) 149 return -EINVAL; 150 151 return 0; 152 } 153 154 static int hwpoison_filter_flags(struct page *p) 155 { 156 if (!hwpoison_filter_flags_mask) 157 return 0; 158 159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 160 hwpoison_filter_flags_value) 161 return 0; 162 else 163 return -EINVAL; 164 } 165 166 /* 167 * This allows stress tests to limit test scope to a collection of tasks 168 * by putting them under some memcg. This prevents killing unrelated/important 169 * processes such as /sbin/init. Note that the target task may share clean 170 * pages with init (eg. libc text), which is harmless. If the target task 171 * share _dirty_ pages with another task B, the test scheme must make sure B 172 * is also included in the memcg. At last, due to race conditions this filter 173 * can only guarantee that the page either belongs to the memcg tasks, or is 174 * a freed page. 175 */ 176 #ifdef CONFIG_MEMCG 177 u64 hwpoison_filter_memcg; 178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 179 static int hwpoison_filter_task(struct page *p) 180 { 181 if (!hwpoison_filter_memcg) 182 return 0; 183 184 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 185 return -EINVAL; 186 187 return 0; 188 } 189 #else 190 static int hwpoison_filter_task(struct page *p) { return 0; } 191 #endif 192 193 int hwpoison_filter(struct page *p) 194 { 195 if (!hwpoison_filter_enable) 196 return 0; 197 198 if (hwpoison_filter_dev(p)) 199 return -EINVAL; 200 201 if (hwpoison_filter_flags(p)) 202 return -EINVAL; 203 204 if (hwpoison_filter_task(p)) 205 return -EINVAL; 206 207 return 0; 208 } 209 #else 210 int hwpoison_filter(struct page *p) 211 { 212 return 0; 213 } 214 #endif 215 216 EXPORT_SYMBOL_GPL(hwpoison_filter); 217 218 /* 219 * Kill all processes that have a poisoned page mapped and then isolate 220 * the page. 221 * 222 * General strategy: 223 * Find all processes having the page mapped and kill them. 224 * But we keep a page reference around so that the page is not 225 * actually freed yet. 226 * Then stash the page away 227 * 228 * There's no convenient way to get back to mapped processes 229 * from the VMAs. So do a brute-force search over all 230 * running processes. 231 * 232 * Remember that machine checks are not common (or rather 233 * if they are common you have other problems), so this shouldn't 234 * be a performance issue. 235 * 236 * Also there are some races possible while we get from the 237 * error detection to actually handle it. 238 */ 239 240 struct to_kill { 241 struct list_head nd; 242 struct task_struct *tsk; 243 unsigned long addr; 244 short size_shift; 245 }; 246 247 /* 248 * Send all the processes who have the page mapped a signal. 249 * ``action optional'' if they are not immediately affected by the error 250 * ``action required'' if error happened in current execution context 251 */ 252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 253 { 254 struct task_struct *t = tk->tsk; 255 short addr_lsb = tk->size_shift; 256 int ret = 0; 257 258 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 259 pfn, t->comm, t->pid); 260 261 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 262 ret = force_sig_mceerr(BUS_MCEERR_AR, 263 (void __user *)tk->addr, addr_lsb); 264 else 265 /* 266 * Signal other processes sharing the page if they have 267 * PF_MCE_EARLY set. 268 * Don't use force here, it's convenient if the signal 269 * can be temporarily blocked. 270 * This could cause a loop when the user sets SIGBUS 271 * to SIG_IGN, but hopefully no one will do that? 272 */ 273 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 274 addr_lsb, t); /* synchronous? */ 275 if (ret < 0) 276 pr_info("Error sending signal to %s:%d: %d\n", 277 t->comm, t->pid, ret); 278 return ret; 279 } 280 281 /* 282 * Unknown page type encountered. Try to check whether it can turn PageLRU by 283 * lru_add_drain_all. 284 */ 285 void shake_page(struct page *p) 286 { 287 if (PageHuge(p)) 288 return; 289 290 if (!PageSlab(p)) { 291 lru_add_drain_all(); 292 if (PageLRU(p) || is_free_buddy_page(p)) 293 return; 294 } 295 296 /* 297 * TODO: Could shrink slab caches here if a lightweight range-based 298 * shrinker will be available. 299 */ 300 } 301 EXPORT_SYMBOL_GPL(shake_page); 302 303 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 304 unsigned long address) 305 { 306 unsigned long ret = 0; 307 pgd_t *pgd; 308 p4d_t *p4d; 309 pud_t *pud; 310 pmd_t *pmd; 311 pte_t *pte; 312 313 VM_BUG_ON_VMA(address == -EFAULT, vma); 314 pgd = pgd_offset(vma->vm_mm, address); 315 if (!pgd_present(*pgd)) 316 return 0; 317 p4d = p4d_offset(pgd, address); 318 if (!p4d_present(*p4d)) 319 return 0; 320 pud = pud_offset(p4d, address); 321 if (!pud_present(*pud)) 322 return 0; 323 if (pud_devmap(*pud)) 324 return PUD_SHIFT; 325 pmd = pmd_offset(pud, address); 326 if (!pmd_present(*pmd)) 327 return 0; 328 if (pmd_devmap(*pmd)) 329 return PMD_SHIFT; 330 pte = pte_offset_map(pmd, address); 331 if (pte_present(*pte) && pte_devmap(*pte)) 332 ret = PAGE_SHIFT; 333 pte_unmap(pte); 334 return ret; 335 } 336 337 /* 338 * Failure handling: if we can't find or can't kill a process there's 339 * not much we can do. We just print a message and ignore otherwise. 340 */ 341 342 /* 343 * Schedule a process for later kill. 344 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 345 * 346 * Notice: @fsdax_pgoff is used only when @p is a fsdax page. 347 * In other cases, such as anonymous and file-backend page, the address to be 348 * killed can be caculated by @p itself. 349 */ 350 static void add_to_kill(struct task_struct *tsk, struct page *p, 351 pgoff_t fsdax_pgoff, struct vm_area_struct *vma, 352 struct list_head *to_kill) 353 { 354 struct to_kill *tk; 355 356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 357 if (!tk) { 358 pr_err("Out of memory while machine check handling\n"); 359 return; 360 } 361 362 tk->addr = page_address_in_vma(p, vma); 363 if (is_zone_device_page(p)) { 364 /* 365 * Since page->mapping is not used for fsdax, we need 366 * calculate the address based on the vma. 367 */ 368 if (p->pgmap->type == MEMORY_DEVICE_FS_DAX) 369 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 370 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 371 } else 372 tk->size_shift = page_shift(compound_head(p)); 373 374 /* 375 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 376 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 377 * so "tk->size_shift == 0" effectively checks no mapping on 378 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 379 * to a process' address space, it's possible not all N VMAs 380 * contain mappings for the page, but at least one VMA does. 381 * Only deliver SIGBUS with payload derived from the VMA that 382 * has a mapping for the page. 383 */ 384 if (tk->addr == -EFAULT) { 385 pr_info("Unable to find user space address %lx in %s\n", 386 page_to_pfn(p), tsk->comm); 387 } else if (tk->size_shift == 0) { 388 kfree(tk); 389 return; 390 } 391 392 get_task_struct(tsk); 393 tk->tsk = tsk; 394 list_add_tail(&tk->nd, to_kill); 395 } 396 397 /* 398 * Kill the processes that have been collected earlier. 399 * 400 * Only do anything when FORCEKILL is set, otherwise just free the 401 * list (this is used for clean pages which do not need killing) 402 * Also when FAIL is set do a force kill because something went 403 * wrong earlier. 404 */ 405 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 406 unsigned long pfn, int flags) 407 { 408 struct to_kill *tk, *next; 409 410 list_for_each_entry_safe (tk, next, to_kill, nd) { 411 if (forcekill) { 412 /* 413 * In case something went wrong with munmapping 414 * make sure the process doesn't catch the 415 * signal and then access the memory. Just kill it. 416 */ 417 if (fail || tk->addr == -EFAULT) { 418 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 419 pfn, tk->tsk->comm, tk->tsk->pid); 420 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 421 tk->tsk, PIDTYPE_PID); 422 } 423 424 /* 425 * In theory the process could have mapped 426 * something else on the address in-between. We could 427 * check for that, but we need to tell the 428 * process anyways. 429 */ 430 else if (kill_proc(tk, pfn, flags) < 0) 431 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 432 pfn, tk->tsk->comm, tk->tsk->pid); 433 } 434 put_task_struct(tk->tsk); 435 kfree(tk); 436 } 437 } 438 439 /* 440 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 441 * on behalf of the thread group. Return task_struct of the (first found) 442 * dedicated thread if found, and return NULL otherwise. 443 * 444 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 445 * have to call rcu_read_lock/unlock() in this function. 446 */ 447 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 448 { 449 struct task_struct *t; 450 451 for_each_thread(tsk, t) { 452 if (t->flags & PF_MCE_PROCESS) { 453 if (t->flags & PF_MCE_EARLY) 454 return t; 455 } else { 456 if (sysctl_memory_failure_early_kill) 457 return t; 458 } 459 } 460 return NULL; 461 } 462 463 /* 464 * Determine whether a given process is "early kill" process which expects 465 * to be signaled when some page under the process is hwpoisoned. 466 * Return task_struct of the dedicated thread (main thread unless explicitly 467 * specified) if the process is "early kill" and otherwise returns NULL. 468 * 469 * Note that the above is true for Action Optional case. For Action Required 470 * case, it's only meaningful to the current thread which need to be signaled 471 * with SIGBUS, this error is Action Optional for other non current 472 * processes sharing the same error page,if the process is "early kill", the 473 * task_struct of the dedicated thread will also be returned. 474 */ 475 static struct task_struct *task_early_kill(struct task_struct *tsk, 476 int force_early) 477 { 478 if (!tsk->mm) 479 return NULL; 480 /* 481 * Comparing ->mm here because current task might represent 482 * a subthread, while tsk always points to the main thread. 483 */ 484 if (force_early && tsk->mm == current->mm) 485 return current; 486 487 return find_early_kill_thread(tsk); 488 } 489 490 /* 491 * Collect processes when the error hit an anonymous page. 492 */ 493 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 494 int force_early) 495 { 496 struct folio *folio = page_folio(page); 497 struct vm_area_struct *vma; 498 struct task_struct *tsk; 499 struct anon_vma *av; 500 pgoff_t pgoff; 501 502 av = folio_lock_anon_vma_read(folio, NULL); 503 if (av == NULL) /* Not actually mapped anymore */ 504 return; 505 506 pgoff = page_to_pgoff(page); 507 read_lock(&tasklist_lock); 508 for_each_process (tsk) { 509 struct anon_vma_chain *vmac; 510 struct task_struct *t = task_early_kill(tsk, force_early); 511 512 if (!t) 513 continue; 514 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 515 pgoff, pgoff) { 516 vma = vmac->vma; 517 if (!page_mapped_in_vma(page, vma)) 518 continue; 519 if (vma->vm_mm == t->mm) 520 add_to_kill(t, page, 0, vma, to_kill); 521 } 522 } 523 read_unlock(&tasklist_lock); 524 page_unlock_anon_vma_read(av); 525 } 526 527 /* 528 * Collect processes when the error hit a file mapped page. 529 */ 530 static void collect_procs_file(struct page *page, struct list_head *to_kill, 531 int force_early) 532 { 533 struct vm_area_struct *vma; 534 struct task_struct *tsk; 535 struct address_space *mapping = page->mapping; 536 pgoff_t pgoff; 537 538 i_mmap_lock_read(mapping); 539 read_lock(&tasklist_lock); 540 pgoff = page_to_pgoff(page); 541 for_each_process(tsk) { 542 struct task_struct *t = task_early_kill(tsk, force_early); 543 544 if (!t) 545 continue; 546 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 547 pgoff) { 548 /* 549 * Send early kill signal to tasks where a vma covers 550 * the page but the corrupted page is not necessarily 551 * mapped it in its pte. 552 * Assume applications who requested early kill want 553 * to be informed of all such data corruptions. 554 */ 555 if (vma->vm_mm == t->mm) 556 add_to_kill(t, page, 0, vma, to_kill); 557 } 558 } 559 read_unlock(&tasklist_lock); 560 i_mmap_unlock_read(mapping); 561 } 562 563 #ifdef CONFIG_FS_DAX 564 /* 565 * Collect processes when the error hit a fsdax page. 566 */ 567 static void collect_procs_fsdax(struct page *page, 568 struct address_space *mapping, pgoff_t pgoff, 569 struct list_head *to_kill) 570 { 571 struct vm_area_struct *vma; 572 struct task_struct *tsk; 573 574 i_mmap_lock_read(mapping); 575 read_lock(&tasklist_lock); 576 for_each_process(tsk) { 577 struct task_struct *t = task_early_kill(tsk, true); 578 579 if (!t) 580 continue; 581 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 582 if (vma->vm_mm == t->mm) 583 add_to_kill(t, page, pgoff, vma, to_kill); 584 } 585 } 586 read_unlock(&tasklist_lock); 587 i_mmap_unlock_read(mapping); 588 } 589 #endif /* CONFIG_FS_DAX */ 590 591 /* 592 * Collect the processes who have the corrupted page mapped to kill. 593 */ 594 static void collect_procs(struct page *page, struct list_head *tokill, 595 int force_early) 596 { 597 if (!page->mapping) 598 return; 599 600 if (PageAnon(page)) 601 collect_procs_anon(page, tokill, force_early); 602 else 603 collect_procs_file(page, tokill, force_early); 604 } 605 606 struct hwp_walk { 607 struct to_kill tk; 608 unsigned long pfn; 609 int flags; 610 }; 611 612 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 613 { 614 tk->addr = addr; 615 tk->size_shift = shift; 616 } 617 618 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 619 unsigned long poisoned_pfn, struct to_kill *tk) 620 { 621 unsigned long pfn = 0; 622 623 if (pte_present(pte)) { 624 pfn = pte_pfn(pte); 625 } else { 626 swp_entry_t swp = pte_to_swp_entry(pte); 627 628 if (is_hwpoison_entry(swp)) 629 pfn = hwpoison_entry_to_pfn(swp); 630 } 631 632 if (!pfn || pfn != poisoned_pfn) 633 return 0; 634 635 set_to_kill(tk, addr, shift); 636 return 1; 637 } 638 639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 640 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 641 struct hwp_walk *hwp) 642 { 643 pmd_t pmd = *pmdp; 644 unsigned long pfn; 645 unsigned long hwpoison_vaddr; 646 647 if (!pmd_present(pmd)) 648 return 0; 649 pfn = pmd_pfn(pmd); 650 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 651 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 652 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 653 return 1; 654 } 655 return 0; 656 } 657 #else 658 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 659 struct hwp_walk *hwp) 660 { 661 return 0; 662 } 663 #endif 664 665 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 666 unsigned long end, struct mm_walk *walk) 667 { 668 struct hwp_walk *hwp = walk->private; 669 int ret = 0; 670 pte_t *ptep, *mapped_pte; 671 spinlock_t *ptl; 672 673 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 674 if (ptl) { 675 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 676 spin_unlock(ptl); 677 goto out; 678 } 679 680 if (pmd_trans_unstable(pmdp)) 681 goto out; 682 683 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 684 addr, &ptl); 685 for (; addr != end; ptep++, addr += PAGE_SIZE) { 686 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 687 hwp->pfn, &hwp->tk); 688 if (ret == 1) 689 break; 690 } 691 pte_unmap_unlock(mapped_pte, ptl); 692 out: 693 cond_resched(); 694 return ret; 695 } 696 697 #ifdef CONFIG_HUGETLB_PAGE 698 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 699 unsigned long addr, unsigned long end, 700 struct mm_walk *walk) 701 { 702 struct hwp_walk *hwp = walk->private; 703 pte_t pte = huge_ptep_get(ptep); 704 struct hstate *h = hstate_vma(walk->vma); 705 706 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 707 hwp->pfn, &hwp->tk); 708 } 709 #else 710 #define hwpoison_hugetlb_range NULL 711 #endif 712 713 static const struct mm_walk_ops hwp_walk_ops = { 714 .pmd_entry = hwpoison_pte_range, 715 .hugetlb_entry = hwpoison_hugetlb_range, 716 }; 717 718 /* 719 * Sends SIGBUS to the current process with error info. 720 * 721 * This function is intended to handle "Action Required" MCEs on already 722 * hardware poisoned pages. They could happen, for example, when 723 * memory_failure() failed to unmap the error page at the first call, or 724 * when multiple local machine checks happened on different CPUs. 725 * 726 * MCE handler currently has no easy access to the error virtual address, 727 * so this function walks page table to find it. The returned virtual address 728 * is proper in most cases, but it could be wrong when the application 729 * process has multiple entries mapping the error page. 730 */ 731 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 732 int flags) 733 { 734 int ret; 735 struct hwp_walk priv = { 736 .pfn = pfn, 737 }; 738 priv.tk.tsk = p; 739 740 mmap_read_lock(p->mm); 741 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 742 (void *)&priv); 743 if (ret == 1 && priv.tk.addr) 744 kill_proc(&priv.tk, pfn, flags); 745 else 746 ret = 0; 747 mmap_read_unlock(p->mm); 748 return ret > 0 ? -EHWPOISON : -EFAULT; 749 } 750 751 static const char *action_name[] = { 752 [MF_IGNORED] = "Ignored", 753 [MF_FAILED] = "Failed", 754 [MF_DELAYED] = "Delayed", 755 [MF_RECOVERED] = "Recovered", 756 }; 757 758 static const char * const action_page_types[] = { 759 [MF_MSG_KERNEL] = "reserved kernel page", 760 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 761 [MF_MSG_SLAB] = "kernel slab page", 762 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 763 [MF_MSG_HUGE] = "huge page", 764 [MF_MSG_FREE_HUGE] = "free huge page", 765 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 766 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 767 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 768 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 769 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 770 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 771 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 772 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 773 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 774 [MF_MSG_CLEAN_LRU] = "clean LRU page", 775 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 776 [MF_MSG_BUDDY] = "free buddy page", 777 [MF_MSG_DAX] = "dax page", 778 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 779 [MF_MSG_UNKNOWN] = "unknown page", 780 }; 781 782 /* 783 * XXX: It is possible that a page is isolated from LRU cache, 784 * and then kept in swap cache or failed to remove from page cache. 785 * The page count will stop it from being freed by unpoison. 786 * Stress tests should be aware of this memory leak problem. 787 */ 788 static int delete_from_lru_cache(struct page *p) 789 { 790 if (!isolate_lru_page(p)) { 791 /* 792 * Clear sensible page flags, so that the buddy system won't 793 * complain when the page is unpoison-and-freed. 794 */ 795 ClearPageActive(p); 796 ClearPageUnevictable(p); 797 798 /* 799 * Poisoned page might never drop its ref count to 0 so we have 800 * to uncharge it manually from its memcg. 801 */ 802 mem_cgroup_uncharge(page_folio(p)); 803 804 /* 805 * drop the page count elevated by isolate_lru_page() 806 */ 807 put_page(p); 808 return 0; 809 } 810 return -EIO; 811 } 812 813 static int truncate_error_page(struct page *p, unsigned long pfn, 814 struct address_space *mapping) 815 { 816 int ret = MF_FAILED; 817 818 if (mapping->a_ops->error_remove_page) { 819 int err = mapping->a_ops->error_remove_page(mapping, p); 820 821 if (err != 0) { 822 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 823 } else if (page_has_private(p) && 824 !try_to_release_page(p, GFP_NOIO)) { 825 pr_info("%#lx: failed to release buffers\n", pfn); 826 } else { 827 ret = MF_RECOVERED; 828 } 829 } else { 830 /* 831 * If the file system doesn't support it just invalidate 832 * This fails on dirty or anything with private pages 833 */ 834 if (invalidate_inode_page(p)) 835 ret = MF_RECOVERED; 836 else 837 pr_info("%#lx: Failed to invalidate\n", pfn); 838 } 839 840 return ret; 841 } 842 843 struct page_state { 844 unsigned long mask; 845 unsigned long res; 846 enum mf_action_page_type type; 847 848 /* Callback ->action() has to unlock the relevant page inside it. */ 849 int (*action)(struct page_state *ps, struct page *p); 850 }; 851 852 /* 853 * Return true if page is still referenced by others, otherwise return 854 * false. 855 * 856 * The extra_pins is true when one extra refcount is expected. 857 */ 858 static bool has_extra_refcount(struct page_state *ps, struct page *p, 859 bool extra_pins) 860 { 861 int count = page_count(p) - 1; 862 863 if (extra_pins) 864 count -= 1; 865 866 if (count > 0) { 867 pr_err("%#lx: %s still referenced by %d users\n", 868 page_to_pfn(p), action_page_types[ps->type], count); 869 return true; 870 } 871 872 return false; 873 } 874 875 /* 876 * Error hit kernel page. 877 * Do nothing, try to be lucky and not touch this instead. For a few cases we 878 * could be more sophisticated. 879 */ 880 static int me_kernel(struct page_state *ps, struct page *p) 881 { 882 unlock_page(p); 883 return MF_IGNORED; 884 } 885 886 /* 887 * Page in unknown state. Do nothing. 888 */ 889 static int me_unknown(struct page_state *ps, struct page *p) 890 { 891 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 892 unlock_page(p); 893 return MF_FAILED; 894 } 895 896 /* 897 * Clean (or cleaned) page cache page. 898 */ 899 static int me_pagecache_clean(struct page_state *ps, struct page *p) 900 { 901 int ret; 902 struct address_space *mapping; 903 bool extra_pins; 904 905 delete_from_lru_cache(p); 906 907 /* 908 * For anonymous pages we're done the only reference left 909 * should be the one m_f() holds. 910 */ 911 if (PageAnon(p)) { 912 ret = MF_RECOVERED; 913 goto out; 914 } 915 916 /* 917 * Now truncate the page in the page cache. This is really 918 * more like a "temporary hole punch" 919 * Don't do this for block devices when someone else 920 * has a reference, because it could be file system metadata 921 * and that's not safe to truncate. 922 */ 923 mapping = page_mapping(p); 924 if (!mapping) { 925 /* 926 * Page has been teared down in the meanwhile 927 */ 928 ret = MF_FAILED; 929 goto out; 930 } 931 932 /* 933 * The shmem page is kept in page cache instead of truncating 934 * so is expected to have an extra refcount after error-handling. 935 */ 936 extra_pins = shmem_mapping(mapping); 937 938 /* 939 * Truncation is a bit tricky. Enable it per file system for now. 940 * 941 * Open: to take i_rwsem or not for this? Right now we don't. 942 */ 943 ret = truncate_error_page(p, page_to_pfn(p), mapping); 944 if (has_extra_refcount(ps, p, extra_pins)) 945 ret = MF_FAILED; 946 947 out: 948 unlock_page(p); 949 950 return ret; 951 } 952 953 /* 954 * Dirty pagecache page 955 * Issues: when the error hit a hole page the error is not properly 956 * propagated. 957 */ 958 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 959 { 960 struct address_space *mapping = page_mapping(p); 961 962 SetPageError(p); 963 /* TBD: print more information about the file. */ 964 if (mapping) { 965 /* 966 * IO error will be reported by write(), fsync(), etc. 967 * who check the mapping. 968 * This way the application knows that something went 969 * wrong with its dirty file data. 970 * 971 * There's one open issue: 972 * 973 * The EIO will be only reported on the next IO 974 * operation and then cleared through the IO map. 975 * Normally Linux has two mechanisms to pass IO error 976 * first through the AS_EIO flag in the address space 977 * and then through the PageError flag in the page. 978 * Since we drop pages on memory failure handling the 979 * only mechanism open to use is through AS_AIO. 980 * 981 * This has the disadvantage that it gets cleared on 982 * the first operation that returns an error, while 983 * the PageError bit is more sticky and only cleared 984 * when the page is reread or dropped. If an 985 * application assumes it will always get error on 986 * fsync, but does other operations on the fd before 987 * and the page is dropped between then the error 988 * will not be properly reported. 989 * 990 * This can already happen even without hwpoisoned 991 * pages: first on metadata IO errors (which only 992 * report through AS_EIO) or when the page is dropped 993 * at the wrong time. 994 * 995 * So right now we assume that the application DTRT on 996 * the first EIO, but we're not worse than other parts 997 * of the kernel. 998 */ 999 mapping_set_error(mapping, -EIO); 1000 } 1001 1002 return me_pagecache_clean(ps, p); 1003 } 1004 1005 /* 1006 * Clean and dirty swap cache. 1007 * 1008 * Dirty swap cache page is tricky to handle. The page could live both in page 1009 * cache and swap cache(ie. page is freshly swapped in). So it could be 1010 * referenced concurrently by 2 types of PTEs: 1011 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1012 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 1013 * and then 1014 * - clear dirty bit to prevent IO 1015 * - remove from LRU 1016 * - but keep in the swap cache, so that when we return to it on 1017 * a later page fault, we know the application is accessing 1018 * corrupted data and shall be killed (we installed simple 1019 * interception code in do_swap_page to catch it). 1020 * 1021 * Clean swap cache pages can be directly isolated. A later page fault will 1022 * bring in the known good data from disk. 1023 */ 1024 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1025 { 1026 int ret; 1027 bool extra_pins = false; 1028 1029 ClearPageDirty(p); 1030 /* Trigger EIO in shmem: */ 1031 ClearPageUptodate(p); 1032 1033 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1034 unlock_page(p); 1035 1036 if (ret == MF_DELAYED) 1037 extra_pins = true; 1038 1039 if (has_extra_refcount(ps, p, extra_pins)) 1040 ret = MF_FAILED; 1041 1042 return ret; 1043 } 1044 1045 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1046 { 1047 struct folio *folio = page_folio(p); 1048 int ret; 1049 1050 delete_from_swap_cache(folio); 1051 1052 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1053 folio_unlock(folio); 1054 1055 if (has_extra_refcount(ps, p, false)) 1056 ret = MF_FAILED; 1057 1058 return ret; 1059 } 1060 1061 /* 1062 * Huge pages. Needs work. 1063 * Issues: 1064 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1065 * To narrow down kill region to one page, we need to break up pmd. 1066 */ 1067 static int me_huge_page(struct page_state *ps, struct page *p) 1068 { 1069 int res; 1070 struct page *hpage = compound_head(p); 1071 struct address_space *mapping; 1072 1073 if (!PageHuge(hpage)) 1074 return MF_DELAYED; 1075 1076 mapping = page_mapping(hpage); 1077 if (mapping) { 1078 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1079 unlock_page(hpage); 1080 } else { 1081 res = MF_FAILED; 1082 unlock_page(hpage); 1083 /* 1084 * migration entry prevents later access on error hugepage, 1085 * so we can free and dissolve it into buddy to save healthy 1086 * subpages. 1087 */ 1088 put_page(hpage); 1089 if (__page_handle_poison(p)) { 1090 page_ref_inc(p); 1091 res = MF_RECOVERED; 1092 } 1093 } 1094 1095 if (has_extra_refcount(ps, p, false)) 1096 res = MF_FAILED; 1097 1098 return res; 1099 } 1100 1101 /* 1102 * Various page states we can handle. 1103 * 1104 * A page state is defined by its current page->flags bits. 1105 * The table matches them in order and calls the right handler. 1106 * 1107 * This is quite tricky because we can access page at any time 1108 * in its live cycle, so all accesses have to be extremely careful. 1109 * 1110 * This is not complete. More states could be added. 1111 * For any missing state don't attempt recovery. 1112 */ 1113 1114 #define dirty (1UL << PG_dirty) 1115 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1116 #define unevict (1UL << PG_unevictable) 1117 #define mlock (1UL << PG_mlocked) 1118 #define lru (1UL << PG_lru) 1119 #define head (1UL << PG_head) 1120 #define slab (1UL << PG_slab) 1121 #define reserved (1UL << PG_reserved) 1122 1123 static struct page_state error_states[] = { 1124 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1125 /* 1126 * free pages are specially detected outside this table: 1127 * PG_buddy pages only make a small fraction of all free pages. 1128 */ 1129 1130 /* 1131 * Could in theory check if slab page is free or if we can drop 1132 * currently unused objects without touching them. But just 1133 * treat it as standard kernel for now. 1134 */ 1135 { slab, slab, MF_MSG_SLAB, me_kernel }, 1136 1137 { head, head, MF_MSG_HUGE, me_huge_page }, 1138 1139 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1140 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1141 1142 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1143 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1144 1145 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1146 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1147 1148 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1149 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1150 1151 /* 1152 * Catchall entry: must be at end. 1153 */ 1154 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1155 }; 1156 1157 #undef dirty 1158 #undef sc 1159 #undef unevict 1160 #undef mlock 1161 #undef lru 1162 #undef head 1163 #undef slab 1164 #undef reserved 1165 1166 /* 1167 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1168 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1169 */ 1170 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1171 enum mf_result result) 1172 { 1173 trace_memory_failure_event(pfn, type, result); 1174 1175 num_poisoned_pages_inc(); 1176 pr_err("%#lx: recovery action for %s: %s\n", 1177 pfn, action_page_types[type], action_name[result]); 1178 } 1179 1180 static int page_action(struct page_state *ps, struct page *p, 1181 unsigned long pfn) 1182 { 1183 int result; 1184 1185 /* page p should be unlocked after returning from ps->action(). */ 1186 result = ps->action(ps, p); 1187 1188 action_result(pfn, ps->type, result); 1189 1190 /* Could do more checks here if page looks ok */ 1191 /* 1192 * Could adjust zone counters here to correct for the missing page. 1193 */ 1194 1195 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1196 } 1197 1198 static inline bool PageHWPoisonTakenOff(struct page *page) 1199 { 1200 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1201 } 1202 1203 void SetPageHWPoisonTakenOff(struct page *page) 1204 { 1205 set_page_private(page, MAGIC_HWPOISON); 1206 } 1207 1208 void ClearPageHWPoisonTakenOff(struct page *page) 1209 { 1210 if (PageHWPoison(page)) 1211 set_page_private(page, 0); 1212 } 1213 1214 /* 1215 * Return true if a page type of a given page is supported by hwpoison 1216 * mechanism (while handling could fail), otherwise false. This function 1217 * does not return true for hugetlb or device memory pages, so it's assumed 1218 * to be called only in the context where we never have such pages. 1219 */ 1220 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1221 { 1222 /* Soft offline could migrate non-LRU movable pages */ 1223 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1224 return true; 1225 1226 return PageLRU(page) || is_free_buddy_page(page); 1227 } 1228 1229 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1230 { 1231 struct page *head = compound_head(page); 1232 int ret = 0; 1233 bool hugetlb = false; 1234 1235 ret = get_hwpoison_huge_page(head, &hugetlb); 1236 if (hugetlb) 1237 return ret; 1238 1239 /* 1240 * This check prevents from calling get_hwpoison_unless_zero() 1241 * for any unsupported type of page in order to reduce the risk of 1242 * unexpected races caused by taking a page refcount. 1243 */ 1244 if (!HWPoisonHandlable(head, flags)) 1245 return -EBUSY; 1246 1247 if (get_page_unless_zero(head)) { 1248 if (head == compound_head(page)) 1249 return 1; 1250 1251 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1252 put_page(head); 1253 } 1254 1255 return 0; 1256 } 1257 1258 static int get_any_page(struct page *p, unsigned long flags) 1259 { 1260 int ret = 0, pass = 0; 1261 bool count_increased = false; 1262 1263 if (flags & MF_COUNT_INCREASED) 1264 count_increased = true; 1265 1266 try_again: 1267 if (!count_increased) { 1268 ret = __get_hwpoison_page(p, flags); 1269 if (!ret) { 1270 if (page_count(p)) { 1271 /* We raced with an allocation, retry. */ 1272 if (pass++ < 3) 1273 goto try_again; 1274 ret = -EBUSY; 1275 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1276 /* We raced with put_page, retry. */ 1277 if (pass++ < 3) 1278 goto try_again; 1279 ret = -EIO; 1280 } 1281 goto out; 1282 } else if (ret == -EBUSY) { 1283 /* 1284 * We raced with (possibly temporary) unhandlable 1285 * page, retry. 1286 */ 1287 if (pass++ < 3) { 1288 shake_page(p); 1289 goto try_again; 1290 } 1291 ret = -EIO; 1292 goto out; 1293 } 1294 } 1295 1296 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1297 ret = 1; 1298 } else { 1299 /* 1300 * A page we cannot handle. Check whether we can turn 1301 * it into something we can handle. 1302 */ 1303 if (pass++ < 3) { 1304 put_page(p); 1305 shake_page(p); 1306 count_increased = false; 1307 goto try_again; 1308 } 1309 put_page(p); 1310 ret = -EIO; 1311 } 1312 out: 1313 if (ret == -EIO) 1314 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1315 1316 return ret; 1317 } 1318 1319 static int __get_unpoison_page(struct page *page) 1320 { 1321 struct page *head = compound_head(page); 1322 int ret = 0; 1323 bool hugetlb = false; 1324 1325 ret = get_hwpoison_huge_page(head, &hugetlb); 1326 if (hugetlb) 1327 return ret; 1328 1329 /* 1330 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1331 * but also isolated from buddy freelist, so need to identify the 1332 * state and have to cancel both operations to unpoison. 1333 */ 1334 if (PageHWPoisonTakenOff(page)) 1335 return -EHWPOISON; 1336 1337 return get_page_unless_zero(page) ? 1 : 0; 1338 } 1339 1340 /** 1341 * get_hwpoison_page() - Get refcount for memory error handling 1342 * @p: Raw error page (hit by memory error) 1343 * @flags: Flags controlling behavior of error handling 1344 * 1345 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1346 * error on it, after checking that the error page is in a well-defined state 1347 * (defined as a page-type we can successfully handle the memory error on it, 1348 * such as LRU page and hugetlb page). 1349 * 1350 * Memory error handling could be triggered at any time on any type of page, 1351 * so it's prone to race with typical memory management lifecycle (like 1352 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1353 * extra care for the error page's state (as done in __get_hwpoison_page()), 1354 * and has some retry logic in get_any_page(). 1355 * 1356 * When called from unpoison_memory(), the caller should already ensure that 1357 * the given page has PG_hwpoison. So it's never reused for other page 1358 * allocations, and __get_unpoison_page() never races with them. 1359 * 1360 * Return: 0 on failure, 1361 * 1 on success for in-use pages in a well-defined state, 1362 * -EIO for pages on which we can not handle memory errors, 1363 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1364 * operations like allocation and free, 1365 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1366 */ 1367 static int get_hwpoison_page(struct page *p, unsigned long flags) 1368 { 1369 int ret; 1370 1371 zone_pcp_disable(page_zone(p)); 1372 if (flags & MF_UNPOISON) 1373 ret = __get_unpoison_page(p); 1374 else 1375 ret = get_any_page(p, flags); 1376 zone_pcp_enable(page_zone(p)); 1377 1378 return ret; 1379 } 1380 1381 /* 1382 * Do all that is necessary to remove user space mappings. Unmap 1383 * the pages and send SIGBUS to the processes if the data was dirty. 1384 */ 1385 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1386 int flags, struct page *hpage) 1387 { 1388 struct folio *folio = page_folio(hpage); 1389 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1390 struct address_space *mapping; 1391 LIST_HEAD(tokill); 1392 bool unmap_success; 1393 int kill = 1, forcekill; 1394 bool mlocked = PageMlocked(hpage); 1395 1396 /* 1397 * Here we are interested only in user-mapped pages, so skip any 1398 * other types of pages. 1399 */ 1400 if (PageReserved(p) || PageSlab(p)) 1401 return true; 1402 if (!(PageLRU(hpage) || PageHuge(p))) 1403 return true; 1404 1405 /* 1406 * This check implies we don't kill processes if their pages 1407 * are in the swap cache early. Those are always late kills. 1408 */ 1409 if (!page_mapped(hpage)) 1410 return true; 1411 1412 if (PageKsm(p)) { 1413 pr_err("%#lx: can't handle KSM pages.\n", pfn); 1414 return false; 1415 } 1416 1417 if (PageSwapCache(p)) { 1418 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1419 ttu |= TTU_IGNORE_HWPOISON; 1420 } 1421 1422 /* 1423 * Propagate the dirty bit from PTEs to struct page first, because we 1424 * need this to decide if we should kill or just drop the page. 1425 * XXX: the dirty test could be racy: set_page_dirty() may not always 1426 * be called inside page lock (it's recommended but not enforced). 1427 */ 1428 mapping = page_mapping(hpage); 1429 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1430 mapping_can_writeback(mapping)) { 1431 if (page_mkclean(hpage)) { 1432 SetPageDirty(hpage); 1433 } else { 1434 kill = 0; 1435 ttu |= TTU_IGNORE_HWPOISON; 1436 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1437 pfn); 1438 } 1439 } 1440 1441 /* 1442 * First collect all the processes that have the page 1443 * mapped in dirty form. This has to be done before try_to_unmap, 1444 * because ttu takes the rmap data structures down. 1445 * 1446 * Error handling: We ignore errors here because 1447 * there's nothing that can be done. 1448 */ 1449 if (kill) 1450 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1451 1452 if (PageHuge(hpage) && !PageAnon(hpage)) { 1453 /* 1454 * For hugetlb pages in shared mappings, try_to_unmap 1455 * could potentially call huge_pmd_unshare. Because of 1456 * this, take semaphore in write mode here and set 1457 * TTU_RMAP_LOCKED to indicate we have taken the lock 1458 * at this higher level. 1459 */ 1460 mapping = hugetlb_page_mapping_lock_write(hpage); 1461 if (mapping) { 1462 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1463 i_mmap_unlock_write(mapping); 1464 } else 1465 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1466 } else { 1467 try_to_unmap(folio, ttu); 1468 } 1469 1470 unmap_success = !page_mapped(hpage); 1471 if (!unmap_success) 1472 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1473 pfn, page_mapcount(hpage)); 1474 1475 /* 1476 * try_to_unmap() might put mlocked page in lru cache, so call 1477 * shake_page() again to ensure that it's flushed. 1478 */ 1479 if (mlocked) 1480 shake_page(hpage); 1481 1482 /* 1483 * Now that the dirty bit has been propagated to the 1484 * struct page and all unmaps done we can decide if 1485 * killing is needed or not. Only kill when the page 1486 * was dirty or the process is not restartable, 1487 * otherwise the tokill list is merely 1488 * freed. When there was a problem unmapping earlier 1489 * use a more force-full uncatchable kill to prevent 1490 * any accesses to the poisoned memory. 1491 */ 1492 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1493 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1494 1495 return unmap_success; 1496 } 1497 1498 static int identify_page_state(unsigned long pfn, struct page *p, 1499 unsigned long page_flags) 1500 { 1501 struct page_state *ps; 1502 1503 /* 1504 * The first check uses the current page flags which may not have any 1505 * relevant information. The second check with the saved page flags is 1506 * carried out only if the first check can't determine the page status. 1507 */ 1508 for (ps = error_states;; ps++) 1509 if ((p->flags & ps->mask) == ps->res) 1510 break; 1511 1512 page_flags |= (p->flags & (1UL << PG_dirty)); 1513 1514 if (!ps->mask) 1515 for (ps = error_states;; ps++) 1516 if ((page_flags & ps->mask) == ps->res) 1517 break; 1518 return page_action(ps, p, pfn); 1519 } 1520 1521 static int try_to_split_thp_page(struct page *page, const char *msg) 1522 { 1523 lock_page(page); 1524 if (unlikely(split_huge_page(page))) { 1525 unsigned long pfn = page_to_pfn(page); 1526 1527 unlock_page(page); 1528 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1529 put_page(page); 1530 return -EBUSY; 1531 } 1532 unlock_page(page); 1533 1534 return 0; 1535 } 1536 1537 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1538 struct address_space *mapping, pgoff_t index, int flags) 1539 { 1540 struct to_kill *tk; 1541 unsigned long size = 0; 1542 1543 list_for_each_entry(tk, to_kill, nd) 1544 if (tk->size_shift) 1545 size = max(size, 1UL << tk->size_shift); 1546 1547 if (size) { 1548 /* 1549 * Unmap the largest mapping to avoid breaking up device-dax 1550 * mappings which are constant size. The actual size of the 1551 * mapping being torn down is communicated in siginfo, see 1552 * kill_proc() 1553 */ 1554 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1555 1556 unmap_mapping_range(mapping, start, size, 0); 1557 } 1558 1559 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1560 } 1561 1562 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1563 struct dev_pagemap *pgmap) 1564 { 1565 struct page *page = pfn_to_page(pfn); 1566 LIST_HEAD(to_kill); 1567 dax_entry_t cookie; 1568 int rc = 0; 1569 1570 /* 1571 * Pages instantiated by device-dax (not filesystem-dax) 1572 * may be compound pages. 1573 */ 1574 page = compound_head(page); 1575 1576 /* 1577 * Prevent the inode from being freed while we are interrogating 1578 * the address_space, typically this would be handled by 1579 * lock_page(), but dax pages do not use the page lock. This 1580 * also prevents changes to the mapping of this pfn until 1581 * poison signaling is complete. 1582 */ 1583 cookie = dax_lock_page(page); 1584 if (!cookie) 1585 return -EBUSY; 1586 1587 if (hwpoison_filter(page)) { 1588 rc = -EOPNOTSUPP; 1589 goto unlock; 1590 } 1591 1592 switch (pgmap->type) { 1593 case MEMORY_DEVICE_PRIVATE: 1594 case MEMORY_DEVICE_COHERENT: 1595 /* 1596 * TODO: Handle device pages which may need coordination 1597 * with device-side memory. 1598 */ 1599 rc = -ENXIO; 1600 goto unlock; 1601 default: 1602 break; 1603 } 1604 1605 /* 1606 * Use this flag as an indication that the dax page has been 1607 * remapped UC to prevent speculative consumption of poison. 1608 */ 1609 SetPageHWPoison(page); 1610 1611 /* 1612 * Unlike System-RAM there is no possibility to swap in a 1613 * different physical page at a given virtual address, so all 1614 * userspace consumption of ZONE_DEVICE memory necessitates 1615 * SIGBUS (i.e. MF_MUST_KILL) 1616 */ 1617 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1618 collect_procs(page, &to_kill, true); 1619 1620 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1621 unlock: 1622 dax_unlock_page(page, cookie); 1623 return rc; 1624 } 1625 1626 #ifdef CONFIG_FS_DAX 1627 /** 1628 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1629 * @mapping: address_space of the file in use 1630 * @index: start pgoff of the range within the file 1631 * @count: length of the range, in unit of PAGE_SIZE 1632 * @mf_flags: memory failure flags 1633 */ 1634 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1635 unsigned long count, int mf_flags) 1636 { 1637 LIST_HEAD(to_kill); 1638 dax_entry_t cookie; 1639 struct page *page; 1640 size_t end = index + count; 1641 1642 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1643 1644 for (; index < end; index++) { 1645 page = NULL; 1646 cookie = dax_lock_mapping_entry(mapping, index, &page); 1647 if (!cookie) 1648 return -EBUSY; 1649 if (!page) 1650 goto unlock; 1651 1652 SetPageHWPoison(page); 1653 1654 collect_procs_fsdax(page, mapping, index, &to_kill); 1655 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1656 index, mf_flags); 1657 unlock: 1658 dax_unlock_mapping_entry(mapping, index, cookie); 1659 } 1660 return 0; 1661 } 1662 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1663 #endif /* CONFIG_FS_DAX */ 1664 1665 /* 1666 * Called from hugetlb code with hugetlb_lock held. 1667 * 1668 * Return values: 1669 * 0 - free hugepage 1670 * 1 - in-use hugepage 1671 * 2 - not a hugepage 1672 * -EBUSY - the hugepage is busy (try to retry) 1673 * -EHWPOISON - the hugepage is already hwpoisoned 1674 */ 1675 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1676 { 1677 struct page *page = pfn_to_page(pfn); 1678 struct page *head = compound_head(page); 1679 int ret = 2; /* fallback to normal page handling */ 1680 bool count_increased = false; 1681 1682 if (!PageHeadHuge(head)) 1683 goto out; 1684 1685 if (flags & MF_COUNT_INCREASED) { 1686 ret = 1; 1687 count_increased = true; 1688 } else if (HPageFreed(head)) { 1689 ret = 0; 1690 } else if (HPageMigratable(head)) { 1691 ret = get_page_unless_zero(head); 1692 if (ret) 1693 count_increased = true; 1694 } else { 1695 ret = -EBUSY; 1696 goto out; 1697 } 1698 1699 if (TestSetPageHWPoison(head)) { 1700 ret = -EHWPOISON; 1701 goto out; 1702 } 1703 1704 return ret; 1705 out: 1706 if (count_increased) 1707 put_page(head); 1708 return ret; 1709 } 1710 1711 #ifdef CONFIG_HUGETLB_PAGE 1712 /* 1713 * Taking refcount of hugetlb pages needs extra care about race conditions 1714 * with basic operations like hugepage allocation/free/demotion. 1715 * So some of prechecks for hwpoison (pinning, and testing/setting 1716 * PageHWPoison) should be done in single hugetlb_lock range. 1717 */ 1718 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1719 { 1720 int res; 1721 struct page *p = pfn_to_page(pfn); 1722 struct page *head; 1723 unsigned long page_flags; 1724 bool retry = true; 1725 1726 *hugetlb = 1; 1727 retry: 1728 res = get_huge_page_for_hwpoison(pfn, flags); 1729 if (res == 2) { /* fallback to normal page handling */ 1730 *hugetlb = 0; 1731 return 0; 1732 } else if (res == -EHWPOISON) { 1733 pr_err("%#lx: already hardware poisoned\n", pfn); 1734 if (flags & MF_ACTION_REQUIRED) { 1735 head = compound_head(p); 1736 res = kill_accessing_process(current, page_to_pfn(head), flags); 1737 } 1738 return res; 1739 } else if (res == -EBUSY) { 1740 if (retry) { 1741 retry = false; 1742 goto retry; 1743 } 1744 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1745 return res; 1746 } 1747 1748 head = compound_head(p); 1749 lock_page(head); 1750 1751 if (hwpoison_filter(p)) { 1752 ClearPageHWPoison(head); 1753 res = -EOPNOTSUPP; 1754 goto out; 1755 } 1756 1757 /* 1758 * Handling free hugepage. The possible race with hugepage allocation 1759 * or demotion can be prevented by PageHWPoison flag. 1760 */ 1761 if (res == 0) { 1762 unlock_page(head); 1763 res = MF_FAILED; 1764 if (__page_handle_poison(p)) { 1765 page_ref_inc(p); 1766 res = MF_RECOVERED; 1767 } 1768 action_result(pfn, MF_MSG_FREE_HUGE, res); 1769 return res == MF_RECOVERED ? 0 : -EBUSY; 1770 } 1771 1772 page_flags = head->flags; 1773 1774 /* 1775 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1776 * simply disable it. In order to make it work properly, we need 1777 * make sure that: 1778 * - conversion of a pud that maps an error hugetlb into hwpoison 1779 * entry properly works, and 1780 * - other mm code walking over page table is aware of pud-aligned 1781 * hwpoison entries. 1782 */ 1783 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1784 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1785 res = -EBUSY; 1786 goto out; 1787 } 1788 1789 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1790 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1791 res = -EBUSY; 1792 goto out; 1793 } 1794 1795 return identify_page_state(pfn, p, page_flags); 1796 out: 1797 unlock_page(head); 1798 return res; 1799 } 1800 1801 #else 1802 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1803 { 1804 return 0; 1805 } 1806 1807 #endif /* CONFIG_HUGETLB_PAGE */ 1808 1809 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1810 struct dev_pagemap *pgmap) 1811 { 1812 struct page *page = pfn_to_page(pfn); 1813 int rc = -ENXIO; 1814 1815 if (flags & MF_COUNT_INCREASED) 1816 /* 1817 * Drop the extra refcount in case we come from madvise(). 1818 */ 1819 put_page(page); 1820 1821 /* device metadata space is not recoverable */ 1822 if (!pgmap_pfn_valid(pgmap, pfn)) 1823 goto out; 1824 1825 /* 1826 * Call driver's implementation to handle the memory failure, otherwise 1827 * fall back to generic handler. 1828 */ 1829 if (pgmap->ops->memory_failure) { 1830 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 1831 /* 1832 * Fall back to generic handler too if operation is not 1833 * supported inside the driver/device/filesystem. 1834 */ 1835 if (rc != -EOPNOTSUPP) 1836 goto out; 1837 } 1838 1839 rc = mf_generic_kill_procs(pfn, flags, pgmap); 1840 out: 1841 /* drop pgmap ref acquired in caller */ 1842 put_dev_pagemap(pgmap); 1843 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1844 return rc; 1845 } 1846 1847 static DEFINE_MUTEX(mf_mutex); 1848 1849 /** 1850 * memory_failure - Handle memory failure of a page. 1851 * @pfn: Page Number of the corrupted page 1852 * @flags: fine tune action taken 1853 * 1854 * This function is called by the low level machine check code 1855 * of an architecture when it detects hardware memory corruption 1856 * of a page. It tries its best to recover, which includes 1857 * dropping pages, killing processes etc. 1858 * 1859 * The function is primarily of use for corruptions that 1860 * happen outside the current execution context (e.g. when 1861 * detected by a background scrubber) 1862 * 1863 * Must run in process context (e.g. a work queue) with interrupts 1864 * enabled and no spinlocks hold. 1865 * 1866 * Return: 0 for successfully handled the memory error, 1867 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 1868 * < 0(except -EOPNOTSUPP) on failure. 1869 */ 1870 int memory_failure(unsigned long pfn, int flags) 1871 { 1872 struct page *p; 1873 struct page *hpage; 1874 struct dev_pagemap *pgmap; 1875 int res = 0; 1876 unsigned long page_flags; 1877 bool retry = true; 1878 int hugetlb = 0; 1879 1880 if (!sysctl_memory_failure_recovery) 1881 panic("Memory failure on page %lx", pfn); 1882 1883 mutex_lock(&mf_mutex); 1884 1885 if (!(flags & MF_SW_SIMULATED)) 1886 hw_memory_failure = true; 1887 1888 p = pfn_to_online_page(pfn); 1889 if (!p) { 1890 res = arch_memory_failure(pfn, flags); 1891 if (res == 0) 1892 goto unlock_mutex; 1893 1894 if (pfn_valid(pfn)) { 1895 pgmap = get_dev_pagemap(pfn, NULL); 1896 if (pgmap) { 1897 res = memory_failure_dev_pagemap(pfn, flags, 1898 pgmap); 1899 goto unlock_mutex; 1900 } 1901 } 1902 pr_err("%#lx: memory outside kernel control\n", pfn); 1903 res = -ENXIO; 1904 goto unlock_mutex; 1905 } 1906 1907 try_again: 1908 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 1909 if (hugetlb) 1910 goto unlock_mutex; 1911 1912 if (TestSetPageHWPoison(p)) { 1913 pr_err("%#lx: already hardware poisoned\n", pfn); 1914 res = -EHWPOISON; 1915 if (flags & MF_ACTION_REQUIRED) 1916 res = kill_accessing_process(current, pfn, flags); 1917 if (flags & MF_COUNT_INCREASED) 1918 put_page(p); 1919 goto unlock_mutex; 1920 } 1921 1922 hpage = compound_head(p); 1923 1924 /* 1925 * We need/can do nothing about count=0 pages. 1926 * 1) it's a free page, and therefore in safe hand: 1927 * prep_new_page() will be the gate keeper. 1928 * 2) it's part of a non-compound high order page. 1929 * Implies some kernel user: cannot stop them from 1930 * R/W the page; let's pray that the page has been 1931 * used and will be freed some time later. 1932 * In fact it's dangerous to directly bump up page count from 0, 1933 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1934 */ 1935 if (!(flags & MF_COUNT_INCREASED)) { 1936 res = get_hwpoison_page(p, flags); 1937 if (!res) { 1938 if (is_free_buddy_page(p)) { 1939 if (take_page_off_buddy(p)) { 1940 page_ref_inc(p); 1941 res = MF_RECOVERED; 1942 } else { 1943 /* We lost the race, try again */ 1944 if (retry) { 1945 ClearPageHWPoison(p); 1946 retry = false; 1947 goto try_again; 1948 } 1949 res = MF_FAILED; 1950 } 1951 action_result(pfn, MF_MSG_BUDDY, res); 1952 res = res == MF_RECOVERED ? 0 : -EBUSY; 1953 } else { 1954 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1955 res = -EBUSY; 1956 } 1957 goto unlock_mutex; 1958 } else if (res < 0) { 1959 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1960 res = -EBUSY; 1961 goto unlock_mutex; 1962 } 1963 } 1964 1965 if (PageTransHuge(hpage)) { 1966 /* 1967 * The flag must be set after the refcount is bumped 1968 * otherwise it may race with THP split. 1969 * And the flag can't be set in get_hwpoison_page() since 1970 * it is called by soft offline too and it is just called 1971 * for !MF_COUNT_INCREASE. So here seems to be the best 1972 * place. 1973 * 1974 * Don't need care about the above error handling paths for 1975 * get_hwpoison_page() since they handle either free page 1976 * or unhandlable page. The refcount is bumped iff the 1977 * page is a valid handlable page. 1978 */ 1979 SetPageHasHWPoisoned(hpage); 1980 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1981 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1982 res = -EBUSY; 1983 goto unlock_mutex; 1984 } 1985 VM_BUG_ON_PAGE(!page_count(p), p); 1986 } 1987 1988 /* 1989 * We ignore non-LRU pages for good reasons. 1990 * - PG_locked is only well defined for LRU pages and a few others 1991 * - to avoid races with __SetPageLocked() 1992 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1993 * The check (unnecessarily) ignores LRU pages being isolated and 1994 * walked by the page reclaim code, however that's not a big loss. 1995 */ 1996 shake_page(p); 1997 1998 lock_page(p); 1999 2000 /* 2001 * We're only intended to deal with the non-Compound page here. 2002 * However, the page could have changed compound pages due to 2003 * race window. If this happens, we could try again to hopefully 2004 * handle the page next round. 2005 */ 2006 if (PageCompound(p)) { 2007 if (retry) { 2008 ClearPageHWPoison(p); 2009 unlock_page(p); 2010 put_page(p); 2011 flags &= ~MF_COUNT_INCREASED; 2012 retry = false; 2013 goto try_again; 2014 } 2015 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2016 res = -EBUSY; 2017 goto unlock_page; 2018 } 2019 2020 /* 2021 * We use page flags to determine what action should be taken, but 2022 * the flags can be modified by the error containment action. One 2023 * example is an mlocked page, where PG_mlocked is cleared by 2024 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2025 * correctly, we save a copy of the page flags at this time. 2026 */ 2027 page_flags = p->flags; 2028 2029 if (hwpoison_filter(p)) { 2030 TestClearPageHWPoison(p); 2031 unlock_page(p); 2032 put_page(p); 2033 res = -EOPNOTSUPP; 2034 goto unlock_mutex; 2035 } 2036 2037 /* 2038 * __munlock_pagevec may clear a writeback page's LRU flag without 2039 * page_lock. We need wait writeback completion for this page or it 2040 * may trigger vfs BUG while evict inode. 2041 */ 2042 if (!PageLRU(p) && !PageWriteback(p)) 2043 goto identify_page_state; 2044 2045 /* 2046 * It's very difficult to mess with pages currently under IO 2047 * and in many cases impossible, so we just avoid it here. 2048 */ 2049 wait_on_page_writeback(p); 2050 2051 /* 2052 * Now take care of user space mappings. 2053 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2054 */ 2055 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2056 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2057 res = -EBUSY; 2058 goto unlock_page; 2059 } 2060 2061 /* 2062 * Torn down by someone else? 2063 */ 2064 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2065 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2066 res = -EBUSY; 2067 goto unlock_page; 2068 } 2069 2070 identify_page_state: 2071 res = identify_page_state(pfn, p, page_flags); 2072 mutex_unlock(&mf_mutex); 2073 return res; 2074 unlock_page: 2075 unlock_page(p); 2076 unlock_mutex: 2077 mutex_unlock(&mf_mutex); 2078 return res; 2079 } 2080 EXPORT_SYMBOL_GPL(memory_failure); 2081 2082 #define MEMORY_FAILURE_FIFO_ORDER 4 2083 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2084 2085 struct memory_failure_entry { 2086 unsigned long pfn; 2087 int flags; 2088 }; 2089 2090 struct memory_failure_cpu { 2091 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2092 MEMORY_FAILURE_FIFO_SIZE); 2093 spinlock_t lock; 2094 struct work_struct work; 2095 }; 2096 2097 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2098 2099 /** 2100 * memory_failure_queue - Schedule handling memory failure of a page. 2101 * @pfn: Page Number of the corrupted page 2102 * @flags: Flags for memory failure handling 2103 * 2104 * This function is called by the low level hardware error handler 2105 * when it detects hardware memory corruption of a page. It schedules 2106 * the recovering of error page, including dropping pages, killing 2107 * processes etc. 2108 * 2109 * The function is primarily of use for corruptions that 2110 * happen outside the current execution context (e.g. when 2111 * detected by a background scrubber) 2112 * 2113 * Can run in IRQ context. 2114 */ 2115 void memory_failure_queue(unsigned long pfn, int flags) 2116 { 2117 struct memory_failure_cpu *mf_cpu; 2118 unsigned long proc_flags; 2119 struct memory_failure_entry entry = { 2120 .pfn = pfn, 2121 .flags = flags, 2122 }; 2123 2124 mf_cpu = &get_cpu_var(memory_failure_cpu); 2125 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2126 if (kfifo_put(&mf_cpu->fifo, entry)) 2127 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2128 else 2129 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2130 pfn); 2131 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2132 put_cpu_var(memory_failure_cpu); 2133 } 2134 EXPORT_SYMBOL_GPL(memory_failure_queue); 2135 2136 static void memory_failure_work_func(struct work_struct *work) 2137 { 2138 struct memory_failure_cpu *mf_cpu; 2139 struct memory_failure_entry entry = { 0, }; 2140 unsigned long proc_flags; 2141 int gotten; 2142 2143 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2144 for (;;) { 2145 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2146 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2147 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2148 if (!gotten) 2149 break; 2150 if (entry.flags & MF_SOFT_OFFLINE) 2151 soft_offline_page(entry.pfn, entry.flags); 2152 else 2153 memory_failure(entry.pfn, entry.flags); 2154 } 2155 } 2156 2157 /* 2158 * Process memory_failure work queued on the specified CPU. 2159 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2160 */ 2161 void memory_failure_queue_kick(int cpu) 2162 { 2163 struct memory_failure_cpu *mf_cpu; 2164 2165 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2166 cancel_work_sync(&mf_cpu->work); 2167 memory_failure_work_func(&mf_cpu->work); 2168 } 2169 2170 static int __init memory_failure_init(void) 2171 { 2172 struct memory_failure_cpu *mf_cpu; 2173 int cpu; 2174 2175 for_each_possible_cpu(cpu) { 2176 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2177 spin_lock_init(&mf_cpu->lock); 2178 INIT_KFIFO(mf_cpu->fifo); 2179 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2180 } 2181 2182 return 0; 2183 } 2184 core_initcall(memory_failure_init); 2185 2186 #undef pr_fmt 2187 #define pr_fmt(fmt) "" fmt 2188 #define unpoison_pr_info(fmt, pfn, rs) \ 2189 ({ \ 2190 if (__ratelimit(rs)) \ 2191 pr_info(fmt, pfn); \ 2192 }) 2193 2194 /** 2195 * unpoison_memory - Unpoison a previously poisoned page 2196 * @pfn: Page number of the to be unpoisoned page 2197 * 2198 * Software-unpoison a page that has been poisoned by 2199 * memory_failure() earlier. 2200 * 2201 * This is only done on the software-level, so it only works 2202 * for linux injected failures, not real hardware failures 2203 * 2204 * Returns 0 for success, otherwise -errno. 2205 */ 2206 int unpoison_memory(unsigned long pfn) 2207 { 2208 struct page *page; 2209 struct page *p; 2210 int ret = -EBUSY; 2211 int freeit = 0; 2212 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2213 DEFAULT_RATELIMIT_BURST); 2214 2215 if (!pfn_valid(pfn)) 2216 return -ENXIO; 2217 2218 p = pfn_to_page(pfn); 2219 page = compound_head(p); 2220 2221 mutex_lock(&mf_mutex); 2222 2223 if (hw_memory_failure) { 2224 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2225 pfn, &unpoison_rs); 2226 ret = -EOPNOTSUPP; 2227 goto unlock_mutex; 2228 } 2229 2230 if (!PageHWPoison(p)) { 2231 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2232 pfn, &unpoison_rs); 2233 goto unlock_mutex; 2234 } 2235 2236 if (page_count(page) > 1) { 2237 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2238 pfn, &unpoison_rs); 2239 goto unlock_mutex; 2240 } 2241 2242 if (page_mapped(page)) { 2243 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2244 pfn, &unpoison_rs); 2245 goto unlock_mutex; 2246 } 2247 2248 if (page_mapping(page)) { 2249 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2250 pfn, &unpoison_rs); 2251 goto unlock_mutex; 2252 } 2253 2254 if (PageSlab(page) || PageTable(page)) 2255 goto unlock_mutex; 2256 2257 ret = get_hwpoison_page(p, MF_UNPOISON); 2258 if (!ret) { 2259 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; 2260 } else if (ret < 0) { 2261 if (ret == -EHWPOISON) { 2262 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2263 } else 2264 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2265 pfn, &unpoison_rs); 2266 } else { 2267 freeit = !!TestClearPageHWPoison(p); 2268 2269 put_page(page); 2270 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2271 put_page(page); 2272 ret = 0; 2273 } 2274 } 2275 2276 unlock_mutex: 2277 mutex_unlock(&mf_mutex); 2278 if (!ret || freeit) { 2279 num_poisoned_pages_dec(); 2280 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2281 page_to_pfn(p), &unpoison_rs); 2282 } 2283 return ret; 2284 } 2285 EXPORT_SYMBOL(unpoison_memory); 2286 2287 static bool isolate_page(struct page *page, struct list_head *pagelist) 2288 { 2289 bool isolated = false; 2290 bool lru = PageLRU(page); 2291 2292 if (PageHuge(page)) { 2293 isolated = !isolate_hugetlb(page, pagelist); 2294 } else { 2295 if (lru) 2296 isolated = !isolate_lru_page(page); 2297 else 2298 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2299 2300 if (isolated) 2301 list_add(&page->lru, pagelist); 2302 } 2303 2304 if (isolated && lru) 2305 inc_node_page_state(page, NR_ISOLATED_ANON + 2306 page_is_file_lru(page)); 2307 2308 /* 2309 * If we succeed to isolate the page, we grabbed another refcount on 2310 * the page, so we can safely drop the one we got from get_any_pages(). 2311 * If we failed to isolate the page, it means that we cannot go further 2312 * and we will return an error, so drop the reference we got from 2313 * get_any_pages() as well. 2314 */ 2315 put_page(page); 2316 return isolated; 2317 } 2318 2319 /* 2320 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2321 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2322 * If the page is mapped, it migrates the contents over. 2323 */ 2324 static int __soft_offline_page(struct page *page) 2325 { 2326 long ret = 0; 2327 unsigned long pfn = page_to_pfn(page); 2328 struct page *hpage = compound_head(page); 2329 char const *msg_page[] = {"page", "hugepage"}; 2330 bool huge = PageHuge(page); 2331 LIST_HEAD(pagelist); 2332 struct migration_target_control mtc = { 2333 .nid = NUMA_NO_NODE, 2334 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2335 }; 2336 2337 lock_page(page); 2338 if (!PageHuge(page)) 2339 wait_on_page_writeback(page); 2340 if (PageHWPoison(page)) { 2341 unlock_page(page); 2342 put_page(page); 2343 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2344 return 0; 2345 } 2346 2347 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2348 /* 2349 * Try to invalidate first. This should work for 2350 * non dirty unmapped page cache pages. 2351 */ 2352 ret = invalidate_inode_page(page); 2353 unlock_page(page); 2354 2355 if (ret) { 2356 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2357 page_handle_poison(page, false, true); 2358 return 0; 2359 } 2360 2361 if (isolate_page(hpage, &pagelist)) { 2362 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2363 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2364 if (!ret) { 2365 bool release = !huge; 2366 2367 if (!page_handle_poison(page, huge, release)) 2368 ret = -EBUSY; 2369 } else { 2370 if (!list_empty(&pagelist)) 2371 putback_movable_pages(&pagelist); 2372 2373 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2374 pfn, msg_page[huge], ret, &page->flags); 2375 if (ret > 0) 2376 ret = -EBUSY; 2377 } 2378 } else { 2379 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2380 pfn, msg_page[huge], page_count(page), &page->flags); 2381 ret = -EBUSY; 2382 } 2383 return ret; 2384 } 2385 2386 static int soft_offline_in_use_page(struct page *page) 2387 { 2388 struct page *hpage = compound_head(page); 2389 2390 if (!PageHuge(page) && PageTransHuge(hpage)) 2391 if (try_to_split_thp_page(page, "soft offline") < 0) 2392 return -EBUSY; 2393 return __soft_offline_page(page); 2394 } 2395 2396 static int soft_offline_free_page(struct page *page) 2397 { 2398 int rc = 0; 2399 2400 if (!page_handle_poison(page, true, false)) 2401 rc = -EBUSY; 2402 2403 return rc; 2404 } 2405 2406 static void put_ref_page(struct page *page) 2407 { 2408 if (page) 2409 put_page(page); 2410 } 2411 2412 /** 2413 * soft_offline_page - Soft offline a page. 2414 * @pfn: pfn to soft-offline 2415 * @flags: flags. Same as memory_failure(). 2416 * 2417 * Returns 0 on success 2418 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2419 * < 0 otherwise negated errno. 2420 * 2421 * Soft offline a page, by migration or invalidation, 2422 * without killing anything. This is for the case when 2423 * a page is not corrupted yet (so it's still valid to access), 2424 * but has had a number of corrected errors and is better taken 2425 * out. 2426 * 2427 * The actual policy on when to do that is maintained by 2428 * user space. 2429 * 2430 * This should never impact any application or cause data loss, 2431 * however it might take some time. 2432 * 2433 * This is not a 100% solution for all memory, but tries to be 2434 * ``good enough'' for the majority of memory. 2435 */ 2436 int soft_offline_page(unsigned long pfn, int flags) 2437 { 2438 int ret; 2439 bool try_again = true; 2440 struct page *page, *ref_page = NULL; 2441 2442 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2443 2444 if (!pfn_valid(pfn)) 2445 return -ENXIO; 2446 if (flags & MF_COUNT_INCREASED) 2447 ref_page = pfn_to_page(pfn); 2448 2449 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2450 page = pfn_to_online_page(pfn); 2451 if (!page) { 2452 put_ref_page(ref_page); 2453 return -EIO; 2454 } 2455 2456 mutex_lock(&mf_mutex); 2457 2458 if (PageHWPoison(page)) { 2459 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2460 put_ref_page(ref_page); 2461 mutex_unlock(&mf_mutex); 2462 return 0; 2463 } 2464 2465 retry: 2466 get_online_mems(); 2467 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2468 put_online_mems(); 2469 2470 if (hwpoison_filter(page)) { 2471 if (ret > 0) 2472 put_page(page); 2473 else 2474 put_ref_page(ref_page); 2475 2476 mutex_unlock(&mf_mutex); 2477 return -EOPNOTSUPP; 2478 } 2479 2480 if (ret > 0) { 2481 ret = soft_offline_in_use_page(page); 2482 } else if (ret == 0) { 2483 if (soft_offline_free_page(page) && try_again) { 2484 try_again = false; 2485 flags &= ~MF_COUNT_INCREASED; 2486 goto retry; 2487 } 2488 } 2489 2490 mutex_unlock(&mf_mutex); 2491 2492 return ret; 2493 } 2494 2495 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 2496 { 2497 int i; 2498 2499 /* 2500 * A further optimization is to have per section refcounted 2501 * num_poisoned_pages. But that would need more space per memmap, so 2502 * for now just do a quick global check to speed up this routine in the 2503 * absence of bad pages. 2504 */ 2505 if (atomic_long_read(&num_poisoned_pages) == 0) 2506 return; 2507 2508 for (i = 0; i < nr_pages; i++) { 2509 if (PageHWPoison(&memmap[i])) { 2510 num_poisoned_pages_dec(); 2511 ClearPageHWPoison(&memmap[i]); 2512 } 2513 } 2514 } 2515