xref: /openbmc/linux/mm/memory-failure.c (revision 7ae5c03a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include "swap.h"
66 #include "internal.h"
67 #include "ras/ras_event.h"
68 
69 int sysctl_memory_failure_early_kill __read_mostly = 0;
70 
71 int sysctl_memory_failure_recovery __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static bool __page_handle_poison(struct page *page)
78 {
79 	int ret;
80 
81 	zone_pcp_disable(page_zone(page));
82 	ret = dissolve_free_huge_page(page);
83 	if (!ret)
84 		ret = take_page_off_buddy(page);
85 	zone_pcp_enable(page_zone(page));
86 
87 	return ret > 0;
88 }
89 
90 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
91 {
92 	if (hugepage_or_freepage) {
93 		/*
94 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
95 		 * returns 0 for non-hugetlb pages as well.
96 		 */
97 		if (!__page_handle_poison(page))
98 			/*
99 			 * We could fail to take off the target page from buddy
100 			 * for example due to racy page allocation, but that's
101 			 * acceptable because soft-offlined page is not broken
102 			 * and if someone really want to use it, they should
103 			 * take it.
104 			 */
105 			return false;
106 	}
107 
108 	SetPageHWPoison(page);
109 	if (release)
110 		put_page(page);
111 	page_ref_inc(page);
112 	num_poisoned_pages_inc();
113 
114 	return true;
115 }
116 
117 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
118 
119 u32 hwpoison_filter_enable = 0;
120 u32 hwpoison_filter_dev_major = ~0U;
121 u32 hwpoison_filter_dev_minor = ~0U;
122 u64 hwpoison_filter_flags_mask;
123 u64 hwpoison_filter_flags_value;
124 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
125 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
126 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
127 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
128 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
129 
130 static int hwpoison_filter_dev(struct page *p)
131 {
132 	struct address_space *mapping;
133 	dev_t dev;
134 
135 	if (hwpoison_filter_dev_major == ~0U &&
136 	    hwpoison_filter_dev_minor == ~0U)
137 		return 0;
138 
139 	mapping = page_mapping(p);
140 	if (mapping == NULL || mapping->host == NULL)
141 		return -EINVAL;
142 
143 	dev = mapping->host->i_sb->s_dev;
144 	if (hwpoison_filter_dev_major != ~0U &&
145 	    hwpoison_filter_dev_major != MAJOR(dev))
146 		return -EINVAL;
147 	if (hwpoison_filter_dev_minor != ~0U &&
148 	    hwpoison_filter_dev_minor != MINOR(dev))
149 		return -EINVAL;
150 
151 	return 0;
152 }
153 
154 static int hwpoison_filter_flags(struct page *p)
155 {
156 	if (!hwpoison_filter_flags_mask)
157 		return 0;
158 
159 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 				    hwpoison_filter_flags_value)
161 		return 0;
162 	else
163 		return -EINVAL;
164 }
165 
166 /*
167  * This allows stress tests to limit test scope to a collection of tasks
168  * by putting them under some memcg. This prevents killing unrelated/important
169  * processes such as /sbin/init. Note that the target task may share clean
170  * pages with init (eg. libc text), which is harmless. If the target task
171  * share _dirty_ pages with another task B, the test scheme must make sure B
172  * is also included in the memcg. At last, due to race conditions this filter
173  * can only guarantee that the page either belongs to the memcg tasks, or is
174  * a freed page.
175  */
176 #ifdef CONFIG_MEMCG
177 u64 hwpoison_filter_memcg;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179 static int hwpoison_filter_task(struct page *p)
180 {
181 	if (!hwpoison_filter_memcg)
182 		return 0;
183 
184 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 #else
190 static int hwpoison_filter_task(struct page *p) { return 0; }
191 #endif
192 
193 int hwpoison_filter(struct page *p)
194 {
195 	if (!hwpoison_filter_enable)
196 		return 0;
197 
198 	if (hwpoison_filter_dev(p))
199 		return -EINVAL;
200 
201 	if (hwpoison_filter_flags(p))
202 		return -EINVAL;
203 
204 	if (hwpoison_filter_task(p))
205 		return -EINVAL;
206 
207 	return 0;
208 }
209 #else
210 int hwpoison_filter(struct page *p)
211 {
212 	return 0;
213 }
214 #endif
215 
216 EXPORT_SYMBOL_GPL(hwpoison_filter);
217 
218 /*
219  * Kill all processes that have a poisoned page mapped and then isolate
220  * the page.
221  *
222  * General strategy:
223  * Find all processes having the page mapped and kill them.
224  * But we keep a page reference around so that the page is not
225  * actually freed yet.
226  * Then stash the page away
227  *
228  * There's no convenient way to get back to mapped processes
229  * from the VMAs. So do a brute-force search over all
230  * running processes.
231  *
232  * Remember that machine checks are not common (or rather
233  * if they are common you have other problems), so this shouldn't
234  * be a performance issue.
235  *
236  * Also there are some races possible while we get from the
237  * error detection to actually handle it.
238  */
239 
240 struct to_kill {
241 	struct list_head nd;
242 	struct task_struct *tsk;
243 	unsigned long addr;
244 	short size_shift;
245 };
246 
247 /*
248  * Send all the processes who have the page mapped a signal.
249  * ``action optional'' if they are not immediately affected by the error
250  * ``action required'' if error happened in current execution context
251  */
252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
253 {
254 	struct task_struct *t = tk->tsk;
255 	short addr_lsb = tk->size_shift;
256 	int ret = 0;
257 
258 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
259 			pfn, t->comm, t->pid);
260 
261 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
262 		ret = force_sig_mceerr(BUS_MCEERR_AR,
263 				 (void __user *)tk->addr, addr_lsb);
264 	else
265 		/*
266 		 * Signal other processes sharing the page if they have
267 		 * PF_MCE_EARLY set.
268 		 * Don't use force here, it's convenient if the signal
269 		 * can be temporarily blocked.
270 		 * This could cause a loop when the user sets SIGBUS
271 		 * to SIG_IGN, but hopefully no one will do that?
272 		 */
273 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
274 				      addr_lsb, t);  /* synchronous? */
275 	if (ret < 0)
276 		pr_info("Error sending signal to %s:%d: %d\n",
277 			t->comm, t->pid, ret);
278 	return ret;
279 }
280 
281 /*
282  * Unknown page type encountered. Try to check whether it can turn PageLRU by
283  * lru_add_drain_all.
284  */
285 void shake_page(struct page *p)
286 {
287 	if (PageHuge(p))
288 		return;
289 
290 	if (!PageSlab(p)) {
291 		lru_add_drain_all();
292 		if (PageLRU(p) || is_free_buddy_page(p))
293 			return;
294 	}
295 
296 	/*
297 	 * TODO: Could shrink slab caches here if a lightweight range-based
298 	 * shrinker will be available.
299 	 */
300 }
301 EXPORT_SYMBOL_GPL(shake_page);
302 
303 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
304 		unsigned long address)
305 {
306 	unsigned long ret = 0;
307 	pgd_t *pgd;
308 	p4d_t *p4d;
309 	pud_t *pud;
310 	pmd_t *pmd;
311 	pte_t *pte;
312 
313 	VM_BUG_ON_VMA(address == -EFAULT, vma);
314 	pgd = pgd_offset(vma->vm_mm, address);
315 	if (!pgd_present(*pgd))
316 		return 0;
317 	p4d = p4d_offset(pgd, address);
318 	if (!p4d_present(*p4d))
319 		return 0;
320 	pud = pud_offset(p4d, address);
321 	if (!pud_present(*pud))
322 		return 0;
323 	if (pud_devmap(*pud))
324 		return PUD_SHIFT;
325 	pmd = pmd_offset(pud, address);
326 	if (!pmd_present(*pmd))
327 		return 0;
328 	if (pmd_devmap(*pmd))
329 		return PMD_SHIFT;
330 	pte = pte_offset_map(pmd, address);
331 	if (pte_present(*pte) && pte_devmap(*pte))
332 		ret = PAGE_SHIFT;
333 	pte_unmap(pte);
334 	return ret;
335 }
336 
337 /*
338  * Failure handling: if we can't find or can't kill a process there's
339  * not much we can do.	We just print a message and ignore otherwise.
340  */
341 
342 /*
343  * Schedule a process for later kill.
344  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
345  *
346  * Notice: @fsdax_pgoff is used only when @p is a fsdax page.
347  *   In other cases, such as anonymous and file-backend page, the address to be
348  *   killed can be caculated by @p itself.
349  */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
352 			struct list_head *to_kill)
353 {
354 	struct to_kill *tk;
355 
356 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 	if (!tk) {
358 		pr_err("Out of memory while machine check handling\n");
359 		return;
360 	}
361 
362 	tk->addr = page_address_in_vma(p, vma);
363 	if (is_zone_device_page(p)) {
364 		/*
365 		 * Since page->mapping is not used for fsdax, we need
366 		 * calculate the address based on the vma.
367 		 */
368 		if (p->pgmap->type == MEMORY_DEVICE_FS_DAX)
369 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
370 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
371 	} else
372 		tk->size_shift = page_shift(compound_head(p));
373 
374 	/*
375 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
376 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
377 	 * so "tk->size_shift == 0" effectively checks no mapping on
378 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
379 	 * to a process' address space, it's possible not all N VMAs
380 	 * contain mappings for the page, but at least one VMA does.
381 	 * Only deliver SIGBUS with payload derived from the VMA that
382 	 * has a mapping for the page.
383 	 */
384 	if (tk->addr == -EFAULT) {
385 		pr_info("Unable to find user space address %lx in %s\n",
386 			page_to_pfn(p), tsk->comm);
387 	} else if (tk->size_shift == 0) {
388 		kfree(tk);
389 		return;
390 	}
391 
392 	get_task_struct(tsk);
393 	tk->tsk = tsk;
394 	list_add_tail(&tk->nd, to_kill);
395 }
396 
397 /*
398  * Kill the processes that have been collected earlier.
399  *
400  * Only do anything when FORCEKILL is set, otherwise just free the
401  * list (this is used for clean pages which do not need killing)
402  * Also when FAIL is set do a force kill because something went
403  * wrong earlier.
404  */
405 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
406 		unsigned long pfn, int flags)
407 {
408 	struct to_kill *tk, *next;
409 
410 	list_for_each_entry_safe (tk, next, to_kill, nd) {
411 		if (forcekill) {
412 			/*
413 			 * In case something went wrong with munmapping
414 			 * make sure the process doesn't catch the
415 			 * signal and then access the memory. Just kill it.
416 			 */
417 			if (fail || tk->addr == -EFAULT) {
418 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
419 				       pfn, tk->tsk->comm, tk->tsk->pid);
420 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
421 						 tk->tsk, PIDTYPE_PID);
422 			}
423 
424 			/*
425 			 * In theory the process could have mapped
426 			 * something else on the address in-between. We could
427 			 * check for that, but we need to tell the
428 			 * process anyways.
429 			 */
430 			else if (kill_proc(tk, pfn, flags) < 0)
431 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
432 				       pfn, tk->tsk->comm, tk->tsk->pid);
433 		}
434 		put_task_struct(tk->tsk);
435 		kfree(tk);
436 	}
437 }
438 
439 /*
440  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
441  * on behalf of the thread group. Return task_struct of the (first found)
442  * dedicated thread if found, and return NULL otherwise.
443  *
444  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
445  * have to call rcu_read_lock/unlock() in this function.
446  */
447 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
448 {
449 	struct task_struct *t;
450 
451 	for_each_thread(tsk, t) {
452 		if (t->flags & PF_MCE_PROCESS) {
453 			if (t->flags & PF_MCE_EARLY)
454 				return t;
455 		} else {
456 			if (sysctl_memory_failure_early_kill)
457 				return t;
458 		}
459 	}
460 	return NULL;
461 }
462 
463 /*
464  * Determine whether a given process is "early kill" process which expects
465  * to be signaled when some page under the process is hwpoisoned.
466  * Return task_struct of the dedicated thread (main thread unless explicitly
467  * specified) if the process is "early kill" and otherwise returns NULL.
468  *
469  * Note that the above is true for Action Optional case. For Action Required
470  * case, it's only meaningful to the current thread which need to be signaled
471  * with SIGBUS, this error is Action Optional for other non current
472  * processes sharing the same error page,if the process is "early kill", the
473  * task_struct of the dedicated thread will also be returned.
474  */
475 static struct task_struct *task_early_kill(struct task_struct *tsk,
476 					   int force_early)
477 {
478 	if (!tsk->mm)
479 		return NULL;
480 	/*
481 	 * Comparing ->mm here because current task might represent
482 	 * a subthread, while tsk always points to the main thread.
483 	 */
484 	if (force_early && tsk->mm == current->mm)
485 		return current;
486 
487 	return find_early_kill_thread(tsk);
488 }
489 
490 /*
491  * Collect processes when the error hit an anonymous page.
492  */
493 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
494 				int force_early)
495 {
496 	struct folio *folio = page_folio(page);
497 	struct vm_area_struct *vma;
498 	struct task_struct *tsk;
499 	struct anon_vma *av;
500 	pgoff_t pgoff;
501 
502 	av = folio_lock_anon_vma_read(folio, NULL);
503 	if (av == NULL)	/* Not actually mapped anymore */
504 		return;
505 
506 	pgoff = page_to_pgoff(page);
507 	read_lock(&tasklist_lock);
508 	for_each_process (tsk) {
509 		struct anon_vma_chain *vmac;
510 		struct task_struct *t = task_early_kill(tsk, force_early);
511 
512 		if (!t)
513 			continue;
514 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
515 					       pgoff, pgoff) {
516 			vma = vmac->vma;
517 			if (!page_mapped_in_vma(page, vma))
518 				continue;
519 			if (vma->vm_mm == t->mm)
520 				add_to_kill(t, page, 0, vma, to_kill);
521 		}
522 	}
523 	read_unlock(&tasklist_lock);
524 	page_unlock_anon_vma_read(av);
525 }
526 
527 /*
528  * Collect processes when the error hit a file mapped page.
529  */
530 static void collect_procs_file(struct page *page, struct list_head *to_kill,
531 				int force_early)
532 {
533 	struct vm_area_struct *vma;
534 	struct task_struct *tsk;
535 	struct address_space *mapping = page->mapping;
536 	pgoff_t pgoff;
537 
538 	i_mmap_lock_read(mapping);
539 	read_lock(&tasklist_lock);
540 	pgoff = page_to_pgoff(page);
541 	for_each_process(tsk) {
542 		struct task_struct *t = task_early_kill(tsk, force_early);
543 
544 		if (!t)
545 			continue;
546 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
547 				      pgoff) {
548 			/*
549 			 * Send early kill signal to tasks where a vma covers
550 			 * the page but the corrupted page is not necessarily
551 			 * mapped it in its pte.
552 			 * Assume applications who requested early kill want
553 			 * to be informed of all such data corruptions.
554 			 */
555 			if (vma->vm_mm == t->mm)
556 				add_to_kill(t, page, 0, vma, to_kill);
557 		}
558 	}
559 	read_unlock(&tasklist_lock);
560 	i_mmap_unlock_read(mapping);
561 }
562 
563 #ifdef CONFIG_FS_DAX
564 /*
565  * Collect processes when the error hit a fsdax page.
566  */
567 static void collect_procs_fsdax(struct page *page,
568 		struct address_space *mapping, pgoff_t pgoff,
569 		struct list_head *to_kill)
570 {
571 	struct vm_area_struct *vma;
572 	struct task_struct *tsk;
573 
574 	i_mmap_lock_read(mapping);
575 	read_lock(&tasklist_lock);
576 	for_each_process(tsk) {
577 		struct task_struct *t = task_early_kill(tsk, true);
578 
579 		if (!t)
580 			continue;
581 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
582 			if (vma->vm_mm == t->mm)
583 				add_to_kill(t, page, pgoff, vma, to_kill);
584 		}
585 	}
586 	read_unlock(&tasklist_lock);
587 	i_mmap_unlock_read(mapping);
588 }
589 #endif /* CONFIG_FS_DAX */
590 
591 /*
592  * Collect the processes who have the corrupted page mapped to kill.
593  */
594 static void collect_procs(struct page *page, struct list_head *tokill,
595 				int force_early)
596 {
597 	if (!page->mapping)
598 		return;
599 
600 	if (PageAnon(page))
601 		collect_procs_anon(page, tokill, force_early);
602 	else
603 		collect_procs_file(page, tokill, force_early);
604 }
605 
606 struct hwp_walk {
607 	struct to_kill tk;
608 	unsigned long pfn;
609 	int flags;
610 };
611 
612 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
613 {
614 	tk->addr = addr;
615 	tk->size_shift = shift;
616 }
617 
618 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
619 				unsigned long poisoned_pfn, struct to_kill *tk)
620 {
621 	unsigned long pfn = 0;
622 
623 	if (pte_present(pte)) {
624 		pfn = pte_pfn(pte);
625 	} else {
626 		swp_entry_t swp = pte_to_swp_entry(pte);
627 
628 		if (is_hwpoison_entry(swp))
629 			pfn = hwpoison_entry_to_pfn(swp);
630 	}
631 
632 	if (!pfn || pfn != poisoned_pfn)
633 		return 0;
634 
635 	set_to_kill(tk, addr, shift);
636 	return 1;
637 }
638 
639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
640 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
641 				      struct hwp_walk *hwp)
642 {
643 	pmd_t pmd = *pmdp;
644 	unsigned long pfn;
645 	unsigned long hwpoison_vaddr;
646 
647 	if (!pmd_present(pmd))
648 		return 0;
649 	pfn = pmd_pfn(pmd);
650 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
651 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
652 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
653 		return 1;
654 	}
655 	return 0;
656 }
657 #else
658 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
659 				      struct hwp_walk *hwp)
660 {
661 	return 0;
662 }
663 #endif
664 
665 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
666 			      unsigned long end, struct mm_walk *walk)
667 {
668 	struct hwp_walk *hwp = walk->private;
669 	int ret = 0;
670 	pte_t *ptep, *mapped_pte;
671 	spinlock_t *ptl;
672 
673 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
674 	if (ptl) {
675 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
676 		spin_unlock(ptl);
677 		goto out;
678 	}
679 
680 	if (pmd_trans_unstable(pmdp))
681 		goto out;
682 
683 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
684 						addr, &ptl);
685 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
686 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
687 					     hwp->pfn, &hwp->tk);
688 		if (ret == 1)
689 			break;
690 	}
691 	pte_unmap_unlock(mapped_pte, ptl);
692 out:
693 	cond_resched();
694 	return ret;
695 }
696 
697 #ifdef CONFIG_HUGETLB_PAGE
698 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
699 			    unsigned long addr, unsigned long end,
700 			    struct mm_walk *walk)
701 {
702 	struct hwp_walk *hwp = walk->private;
703 	pte_t pte = huge_ptep_get(ptep);
704 	struct hstate *h = hstate_vma(walk->vma);
705 
706 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
707 				      hwp->pfn, &hwp->tk);
708 }
709 #else
710 #define hwpoison_hugetlb_range	NULL
711 #endif
712 
713 static const struct mm_walk_ops hwp_walk_ops = {
714 	.pmd_entry = hwpoison_pte_range,
715 	.hugetlb_entry = hwpoison_hugetlb_range,
716 };
717 
718 /*
719  * Sends SIGBUS to the current process with error info.
720  *
721  * This function is intended to handle "Action Required" MCEs on already
722  * hardware poisoned pages. They could happen, for example, when
723  * memory_failure() failed to unmap the error page at the first call, or
724  * when multiple local machine checks happened on different CPUs.
725  *
726  * MCE handler currently has no easy access to the error virtual address,
727  * so this function walks page table to find it. The returned virtual address
728  * is proper in most cases, but it could be wrong when the application
729  * process has multiple entries mapping the error page.
730  */
731 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
732 				  int flags)
733 {
734 	int ret;
735 	struct hwp_walk priv = {
736 		.pfn = pfn,
737 	};
738 	priv.tk.tsk = p;
739 
740 	mmap_read_lock(p->mm);
741 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
742 			      (void *)&priv);
743 	if (ret == 1 && priv.tk.addr)
744 		kill_proc(&priv.tk, pfn, flags);
745 	else
746 		ret = 0;
747 	mmap_read_unlock(p->mm);
748 	return ret > 0 ? -EHWPOISON : -EFAULT;
749 }
750 
751 static const char *action_name[] = {
752 	[MF_IGNORED] = "Ignored",
753 	[MF_FAILED] = "Failed",
754 	[MF_DELAYED] = "Delayed",
755 	[MF_RECOVERED] = "Recovered",
756 };
757 
758 static const char * const action_page_types[] = {
759 	[MF_MSG_KERNEL]			= "reserved kernel page",
760 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
761 	[MF_MSG_SLAB]			= "kernel slab page",
762 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
763 	[MF_MSG_HUGE]			= "huge page",
764 	[MF_MSG_FREE_HUGE]		= "free huge page",
765 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
766 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
767 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
768 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
769 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
770 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
771 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
772 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
773 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
774 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
775 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
776 	[MF_MSG_BUDDY]			= "free buddy page",
777 	[MF_MSG_DAX]			= "dax page",
778 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
779 	[MF_MSG_UNKNOWN]		= "unknown page",
780 };
781 
782 /*
783  * XXX: It is possible that a page is isolated from LRU cache,
784  * and then kept in swap cache or failed to remove from page cache.
785  * The page count will stop it from being freed by unpoison.
786  * Stress tests should be aware of this memory leak problem.
787  */
788 static int delete_from_lru_cache(struct page *p)
789 {
790 	if (!isolate_lru_page(p)) {
791 		/*
792 		 * Clear sensible page flags, so that the buddy system won't
793 		 * complain when the page is unpoison-and-freed.
794 		 */
795 		ClearPageActive(p);
796 		ClearPageUnevictable(p);
797 
798 		/*
799 		 * Poisoned page might never drop its ref count to 0 so we have
800 		 * to uncharge it manually from its memcg.
801 		 */
802 		mem_cgroup_uncharge(page_folio(p));
803 
804 		/*
805 		 * drop the page count elevated by isolate_lru_page()
806 		 */
807 		put_page(p);
808 		return 0;
809 	}
810 	return -EIO;
811 }
812 
813 static int truncate_error_page(struct page *p, unsigned long pfn,
814 				struct address_space *mapping)
815 {
816 	int ret = MF_FAILED;
817 
818 	if (mapping->a_ops->error_remove_page) {
819 		int err = mapping->a_ops->error_remove_page(mapping, p);
820 
821 		if (err != 0) {
822 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
823 		} else if (page_has_private(p) &&
824 			   !try_to_release_page(p, GFP_NOIO)) {
825 			pr_info("%#lx: failed to release buffers\n", pfn);
826 		} else {
827 			ret = MF_RECOVERED;
828 		}
829 	} else {
830 		/*
831 		 * If the file system doesn't support it just invalidate
832 		 * This fails on dirty or anything with private pages
833 		 */
834 		if (invalidate_inode_page(p))
835 			ret = MF_RECOVERED;
836 		else
837 			pr_info("%#lx: Failed to invalidate\n",	pfn);
838 	}
839 
840 	return ret;
841 }
842 
843 struct page_state {
844 	unsigned long mask;
845 	unsigned long res;
846 	enum mf_action_page_type type;
847 
848 	/* Callback ->action() has to unlock the relevant page inside it. */
849 	int (*action)(struct page_state *ps, struct page *p);
850 };
851 
852 /*
853  * Return true if page is still referenced by others, otherwise return
854  * false.
855  *
856  * The extra_pins is true when one extra refcount is expected.
857  */
858 static bool has_extra_refcount(struct page_state *ps, struct page *p,
859 			       bool extra_pins)
860 {
861 	int count = page_count(p) - 1;
862 
863 	if (extra_pins)
864 		count -= 1;
865 
866 	if (count > 0) {
867 		pr_err("%#lx: %s still referenced by %d users\n",
868 		       page_to_pfn(p), action_page_types[ps->type], count);
869 		return true;
870 	}
871 
872 	return false;
873 }
874 
875 /*
876  * Error hit kernel page.
877  * Do nothing, try to be lucky and not touch this instead. For a few cases we
878  * could be more sophisticated.
879  */
880 static int me_kernel(struct page_state *ps, struct page *p)
881 {
882 	unlock_page(p);
883 	return MF_IGNORED;
884 }
885 
886 /*
887  * Page in unknown state. Do nothing.
888  */
889 static int me_unknown(struct page_state *ps, struct page *p)
890 {
891 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
892 	unlock_page(p);
893 	return MF_FAILED;
894 }
895 
896 /*
897  * Clean (or cleaned) page cache page.
898  */
899 static int me_pagecache_clean(struct page_state *ps, struct page *p)
900 {
901 	int ret;
902 	struct address_space *mapping;
903 	bool extra_pins;
904 
905 	delete_from_lru_cache(p);
906 
907 	/*
908 	 * For anonymous pages we're done the only reference left
909 	 * should be the one m_f() holds.
910 	 */
911 	if (PageAnon(p)) {
912 		ret = MF_RECOVERED;
913 		goto out;
914 	}
915 
916 	/*
917 	 * Now truncate the page in the page cache. This is really
918 	 * more like a "temporary hole punch"
919 	 * Don't do this for block devices when someone else
920 	 * has a reference, because it could be file system metadata
921 	 * and that's not safe to truncate.
922 	 */
923 	mapping = page_mapping(p);
924 	if (!mapping) {
925 		/*
926 		 * Page has been teared down in the meanwhile
927 		 */
928 		ret = MF_FAILED;
929 		goto out;
930 	}
931 
932 	/*
933 	 * The shmem page is kept in page cache instead of truncating
934 	 * so is expected to have an extra refcount after error-handling.
935 	 */
936 	extra_pins = shmem_mapping(mapping);
937 
938 	/*
939 	 * Truncation is a bit tricky. Enable it per file system for now.
940 	 *
941 	 * Open: to take i_rwsem or not for this? Right now we don't.
942 	 */
943 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
944 	if (has_extra_refcount(ps, p, extra_pins))
945 		ret = MF_FAILED;
946 
947 out:
948 	unlock_page(p);
949 
950 	return ret;
951 }
952 
953 /*
954  * Dirty pagecache page
955  * Issues: when the error hit a hole page the error is not properly
956  * propagated.
957  */
958 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
959 {
960 	struct address_space *mapping = page_mapping(p);
961 
962 	SetPageError(p);
963 	/* TBD: print more information about the file. */
964 	if (mapping) {
965 		/*
966 		 * IO error will be reported by write(), fsync(), etc.
967 		 * who check the mapping.
968 		 * This way the application knows that something went
969 		 * wrong with its dirty file data.
970 		 *
971 		 * There's one open issue:
972 		 *
973 		 * The EIO will be only reported on the next IO
974 		 * operation and then cleared through the IO map.
975 		 * Normally Linux has two mechanisms to pass IO error
976 		 * first through the AS_EIO flag in the address space
977 		 * and then through the PageError flag in the page.
978 		 * Since we drop pages on memory failure handling the
979 		 * only mechanism open to use is through AS_AIO.
980 		 *
981 		 * This has the disadvantage that it gets cleared on
982 		 * the first operation that returns an error, while
983 		 * the PageError bit is more sticky and only cleared
984 		 * when the page is reread or dropped.  If an
985 		 * application assumes it will always get error on
986 		 * fsync, but does other operations on the fd before
987 		 * and the page is dropped between then the error
988 		 * will not be properly reported.
989 		 *
990 		 * This can already happen even without hwpoisoned
991 		 * pages: first on metadata IO errors (which only
992 		 * report through AS_EIO) or when the page is dropped
993 		 * at the wrong time.
994 		 *
995 		 * So right now we assume that the application DTRT on
996 		 * the first EIO, but we're not worse than other parts
997 		 * of the kernel.
998 		 */
999 		mapping_set_error(mapping, -EIO);
1000 	}
1001 
1002 	return me_pagecache_clean(ps, p);
1003 }
1004 
1005 /*
1006  * Clean and dirty swap cache.
1007  *
1008  * Dirty swap cache page is tricky to handle. The page could live both in page
1009  * cache and swap cache(ie. page is freshly swapped in). So it could be
1010  * referenced concurrently by 2 types of PTEs:
1011  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1012  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1013  * and then
1014  *      - clear dirty bit to prevent IO
1015  *      - remove from LRU
1016  *      - but keep in the swap cache, so that when we return to it on
1017  *        a later page fault, we know the application is accessing
1018  *        corrupted data and shall be killed (we installed simple
1019  *        interception code in do_swap_page to catch it).
1020  *
1021  * Clean swap cache pages can be directly isolated. A later page fault will
1022  * bring in the known good data from disk.
1023  */
1024 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1025 {
1026 	int ret;
1027 	bool extra_pins = false;
1028 
1029 	ClearPageDirty(p);
1030 	/* Trigger EIO in shmem: */
1031 	ClearPageUptodate(p);
1032 
1033 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1034 	unlock_page(p);
1035 
1036 	if (ret == MF_DELAYED)
1037 		extra_pins = true;
1038 
1039 	if (has_extra_refcount(ps, p, extra_pins))
1040 		ret = MF_FAILED;
1041 
1042 	return ret;
1043 }
1044 
1045 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1046 {
1047 	struct folio *folio = page_folio(p);
1048 	int ret;
1049 
1050 	delete_from_swap_cache(folio);
1051 
1052 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1053 	folio_unlock(folio);
1054 
1055 	if (has_extra_refcount(ps, p, false))
1056 		ret = MF_FAILED;
1057 
1058 	return ret;
1059 }
1060 
1061 /*
1062  * Huge pages. Needs work.
1063  * Issues:
1064  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1065  *   To narrow down kill region to one page, we need to break up pmd.
1066  */
1067 static int me_huge_page(struct page_state *ps, struct page *p)
1068 {
1069 	int res;
1070 	struct page *hpage = compound_head(p);
1071 	struct address_space *mapping;
1072 
1073 	if (!PageHuge(hpage))
1074 		return MF_DELAYED;
1075 
1076 	mapping = page_mapping(hpage);
1077 	if (mapping) {
1078 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1079 		unlock_page(hpage);
1080 	} else {
1081 		res = MF_FAILED;
1082 		unlock_page(hpage);
1083 		/*
1084 		 * migration entry prevents later access on error hugepage,
1085 		 * so we can free and dissolve it into buddy to save healthy
1086 		 * subpages.
1087 		 */
1088 		put_page(hpage);
1089 		if (__page_handle_poison(p)) {
1090 			page_ref_inc(p);
1091 			res = MF_RECOVERED;
1092 		}
1093 	}
1094 
1095 	if (has_extra_refcount(ps, p, false))
1096 		res = MF_FAILED;
1097 
1098 	return res;
1099 }
1100 
1101 /*
1102  * Various page states we can handle.
1103  *
1104  * A page state is defined by its current page->flags bits.
1105  * The table matches them in order and calls the right handler.
1106  *
1107  * This is quite tricky because we can access page at any time
1108  * in its live cycle, so all accesses have to be extremely careful.
1109  *
1110  * This is not complete. More states could be added.
1111  * For any missing state don't attempt recovery.
1112  */
1113 
1114 #define dirty		(1UL << PG_dirty)
1115 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1116 #define unevict		(1UL << PG_unevictable)
1117 #define mlock		(1UL << PG_mlocked)
1118 #define lru		(1UL << PG_lru)
1119 #define head		(1UL << PG_head)
1120 #define slab		(1UL << PG_slab)
1121 #define reserved	(1UL << PG_reserved)
1122 
1123 static struct page_state error_states[] = {
1124 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1125 	/*
1126 	 * free pages are specially detected outside this table:
1127 	 * PG_buddy pages only make a small fraction of all free pages.
1128 	 */
1129 
1130 	/*
1131 	 * Could in theory check if slab page is free or if we can drop
1132 	 * currently unused objects without touching them. But just
1133 	 * treat it as standard kernel for now.
1134 	 */
1135 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1136 
1137 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1138 
1139 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1140 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1141 
1142 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1143 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1144 
1145 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1146 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1147 
1148 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1149 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1150 
1151 	/*
1152 	 * Catchall entry: must be at end.
1153 	 */
1154 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1155 };
1156 
1157 #undef dirty
1158 #undef sc
1159 #undef unevict
1160 #undef mlock
1161 #undef lru
1162 #undef head
1163 #undef slab
1164 #undef reserved
1165 
1166 /*
1167  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1168  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1169  */
1170 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1171 			  enum mf_result result)
1172 {
1173 	trace_memory_failure_event(pfn, type, result);
1174 
1175 	num_poisoned_pages_inc();
1176 	pr_err("%#lx: recovery action for %s: %s\n",
1177 		pfn, action_page_types[type], action_name[result]);
1178 }
1179 
1180 static int page_action(struct page_state *ps, struct page *p,
1181 			unsigned long pfn)
1182 {
1183 	int result;
1184 
1185 	/* page p should be unlocked after returning from ps->action().  */
1186 	result = ps->action(ps, p);
1187 
1188 	action_result(pfn, ps->type, result);
1189 
1190 	/* Could do more checks here if page looks ok */
1191 	/*
1192 	 * Could adjust zone counters here to correct for the missing page.
1193 	 */
1194 
1195 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1196 }
1197 
1198 static inline bool PageHWPoisonTakenOff(struct page *page)
1199 {
1200 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1201 }
1202 
1203 void SetPageHWPoisonTakenOff(struct page *page)
1204 {
1205 	set_page_private(page, MAGIC_HWPOISON);
1206 }
1207 
1208 void ClearPageHWPoisonTakenOff(struct page *page)
1209 {
1210 	if (PageHWPoison(page))
1211 		set_page_private(page, 0);
1212 }
1213 
1214 /*
1215  * Return true if a page type of a given page is supported by hwpoison
1216  * mechanism (while handling could fail), otherwise false.  This function
1217  * does not return true for hugetlb or device memory pages, so it's assumed
1218  * to be called only in the context where we never have such pages.
1219  */
1220 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1221 {
1222 	/* Soft offline could migrate non-LRU movable pages */
1223 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1224 		return true;
1225 
1226 	return PageLRU(page) || is_free_buddy_page(page);
1227 }
1228 
1229 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1230 {
1231 	struct page *head = compound_head(page);
1232 	int ret = 0;
1233 	bool hugetlb = false;
1234 
1235 	ret = get_hwpoison_huge_page(head, &hugetlb);
1236 	if (hugetlb)
1237 		return ret;
1238 
1239 	/*
1240 	 * This check prevents from calling get_hwpoison_unless_zero()
1241 	 * for any unsupported type of page in order to reduce the risk of
1242 	 * unexpected races caused by taking a page refcount.
1243 	 */
1244 	if (!HWPoisonHandlable(head, flags))
1245 		return -EBUSY;
1246 
1247 	if (get_page_unless_zero(head)) {
1248 		if (head == compound_head(page))
1249 			return 1;
1250 
1251 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1252 		put_page(head);
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int get_any_page(struct page *p, unsigned long flags)
1259 {
1260 	int ret = 0, pass = 0;
1261 	bool count_increased = false;
1262 
1263 	if (flags & MF_COUNT_INCREASED)
1264 		count_increased = true;
1265 
1266 try_again:
1267 	if (!count_increased) {
1268 		ret = __get_hwpoison_page(p, flags);
1269 		if (!ret) {
1270 			if (page_count(p)) {
1271 				/* We raced with an allocation, retry. */
1272 				if (pass++ < 3)
1273 					goto try_again;
1274 				ret = -EBUSY;
1275 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1276 				/* We raced with put_page, retry. */
1277 				if (pass++ < 3)
1278 					goto try_again;
1279 				ret = -EIO;
1280 			}
1281 			goto out;
1282 		} else if (ret == -EBUSY) {
1283 			/*
1284 			 * We raced with (possibly temporary) unhandlable
1285 			 * page, retry.
1286 			 */
1287 			if (pass++ < 3) {
1288 				shake_page(p);
1289 				goto try_again;
1290 			}
1291 			ret = -EIO;
1292 			goto out;
1293 		}
1294 	}
1295 
1296 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1297 		ret = 1;
1298 	} else {
1299 		/*
1300 		 * A page we cannot handle. Check whether we can turn
1301 		 * it into something we can handle.
1302 		 */
1303 		if (pass++ < 3) {
1304 			put_page(p);
1305 			shake_page(p);
1306 			count_increased = false;
1307 			goto try_again;
1308 		}
1309 		put_page(p);
1310 		ret = -EIO;
1311 	}
1312 out:
1313 	if (ret == -EIO)
1314 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1315 
1316 	return ret;
1317 }
1318 
1319 static int __get_unpoison_page(struct page *page)
1320 {
1321 	struct page *head = compound_head(page);
1322 	int ret = 0;
1323 	bool hugetlb = false;
1324 
1325 	ret = get_hwpoison_huge_page(head, &hugetlb);
1326 	if (hugetlb)
1327 		return ret;
1328 
1329 	/*
1330 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1331 	 * but also isolated from buddy freelist, so need to identify the
1332 	 * state and have to cancel both operations to unpoison.
1333 	 */
1334 	if (PageHWPoisonTakenOff(page))
1335 		return -EHWPOISON;
1336 
1337 	return get_page_unless_zero(page) ? 1 : 0;
1338 }
1339 
1340 /**
1341  * get_hwpoison_page() - Get refcount for memory error handling
1342  * @p:		Raw error page (hit by memory error)
1343  * @flags:	Flags controlling behavior of error handling
1344  *
1345  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1346  * error on it, after checking that the error page is in a well-defined state
1347  * (defined as a page-type we can successfully handle the memory error on it,
1348  * such as LRU page and hugetlb page).
1349  *
1350  * Memory error handling could be triggered at any time on any type of page,
1351  * so it's prone to race with typical memory management lifecycle (like
1352  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1353  * extra care for the error page's state (as done in __get_hwpoison_page()),
1354  * and has some retry logic in get_any_page().
1355  *
1356  * When called from unpoison_memory(), the caller should already ensure that
1357  * the given page has PG_hwpoison. So it's never reused for other page
1358  * allocations, and __get_unpoison_page() never races with them.
1359  *
1360  * Return: 0 on failure,
1361  *         1 on success for in-use pages in a well-defined state,
1362  *         -EIO for pages on which we can not handle memory errors,
1363  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1364  *         operations like allocation and free,
1365  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1366  */
1367 static int get_hwpoison_page(struct page *p, unsigned long flags)
1368 {
1369 	int ret;
1370 
1371 	zone_pcp_disable(page_zone(p));
1372 	if (flags & MF_UNPOISON)
1373 		ret = __get_unpoison_page(p);
1374 	else
1375 		ret = get_any_page(p, flags);
1376 	zone_pcp_enable(page_zone(p));
1377 
1378 	return ret;
1379 }
1380 
1381 /*
1382  * Do all that is necessary to remove user space mappings. Unmap
1383  * the pages and send SIGBUS to the processes if the data was dirty.
1384  */
1385 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1386 				  int flags, struct page *hpage)
1387 {
1388 	struct folio *folio = page_folio(hpage);
1389 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1390 	struct address_space *mapping;
1391 	LIST_HEAD(tokill);
1392 	bool unmap_success;
1393 	int kill = 1, forcekill;
1394 	bool mlocked = PageMlocked(hpage);
1395 
1396 	/*
1397 	 * Here we are interested only in user-mapped pages, so skip any
1398 	 * other types of pages.
1399 	 */
1400 	if (PageReserved(p) || PageSlab(p))
1401 		return true;
1402 	if (!(PageLRU(hpage) || PageHuge(p)))
1403 		return true;
1404 
1405 	/*
1406 	 * This check implies we don't kill processes if their pages
1407 	 * are in the swap cache early. Those are always late kills.
1408 	 */
1409 	if (!page_mapped(hpage))
1410 		return true;
1411 
1412 	if (PageKsm(p)) {
1413 		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1414 		return false;
1415 	}
1416 
1417 	if (PageSwapCache(p)) {
1418 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1419 		ttu |= TTU_IGNORE_HWPOISON;
1420 	}
1421 
1422 	/*
1423 	 * Propagate the dirty bit from PTEs to struct page first, because we
1424 	 * need this to decide if we should kill or just drop the page.
1425 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1426 	 * be called inside page lock (it's recommended but not enforced).
1427 	 */
1428 	mapping = page_mapping(hpage);
1429 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1430 	    mapping_can_writeback(mapping)) {
1431 		if (page_mkclean(hpage)) {
1432 			SetPageDirty(hpage);
1433 		} else {
1434 			kill = 0;
1435 			ttu |= TTU_IGNORE_HWPOISON;
1436 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1437 				pfn);
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * First collect all the processes that have the page
1443 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1444 	 * because ttu takes the rmap data structures down.
1445 	 *
1446 	 * Error handling: We ignore errors here because
1447 	 * there's nothing that can be done.
1448 	 */
1449 	if (kill)
1450 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1451 
1452 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1453 		/*
1454 		 * For hugetlb pages in shared mappings, try_to_unmap
1455 		 * could potentially call huge_pmd_unshare.  Because of
1456 		 * this, take semaphore in write mode here and set
1457 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1458 		 * at this higher level.
1459 		 */
1460 		mapping = hugetlb_page_mapping_lock_write(hpage);
1461 		if (mapping) {
1462 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1463 			i_mmap_unlock_write(mapping);
1464 		} else
1465 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1466 	} else {
1467 		try_to_unmap(folio, ttu);
1468 	}
1469 
1470 	unmap_success = !page_mapped(hpage);
1471 	if (!unmap_success)
1472 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1473 		       pfn, page_mapcount(hpage));
1474 
1475 	/*
1476 	 * try_to_unmap() might put mlocked page in lru cache, so call
1477 	 * shake_page() again to ensure that it's flushed.
1478 	 */
1479 	if (mlocked)
1480 		shake_page(hpage);
1481 
1482 	/*
1483 	 * Now that the dirty bit has been propagated to the
1484 	 * struct page and all unmaps done we can decide if
1485 	 * killing is needed or not.  Only kill when the page
1486 	 * was dirty or the process is not restartable,
1487 	 * otherwise the tokill list is merely
1488 	 * freed.  When there was a problem unmapping earlier
1489 	 * use a more force-full uncatchable kill to prevent
1490 	 * any accesses to the poisoned memory.
1491 	 */
1492 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1493 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1494 
1495 	return unmap_success;
1496 }
1497 
1498 static int identify_page_state(unsigned long pfn, struct page *p,
1499 				unsigned long page_flags)
1500 {
1501 	struct page_state *ps;
1502 
1503 	/*
1504 	 * The first check uses the current page flags which may not have any
1505 	 * relevant information. The second check with the saved page flags is
1506 	 * carried out only if the first check can't determine the page status.
1507 	 */
1508 	for (ps = error_states;; ps++)
1509 		if ((p->flags & ps->mask) == ps->res)
1510 			break;
1511 
1512 	page_flags |= (p->flags & (1UL << PG_dirty));
1513 
1514 	if (!ps->mask)
1515 		for (ps = error_states;; ps++)
1516 			if ((page_flags & ps->mask) == ps->res)
1517 				break;
1518 	return page_action(ps, p, pfn);
1519 }
1520 
1521 static int try_to_split_thp_page(struct page *page, const char *msg)
1522 {
1523 	lock_page(page);
1524 	if (unlikely(split_huge_page(page))) {
1525 		unsigned long pfn = page_to_pfn(page);
1526 
1527 		unlock_page(page);
1528 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1529 		put_page(page);
1530 		return -EBUSY;
1531 	}
1532 	unlock_page(page);
1533 
1534 	return 0;
1535 }
1536 
1537 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1538 		struct address_space *mapping, pgoff_t index, int flags)
1539 {
1540 	struct to_kill *tk;
1541 	unsigned long size = 0;
1542 
1543 	list_for_each_entry(tk, to_kill, nd)
1544 		if (tk->size_shift)
1545 			size = max(size, 1UL << tk->size_shift);
1546 
1547 	if (size) {
1548 		/*
1549 		 * Unmap the largest mapping to avoid breaking up device-dax
1550 		 * mappings which are constant size. The actual size of the
1551 		 * mapping being torn down is communicated in siginfo, see
1552 		 * kill_proc()
1553 		 */
1554 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1555 
1556 		unmap_mapping_range(mapping, start, size, 0);
1557 	}
1558 
1559 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1560 }
1561 
1562 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1563 		struct dev_pagemap *pgmap)
1564 {
1565 	struct page *page = pfn_to_page(pfn);
1566 	LIST_HEAD(to_kill);
1567 	dax_entry_t cookie;
1568 	int rc = 0;
1569 
1570 	/*
1571 	 * Pages instantiated by device-dax (not filesystem-dax)
1572 	 * may be compound pages.
1573 	 */
1574 	page = compound_head(page);
1575 
1576 	/*
1577 	 * Prevent the inode from being freed while we are interrogating
1578 	 * the address_space, typically this would be handled by
1579 	 * lock_page(), but dax pages do not use the page lock. This
1580 	 * also prevents changes to the mapping of this pfn until
1581 	 * poison signaling is complete.
1582 	 */
1583 	cookie = dax_lock_page(page);
1584 	if (!cookie)
1585 		return -EBUSY;
1586 
1587 	if (hwpoison_filter(page)) {
1588 		rc = -EOPNOTSUPP;
1589 		goto unlock;
1590 	}
1591 
1592 	switch (pgmap->type) {
1593 	case MEMORY_DEVICE_PRIVATE:
1594 	case MEMORY_DEVICE_COHERENT:
1595 		/*
1596 		 * TODO: Handle device pages which may need coordination
1597 		 * with device-side memory.
1598 		 */
1599 		rc = -ENXIO;
1600 		goto unlock;
1601 	default:
1602 		break;
1603 	}
1604 
1605 	/*
1606 	 * Use this flag as an indication that the dax page has been
1607 	 * remapped UC to prevent speculative consumption of poison.
1608 	 */
1609 	SetPageHWPoison(page);
1610 
1611 	/*
1612 	 * Unlike System-RAM there is no possibility to swap in a
1613 	 * different physical page at a given virtual address, so all
1614 	 * userspace consumption of ZONE_DEVICE memory necessitates
1615 	 * SIGBUS (i.e. MF_MUST_KILL)
1616 	 */
1617 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1618 	collect_procs(page, &to_kill, true);
1619 
1620 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1621 unlock:
1622 	dax_unlock_page(page, cookie);
1623 	return rc;
1624 }
1625 
1626 #ifdef CONFIG_FS_DAX
1627 /**
1628  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1629  * @mapping:	address_space of the file in use
1630  * @index:	start pgoff of the range within the file
1631  * @count:	length of the range, in unit of PAGE_SIZE
1632  * @mf_flags:	memory failure flags
1633  */
1634 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1635 		unsigned long count, int mf_flags)
1636 {
1637 	LIST_HEAD(to_kill);
1638 	dax_entry_t cookie;
1639 	struct page *page;
1640 	size_t end = index + count;
1641 
1642 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1643 
1644 	for (; index < end; index++) {
1645 		page = NULL;
1646 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1647 		if (!cookie)
1648 			return -EBUSY;
1649 		if (!page)
1650 			goto unlock;
1651 
1652 		SetPageHWPoison(page);
1653 
1654 		collect_procs_fsdax(page, mapping, index, &to_kill);
1655 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1656 				index, mf_flags);
1657 unlock:
1658 		dax_unlock_mapping_entry(mapping, index, cookie);
1659 	}
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1663 #endif /* CONFIG_FS_DAX */
1664 
1665 /*
1666  * Called from hugetlb code with hugetlb_lock held.
1667  *
1668  * Return values:
1669  *   0             - free hugepage
1670  *   1             - in-use hugepage
1671  *   2             - not a hugepage
1672  *   -EBUSY        - the hugepage is busy (try to retry)
1673  *   -EHWPOISON    - the hugepage is already hwpoisoned
1674  */
1675 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1676 {
1677 	struct page *page = pfn_to_page(pfn);
1678 	struct page *head = compound_head(page);
1679 	int ret = 2;	/* fallback to normal page handling */
1680 	bool count_increased = false;
1681 
1682 	if (!PageHeadHuge(head))
1683 		goto out;
1684 
1685 	if (flags & MF_COUNT_INCREASED) {
1686 		ret = 1;
1687 		count_increased = true;
1688 	} else if (HPageFreed(head)) {
1689 		ret = 0;
1690 	} else if (HPageMigratable(head)) {
1691 		ret = get_page_unless_zero(head);
1692 		if (ret)
1693 			count_increased = true;
1694 	} else {
1695 		ret = -EBUSY;
1696 		goto out;
1697 	}
1698 
1699 	if (TestSetPageHWPoison(head)) {
1700 		ret = -EHWPOISON;
1701 		goto out;
1702 	}
1703 
1704 	return ret;
1705 out:
1706 	if (count_increased)
1707 		put_page(head);
1708 	return ret;
1709 }
1710 
1711 #ifdef CONFIG_HUGETLB_PAGE
1712 /*
1713  * Taking refcount of hugetlb pages needs extra care about race conditions
1714  * with basic operations like hugepage allocation/free/demotion.
1715  * So some of prechecks for hwpoison (pinning, and testing/setting
1716  * PageHWPoison) should be done in single hugetlb_lock range.
1717  */
1718 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1719 {
1720 	int res;
1721 	struct page *p = pfn_to_page(pfn);
1722 	struct page *head;
1723 	unsigned long page_flags;
1724 	bool retry = true;
1725 
1726 	*hugetlb = 1;
1727 retry:
1728 	res = get_huge_page_for_hwpoison(pfn, flags);
1729 	if (res == 2) { /* fallback to normal page handling */
1730 		*hugetlb = 0;
1731 		return 0;
1732 	} else if (res == -EHWPOISON) {
1733 		pr_err("%#lx: already hardware poisoned\n", pfn);
1734 		if (flags & MF_ACTION_REQUIRED) {
1735 			head = compound_head(p);
1736 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1737 		}
1738 		return res;
1739 	} else if (res == -EBUSY) {
1740 		if (retry) {
1741 			retry = false;
1742 			goto retry;
1743 		}
1744 		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1745 		return res;
1746 	}
1747 
1748 	head = compound_head(p);
1749 	lock_page(head);
1750 
1751 	if (hwpoison_filter(p)) {
1752 		ClearPageHWPoison(head);
1753 		res = -EOPNOTSUPP;
1754 		goto out;
1755 	}
1756 
1757 	/*
1758 	 * Handling free hugepage.  The possible race with hugepage allocation
1759 	 * or demotion can be prevented by PageHWPoison flag.
1760 	 */
1761 	if (res == 0) {
1762 		unlock_page(head);
1763 		res = MF_FAILED;
1764 		if (__page_handle_poison(p)) {
1765 			page_ref_inc(p);
1766 			res = MF_RECOVERED;
1767 		}
1768 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1769 		return res == MF_RECOVERED ? 0 : -EBUSY;
1770 	}
1771 
1772 	page_flags = head->flags;
1773 
1774 	/*
1775 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1776 	 * simply disable it. In order to make it work properly, we need
1777 	 * make sure that:
1778 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1779 	 *    entry properly works, and
1780 	 *  - other mm code walking over page table is aware of pud-aligned
1781 	 *    hwpoison entries.
1782 	 */
1783 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1784 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1785 		res = -EBUSY;
1786 		goto out;
1787 	}
1788 
1789 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1790 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1791 		res = -EBUSY;
1792 		goto out;
1793 	}
1794 
1795 	return identify_page_state(pfn, p, page_flags);
1796 out:
1797 	unlock_page(head);
1798 	return res;
1799 }
1800 
1801 #else
1802 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1803 {
1804 	return 0;
1805 }
1806 
1807 #endif	/* CONFIG_HUGETLB_PAGE */
1808 
1809 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1810 		struct dev_pagemap *pgmap)
1811 {
1812 	struct page *page = pfn_to_page(pfn);
1813 	int rc = -ENXIO;
1814 
1815 	if (flags & MF_COUNT_INCREASED)
1816 		/*
1817 		 * Drop the extra refcount in case we come from madvise().
1818 		 */
1819 		put_page(page);
1820 
1821 	/* device metadata space is not recoverable */
1822 	if (!pgmap_pfn_valid(pgmap, pfn))
1823 		goto out;
1824 
1825 	/*
1826 	 * Call driver's implementation to handle the memory failure, otherwise
1827 	 * fall back to generic handler.
1828 	 */
1829 	if (pgmap->ops->memory_failure) {
1830 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1831 		/*
1832 		 * Fall back to generic handler too if operation is not
1833 		 * supported inside the driver/device/filesystem.
1834 		 */
1835 		if (rc != -EOPNOTSUPP)
1836 			goto out;
1837 	}
1838 
1839 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
1840 out:
1841 	/* drop pgmap ref acquired in caller */
1842 	put_dev_pagemap(pgmap);
1843 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1844 	return rc;
1845 }
1846 
1847 static DEFINE_MUTEX(mf_mutex);
1848 
1849 /**
1850  * memory_failure - Handle memory failure of a page.
1851  * @pfn: Page Number of the corrupted page
1852  * @flags: fine tune action taken
1853  *
1854  * This function is called by the low level machine check code
1855  * of an architecture when it detects hardware memory corruption
1856  * of a page. It tries its best to recover, which includes
1857  * dropping pages, killing processes etc.
1858  *
1859  * The function is primarily of use for corruptions that
1860  * happen outside the current execution context (e.g. when
1861  * detected by a background scrubber)
1862  *
1863  * Must run in process context (e.g. a work queue) with interrupts
1864  * enabled and no spinlocks hold.
1865  *
1866  * Return: 0 for successfully handled the memory error,
1867  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1868  *         < 0(except -EOPNOTSUPP) on failure.
1869  */
1870 int memory_failure(unsigned long pfn, int flags)
1871 {
1872 	struct page *p;
1873 	struct page *hpage;
1874 	struct dev_pagemap *pgmap;
1875 	int res = 0;
1876 	unsigned long page_flags;
1877 	bool retry = true;
1878 	int hugetlb = 0;
1879 
1880 	if (!sysctl_memory_failure_recovery)
1881 		panic("Memory failure on page %lx", pfn);
1882 
1883 	mutex_lock(&mf_mutex);
1884 
1885 	if (!(flags & MF_SW_SIMULATED))
1886 		hw_memory_failure = true;
1887 
1888 	p = pfn_to_online_page(pfn);
1889 	if (!p) {
1890 		res = arch_memory_failure(pfn, flags);
1891 		if (res == 0)
1892 			goto unlock_mutex;
1893 
1894 		if (pfn_valid(pfn)) {
1895 			pgmap = get_dev_pagemap(pfn, NULL);
1896 			if (pgmap) {
1897 				res = memory_failure_dev_pagemap(pfn, flags,
1898 								 pgmap);
1899 				goto unlock_mutex;
1900 			}
1901 		}
1902 		pr_err("%#lx: memory outside kernel control\n", pfn);
1903 		res = -ENXIO;
1904 		goto unlock_mutex;
1905 	}
1906 
1907 try_again:
1908 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1909 	if (hugetlb)
1910 		goto unlock_mutex;
1911 
1912 	if (TestSetPageHWPoison(p)) {
1913 		pr_err("%#lx: already hardware poisoned\n", pfn);
1914 		res = -EHWPOISON;
1915 		if (flags & MF_ACTION_REQUIRED)
1916 			res = kill_accessing_process(current, pfn, flags);
1917 		if (flags & MF_COUNT_INCREASED)
1918 			put_page(p);
1919 		goto unlock_mutex;
1920 	}
1921 
1922 	hpage = compound_head(p);
1923 
1924 	/*
1925 	 * We need/can do nothing about count=0 pages.
1926 	 * 1) it's a free page, and therefore in safe hand:
1927 	 *    prep_new_page() will be the gate keeper.
1928 	 * 2) it's part of a non-compound high order page.
1929 	 *    Implies some kernel user: cannot stop them from
1930 	 *    R/W the page; let's pray that the page has been
1931 	 *    used and will be freed some time later.
1932 	 * In fact it's dangerous to directly bump up page count from 0,
1933 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1934 	 */
1935 	if (!(flags & MF_COUNT_INCREASED)) {
1936 		res = get_hwpoison_page(p, flags);
1937 		if (!res) {
1938 			if (is_free_buddy_page(p)) {
1939 				if (take_page_off_buddy(p)) {
1940 					page_ref_inc(p);
1941 					res = MF_RECOVERED;
1942 				} else {
1943 					/* We lost the race, try again */
1944 					if (retry) {
1945 						ClearPageHWPoison(p);
1946 						retry = false;
1947 						goto try_again;
1948 					}
1949 					res = MF_FAILED;
1950 				}
1951 				action_result(pfn, MF_MSG_BUDDY, res);
1952 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1953 			} else {
1954 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1955 				res = -EBUSY;
1956 			}
1957 			goto unlock_mutex;
1958 		} else if (res < 0) {
1959 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1960 			res = -EBUSY;
1961 			goto unlock_mutex;
1962 		}
1963 	}
1964 
1965 	if (PageTransHuge(hpage)) {
1966 		/*
1967 		 * The flag must be set after the refcount is bumped
1968 		 * otherwise it may race with THP split.
1969 		 * And the flag can't be set in get_hwpoison_page() since
1970 		 * it is called by soft offline too and it is just called
1971 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1972 		 * place.
1973 		 *
1974 		 * Don't need care about the above error handling paths for
1975 		 * get_hwpoison_page() since they handle either free page
1976 		 * or unhandlable page.  The refcount is bumped iff the
1977 		 * page is a valid handlable page.
1978 		 */
1979 		SetPageHasHWPoisoned(hpage);
1980 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1981 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1982 			res = -EBUSY;
1983 			goto unlock_mutex;
1984 		}
1985 		VM_BUG_ON_PAGE(!page_count(p), p);
1986 	}
1987 
1988 	/*
1989 	 * We ignore non-LRU pages for good reasons.
1990 	 * - PG_locked is only well defined for LRU pages and a few others
1991 	 * - to avoid races with __SetPageLocked()
1992 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1993 	 * The check (unnecessarily) ignores LRU pages being isolated and
1994 	 * walked by the page reclaim code, however that's not a big loss.
1995 	 */
1996 	shake_page(p);
1997 
1998 	lock_page(p);
1999 
2000 	/*
2001 	 * We're only intended to deal with the non-Compound page here.
2002 	 * However, the page could have changed compound pages due to
2003 	 * race window. If this happens, we could try again to hopefully
2004 	 * handle the page next round.
2005 	 */
2006 	if (PageCompound(p)) {
2007 		if (retry) {
2008 			ClearPageHWPoison(p);
2009 			unlock_page(p);
2010 			put_page(p);
2011 			flags &= ~MF_COUNT_INCREASED;
2012 			retry = false;
2013 			goto try_again;
2014 		}
2015 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2016 		res = -EBUSY;
2017 		goto unlock_page;
2018 	}
2019 
2020 	/*
2021 	 * We use page flags to determine what action should be taken, but
2022 	 * the flags can be modified by the error containment action.  One
2023 	 * example is an mlocked page, where PG_mlocked is cleared by
2024 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2025 	 * correctly, we save a copy of the page flags at this time.
2026 	 */
2027 	page_flags = p->flags;
2028 
2029 	if (hwpoison_filter(p)) {
2030 		TestClearPageHWPoison(p);
2031 		unlock_page(p);
2032 		put_page(p);
2033 		res = -EOPNOTSUPP;
2034 		goto unlock_mutex;
2035 	}
2036 
2037 	/*
2038 	 * __munlock_pagevec may clear a writeback page's LRU flag without
2039 	 * page_lock. We need wait writeback completion for this page or it
2040 	 * may trigger vfs BUG while evict inode.
2041 	 */
2042 	if (!PageLRU(p) && !PageWriteback(p))
2043 		goto identify_page_state;
2044 
2045 	/*
2046 	 * It's very difficult to mess with pages currently under IO
2047 	 * and in many cases impossible, so we just avoid it here.
2048 	 */
2049 	wait_on_page_writeback(p);
2050 
2051 	/*
2052 	 * Now take care of user space mappings.
2053 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2054 	 */
2055 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2056 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2057 		res = -EBUSY;
2058 		goto unlock_page;
2059 	}
2060 
2061 	/*
2062 	 * Torn down by someone else?
2063 	 */
2064 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2065 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2066 		res = -EBUSY;
2067 		goto unlock_page;
2068 	}
2069 
2070 identify_page_state:
2071 	res = identify_page_state(pfn, p, page_flags);
2072 	mutex_unlock(&mf_mutex);
2073 	return res;
2074 unlock_page:
2075 	unlock_page(p);
2076 unlock_mutex:
2077 	mutex_unlock(&mf_mutex);
2078 	return res;
2079 }
2080 EXPORT_SYMBOL_GPL(memory_failure);
2081 
2082 #define MEMORY_FAILURE_FIFO_ORDER	4
2083 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2084 
2085 struct memory_failure_entry {
2086 	unsigned long pfn;
2087 	int flags;
2088 };
2089 
2090 struct memory_failure_cpu {
2091 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2092 		      MEMORY_FAILURE_FIFO_SIZE);
2093 	spinlock_t lock;
2094 	struct work_struct work;
2095 };
2096 
2097 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2098 
2099 /**
2100  * memory_failure_queue - Schedule handling memory failure of a page.
2101  * @pfn: Page Number of the corrupted page
2102  * @flags: Flags for memory failure handling
2103  *
2104  * This function is called by the low level hardware error handler
2105  * when it detects hardware memory corruption of a page. It schedules
2106  * the recovering of error page, including dropping pages, killing
2107  * processes etc.
2108  *
2109  * The function is primarily of use for corruptions that
2110  * happen outside the current execution context (e.g. when
2111  * detected by a background scrubber)
2112  *
2113  * Can run in IRQ context.
2114  */
2115 void memory_failure_queue(unsigned long pfn, int flags)
2116 {
2117 	struct memory_failure_cpu *mf_cpu;
2118 	unsigned long proc_flags;
2119 	struct memory_failure_entry entry = {
2120 		.pfn =		pfn,
2121 		.flags =	flags,
2122 	};
2123 
2124 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2125 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2126 	if (kfifo_put(&mf_cpu->fifo, entry))
2127 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2128 	else
2129 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2130 		       pfn);
2131 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2132 	put_cpu_var(memory_failure_cpu);
2133 }
2134 EXPORT_SYMBOL_GPL(memory_failure_queue);
2135 
2136 static void memory_failure_work_func(struct work_struct *work)
2137 {
2138 	struct memory_failure_cpu *mf_cpu;
2139 	struct memory_failure_entry entry = { 0, };
2140 	unsigned long proc_flags;
2141 	int gotten;
2142 
2143 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2144 	for (;;) {
2145 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2146 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2147 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2148 		if (!gotten)
2149 			break;
2150 		if (entry.flags & MF_SOFT_OFFLINE)
2151 			soft_offline_page(entry.pfn, entry.flags);
2152 		else
2153 			memory_failure(entry.pfn, entry.flags);
2154 	}
2155 }
2156 
2157 /*
2158  * Process memory_failure work queued on the specified CPU.
2159  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2160  */
2161 void memory_failure_queue_kick(int cpu)
2162 {
2163 	struct memory_failure_cpu *mf_cpu;
2164 
2165 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2166 	cancel_work_sync(&mf_cpu->work);
2167 	memory_failure_work_func(&mf_cpu->work);
2168 }
2169 
2170 static int __init memory_failure_init(void)
2171 {
2172 	struct memory_failure_cpu *mf_cpu;
2173 	int cpu;
2174 
2175 	for_each_possible_cpu(cpu) {
2176 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2177 		spin_lock_init(&mf_cpu->lock);
2178 		INIT_KFIFO(mf_cpu->fifo);
2179 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2180 	}
2181 
2182 	return 0;
2183 }
2184 core_initcall(memory_failure_init);
2185 
2186 #undef pr_fmt
2187 #define pr_fmt(fmt)	"" fmt
2188 #define unpoison_pr_info(fmt, pfn, rs)			\
2189 ({							\
2190 	if (__ratelimit(rs))				\
2191 		pr_info(fmt, pfn);			\
2192 })
2193 
2194 /**
2195  * unpoison_memory - Unpoison a previously poisoned page
2196  * @pfn: Page number of the to be unpoisoned page
2197  *
2198  * Software-unpoison a page that has been poisoned by
2199  * memory_failure() earlier.
2200  *
2201  * This is only done on the software-level, so it only works
2202  * for linux injected failures, not real hardware failures
2203  *
2204  * Returns 0 for success, otherwise -errno.
2205  */
2206 int unpoison_memory(unsigned long pfn)
2207 {
2208 	struct page *page;
2209 	struct page *p;
2210 	int ret = -EBUSY;
2211 	int freeit = 0;
2212 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2213 					DEFAULT_RATELIMIT_BURST);
2214 
2215 	if (!pfn_valid(pfn))
2216 		return -ENXIO;
2217 
2218 	p = pfn_to_page(pfn);
2219 	page = compound_head(p);
2220 
2221 	mutex_lock(&mf_mutex);
2222 
2223 	if (hw_memory_failure) {
2224 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2225 				 pfn, &unpoison_rs);
2226 		ret = -EOPNOTSUPP;
2227 		goto unlock_mutex;
2228 	}
2229 
2230 	if (!PageHWPoison(p)) {
2231 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2232 				 pfn, &unpoison_rs);
2233 		goto unlock_mutex;
2234 	}
2235 
2236 	if (page_count(page) > 1) {
2237 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2238 				 pfn, &unpoison_rs);
2239 		goto unlock_mutex;
2240 	}
2241 
2242 	if (page_mapped(page)) {
2243 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2244 				 pfn, &unpoison_rs);
2245 		goto unlock_mutex;
2246 	}
2247 
2248 	if (page_mapping(page)) {
2249 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2250 				 pfn, &unpoison_rs);
2251 		goto unlock_mutex;
2252 	}
2253 
2254 	if (PageSlab(page) || PageTable(page))
2255 		goto unlock_mutex;
2256 
2257 	ret = get_hwpoison_page(p, MF_UNPOISON);
2258 	if (!ret) {
2259 		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2260 	} else if (ret < 0) {
2261 		if (ret == -EHWPOISON) {
2262 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2263 		} else
2264 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2265 					 pfn, &unpoison_rs);
2266 	} else {
2267 		freeit = !!TestClearPageHWPoison(p);
2268 
2269 		put_page(page);
2270 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2271 			put_page(page);
2272 			ret = 0;
2273 		}
2274 	}
2275 
2276 unlock_mutex:
2277 	mutex_unlock(&mf_mutex);
2278 	if (!ret || freeit) {
2279 		num_poisoned_pages_dec();
2280 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2281 				 page_to_pfn(p), &unpoison_rs);
2282 	}
2283 	return ret;
2284 }
2285 EXPORT_SYMBOL(unpoison_memory);
2286 
2287 static bool isolate_page(struct page *page, struct list_head *pagelist)
2288 {
2289 	bool isolated = false;
2290 	bool lru = PageLRU(page);
2291 
2292 	if (PageHuge(page)) {
2293 		isolated = !isolate_hugetlb(page, pagelist);
2294 	} else {
2295 		if (lru)
2296 			isolated = !isolate_lru_page(page);
2297 		else
2298 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2299 
2300 		if (isolated)
2301 			list_add(&page->lru, pagelist);
2302 	}
2303 
2304 	if (isolated && lru)
2305 		inc_node_page_state(page, NR_ISOLATED_ANON +
2306 				    page_is_file_lru(page));
2307 
2308 	/*
2309 	 * If we succeed to isolate the page, we grabbed another refcount on
2310 	 * the page, so we can safely drop the one we got from get_any_pages().
2311 	 * If we failed to isolate the page, it means that we cannot go further
2312 	 * and we will return an error, so drop the reference we got from
2313 	 * get_any_pages() as well.
2314 	 */
2315 	put_page(page);
2316 	return isolated;
2317 }
2318 
2319 /*
2320  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2321  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2322  * If the page is mapped, it migrates the contents over.
2323  */
2324 static int __soft_offline_page(struct page *page)
2325 {
2326 	long ret = 0;
2327 	unsigned long pfn = page_to_pfn(page);
2328 	struct page *hpage = compound_head(page);
2329 	char const *msg_page[] = {"page", "hugepage"};
2330 	bool huge = PageHuge(page);
2331 	LIST_HEAD(pagelist);
2332 	struct migration_target_control mtc = {
2333 		.nid = NUMA_NO_NODE,
2334 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2335 	};
2336 
2337 	lock_page(page);
2338 	if (!PageHuge(page))
2339 		wait_on_page_writeback(page);
2340 	if (PageHWPoison(page)) {
2341 		unlock_page(page);
2342 		put_page(page);
2343 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2344 		return 0;
2345 	}
2346 
2347 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2348 		/*
2349 		 * Try to invalidate first. This should work for
2350 		 * non dirty unmapped page cache pages.
2351 		 */
2352 		ret = invalidate_inode_page(page);
2353 	unlock_page(page);
2354 
2355 	if (ret) {
2356 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2357 		page_handle_poison(page, false, true);
2358 		return 0;
2359 	}
2360 
2361 	if (isolate_page(hpage, &pagelist)) {
2362 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2363 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2364 		if (!ret) {
2365 			bool release = !huge;
2366 
2367 			if (!page_handle_poison(page, huge, release))
2368 				ret = -EBUSY;
2369 		} else {
2370 			if (!list_empty(&pagelist))
2371 				putback_movable_pages(&pagelist);
2372 
2373 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2374 				pfn, msg_page[huge], ret, &page->flags);
2375 			if (ret > 0)
2376 				ret = -EBUSY;
2377 		}
2378 	} else {
2379 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2380 			pfn, msg_page[huge], page_count(page), &page->flags);
2381 		ret = -EBUSY;
2382 	}
2383 	return ret;
2384 }
2385 
2386 static int soft_offline_in_use_page(struct page *page)
2387 {
2388 	struct page *hpage = compound_head(page);
2389 
2390 	if (!PageHuge(page) && PageTransHuge(hpage))
2391 		if (try_to_split_thp_page(page, "soft offline") < 0)
2392 			return -EBUSY;
2393 	return __soft_offline_page(page);
2394 }
2395 
2396 static int soft_offline_free_page(struct page *page)
2397 {
2398 	int rc = 0;
2399 
2400 	if (!page_handle_poison(page, true, false))
2401 		rc = -EBUSY;
2402 
2403 	return rc;
2404 }
2405 
2406 static void put_ref_page(struct page *page)
2407 {
2408 	if (page)
2409 		put_page(page);
2410 }
2411 
2412 /**
2413  * soft_offline_page - Soft offline a page.
2414  * @pfn: pfn to soft-offline
2415  * @flags: flags. Same as memory_failure().
2416  *
2417  * Returns 0 on success
2418  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2419  *         < 0 otherwise negated errno.
2420  *
2421  * Soft offline a page, by migration or invalidation,
2422  * without killing anything. This is for the case when
2423  * a page is not corrupted yet (so it's still valid to access),
2424  * but has had a number of corrected errors and is better taken
2425  * out.
2426  *
2427  * The actual policy on when to do that is maintained by
2428  * user space.
2429  *
2430  * This should never impact any application or cause data loss,
2431  * however it might take some time.
2432  *
2433  * This is not a 100% solution for all memory, but tries to be
2434  * ``good enough'' for the majority of memory.
2435  */
2436 int soft_offline_page(unsigned long pfn, int flags)
2437 {
2438 	int ret;
2439 	bool try_again = true;
2440 	struct page *page, *ref_page = NULL;
2441 
2442 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2443 
2444 	if (!pfn_valid(pfn))
2445 		return -ENXIO;
2446 	if (flags & MF_COUNT_INCREASED)
2447 		ref_page = pfn_to_page(pfn);
2448 
2449 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2450 	page = pfn_to_online_page(pfn);
2451 	if (!page) {
2452 		put_ref_page(ref_page);
2453 		return -EIO;
2454 	}
2455 
2456 	mutex_lock(&mf_mutex);
2457 
2458 	if (PageHWPoison(page)) {
2459 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2460 		put_ref_page(ref_page);
2461 		mutex_unlock(&mf_mutex);
2462 		return 0;
2463 	}
2464 
2465 retry:
2466 	get_online_mems();
2467 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2468 	put_online_mems();
2469 
2470 	if (hwpoison_filter(page)) {
2471 		if (ret > 0)
2472 			put_page(page);
2473 		else
2474 			put_ref_page(ref_page);
2475 
2476 		mutex_unlock(&mf_mutex);
2477 		return -EOPNOTSUPP;
2478 	}
2479 
2480 	if (ret > 0) {
2481 		ret = soft_offline_in_use_page(page);
2482 	} else if (ret == 0) {
2483 		if (soft_offline_free_page(page) && try_again) {
2484 			try_again = false;
2485 			flags &= ~MF_COUNT_INCREASED;
2486 			goto retry;
2487 		}
2488 	}
2489 
2490 	mutex_unlock(&mf_mutex);
2491 
2492 	return ret;
2493 }
2494 
2495 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2496 {
2497 	int i;
2498 
2499 	/*
2500 	 * A further optimization is to have per section refcounted
2501 	 * num_poisoned_pages.  But that would need more space per memmap, so
2502 	 * for now just do a quick global check to speed up this routine in the
2503 	 * absence of bad pages.
2504 	 */
2505 	if (atomic_long_read(&num_poisoned_pages) == 0)
2506 		return;
2507 
2508 	for (i = 0; i < nr_pages; i++) {
2509 		if (PageHWPoison(&memmap[i])) {
2510 			num_poisoned_pages_dec();
2511 			ClearPageHWPoison(&memmap[i]);
2512 		}
2513 	}
2514 }
2515