1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched.h> 44 #include <linux/ksm.h> 45 #include <linux/rmap.h> 46 #include <linux/export.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/backing-dev.h> 50 #include <linux/migrate.h> 51 #include <linux/page-isolation.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 struct siginfo si; 185 int ret; 186 187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 188 pfn, t->comm, t->pid); 189 si.si_signo = SIGBUS; 190 si.si_errno = 0; 191 si.si_addr = (void *)addr; 192 #ifdef __ARCH_SI_TRAPNO 193 si.si_trapno = trapno; 194 #endif 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 196 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 198 si.si_code = BUS_MCEERR_AR; 199 ret = force_sig_info(SIGBUS, &si, current); 200 } else { 201 /* 202 * Don't use force here, it's convenient if the signal 203 * can be temporarily blocked. 204 * This could cause a loop when the user sets SIGBUS 205 * to SIG_IGN, but hopefully no one will do that? 206 */ 207 si.si_code = BUS_MCEERR_AO; 208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 209 } 210 if (ret < 0) 211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 212 t->comm, t->pid, ret); 213 return ret; 214 } 215 216 /* 217 * When a unknown page type is encountered drain as many buffers as possible 218 * in the hope to turn the page into a LRU or free page, which we can handle. 219 */ 220 void shake_page(struct page *p, int access) 221 { 222 if (!PageSlab(p)) { 223 lru_add_drain_all(); 224 if (PageLRU(p)) 225 return; 226 drain_all_pages(page_zone(p)); 227 if (PageLRU(p) || is_free_buddy_page(p)) 228 return; 229 } 230 231 /* 232 * Only call shrink_node_slabs here (which would also shrink 233 * other caches) if access is not potentially fatal. 234 */ 235 if (access) 236 drop_slab_node(page_to_nid(p)); 237 } 238 EXPORT_SYMBOL_GPL(shake_page); 239 240 /* 241 * Kill all processes that have a poisoned page mapped and then isolate 242 * the page. 243 * 244 * General strategy: 245 * Find all processes having the page mapped and kill them. 246 * But we keep a page reference around so that the page is not 247 * actually freed yet. 248 * Then stash the page away 249 * 250 * There's no convenient way to get back to mapped processes 251 * from the VMAs. So do a brute-force search over all 252 * running processes. 253 * 254 * Remember that machine checks are not common (or rather 255 * if they are common you have other problems), so this shouldn't 256 * be a performance issue. 257 * 258 * Also there are some races possible while we get from the 259 * error detection to actually handle it. 260 */ 261 262 struct to_kill { 263 struct list_head nd; 264 struct task_struct *tsk; 265 unsigned long addr; 266 char addr_valid; 267 }; 268 269 /* 270 * Failure handling: if we can't find or can't kill a process there's 271 * not much we can do. We just print a message and ignore otherwise. 272 */ 273 274 /* 275 * Schedule a process for later kill. 276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 277 * TBD would GFP_NOIO be enough? 278 */ 279 static void add_to_kill(struct task_struct *tsk, struct page *p, 280 struct vm_area_struct *vma, 281 struct list_head *to_kill, 282 struct to_kill **tkc) 283 { 284 struct to_kill *tk; 285 286 if (*tkc) { 287 tk = *tkc; 288 *tkc = NULL; 289 } else { 290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 291 if (!tk) { 292 pr_err("Memory failure: Out of memory while machine check handling\n"); 293 return; 294 } 295 } 296 tk->addr = page_address_in_vma(p, vma); 297 tk->addr_valid = 1; 298 299 /* 300 * In theory we don't have to kill when the page was 301 * munmaped. But it could be also a mremap. Since that's 302 * likely very rare kill anyways just out of paranoia, but use 303 * a SIGKILL because the error is not contained anymore. 304 */ 305 if (tk->addr == -EFAULT) { 306 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 307 page_to_pfn(p), tsk->comm); 308 tk->addr_valid = 0; 309 } 310 get_task_struct(tsk); 311 tk->tsk = tsk; 312 list_add_tail(&tk->nd, to_kill); 313 } 314 315 /* 316 * Kill the processes that have been collected earlier. 317 * 318 * Only do anything when DOIT is set, otherwise just free the list 319 * (this is used for clean pages which do not need killing) 320 * Also when FAIL is set do a force kill because something went 321 * wrong earlier. 322 */ 323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 324 int fail, struct page *page, unsigned long pfn, 325 int flags) 326 { 327 struct to_kill *tk, *next; 328 329 list_for_each_entry_safe (tk, next, to_kill, nd) { 330 if (forcekill) { 331 /* 332 * In case something went wrong with munmapping 333 * make sure the process doesn't catch the 334 * signal and then access the memory. Just kill it. 335 */ 336 if (fail || tk->addr_valid == 0) { 337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 338 pfn, tk->tsk->comm, tk->tsk->pid); 339 force_sig(SIGKILL, tk->tsk); 340 } 341 342 /* 343 * In theory the process could have mapped 344 * something else on the address in-between. We could 345 * check for that, but we need to tell the 346 * process anyways. 347 */ 348 else if (kill_proc(tk->tsk, tk->addr, trapno, 349 pfn, page, flags) < 0) 350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 351 pfn, tk->tsk->comm, tk->tsk->pid); 352 } 353 put_task_struct(tk->tsk); 354 kfree(tk); 355 } 356 } 357 358 /* 359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 360 * on behalf of the thread group. Return task_struct of the (first found) 361 * dedicated thread if found, and return NULL otherwise. 362 * 363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 364 * have to call rcu_read_lock/unlock() in this function. 365 */ 366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 367 { 368 struct task_struct *t; 369 370 for_each_thread(tsk, t) 371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 372 return t; 373 return NULL; 374 } 375 376 /* 377 * Determine whether a given process is "early kill" process which expects 378 * to be signaled when some page under the process is hwpoisoned. 379 * Return task_struct of the dedicated thread (main thread unless explicitly 380 * specified) if the process is "early kill," and otherwise returns NULL. 381 */ 382 static struct task_struct *task_early_kill(struct task_struct *tsk, 383 int force_early) 384 { 385 struct task_struct *t; 386 if (!tsk->mm) 387 return NULL; 388 if (force_early) 389 return tsk; 390 t = find_early_kill_thread(tsk); 391 if (t) 392 return t; 393 if (sysctl_memory_failure_early_kill) 394 return tsk; 395 return NULL; 396 } 397 398 /* 399 * Collect processes when the error hit an anonymous page. 400 */ 401 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 402 struct to_kill **tkc, int force_early) 403 { 404 struct vm_area_struct *vma; 405 struct task_struct *tsk; 406 struct anon_vma *av; 407 pgoff_t pgoff; 408 409 av = page_lock_anon_vma_read(page); 410 if (av == NULL) /* Not actually mapped anymore */ 411 return; 412 413 pgoff = page_to_pgoff(page); 414 read_lock(&tasklist_lock); 415 for_each_process (tsk) { 416 struct anon_vma_chain *vmac; 417 struct task_struct *t = task_early_kill(tsk, force_early); 418 419 if (!t) 420 continue; 421 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 422 pgoff, pgoff) { 423 vma = vmac->vma; 424 if (!page_mapped_in_vma(page, vma)) 425 continue; 426 if (vma->vm_mm == t->mm) 427 add_to_kill(t, page, vma, to_kill, tkc); 428 } 429 } 430 read_unlock(&tasklist_lock); 431 page_unlock_anon_vma_read(av); 432 } 433 434 /* 435 * Collect processes when the error hit a file mapped page. 436 */ 437 static void collect_procs_file(struct page *page, struct list_head *to_kill, 438 struct to_kill **tkc, int force_early) 439 { 440 struct vm_area_struct *vma; 441 struct task_struct *tsk; 442 struct address_space *mapping = page->mapping; 443 444 i_mmap_lock_read(mapping); 445 read_lock(&tasklist_lock); 446 for_each_process(tsk) { 447 pgoff_t pgoff = page_to_pgoff(page); 448 struct task_struct *t = task_early_kill(tsk, force_early); 449 450 if (!t) 451 continue; 452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 453 pgoff) { 454 /* 455 * Send early kill signal to tasks where a vma covers 456 * the page but the corrupted page is not necessarily 457 * mapped it in its pte. 458 * Assume applications who requested early kill want 459 * to be informed of all such data corruptions. 460 */ 461 if (vma->vm_mm == t->mm) 462 add_to_kill(t, page, vma, to_kill, tkc); 463 } 464 } 465 read_unlock(&tasklist_lock); 466 i_mmap_unlock_read(mapping); 467 } 468 469 /* 470 * Collect the processes who have the corrupted page mapped to kill. 471 * This is done in two steps for locking reasons. 472 * First preallocate one tokill structure outside the spin locks, 473 * so that we can kill at least one process reasonably reliable. 474 */ 475 static void collect_procs(struct page *page, struct list_head *tokill, 476 int force_early) 477 { 478 struct to_kill *tk; 479 480 if (!page->mapping) 481 return; 482 483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 484 if (!tk) 485 return; 486 if (PageAnon(page)) 487 collect_procs_anon(page, tokill, &tk, force_early); 488 else 489 collect_procs_file(page, tokill, &tk, force_early); 490 kfree(tk); 491 } 492 493 static const char *action_name[] = { 494 [MF_IGNORED] = "Ignored", 495 [MF_FAILED] = "Failed", 496 [MF_DELAYED] = "Delayed", 497 [MF_RECOVERED] = "Recovered", 498 }; 499 500 static const char * const action_page_types[] = { 501 [MF_MSG_KERNEL] = "reserved kernel page", 502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 503 [MF_MSG_SLAB] = "kernel slab page", 504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 506 [MF_MSG_HUGE] = "huge page", 507 [MF_MSG_FREE_HUGE] = "free huge page", 508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 515 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 516 [MF_MSG_CLEAN_LRU] = "clean LRU page", 517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 518 [MF_MSG_BUDDY] = "free buddy page", 519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 520 [MF_MSG_UNKNOWN] = "unknown page", 521 }; 522 523 /* 524 * XXX: It is possible that a page is isolated from LRU cache, 525 * and then kept in swap cache or failed to remove from page cache. 526 * The page count will stop it from being freed by unpoison. 527 * Stress tests should be aware of this memory leak problem. 528 */ 529 static int delete_from_lru_cache(struct page *p) 530 { 531 if (!isolate_lru_page(p)) { 532 /* 533 * Clear sensible page flags, so that the buddy system won't 534 * complain when the page is unpoison-and-freed. 535 */ 536 ClearPageActive(p); 537 ClearPageUnevictable(p); 538 /* 539 * drop the page count elevated by isolate_lru_page() 540 */ 541 put_page(p); 542 return 0; 543 } 544 return -EIO; 545 } 546 547 /* 548 * Error hit kernel page. 549 * Do nothing, try to be lucky and not touch this instead. For a few cases we 550 * could be more sophisticated. 551 */ 552 static int me_kernel(struct page *p, unsigned long pfn) 553 { 554 return MF_IGNORED; 555 } 556 557 /* 558 * Page in unknown state. Do nothing. 559 */ 560 static int me_unknown(struct page *p, unsigned long pfn) 561 { 562 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 563 return MF_FAILED; 564 } 565 566 /* 567 * Clean (or cleaned) page cache page. 568 */ 569 static int me_pagecache_clean(struct page *p, unsigned long pfn) 570 { 571 int err; 572 int ret = MF_FAILED; 573 struct address_space *mapping; 574 575 delete_from_lru_cache(p); 576 577 /* 578 * For anonymous pages we're done the only reference left 579 * should be the one m_f() holds. 580 */ 581 if (PageAnon(p)) 582 return MF_RECOVERED; 583 584 /* 585 * Now truncate the page in the page cache. This is really 586 * more like a "temporary hole punch" 587 * Don't do this for block devices when someone else 588 * has a reference, because it could be file system metadata 589 * and that's not safe to truncate. 590 */ 591 mapping = page_mapping(p); 592 if (!mapping) { 593 /* 594 * Page has been teared down in the meanwhile 595 */ 596 return MF_FAILED; 597 } 598 599 /* 600 * Truncation is a bit tricky. Enable it per file system for now. 601 * 602 * Open: to take i_mutex or not for this? Right now we don't. 603 */ 604 if (mapping->a_ops->error_remove_page) { 605 err = mapping->a_ops->error_remove_page(mapping, p); 606 if (err != 0) { 607 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 608 pfn, err); 609 } else if (page_has_private(p) && 610 !try_to_release_page(p, GFP_NOIO)) { 611 pr_info("Memory failure: %#lx: failed to release buffers\n", 612 pfn); 613 } else { 614 ret = MF_RECOVERED; 615 } 616 } else { 617 /* 618 * If the file system doesn't support it just invalidate 619 * This fails on dirty or anything with private pages 620 */ 621 if (invalidate_inode_page(p)) 622 ret = MF_RECOVERED; 623 else 624 pr_info("Memory failure: %#lx: Failed to invalidate\n", 625 pfn); 626 } 627 return ret; 628 } 629 630 /* 631 * Dirty pagecache page 632 * Issues: when the error hit a hole page the error is not properly 633 * propagated. 634 */ 635 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 636 { 637 struct address_space *mapping = page_mapping(p); 638 639 SetPageError(p); 640 /* TBD: print more information about the file. */ 641 if (mapping) { 642 /* 643 * IO error will be reported by write(), fsync(), etc. 644 * who check the mapping. 645 * This way the application knows that something went 646 * wrong with its dirty file data. 647 * 648 * There's one open issue: 649 * 650 * The EIO will be only reported on the next IO 651 * operation and then cleared through the IO map. 652 * Normally Linux has two mechanisms to pass IO error 653 * first through the AS_EIO flag in the address space 654 * and then through the PageError flag in the page. 655 * Since we drop pages on memory failure handling the 656 * only mechanism open to use is through AS_AIO. 657 * 658 * This has the disadvantage that it gets cleared on 659 * the first operation that returns an error, while 660 * the PageError bit is more sticky and only cleared 661 * when the page is reread or dropped. If an 662 * application assumes it will always get error on 663 * fsync, but does other operations on the fd before 664 * and the page is dropped between then the error 665 * will not be properly reported. 666 * 667 * This can already happen even without hwpoisoned 668 * pages: first on metadata IO errors (which only 669 * report through AS_EIO) or when the page is dropped 670 * at the wrong time. 671 * 672 * So right now we assume that the application DTRT on 673 * the first EIO, but we're not worse than other parts 674 * of the kernel. 675 */ 676 mapping_set_error(mapping, EIO); 677 } 678 679 return me_pagecache_clean(p, pfn); 680 } 681 682 /* 683 * Clean and dirty swap cache. 684 * 685 * Dirty swap cache page is tricky to handle. The page could live both in page 686 * cache and swap cache(ie. page is freshly swapped in). So it could be 687 * referenced concurrently by 2 types of PTEs: 688 * normal PTEs and swap PTEs. We try to handle them consistently by calling 689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 690 * and then 691 * - clear dirty bit to prevent IO 692 * - remove from LRU 693 * - but keep in the swap cache, so that when we return to it on 694 * a later page fault, we know the application is accessing 695 * corrupted data and shall be killed (we installed simple 696 * interception code in do_swap_page to catch it). 697 * 698 * Clean swap cache pages can be directly isolated. A later page fault will 699 * bring in the known good data from disk. 700 */ 701 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 702 { 703 ClearPageDirty(p); 704 /* Trigger EIO in shmem: */ 705 ClearPageUptodate(p); 706 707 if (!delete_from_lru_cache(p)) 708 return MF_DELAYED; 709 else 710 return MF_FAILED; 711 } 712 713 static int me_swapcache_clean(struct page *p, unsigned long pfn) 714 { 715 delete_from_swap_cache(p); 716 717 if (!delete_from_lru_cache(p)) 718 return MF_RECOVERED; 719 else 720 return MF_FAILED; 721 } 722 723 /* 724 * Huge pages. Needs work. 725 * Issues: 726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 727 * To narrow down kill region to one page, we need to break up pmd. 728 */ 729 static int me_huge_page(struct page *p, unsigned long pfn) 730 { 731 int res = 0; 732 struct page *hpage = compound_head(p); 733 734 if (!PageHuge(hpage)) 735 return MF_DELAYED; 736 737 /* 738 * We can safely recover from error on free or reserved (i.e. 739 * not in-use) hugepage by dequeuing it from freelist. 740 * To check whether a hugepage is in-use or not, we can't use 741 * page->lru because it can be used in other hugepage operations, 742 * such as __unmap_hugepage_range() and gather_surplus_pages(). 743 * So instead we use page_mapping() and PageAnon(). 744 * We assume that this function is called with page lock held, 745 * so there is no race between isolation and mapping/unmapping. 746 */ 747 if (!(page_mapping(hpage) || PageAnon(hpage))) { 748 res = dequeue_hwpoisoned_huge_page(hpage); 749 if (!res) 750 return MF_RECOVERED; 751 } 752 return MF_DELAYED; 753 } 754 755 /* 756 * Various page states we can handle. 757 * 758 * A page state is defined by its current page->flags bits. 759 * The table matches them in order and calls the right handler. 760 * 761 * This is quite tricky because we can access page at any time 762 * in its live cycle, so all accesses have to be extremely careful. 763 * 764 * This is not complete. More states could be added. 765 * For any missing state don't attempt recovery. 766 */ 767 768 #define dirty (1UL << PG_dirty) 769 #define sc (1UL << PG_swapcache) 770 #define unevict (1UL << PG_unevictable) 771 #define mlock (1UL << PG_mlocked) 772 #define writeback (1UL << PG_writeback) 773 #define lru (1UL << PG_lru) 774 #define swapbacked (1UL << PG_swapbacked) 775 #define head (1UL << PG_head) 776 #define slab (1UL << PG_slab) 777 #define reserved (1UL << PG_reserved) 778 779 static struct page_state { 780 unsigned long mask; 781 unsigned long res; 782 enum mf_action_page_type type; 783 int (*action)(struct page *p, unsigned long pfn); 784 } error_states[] = { 785 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 786 /* 787 * free pages are specially detected outside this table: 788 * PG_buddy pages only make a small fraction of all free pages. 789 */ 790 791 /* 792 * Could in theory check if slab page is free or if we can drop 793 * currently unused objects without touching them. But just 794 * treat it as standard kernel for now. 795 */ 796 { slab, slab, MF_MSG_SLAB, me_kernel }, 797 798 { head, head, MF_MSG_HUGE, me_huge_page }, 799 800 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 801 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 802 803 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 804 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 805 806 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 807 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 808 809 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 810 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 811 812 /* 813 * Catchall entry: must be at end. 814 */ 815 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 816 }; 817 818 #undef dirty 819 #undef sc 820 #undef unevict 821 #undef mlock 822 #undef writeback 823 #undef lru 824 #undef swapbacked 825 #undef head 826 #undef slab 827 #undef reserved 828 829 /* 830 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 831 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 832 */ 833 static void action_result(unsigned long pfn, enum mf_action_page_type type, 834 enum mf_result result) 835 { 836 trace_memory_failure_event(pfn, type, result); 837 838 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 839 pfn, action_page_types[type], action_name[result]); 840 } 841 842 static int page_action(struct page_state *ps, struct page *p, 843 unsigned long pfn) 844 { 845 int result; 846 int count; 847 848 result = ps->action(p, pfn); 849 850 count = page_count(p) - 1; 851 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 852 count--; 853 if (count != 0) { 854 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 855 pfn, action_page_types[ps->type], count); 856 result = MF_FAILED; 857 } 858 action_result(pfn, ps->type, result); 859 860 /* Could do more checks here if page looks ok */ 861 /* 862 * Could adjust zone counters here to correct for the missing page. 863 */ 864 865 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 866 } 867 868 /** 869 * get_hwpoison_page() - Get refcount for memory error handling: 870 * @page: raw error page (hit by memory error) 871 * 872 * Return: return 0 if failed to grab the refcount, otherwise true (some 873 * non-zero value.) 874 */ 875 int get_hwpoison_page(struct page *page) 876 { 877 struct page *head = compound_head(page); 878 879 if (!PageHuge(head) && PageTransHuge(head)) { 880 /* 881 * Non anonymous thp exists only in allocation/free time. We 882 * can't handle such a case correctly, so let's give it up. 883 * This should be better than triggering BUG_ON when kernel 884 * tries to touch the "partially handled" page. 885 */ 886 if (!PageAnon(head)) { 887 pr_err("Memory failure: %#lx: non anonymous thp\n", 888 page_to_pfn(page)); 889 return 0; 890 } 891 } 892 893 if (get_page_unless_zero(head)) { 894 if (head == compound_head(page)) 895 return 1; 896 897 pr_info("Memory failure: %#lx cannot catch tail\n", 898 page_to_pfn(page)); 899 put_page(head); 900 } 901 902 return 0; 903 } 904 EXPORT_SYMBOL_GPL(get_hwpoison_page); 905 906 /* 907 * Do all that is necessary to remove user space mappings. Unmap 908 * the pages and send SIGBUS to the processes if the data was dirty. 909 */ 910 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 911 int trapno, int flags, struct page **hpagep) 912 { 913 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 914 struct address_space *mapping; 915 LIST_HEAD(tokill); 916 int ret; 917 int kill = 1, forcekill; 918 struct page *hpage = *hpagep; 919 920 /* 921 * Here we are interested only in user-mapped pages, so skip any 922 * other types of pages. 923 */ 924 if (PageReserved(p) || PageSlab(p)) 925 return SWAP_SUCCESS; 926 if (!(PageLRU(hpage) || PageHuge(p))) 927 return SWAP_SUCCESS; 928 929 /* 930 * This check implies we don't kill processes if their pages 931 * are in the swap cache early. Those are always late kills. 932 */ 933 if (!page_mapped(hpage)) 934 return SWAP_SUCCESS; 935 936 if (PageKsm(p)) { 937 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 938 return SWAP_FAIL; 939 } 940 941 if (PageSwapCache(p)) { 942 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 943 pfn); 944 ttu |= TTU_IGNORE_HWPOISON; 945 } 946 947 /* 948 * Propagate the dirty bit from PTEs to struct page first, because we 949 * need this to decide if we should kill or just drop the page. 950 * XXX: the dirty test could be racy: set_page_dirty() may not always 951 * be called inside page lock (it's recommended but not enforced). 952 */ 953 mapping = page_mapping(hpage); 954 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 955 mapping_cap_writeback_dirty(mapping)) { 956 if (page_mkclean(hpage)) { 957 SetPageDirty(hpage); 958 } else { 959 kill = 0; 960 ttu |= TTU_IGNORE_HWPOISON; 961 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 962 pfn); 963 } 964 } 965 966 /* 967 * First collect all the processes that have the page 968 * mapped in dirty form. This has to be done before try_to_unmap, 969 * because ttu takes the rmap data structures down. 970 * 971 * Error handling: We ignore errors here because 972 * there's nothing that can be done. 973 */ 974 if (kill) 975 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 976 977 ret = try_to_unmap(hpage, ttu); 978 if (ret != SWAP_SUCCESS) 979 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 980 pfn, page_mapcount(hpage)); 981 982 /* 983 * Now that the dirty bit has been propagated to the 984 * struct page and all unmaps done we can decide if 985 * killing is needed or not. Only kill when the page 986 * was dirty or the process is not restartable, 987 * otherwise the tokill list is merely 988 * freed. When there was a problem unmapping earlier 989 * use a more force-full uncatchable kill to prevent 990 * any accesses to the poisoned memory. 991 */ 992 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 993 kill_procs(&tokill, forcekill, trapno, 994 ret != SWAP_SUCCESS, p, pfn, flags); 995 996 return ret; 997 } 998 999 static void set_page_hwpoison_huge_page(struct page *hpage) 1000 { 1001 int i; 1002 int nr_pages = 1 << compound_order(hpage); 1003 for (i = 0; i < nr_pages; i++) 1004 SetPageHWPoison(hpage + i); 1005 } 1006 1007 static void clear_page_hwpoison_huge_page(struct page *hpage) 1008 { 1009 int i; 1010 int nr_pages = 1 << compound_order(hpage); 1011 for (i = 0; i < nr_pages; i++) 1012 ClearPageHWPoison(hpage + i); 1013 } 1014 1015 /** 1016 * memory_failure - Handle memory failure of a page. 1017 * @pfn: Page Number of the corrupted page 1018 * @trapno: Trap number reported in the signal to user space. 1019 * @flags: fine tune action taken 1020 * 1021 * This function is called by the low level machine check code 1022 * of an architecture when it detects hardware memory corruption 1023 * of a page. It tries its best to recover, which includes 1024 * dropping pages, killing processes etc. 1025 * 1026 * The function is primarily of use for corruptions that 1027 * happen outside the current execution context (e.g. when 1028 * detected by a background scrubber) 1029 * 1030 * Must run in process context (e.g. a work queue) with interrupts 1031 * enabled and no spinlocks hold. 1032 */ 1033 int memory_failure(unsigned long pfn, int trapno, int flags) 1034 { 1035 struct page_state *ps; 1036 struct page *p; 1037 struct page *hpage; 1038 struct page *orig_head; 1039 int res; 1040 unsigned int nr_pages; 1041 unsigned long page_flags; 1042 1043 if (!sysctl_memory_failure_recovery) 1044 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1045 1046 if (!pfn_valid(pfn)) { 1047 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1048 pfn); 1049 return -ENXIO; 1050 } 1051 1052 p = pfn_to_page(pfn); 1053 orig_head = hpage = compound_head(p); 1054 if (TestSetPageHWPoison(p)) { 1055 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1056 pfn); 1057 return 0; 1058 } 1059 1060 /* 1061 * Currently errors on hugetlbfs pages are measured in hugepage units, 1062 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1063 * transparent hugepages, they are supposed to be split and error 1064 * measurement is done in normal page units. So nr_pages should be one 1065 * in this case. 1066 */ 1067 if (PageHuge(p)) 1068 nr_pages = 1 << compound_order(hpage); 1069 else /* normal page or thp */ 1070 nr_pages = 1; 1071 num_poisoned_pages_add(nr_pages); 1072 1073 /* 1074 * We need/can do nothing about count=0 pages. 1075 * 1) it's a free page, and therefore in safe hand: 1076 * prep_new_page() will be the gate keeper. 1077 * 2) it's a free hugepage, which is also safe: 1078 * an affected hugepage will be dequeued from hugepage freelist, 1079 * so there's no concern about reusing it ever after. 1080 * 3) it's part of a non-compound high order page. 1081 * Implies some kernel user: cannot stop them from 1082 * R/W the page; let's pray that the page has been 1083 * used and will be freed some time later. 1084 * In fact it's dangerous to directly bump up page count from 0, 1085 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1086 */ 1087 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1088 if (is_free_buddy_page(p)) { 1089 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1090 return 0; 1091 } else if (PageHuge(hpage)) { 1092 /* 1093 * Check "filter hit" and "race with other subpage." 1094 */ 1095 lock_page(hpage); 1096 if (PageHWPoison(hpage)) { 1097 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1098 || (p != hpage && TestSetPageHWPoison(hpage))) { 1099 num_poisoned_pages_sub(nr_pages); 1100 unlock_page(hpage); 1101 return 0; 1102 } 1103 } 1104 set_page_hwpoison_huge_page(hpage); 1105 res = dequeue_hwpoisoned_huge_page(hpage); 1106 action_result(pfn, MF_MSG_FREE_HUGE, 1107 res ? MF_IGNORED : MF_DELAYED); 1108 unlock_page(hpage); 1109 return res; 1110 } else { 1111 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1112 return -EBUSY; 1113 } 1114 } 1115 1116 if (!PageHuge(p) && PageTransHuge(hpage)) { 1117 lock_page(hpage); 1118 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1119 unlock_page(hpage); 1120 if (!PageAnon(hpage)) 1121 pr_err("Memory failure: %#lx: non anonymous thp\n", 1122 pfn); 1123 else 1124 pr_err("Memory failure: %#lx: thp split failed\n", 1125 pfn); 1126 if (TestClearPageHWPoison(p)) 1127 num_poisoned_pages_sub(nr_pages); 1128 put_hwpoison_page(p); 1129 return -EBUSY; 1130 } 1131 unlock_page(hpage); 1132 get_hwpoison_page(p); 1133 put_hwpoison_page(hpage); 1134 VM_BUG_ON_PAGE(!page_count(p), p); 1135 hpage = compound_head(p); 1136 } 1137 1138 /* 1139 * We ignore non-LRU pages for good reasons. 1140 * - PG_locked is only well defined for LRU pages and a few others 1141 * - to avoid races with __SetPageLocked() 1142 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1143 * The check (unnecessarily) ignores LRU pages being isolated and 1144 * walked by the page reclaim code, however that's not a big loss. 1145 */ 1146 if (!PageHuge(p)) { 1147 if (!PageLRU(p)) 1148 shake_page(p, 0); 1149 if (!PageLRU(p)) { 1150 /* 1151 * shake_page could have turned it free. 1152 */ 1153 if (is_free_buddy_page(p)) { 1154 if (flags & MF_COUNT_INCREASED) 1155 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1156 else 1157 action_result(pfn, MF_MSG_BUDDY_2ND, 1158 MF_DELAYED); 1159 return 0; 1160 } 1161 } 1162 } 1163 1164 lock_page(hpage); 1165 1166 /* 1167 * The page could have changed compound pages during the locking. 1168 * If this happens just bail out. 1169 */ 1170 if (PageCompound(p) && compound_head(p) != orig_head) { 1171 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1172 res = -EBUSY; 1173 goto out; 1174 } 1175 1176 /* 1177 * We use page flags to determine what action should be taken, but 1178 * the flags can be modified by the error containment action. One 1179 * example is an mlocked page, where PG_mlocked is cleared by 1180 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1181 * correctly, we save a copy of the page flags at this time. 1182 */ 1183 page_flags = p->flags; 1184 1185 /* 1186 * unpoison always clear PG_hwpoison inside page lock 1187 */ 1188 if (!PageHWPoison(p)) { 1189 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1190 num_poisoned_pages_sub(nr_pages); 1191 unlock_page(hpage); 1192 put_hwpoison_page(hpage); 1193 return 0; 1194 } 1195 if (hwpoison_filter(p)) { 1196 if (TestClearPageHWPoison(p)) 1197 num_poisoned_pages_sub(nr_pages); 1198 unlock_page(hpage); 1199 put_hwpoison_page(hpage); 1200 return 0; 1201 } 1202 1203 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1204 goto identify_page_state; 1205 1206 /* 1207 * For error on the tail page, we should set PG_hwpoison 1208 * on the head page to show that the hugepage is hwpoisoned 1209 */ 1210 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1211 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1212 unlock_page(hpage); 1213 put_hwpoison_page(hpage); 1214 return 0; 1215 } 1216 /* 1217 * Set PG_hwpoison on all pages in an error hugepage, 1218 * because containment is done in hugepage unit for now. 1219 * Since we have done TestSetPageHWPoison() for the head page with 1220 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1221 */ 1222 if (PageHuge(p)) 1223 set_page_hwpoison_huge_page(hpage); 1224 1225 /* 1226 * It's very difficult to mess with pages currently under IO 1227 * and in many cases impossible, so we just avoid it here. 1228 */ 1229 wait_on_page_writeback(p); 1230 1231 /* 1232 * Now take care of user space mappings. 1233 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1234 * 1235 * When the raw error page is thp tail page, hpage points to the raw 1236 * page after thp split. 1237 */ 1238 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1239 != SWAP_SUCCESS) { 1240 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1241 res = -EBUSY; 1242 goto out; 1243 } 1244 1245 /* 1246 * Torn down by someone else? 1247 */ 1248 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1249 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1250 res = -EBUSY; 1251 goto out; 1252 } 1253 1254 identify_page_state: 1255 res = -EBUSY; 1256 /* 1257 * The first check uses the current page flags which may not have any 1258 * relevant information. The second check with the saved page flagss is 1259 * carried out only if the first check can't determine the page status. 1260 */ 1261 for (ps = error_states;; ps++) 1262 if ((p->flags & ps->mask) == ps->res) 1263 break; 1264 1265 page_flags |= (p->flags & (1UL << PG_dirty)); 1266 1267 if (!ps->mask) 1268 for (ps = error_states;; ps++) 1269 if ((page_flags & ps->mask) == ps->res) 1270 break; 1271 res = page_action(ps, p, pfn); 1272 out: 1273 unlock_page(hpage); 1274 return res; 1275 } 1276 EXPORT_SYMBOL_GPL(memory_failure); 1277 1278 #define MEMORY_FAILURE_FIFO_ORDER 4 1279 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1280 1281 struct memory_failure_entry { 1282 unsigned long pfn; 1283 int trapno; 1284 int flags; 1285 }; 1286 1287 struct memory_failure_cpu { 1288 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1289 MEMORY_FAILURE_FIFO_SIZE); 1290 spinlock_t lock; 1291 struct work_struct work; 1292 }; 1293 1294 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1295 1296 /** 1297 * memory_failure_queue - Schedule handling memory failure of a page. 1298 * @pfn: Page Number of the corrupted page 1299 * @trapno: Trap number reported in the signal to user space. 1300 * @flags: Flags for memory failure handling 1301 * 1302 * This function is called by the low level hardware error handler 1303 * when it detects hardware memory corruption of a page. It schedules 1304 * the recovering of error page, including dropping pages, killing 1305 * processes etc. 1306 * 1307 * The function is primarily of use for corruptions that 1308 * happen outside the current execution context (e.g. when 1309 * detected by a background scrubber) 1310 * 1311 * Can run in IRQ context. 1312 */ 1313 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1314 { 1315 struct memory_failure_cpu *mf_cpu; 1316 unsigned long proc_flags; 1317 struct memory_failure_entry entry = { 1318 .pfn = pfn, 1319 .trapno = trapno, 1320 .flags = flags, 1321 }; 1322 1323 mf_cpu = &get_cpu_var(memory_failure_cpu); 1324 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1325 if (kfifo_put(&mf_cpu->fifo, entry)) 1326 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1327 else 1328 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1329 pfn); 1330 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1331 put_cpu_var(memory_failure_cpu); 1332 } 1333 EXPORT_SYMBOL_GPL(memory_failure_queue); 1334 1335 static void memory_failure_work_func(struct work_struct *work) 1336 { 1337 struct memory_failure_cpu *mf_cpu; 1338 struct memory_failure_entry entry = { 0, }; 1339 unsigned long proc_flags; 1340 int gotten; 1341 1342 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1343 for (;;) { 1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1345 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1346 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1347 if (!gotten) 1348 break; 1349 if (entry.flags & MF_SOFT_OFFLINE) 1350 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1351 else 1352 memory_failure(entry.pfn, entry.trapno, entry.flags); 1353 } 1354 } 1355 1356 static int __init memory_failure_init(void) 1357 { 1358 struct memory_failure_cpu *mf_cpu; 1359 int cpu; 1360 1361 for_each_possible_cpu(cpu) { 1362 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1363 spin_lock_init(&mf_cpu->lock); 1364 INIT_KFIFO(mf_cpu->fifo); 1365 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1366 } 1367 1368 return 0; 1369 } 1370 core_initcall(memory_failure_init); 1371 1372 #define unpoison_pr_info(fmt, pfn, rs) \ 1373 ({ \ 1374 if (__ratelimit(rs)) \ 1375 pr_info(fmt, pfn); \ 1376 }) 1377 1378 /** 1379 * unpoison_memory - Unpoison a previously poisoned page 1380 * @pfn: Page number of the to be unpoisoned page 1381 * 1382 * Software-unpoison a page that has been poisoned by 1383 * memory_failure() earlier. 1384 * 1385 * This is only done on the software-level, so it only works 1386 * for linux injected failures, not real hardware failures 1387 * 1388 * Returns 0 for success, otherwise -errno. 1389 */ 1390 int unpoison_memory(unsigned long pfn) 1391 { 1392 struct page *page; 1393 struct page *p; 1394 int freeit = 0; 1395 unsigned int nr_pages; 1396 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1397 DEFAULT_RATELIMIT_BURST); 1398 1399 if (!pfn_valid(pfn)) 1400 return -ENXIO; 1401 1402 p = pfn_to_page(pfn); 1403 page = compound_head(p); 1404 1405 if (!PageHWPoison(p)) { 1406 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1407 pfn, &unpoison_rs); 1408 return 0; 1409 } 1410 1411 if (page_count(page) > 1) { 1412 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1413 pfn, &unpoison_rs); 1414 return 0; 1415 } 1416 1417 if (page_mapped(page)) { 1418 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1419 pfn, &unpoison_rs); 1420 return 0; 1421 } 1422 1423 if (page_mapping(page)) { 1424 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1425 pfn, &unpoison_rs); 1426 return 0; 1427 } 1428 1429 /* 1430 * unpoison_memory() can encounter thp only when the thp is being 1431 * worked by memory_failure() and the page lock is not held yet. 1432 * In such case, we yield to memory_failure() and make unpoison fail. 1433 */ 1434 if (!PageHuge(page) && PageTransHuge(page)) { 1435 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1436 pfn, &unpoison_rs); 1437 return 0; 1438 } 1439 1440 nr_pages = 1 << compound_order(page); 1441 1442 if (!get_hwpoison_page(p)) { 1443 /* 1444 * Since HWPoisoned hugepage should have non-zero refcount, 1445 * race between memory failure and unpoison seems to happen. 1446 * In such case unpoison fails and memory failure runs 1447 * to the end. 1448 */ 1449 if (PageHuge(page)) { 1450 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n", 1451 pfn, &unpoison_rs); 1452 return 0; 1453 } 1454 if (TestClearPageHWPoison(p)) 1455 num_poisoned_pages_dec(); 1456 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1457 pfn, &unpoison_rs); 1458 return 0; 1459 } 1460 1461 lock_page(page); 1462 /* 1463 * This test is racy because PG_hwpoison is set outside of page lock. 1464 * That's acceptable because that won't trigger kernel panic. Instead, 1465 * the PG_hwpoison page will be caught and isolated on the entrance to 1466 * the free buddy page pool. 1467 */ 1468 if (TestClearPageHWPoison(page)) { 1469 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1470 pfn, &unpoison_rs); 1471 num_poisoned_pages_sub(nr_pages); 1472 freeit = 1; 1473 if (PageHuge(page)) 1474 clear_page_hwpoison_huge_page(page); 1475 } 1476 unlock_page(page); 1477 1478 put_hwpoison_page(page); 1479 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1480 put_hwpoison_page(page); 1481 1482 return 0; 1483 } 1484 EXPORT_SYMBOL(unpoison_memory); 1485 1486 static struct page *new_page(struct page *p, unsigned long private, int **x) 1487 { 1488 int nid = page_to_nid(p); 1489 if (PageHuge(p)) 1490 return alloc_huge_page_node(page_hstate(compound_head(p)), 1491 nid); 1492 else 1493 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1494 } 1495 1496 /* 1497 * Safely get reference count of an arbitrary page. 1498 * Returns 0 for a free page, -EIO for a zero refcount page 1499 * that is not free, and 1 for any other page type. 1500 * For 1 the page is returned with increased page count, otherwise not. 1501 */ 1502 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1503 { 1504 int ret; 1505 1506 if (flags & MF_COUNT_INCREASED) 1507 return 1; 1508 1509 /* 1510 * When the target page is a free hugepage, just remove it 1511 * from free hugepage list. 1512 */ 1513 if (!get_hwpoison_page(p)) { 1514 if (PageHuge(p)) { 1515 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1516 ret = 0; 1517 } else if (is_free_buddy_page(p)) { 1518 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1519 ret = 0; 1520 } else { 1521 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1522 __func__, pfn, p->flags); 1523 ret = -EIO; 1524 } 1525 } else { 1526 /* Not a free page */ 1527 ret = 1; 1528 } 1529 return ret; 1530 } 1531 1532 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1533 { 1534 int ret = __get_any_page(page, pfn, flags); 1535 1536 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1537 /* 1538 * Try to free it. 1539 */ 1540 put_hwpoison_page(page); 1541 shake_page(page, 1); 1542 1543 /* 1544 * Did it turn free? 1545 */ 1546 ret = __get_any_page(page, pfn, 0); 1547 if (ret == 1 && !PageLRU(page)) { 1548 /* Drop page reference which is from __get_any_page() */ 1549 put_hwpoison_page(page); 1550 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1551 pfn, page->flags); 1552 return -EIO; 1553 } 1554 } 1555 return ret; 1556 } 1557 1558 static int soft_offline_huge_page(struct page *page, int flags) 1559 { 1560 int ret; 1561 unsigned long pfn = page_to_pfn(page); 1562 struct page *hpage = compound_head(page); 1563 LIST_HEAD(pagelist); 1564 1565 /* 1566 * This double-check of PageHWPoison is to avoid the race with 1567 * memory_failure(). See also comment in __soft_offline_page(). 1568 */ 1569 lock_page(hpage); 1570 if (PageHWPoison(hpage)) { 1571 unlock_page(hpage); 1572 put_hwpoison_page(hpage); 1573 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1574 return -EBUSY; 1575 } 1576 unlock_page(hpage); 1577 1578 ret = isolate_huge_page(hpage, &pagelist); 1579 /* 1580 * get_any_page() and isolate_huge_page() takes a refcount each, 1581 * so need to drop one here. 1582 */ 1583 put_hwpoison_page(hpage); 1584 if (!ret) { 1585 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1586 return -EBUSY; 1587 } 1588 1589 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1590 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1591 if (ret) { 1592 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1593 pfn, ret, page->flags); 1594 /* 1595 * We know that soft_offline_huge_page() tries to migrate 1596 * only one hugepage pointed to by hpage, so we need not 1597 * run through the pagelist here. 1598 */ 1599 putback_active_hugepage(hpage); 1600 if (ret > 0) 1601 ret = -EIO; 1602 } else { 1603 /* overcommit hugetlb page will be freed to buddy */ 1604 if (PageHuge(page)) { 1605 set_page_hwpoison_huge_page(hpage); 1606 dequeue_hwpoisoned_huge_page(hpage); 1607 num_poisoned_pages_add(1 << compound_order(hpage)); 1608 } else { 1609 SetPageHWPoison(page); 1610 num_poisoned_pages_inc(); 1611 } 1612 } 1613 return ret; 1614 } 1615 1616 static int __soft_offline_page(struct page *page, int flags) 1617 { 1618 int ret; 1619 unsigned long pfn = page_to_pfn(page); 1620 1621 /* 1622 * Check PageHWPoison again inside page lock because PageHWPoison 1623 * is set by memory_failure() outside page lock. Note that 1624 * memory_failure() also double-checks PageHWPoison inside page lock, 1625 * so there's no race between soft_offline_page() and memory_failure(). 1626 */ 1627 lock_page(page); 1628 wait_on_page_writeback(page); 1629 if (PageHWPoison(page)) { 1630 unlock_page(page); 1631 put_hwpoison_page(page); 1632 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1633 return -EBUSY; 1634 } 1635 /* 1636 * Try to invalidate first. This should work for 1637 * non dirty unmapped page cache pages. 1638 */ 1639 ret = invalidate_inode_page(page); 1640 unlock_page(page); 1641 /* 1642 * RED-PEN would be better to keep it isolated here, but we 1643 * would need to fix isolation locking first. 1644 */ 1645 if (ret == 1) { 1646 put_hwpoison_page(page); 1647 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1648 SetPageHWPoison(page); 1649 num_poisoned_pages_inc(); 1650 return 0; 1651 } 1652 1653 /* 1654 * Simple invalidation didn't work. 1655 * Try to migrate to a new page instead. migrate.c 1656 * handles a large number of cases for us. 1657 */ 1658 ret = isolate_lru_page(page); 1659 /* 1660 * Drop page reference which is came from get_any_page() 1661 * successful isolate_lru_page() already took another one. 1662 */ 1663 put_hwpoison_page(page); 1664 if (!ret) { 1665 LIST_HEAD(pagelist); 1666 inc_zone_page_state(page, NR_ISOLATED_ANON + 1667 page_is_file_cache(page)); 1668 list_add(&page->lru, &pagelist); 1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1670 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1671 if (ret) { 1672 if (!list_empty(&pagelist)) { 1673 list_del(&page->lru); 1674 dec_zone_page_state(page, NR_ISOLATED_ANON + 1675 page_is_file_cache(page)); 1676 putback_lru_page(page); 1677 } 1678 1679 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1680 pfn, ret, page->flags); 1681 if (ret > 0) 1682 ret = -EIO; 1683 } 1684 } else { 1685 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1686 pfn, ret, page_count(page), page->flags); 1687 } 1688 return ret; 1689 } 1690 1691 static int soft_offline_in_use_page(struct page *page, int flags) 1692 { 1693 int ret; 1694 struct page *hpage = compound_head(page); 1695 1696 if (!PageHuge(page) && PageTransHuge(hpage)) { 1697 lock_page(hpage); 1698 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1699 unlock_page(hpage); 1700 if (!PageAnon(hpage)) 1701 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1702 else 1703 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1704 put_hwpoison_page(hpage); 1705 return -EBUSY; 1706 } 1707 unlock_page(hpage); 1708 get_hwpoison_page(page); 1709 put_hwpoison_page(hpage); 1710 } 1711 1712 if (PageHuge(page)) 1713 ret = soft_offline_huge_page(page, flags); 1714 else 1715 ret = __soft_offline_page(page, flags); 1716 1717 return ret; 1718 } 1719 1720 static void soft_offline_free_page(struct page *page) 1721 { 1722 if (PageHuge(page)) { 1723 struct page *hpage = compound_head(page); 1724 1725 set_page_hwpoison_huge_page(hpage); 1726 if (!dequeue_hwpoisoned_huge_page(hpage)) 1727 num_poisoned_pages_add(1 << compound_order(hpage)); 1728 } else { 1729 if (!TestSetPageHWPoison(page)) 1730 num_poisoned_pages_inc(); 1731 } 1732 } 1733 1734 /** 1735 * soft_offline_page - Soft offline a page. 1736 * @page: page to offline 1737 * @flags: flags. Same as memory_failure(). 1738 * 1739 * Returns 0 on success, otherwise negated errno. 1740 * 1741 * Soft offline a page, by migration or invalidation, 1742 * without killing anything. This is for the case when 1743 * a page is not corrupted yet (so it's still valid to access), 1744 * but has had a number of corrected errors and is better taken 1745 * out. 1746 * 1747 * The actual policy on when to do that is maintained by 1748 * user space. 1749 * 1750 * This should never impact any application or cause data loss, 1751 * however it might take some time. 1752 * 1753 * This is not a 100% solution for all memory, but tries to be 1754 * ``good enough'' for the majority of memory. 1755 */ 1756 int soft_offline_page(struct page *page, int flags) 1757 { 1758 int ret; 1759 unsigned long pfn = page_to_pfn(page); 1760 1761 if (PageHWPoison(page)) { 1762 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1763 if (flags & MF_COUNT_INCREASED) 1764 put_hwpoison_page(page); 1765 return -EBUSY; 1766 } 1767 1768 get_online_mems(); 1769 ret = get_any_page(page, pfn, flags); 1770 put_online_mems(); 1771 1772 if (ret > 0) 1773 ret = soft_offline_in_use_page(page, flags); 1774 else if (ret == 0) 1775 soft_offline_free_page(page); 1776 1777 return ret; 1778 } 1779