1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include "swap.h" 66 #include "internal.h" 67 #include "ras/ras_event.h" 68 69 int sysctl_memory_failure_early_kill __read_mostly = 0; 70 71 int sysctl_memory_failure_recovery __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 /* 78 * Return values: 79 * 1: the page is dissolved (if needed) and taken off from buddy, 80 * 0: the page is dissolved (if needed) and not taken off from buddy, 81 * < 0: failed to dissolve. 82 */ 83 static int __page_handle_poison(struct page *page) 84 { 85 int ret; 86 87 zone_pcp_disable(page_zone(page)); 88 ret = dissolve_free_huge_page(page); 89 if (!ret) 90 ret = take_page_off_buddy(page); 91 zone_pcp_enable(page_zone(page)); 92 93 return ret; 94 } 95 96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 97 { 98 if (hugepage_or_freepage) { 99 /* 100 * Doing this check for free pages is also fine since dissolve_free_huge_page 101 * returns 0 for non-hugetlb pages as well. 102 */ 103 if (__page_handle_poison(page) <= 0) 104 /* 105 * We could fail to take off the target page from buddy 106 * for example due to racy page allocation, but that's 107 * acceptable because soft-offlined page is not broken 108 * and if someone really want to use it, they should 109 * take it. 110 */ 111 return false; 112 } 113 114 SetPageHWPoison(page); 115 if (release) 116 put_page(page); 117 page_ref_inc(page); 118 num_poisoned_pages_inc(); 119 120 return true; 121 } 122 123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 124 125 u32 hwpoison_filter_enable = 0; 126 u32 hwpoison_filter_dev_major = ~0U; 127 u32 hwpoison_filter_dev_minor = ~0U; 128 u64 hwpoison_filter_flags_mask; 129 u64 hwpoison_filter_flags_value; 130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 135 136 static int hwpoison_filter_dev(struct page *p) 137 { 138 struct address_space *mapping; 139 dev_t dev; 140 141 if (hwpoison_filter_dev_major == ~0U && 142 hwpoison_filter_dev_minor == ~0U) 143 return 0; 144 145 mapping = page_mapping(p); 146 if (mapping == NULL || mapping->host == NULL) 147 return -EINVAL; 148 149 dev = mapping->host->i_sb->s_dev; 150 if (hwpoison_filter_dev_major != ~0U && 151 hwpoison_filter_dev_major != MAJOR(dev)) 152 return -EINVAL; 153 if (hwpoison_filter_dev_minor != ~0U && 154 hwpoison_filter_dev_minor != MINOR(dev)) 155 return -EINVAL; 156 157 return 0; 158 } 159 160 static int hwpoison_filter_flags(struct page *p) 161 { 162 if (!hwpoison_filter_flags_mask) 163 return 0; 164 165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 166 hwpoison_filter_flags_value) 167 return 0; 168 else 169 return -EINVAL; 170 } 171 172 /* 173 * This allows stress tests to limit test scope to a collection of tasks 174 * by putting them under some memcg. This prevents killing unrelated/important 175 * processes such as /sbin/init. Note that the target task may share clean 176 * pages with init (eg. libc text), which is harmless. If the target task 177 * share _dirty_ pages with another task B, the test scheme must make sure B 178 * is also included in the memcg. At last, due to race conditions this filter 179 * can only guarantee that the page either belongs to the memcg tasks, or is 180 * a freed page. 181 */ 182 #ifdef CONFIG_MEMCG 183 u64 hwpoison_filter_memcg; 184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 185 static int hwpoison_filter_task(struct page *p) 186 { 187 if (!hwpoison_filter_memcg) 188 return 0; 189 190 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 191 return -EINVAL; 192 193 return 0; 194 } 195 #else 196 static int hwpoison_filter_task(struct page *p) { return 0; } 197 #endif 198 199 int hwpoison_filter(struct page *p) 200 { 201 if (!hwpoison_filter_enable) 202 return 0; 203 204 if (hwpoison_filter_dev(p)) 205 return -EINVAL; 206 207 if (hwpoison_filter_flags(p)) 208 return -EINVAL; 209 210 if (hwpoison_filter_task(p)) 211 return -EINVAL; 212 213 return 0; 214 } 215 #else 216 int hwpoison_filter(struct page *p) 217 { 218 return 0; 219 } 220 #endif 221 222 EXPORT_SYMBOL_GPL(hwpoison_filter); 223 224 /* 225 * Kill all processes that have a poisoned page mapped and then isolate 226 * the page. 227 * 228 * General strategy: 229 * Find all processes having the page mapped and kill them. 230 * But we keep a page reference around so that the page is not 231 * actually freed yet. 232 * Then stash the page away 233 * 234 * There's no convenient way to get back to mapped processes 235 * from the VMAs. So do a brute-force search over all 236 * running processes. 237 * 238 * Remember that machine checks are not common (or rather 239 * if they are common you have other problems), so this shouldn't 240 * be a performance issue. 241 * 242 * Also there are some races possible while we get from the 243 * error detection to actually handle it. 244 */ 245 246 struct to_kill { 247 struct list_head nd; 248 struct task_struct *tsk; 249 unsigned long addr; 250 short size_shift; 251 }; 252 253 /* 254 * Send all the processes who have the page mapped a signal. 255 * ``action optional'' if they are not immediately affected by the error 256 * ``action required'' if error happened in current execution context 257 */ 258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 259 { 260 struct task_struct *t = tk->tsk; 261 short addr_lsb = tk->size_shift; 262 int ret = 0; 263 264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 265 pfn, t->comm, t->pid); 266 267 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 268 ret = force_sig_mceerr(BUS_MCEERR_AR, 269 (void __user *)tk->addr, addr_lsb); 270 else 271 /* 272 * Signal other processes sharing the page if they have 273 * PF_MCE_EARLY set. 274 * Don't use force here, it's convenient if the signal 275 * can be temporarily blocked. 276 * This could cause a loop when the user sets SIGBUS 277 * to SIG_IGN, but hopefully no one will do that? 278 */ 279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 280 addr_lsb, t); /* synchronous? */ 281 if (ret < 0) 282 pr_info("Error sending signal to %s:%d: %d\n", 283 t->comm, t->pid, ret); 284 return ret; 285 } 286 287 /* 288 * Unknown page type encountered. Try to check whether it can turn PageLRU by 289 * lru_add_drain_all. 290 */ 291 void shake_page(struct page *p) 292 { 293 if (PageHuge(p)) 294 return; 295 296 if (!PageSlab(p)) { 297 lru_add_drain_all(); 298 if (PageLRU(p) || is_free_buddy_page(p)) 299 return; 300 } 301 302 /* 303 * TODO: Could shrink slab caches here if a lightweight range-based 304 * shrinker will be available. 305 */ 306 } 307 EXPORT_SYMBOL_GPL(shake_page); 308 309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 310 unsigned long address) 311 { 312 unsigned long ret = 0; 313 pgd_t *pgd; 314 p4d_t *p4d; 315 pud_t *pud; 316 pmd_t *pmd; 317 pte_t *pte; 318 319 VM_BUG_ON_VMA(address == -EFAULT, vma); 320 pgd = pgd_offset(vma->vm_mm, address); 321 if (!pgd_present(*pgd)) 322 return 0; 323 p4d = p4d_offset(pgd, address); 324 if (!p4d_present(*p4d)) 325 return 0; 326 pud = pud_offset(p4d, address); 327 if (!pud_present(*pud)) 328 return 0; 329 if (pud_devmap(*pud)) 330 return PUD_SHIFT; 331 pmd = pmd_offset(pud, address); 332 if (!pmd_present(*pmd)) 333 return 0; 334 if (pmd_devmap(*pmd)) 335 return PMD_SHIFT; 336 pte = pte_offset_map(pmd, address); 337 if (pte_present(*pte) && pte_devmap(*pte)) 338 ret = PAGE_SHIFT; 339 pte_unmap(pte); 340 return ret; 341 } 342 343 /* 344 * Failure handling: if we can't find or can't kill a process there's 345 * not much we can do. We just print a message and ignore otherwise. 346 */ 347 348 /* 349 * Schedule a process for later kill. 350 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 351 * 352 * Notice: @fsdax_pgoff is used only when @p is a fsdax page. 353 * In other cases, such as anonymous and file-backend page, the address to be 354 * killed can be caculated by @p itself. 355 */ 356 static void add_to_kill(struct task_struct *tsk, struct page *p, 357 pgoff_t fsdax_pgoff, struct vm_area_struct *vma, 358 struct list_head *to_kill) 359 { 360 struct to_kill *tk; 361 362 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 363 if (!tk) { 364 pr_err("Out of memory while machine check handling\n"); 365 return; 366 } 367 368 tk->addr = page_address_in_vma(p, vma); 369 if (is_zone_device_page(p)) { 370 /* 371 * Since page->mapping is not used for fsdax, we need 372 * calculate the address based on the vma. 373 */ 374 if (p->pgmap->type == MEMORY_DEVICE_FS_DAX) 375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 377 } else 378 tk->size_shift = page_shift(compound_head(p)); 379 380 /* 381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 382 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 383 * so "tk->size_shift == 0" effectively checks no mapping on 384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 385 * to a process' address space, it's possible not all N VMAs 386 * contain mappings for the page, but at least one VMA does. 387 * Only deliver SIGBUS with payload derived from the VMA that 388 * has a mapping for the page. 389 */ 390 if (tk->addr == -EFAULT) { 391 pr_info("Unable to find user space address %lx in %s\n", 392 page_to_pfn(p), tsk->comm); 393 } else if (tk->size_shift == 0) { 394 kfree(tk); 395 return; 396 } 397 398 get_task_struct(tsk); 399 tk->tsk = tsk; 400 list_add_tail(&tk->nd, to_kill); 401 } 402 403 /* 404 * Kill the processes that have been collected earlier. 405 * 406 * Only do anything when FORCEKILL is set, otherwise just free the 407 * list (this is used for clean pages which do not need killing) 408 * Also when FAIL is set do a force kill because something went 409 * wrong earlier. 410 */ 411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 412 unsigned long pfn, int flags) 413 { 414 struct to_kill *tk, *next; 415 416 list_for_each_entry_safe (tk, next, to_kill, nd) { 417 if (forcekill) { 418 /* 419 * In case something went wrong with munmapping 420 * make sure the process doesn't catch the 421 * signal and then access the memory. Just kill it. 422 */ 423 if (fail || tk->addr == -EFAULT) { 424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 425 pfn, tk->tsk->comm, tk->tsk->pid); 426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 427 tk->tsk, PIDTYPE_PID); 428 } 429 430 /* 431 * In theory the process could have mapped 432 * something else on the address in-between. We could 433 * check for that, but we need to tell the 434 * process anyways. 435 */ 436 else if (kill_proc(tk, pfn, flags) < 0) 437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 438 pfn, tk->tsk->comm, tk->tsk->pid); 439 } 440 put_task_struct(tk->tsk); 441 kfree(tk); 442 } 443 } 444 445 /* 446 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 447 * on behalf of the thread group. Return task_struct of the (first found) 448 * dedicated thread if found, and return NULL otherwise. 449 * 450 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 451 * have to call rcu_read_lock/unlock() in this function. 452 */ 453 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 454 { 455 struct task_struct *t; 456 457 for_each_thread(tsk, t) { 458 if (t->flags & PF_MCE_PROCESS) { 459 if (t->flags & PF_MCE_EARLY) 460 return t; 461 } else { 462 if (sysctl_memory_failure_early_kill) 463 return t; 464 } 465 } 466 return NULL; 467 } 468 469 /* 470 * Determine whether a given process is "early kill" process which expects 471 * to be signaled when some page under the process is hwpoisoned. 472 * Return task_struct of the dedicated thread (main thread unless explicitly 473 * specified) if the process is "early kill" and otherwise returns NULL. 474 * 475 * Note that the above is true for Action Optional case. For Action Required 476 * case, it's only meaningful to the current thread which need to be signaled 477 * with SIGBUS, this error is Action Optional for other non current 478 * processes sharing the same error page,if the process is "early kill", the 479 * task_struct of the dedicated thread will also be returned. 480 */ 481 static struct task_struct *task_early_kill(struct task_struct *tsk, 482 int force_early) 483 { 484 if (!tsk->mm) 485 return NULL; 486 /* 487 * Comparing ->mm here because current task might represent 488 * a subthread, while tsk always points to the main thread. 489 */ 490 if (force_early && tsk->mm == current->mm) 491 return current; 492 493 return find_early_kill_thread(tsk); 494 } 495 496 /* 497 * Collect processes when the error hit an anonymous page. 498 */ 499 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 500 int force_early) 501 { 502 struct folio *folio = page_folio(page); 503 struct vm_area_struct *vma; 504 struct task_struct *tsk; 505 struct anon_vma *av; 506 pgoff_t pgoff; 507 508 av = folio_lock_anon_vma_read(folio, NULL); 509 if (av == NULL) /* Not actually mapped anymore */ 510 return; 511 512 pgoff = page_to_pgoff(page); 513 read_lock(&tasklist_lock); 514 for_each_process (tsk) { 515 struct anon_vma_chain *vmac; 516 struct task_struct *t = task_early_kill(tsk, force_early); 517 518 if (!t) 519 continue; 520 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 521 pgoff, pgoff) { 522 vma = vmac->vma; 523 if (!page_mapped_in_vma(page, vma)) 524 continue; 525 if (vma->vm_mm == t->mm) 526 add_to_kill(t, page, 0, vma, to_kill); 527 } 528 } 529 read_unlock(&tasklist_lock); 530 page_unlock_anon_vma_read(av); 531 } 532 533 /* 534 * Collect processes when the error hit a file mapped page. 535 */ 536 static void collect_procs_file(struct page *page, struct list_head *to_kill, 537 int force_early) 538 { 539 struct vm_area_struct *vma; 540 struct task_struct *tsk; 541 struct address_space *mapping = page->mapping; 542 pgoff_t pgoff; 543 544 i_mmap_lock_read(mapping); 545 read_lock(&tasklist_lock); 546 pgoff = page_to_pgoff(page); 547 for_each_process(tsk) { 548 struct task_struct *t = task_early_kill(tsk, force_early); 549 550 if (!t) 551 continue; 552 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 553 pgoff) { 554 /* 555 * Send early kill signal to tasks where a vma covers 556 * the page but the corrupted page is not necessarily 557 * mapped it in its pte. 558 * Assume applications who requested early kill want 559 * to be informed of all such data corruptions. 560 */ 561 if (vma->vm_mm == t->mm) 562 add_to_kill(t, page, 0, vma, to_kill); 563 } 564 } 565 read_unlock(&tasklist_lock); 566 i_mmap_unlock_read(mapping); 567 } 568 569 #ifdef CONFIG_FS_DAX 570 /* 571 * Collect processes when the error hit a fsdax page. 572 */ 573 static void collect_procs_fsdax(struct page *page, 574 struct address_space *mapping, pgoff_t pgoff, 575 struct list_head *to_kill) 576 { 577 struct vm_area_struct *vma; 578 struct task_struct *tsk; 579 580 i_mmap_lock_read(mapping); 581 read_lock(&tasklist_lock); 582 for_each_process(tsk) { 583 struct task_struct *t = task_early_kill(tsk, true); 584 585 if (!t) 586 continue; 587 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 588 if (vma->vm_mm == t->mm) 589 add_to_kill(t, page, pgoff, vma, to_kill); 590 } 591 } 592 read_unlock(&tasklist_lock); 593 i_mmap_unlock_read(mapping); 594 } 595 #endif /* CONFIG_FS_DAX */ 596 597 /* 598 * Collect the processes who have the corrupted page mapped to kill. 599 */ 600 static void collect_procs(struct page *page, struct list_head *tokill, 601 int force_early) 602 { 603 if (!page->mapping) 604 return; 605 606 if (PageAnon(page)) 607 collect_procs_anon(page, tokill, force_early); 608 else 609 collect_procs_file(page, tokill, force_early); 610 } 611 612 struct hwp_walk { 613 struct to_kill tk; 614 unsigned long pfn; 615 int flags; 616 }; 617 618 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 619 { 620 tk->addr = addr; 621 tk->size_shift = shift; 622 } 623 624 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 625 unsigned long poisoned_pfn, struct to_kill *tk) 626 { 627 unsigned long pfn = 0; 628 629 if (pte_present(pte)) { 630 pfn = pte_pfn(pte); 631 } else { 632 swp_entry_t swp = pte_to_swp_entry(pte); 633 634 if (is_hwpoison_entry(swp)) 635 pfn = hwpoison_entry_to_pfn(swp); 636 } 637 638 if (!pfn || pfn != poisoned_pfn) 639 return 0; 640 641 set_to_kill(tk, addr, shift); 642 return 1; 643 } 644 645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 646 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 647 struct hwp_walk *hwp) 648 { 649 pmd_t pmd = *pmdp; 650 unsigned long pfn; 651 unsigned long hwpoison_vaddr; 652 653 if (!pmd_present(pmd)) 654 return 0; 655 pfn = pmd_pfn(pmd); 656 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 657 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 658 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 659 return 1; 660 } 661 return 0; 662 } 663 #else 664 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 665 struct hwp_walk *hwp) 666 { 667 return 0; 668 } 669 #endif 670 671 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 672 unsigned long end, struct mm_walk *walk) 673 { 674 struct hwp_walk *hwp = walk->private; 675 int ret = 0; 676 pte_t *ptep, *mapped_pte; 677 spinlock_t *ptl; 678 679 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 680 if (ptl) { 681 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 682 spin_unlock(ptl); 683 goto out; 684 } 685 686 if (pmd_trans_unstable(pmdp)) 687 goto out; 688 689 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 690 addr, &ptl); 691 for (; addr != end; ptep++, addr += PAGE_SIZE) { 692 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 693 hwp->pfn, &hwp->tk); 694 if (ret == 1) 695 break; 696 } 697 pte_unmap_unlock(mapped_pte, ptl); 698 out: 699 cond_resched(); 700 return ret; 701 } 702 703 #ifdef CONFIG_HUGETLB_PAGE 704 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 705 unsigned long addr, unsigned long end, 706 struct mm_walk *walk) 707 { 708 struct hwp_walk *hwp = walk->private; 709 pte_t pte = huge_ptep_get(ptep); 710 struct hstate *h = hstate_vma(walk->vma); 711 712 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 713 hwp->pfn, &hwp->tk); 714 } 715 #else 716 #define hwpoison_hugetlb_range NULL 717 #endif 718 719 static const struct mm_walk_ops hwp_walk_ops = { 720 .pmd_entry = hwpoison_pte_range, 721 .hugetlb_entry = hwpoison_hugetlb_range, 722 }; 723 724 /* 725 * Sends SIGBUS to the current process with error info. 726 * 727 * This function is intended to handle "Action Required" MCEs on already 728 * hardware poisoned pages. They could happen, for example, when 729 * memory_failure() failed to unmap the error page at the first call, or 730 * when multiple local machine checks happened on different CPUs. 731 * 732 * MCE handler currently has no easy access to the error virtual address, 733 * so this function walks page table to find it. The returned virtual address 734 * is proper in most cases, but it could be wrong when the application 735 * process has multiple entries mapping the error page. 736 */ 737 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 738 int flags) 739 { 740 int ret; 741 struct hwp_walk priv = { 742 .pfn = pfn, 743 }; 744 priv.tk.tsk = p; 745 746 mmap_read_lock(p->mm); 747 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 748 (void *)&priv); 749 if (ret == 1 && priv.tk.addr) 750 kill_proc(&priv.tk, pfn, flags); 751 else 752 ret = 0; 753 mmap_read_unlock(p->mm); 754 return ret > 0 ? -EHWPOISON : -EFAULT; 755 } 756 757 static const char *action_name[] = { 758 [MF_IGNORED] = "Ignored", 759 [MF_FAILED] = "Failed", 760 [MF_DELAYED] = "Delayed", 761 [MF_RECOVERED] = "Recovered", 762 }; 763 764 static const char * const action_page_types[] = { 765 [MF_MSG_KERNEL] = "reserved kernel page", 766 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 767 [MF_MSG_SLAB] = "kernel slab page", 768 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 769 [MF_MSG_HUGE] = "huge page", 770 [MF_MSG_FREE_HUGE] = "free huge page", 771 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 772 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 773 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 774 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 775 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 776 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 777 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 778 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 779 [MF_MSG_CLEAN_LRU] = "clean LRU page", 780 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 781 [MF_MSG_BUDDY] = "free buddy page", 782 [MF_MSG_DAX] = "dax page", 783 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 784 [MF_MSG_UNKNOWN] = "unknown page", 785 }; 786 787 /* 788 * XXX: It is possible that a page is isolated from LRU cache, 789 * and then kept in swap cache or failed to remove from page cache. 790 * The page count will stop it from being freed by unpoison. 791 * Stress tests should be aware of this memory leak problem. 792 */ 793 static int delete_from_lru_cache(struct page *p) 794 { 795 if (!isolate_lru_page(p)) { 796 /* 797 * Clear sensible page flags, so that the buddy system won't 798 * complain when the page is unpoison-and-freed. 799 */ 800 ClearPageActive(p); 801 ClearPageUnevictable(p); 802 803 /* 804 * Poisoned page might never drop its ref count to 0 so we have 805 * to uncharge it manually from its memcg. 806 */ 807 mem_cgroup_uncharge(page_folio(p)); 808 809 /* 810 * drop the page count elevated by isolate_lru_page() 811 */ 812 put_page(p); 813 return 0; 814 } 815 return -EIO; 816 } 817 818 static int truncate_error_page(struct page *p, unsigned long pfn, 819 struct address_space *mapping) 820 { 821 int ret = MF_FAILED; 822 823 if (mapping->a_ops->error_remove_page) { 824 int err = mapping->a_ops->error_remove_page(mapping, p); 825 826 if (err != 0) { 827 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 828 } else if (page_has_private(p) && 829 !try_to_release_page(p, GFP_NOIO)) { 830 pr_info("%#lx: failed to release buffers\n", pfn); 831 } else { 832 ret = MF_RECOVERED; 833 } 834 } else { 835 /* 836 * If the file system doesn't support it just invalidate 837 * This fails on dirty or anything with private pages 838 */ 839 if (invalidate_inode_page(p)) 840 ret = MF_RECOVERED; 841 else 842 pr_info("%#lx: Failed to invalidate\n", pfn); 843 } 844 845 return ret; 846 } 847 848 struct page_state { 849 unsigned long mask; 850 unsigned long res; 851 enum mf_action_page_type type; 852 853 /* Callback ->action() has to unlock the relevant page inside it. */ 854 int (*action)(struct page_state *ps, struct page *p); 855 }; 856 857 /* 858 * Return true if page is still referenced by others, otherwise return 859 * false. 860 * 861 * The extra_pins is true when one extra refcount is expected. 862 */ 863 static bool has_extra_refcount(struct page_state *ps, struct page *p, 864 bool extra_pins) 865 { 866 int count = page_count(p) - 1; 867 868 if (extra_pins) 869 count -= 1; 870 871 if (count > 0) { 872 pr_err("%#lx: %s still referenced by %d users\n", 873 page_to_pfn(p), action_page_types[ps->type], count); 874 return true; 875 } 876 877 return false; 878 } 879 880 /* 881 * Error hit kernel page. 882 * Do nothing, try to be lucky and not touch this instead. For a few cases we 883 * could be more sophisticated. 884 */ 885 static int me_kernel(struct page_state *ps, struct page *p) 886 { 887 unlock_page(p); 888 return MF_IGNORED; 889 } 890 891 /* 892 * Page in unknown state. Do nothing. 893 */ 894 static int me_unknown(struct page_state *ps, struct page *p) 895 { 896 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 897 unlock_page(p); 898 return MF_FAILED; 899 } 900 901 /* 902 * Clean (or cleaned) page cache page. 903 */ 904 static int me_pagecache_clean(struct page_state *ps, struct page *p) 905 { 906 int ret; 907 struct address_space *mapping; 908 bool extra_pins; 909 910 delete_from_lru_cache(p); 911 912 /* 913 * For anonymous pages we're done the only reference left 914 * should be the one m_f() holds. 915 */ 916 if (PageAnon(p)) { 917 ret = MF_RECOVERED; 918 goto out; 919 } 920 921 /* 922 * Now truncate the page in the page cache. This is really 923 * more like a "temporary hole punch" 924 * Don't do this for block devices when someone else 925 * has a reference, because it could be file system metadata 926 * and that's not safe to truncate. 927 */ 928 mapping = page_mapping(p); 929 if (!mapping) { 930 /* 931 * Page has been teared down in the meanwhile 932 */ 933 ret = MF_FAILED; 934 goto out; 935 } 936 937 /* 938 * The shmem page is kept in page cache instead of truncating 939 * so is expected to have an extra refcount after error-handling. 940 */ 941 extra_pins = shmem_mapping(mapping); 942 943 /* 944 * Truncation is a bit tricky. Enable it per file system for now. 945 * 946 * Open: to take i_rwsem or not for this? Right now we don't. 947 */ 948 ret = truncate_error_page(p, page_to_pfn(p), mapping); 949 if (has_extra_refcount(ps, p, extra_pins)) 950 ret = MF_FAILED; 951 952 out: 953 unlock_page(p); 954 955 return ret; 956 } 957 958 /* 959 * Dirty pagecache page 960 * Issues: when the error hit a hole page the error is not properly 961 * propagated. 962 */ 963 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 964 { 965 struct address_space *mapping = page_mapping(p); 966 967 SetPageError(p); 968 /* TBD: print more information about the file. */ 969 if (mapping) { 970 /* 971 * IO error will be reported by write(), fsync(), etc. 972 * who check the mapping. 973 * This way the application knows that something went 974 * wrong with its dirty file data. 975 * 976 * There's one open issue: 977 * 978 * The EIO will be only reported on the next IO 979 * operation and then cleared through the IO map. 980 * Normally Linux has two mechanisms to pass IO error 981 * first through the AS_EIO flag in the address space 982 * and then through the PageError flag in the page. 983 * Since we drop pages on memory failure handling the 984 * only mechanism open to use is through AS_AIO. 985 * 986 * This has the disadvantage that it gets cleared on 987 * the first operation that returns an error, while 988 * the PageError bit is more sticky and only cleared 989 * when the page is reread or dropped. If an 990 * application assumes it will always get error on 991 * fsync, but does other operations on the fd before 992 * and the page is dropped between then the error 993 * will not be properly reported. 994 * 995 * This can already happen even without hwpoisoned 996 * pages: first on metadata IO errors (which only 997 * report through AS_EIO) or when the page is dropped 998 * at the wrong time. 999 * 1000 * So right now we assume that the application DTRT on 1001 * the first EIO, but we're not worse than other parts 1002 * of the kernel. 1003 */ 1004 mapping_set_error(mapping, -EIO); 1005 } 1006 1007 return me_pagecache_clean(ps, p); 1008 } 1009 1010 /* 1011 * Clean and dirty swap cache. 1012 * 1013 * Dirty swap cache page is tricky to handle. The page could live both in page 1014 * cache and swap cache(ie. page is freshly swapped in). So it could be 1015 * referenced concurrently by 2 types of PTEs: 1016 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1017 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 1018 * and then 1019 * - clear dirty bit to prevent IO 1020 * - remove from LRU 1021 * - but keep in the swap cache, so that when we return to it on 1022 * a later page fault, we know the application is accessing 1023 * corrupted data and shall be killed (we installed simple 1024 * interception code in do_swap_page to catch it). 1025 * 1026 * Clean swap cache pages can be directly isolated. A later page fault will 1027 * bring in the known good data from disk. 1028 */ 1029 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1030 { 1031 int ret; 1032 bool extra_pins = false; 1033 1034 ClearPageDirty(p); 1035 /* Trigger EIO in shmem: */ 1036 ClearPageUptodate(p); 1037 1038 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1039 unlock_page(p); 1040 1041 if (ret == MF_DELAYED) 1042 extra_pins = true; 1043 1044 if (has_extra_refcount(ps, p, extra_pins)) 1045 ret = MF_FAILED; 1046 1047 return ret; 1048 } 1049 1050 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1051 { 1052 struct folio *folio = page_folio(p); 1053 int ret; 1054 1055 delete_from_swap_cache(folio); 1056 1057 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1058 folio_unlock(folio); 1059 1060 if (has_extra_refcount(ps, p, false)) 1061 ret = MF_FAILED; 1062 1063 return ret; 1064 } 1065 1066 /* 1067 * Huge pages. Needs work. 1068 * Issues: 1069 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1070 * To narrow down kill region to one page, we need to break up pmd. 1071 */ 1072 static int me_huge_page(struct page_state *ps, struct page *p) 1073 { 1074 int res; 1075 struct page *hpage = compound_head(p); 1076 struct address_space *mapping; 1077 1078 if (!PageHuge(hpage)) 1079 return MF_DELAYED; 1080 1081 mapping = page_mapping(hpage); 1082 if (mapping) { 1083 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1084 unlock_page(hpage); 1085 } else { 1086 unlock_page(hpage); 1087 /* 1088 * migration entry prevents later access on error hugepage, 1089 * so we can free and dissolve it into buddy to save healthy 1090 * subpages. 1091 */ 1092 put_page(hpage); 1093 if (__page_handle_poison(p) >= 0) { 1094 page_ref_inc(p); 1095 res = MF_RECOVERED; 1096 } else { 1097 res = MF_FAILED; 1098 } 1099 } 1100 1101 if (has_extra_refcount(ps, p, false)) 1102 res = MF_FAILED; 1103 1104 return res; 1105 } 1106 1107 /* 1108 * Various page states we can handle. 1109 * 1110 * A page state is defined by its current page->flags bits. 1111 * The table matches them in order and calls the right handler. 1112 * 1113 * This is quite tricky because we can access page at any time 1114 * in its live cycle, so all accesses have to be extremely careful. 1115 * 1116 * This is not complete. More states could be added. 1117 * For any missing state don't attempt recovery. 1118 */ 1119 1120 #define dirty (1UL << PG_dirty) 1121 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1122 #define unevict (1UL << PG_unevictable) 1123 #define mlock (1UL << PG_mlocked) 1124 #define lru (1UL << PG_lru) 1125 #define head (1UL << PG_head) 1126 #define slab (1UL << PG_slab) 1127 #define reserved (1UL << PG_reserved) 1128 1129 static struct page_state error_states[] = { 1130 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1131 /* 1132 * free pages are specially detected outside this table: 1133 * PG_buddy pages only make a small fraction of all free pages. 1134 */ 1135 1136 /* 1137 * Could in theory check if slab page is free or if we can drop 1138 * currently unused objects without touching them. But just 1139 * treat it as standard kernel for now. 1140 */ 1141 { slab, slab, MF_MSG_SLAB, me_kernel }, 1142 1143 { head, head, MF_MSG_HUGE, me_huge_page }, 1144 1145 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1146 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1147 1148 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1149 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1150 1151 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1152 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1153 1154 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1155 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1156 1157 /* 1158 * Catchall entry: must be at end. 1159 */ 1160 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1161 }; 1162 1163 #undef dirty 1164 #undef sc 1165 #undef unevict 1166 #undef mlock 1167 #undef lru 1168 #undef head 1169 #undef slab 1170 #undef reserved 1171 1172 /* 1173 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1174 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1175 */ 1176 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1177 enum mf_result result) 1178 { 1179 trace_memory_failure_event(pfn, type, result); 1180 1181 num_poisoned_pages_inc(); 1182 pr_err("%#lx: recovery action for %s: %s\n", 1183 pfn, action_page_types[type], action_name[result]); 1184 } 1185 1186 static int page_action(struct page_state *ps, struct page *p, 1187 unsigned long pfn) 1188 { 1189 int result; 1190 1191 /* page p should be unlocked after returning from ps->action(). */ 1192 result = ps->action(ps, p); 1193 1194 action_result(pfn, ps->type, result); 1195 1196 /* Could do more checks here if page looks ok */ 1197 /* 1198 * Could adjust zone counters here to correct for the missing page. 1199 */ 1200 1201 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1202 } 1203 1204 static inline bool PageHWPoisonTakenOff(struct page *page) 1205 { 1206 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1207 } 1208 1209 void SetPageHWPoisonTakenOff(struct page *page) 1210 { 1211 set_page_private(page, MAGIC_HWPOISON); 1212 } 1213 1214 void ClearPageHWPoisonTakenOff(struct page *page) 1215 { 1216 if (PageHWPoison(page)) 1217 set_page_private(page, 0); 1218 } 1219 1220 /* 1221 * Return true if a page type of a given page is supported by hwpoison 1222 * mechanism (while handling could fail), otherwise false. This function 1223 * does not return true for hugetlb or device memory pages, so it's assumed 1224 * to be called only in the context where we never have such pages. 1225 */ 1226 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1227 { 1228 /* Soft offline could migrate non-LRU movable pages */ 1229 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1230 return true; 1231 1232 return PageLRU(page) || is_free_buddy_page(page); 1233 } 1234 1235 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1236 { 1237 struct page *head = compound_head(page); 1238 int ret = 0; 1239 bool hugetlb = false; 1240 1241 ret = get_hwpoison_huge_page(head, &hugetlb); 1242 if (hugetlb) 1243 return ret; 1244 1245 /* 1246 * This check prevents from calling get_hwpoison_unless_zero() 1247 * for any unsupported type of page in order to reduce the risk of 1248 * unexpected races caused by taking a page refcount. 1249 */ 1250 if (!HWPoisonHandlable(head, flags)) 1251 return -EBUSY; 1252 1253 if (get_page_unless_zero(head)) { 1254 if (head == compound_head(page)) 1255 return 1; 1256 1257 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1258 put_page(head); 1259 } 1260 1261 return 0; 1262 } 1263 1264 static int get_any_page(struct page *p, unsigned long flags) 1265 { 1266 int ret = 0, pass = 0; 1267 bool count_increased = false; 1268 1269 if (flags & MF_COUNT_INCREASED) 1270 count_increased = true; 1271 1272 try_again: 1273 if (!count_increased) { 1274 ret = __get_hwpoison_page(p, flags); 1275 if (!ret) { 1276 if (page_count(p)) { 1277 /* We raced with an allocation, retry. */ 1278 if (pass++ < 3) 1279 goto try_again; 1280 ret = -EBUSY; 1281 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1282 /* We raced with put_page, retry. */ 1283 if (pass++ < 3) 1284 goto try_again; 1285 ret = -EIO; 1286 } 1287 goto out; 1288 } else if (ret == -EBUSY) { 1289 /* 1290 * We raced with (possibly temporary) unhandlable 1291 * page, retry. 1292 */ 1293 if (pass++ < 3) { 1294 shake_page(p); 1295 goto try_again; 1296 } 1297 ret = -EIO; 1298 goto out; 1299 } 1300 } 1301 1302 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1303 ret = 1; 1304 } else { 1305 /* 1306 * A page we cannot handle. Check whether we can turn 1307 * it into something we can handle. 1308 */ 1309 if (pass++ < 3) { 1310 put_page(p); 1311 shake_page(p); 1312 count_increased = false; 1313 goto try_again; 1314 } 1315 put_page(p); 1316 ret = -EIO; 1317 } 1318 out: 1319 if (ret == -EIO) 1320 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1321 1322 return ret; 1323 } 1324 1325 static int __get_unpoison_page(struct page *page) 1326 { 1327 struct page *head = compound_head(page); 1328 int ret = 0; 1329 bool hugetlb = false; 1330 1331 ret = get_hwpoison_huge_page(head, &hugetlb); 1332 if (hugetlb) 1333 return ret; 1334 1335 /* 1336 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1337 * but also isolated from buddy freelist, so need to identify the 1338 * state and have to cancel both operations to unpoison. 1339 */ 1340 if (PageHWPoisonTakenOff(page)) 1341 return -EHWPOISON; 1342 1343 return get_page_unless_zero(page) ? 1 : 0; 1344 } 1345 1346 /** 1347 * get_hwpoison_page() - Get refcount for memory error handling 1348 * @p: Raw error page (hit by memory error) 1349 * @flags: Flags controlling behavior of error handling 1350 * 1351 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1352 * error on it, after checking that the error page is in a well-defined state 1353 * (defined as a page-type we can successfully handle the memory error on it, 1354 * such as LRU page and hugetlb page). 1355 * 1356 * Memory error handling could be triggered at any time on any type of page, 1357 * so it's prone to race with typical memory management lifecycle (like 1358 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1359 * extra care for the error page's state (as done in __get_hwpoison_page()), 1360 * and has some retry logic in get_any_page(). 1361 * 1362 * When called from unpoison_memory(), the caller should already ensure that 1363 * the given page has PG_hwpoison. So it's never reused for other page 1364 * allocations, and __get_unpoison_page() never races with them. 1365 * 1366 * Return: 0 on failure, 1367 * 1 on success for in-use pages in a well-defined state, 1368 * -EIO for pages on which we can not handle memory errors, 1369 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1370 * operations like allocation and free, 1371 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1372 */ 1373 static int get_hwpoison_page(struct page *p, unsigned long flags) 1374 { 1375 int ret; 1376 1377 zone_pcp_disable(page_zone(p)); 1378 if (flags & MF_UNPOISON) 1379 ret = __get_unpoison_page(p); 1380 else 1381 ret = get_any_page(p, flags); 1382 zone_pcp_enable(page_zone(p)); 1383 1384 return ret; 1385 } 1386 1387 /* 1388 * Do all that is necessary to remove user space mappings. Unmap 1389 * the pages and send SIGBUS to the processes if the data was dirty. 1390 */ 1391 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1392 int flags, struct page *hpage) 1393 { 1394 struct folio *folio = page_folio(hpage); 1395 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1396 struct address_space *mapping; 1397 LIST_HEAD(tokill); 1398 bool unmap_success; 1399 int kill = 1, forcekill; 1400 bool mlocked = PageMlocked(hpage); 1401 1402 /* 1403 * Here we are interested only in user-mapped pages, so skip any 1404 * other types of pages. 1405 */ 1406 if (PageReserved(p) || PageSlab(p)) 1407 return true; 1408 if (!(PageLRU(hpage) || PageHuge(p))) 1409 return true; 1410 1411 /* 1412 * This check implies we don't kill processes if their pages 1413 * are in the swap cache early. Those are always late kills. 1414 */ 1415 if (!page_mapped(hpage)) 1416 return true; 1417 1418 if (PageKsm(p)) { 1419 pr_err("%#lx: can't handle KSM pages.\n", pfn); 1420 return false; 1421 } 1422 1423 if (PageSwapCache(p)) { 1424 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1425 ttu |= TTU_IGNORE_HWPOISON; 1426 } 1427 1428 /* 1429 * Propagate the dirty bit from PTEs to struct page first, because we 1430 * need this to decide if we should kill or just drop the page. 1431 * XXX: the dirty test could be racy: set_page_dirty() may not always 1432 * be called inside page lock (it's recommended but not enforced). 1433 */ 1434 mapping = page_mapping(hpage); 1435 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1436 mapping_can_writeback(mapping)) { 1437 if (page_mkclean(hpage)) { 1438 SetPageDirty(hpage); 1439 } else { 1440 kill = 0; 1441 ttu |= TTU_IGNORE_HWPOISON; 1442 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1443 pfn); 1444 } 1445 } 1446 1447 /* 1448 * First collect all the processes that have the page 1449 * mapped in dirty form. This has to be done before try_to_unmap, 1450 * because ttu takes the rmap data structures down. 1451 * 1452 * Error handling: We ignore errors here because 1453 * there's nothing that can be done. 1454 */ 1455 if (kill) 1456 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1457 1458 if (PageHuge(hpage) && !PageAnon(hpage)) { 1459 /* 1460 * For hugetlb pages in shared mappings, try_to_unmap 1461 * could potentially call huge_pmd_unshare. Because of 1462 * this, take semaphore in write mode here and set 1463 * TTU_RMAP_LOCKED to indicate we have taken the lock 1464 * at this higher level. 1465 */ 1466 mapping = hugetlb_page_mapping_lock_write(hpage); 1467 if (mapping) { 1468 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1469 i_mmap_unlock_write(mapping); 1470 } else 1471 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1472 } else { 1473 try_to_unmap(folio, ttu); 1474 } 1475 1476 unmap_success = !page_mapped(hpage); 1477 if (!unmap_success) 1478 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1479 pfn, page_mapcount(hpage)); 1480 1481 /* 1482 * try_to_unmap() might put mlocked page in lru cache, so call 1483 * shake_page() again to ensure that it's flushed. 1484 */ 1485 if (mlocked) 1486 shake_page(hpage); 1487 1488 /* 1489 * Now that the dirty bit has been propagated to the 1490 * struct page and all unmaps done we can decide if 1491 * killing is needed or not. Only kill when the page 1492 * was dirty or the process is not restartable, 1493 * otherwise the tokill list is merely 1494 * freed. When there was a problem unmapping earlier 1495 * use a more force-full uncatchable kill to prevent 1496 * any accesses to the poisoned memory. 1497 */ 1498 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1499 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1500 1501 return unmap_success; 1502 } 1503 1504 static int identify_page_state(unsigned long pfn, struct page *p, 1505 unsigned long page_flags) 1506 { 1507 struct page_state *ps; 1508 1509 /* 1510 * The first check uses the current page flags which may not have any 1511 * relevant information. The second check with the saved page flags is 1512 * carried out only if the first check can't determine the page status. 1513 */ 1514 for (ps = error_states;; ps++) 1515 if ((p->flags & ps->mask) == ps->res) 1516 break; 1517 1518 page_flags |= (p->flags & (1UL << PG_dirty)); 1519 1520 if (!ps->mask) 1521 for (ps = error_states;; ps++) 1522 if ((page_flags & ps->mask) == ps->res) 1523 break; 1524 return page_action(ps, p, pfn); 1525 } 1526 1527 static int try_to_split_thp_page(struct page *page, const char *msg) 1528 { 1529 lock_page(page); 1530 if (unlikely(split_huge_page(page))) { 1531 unsigned long pfn = page_to_pfn(page); 1532 1533 unlock_page(page); 1534 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1535 put_page(page); 1536 return -EBUSY; 1537 } 1538 unlock_page(page); 1539 1540 return 0; 1541 } 1542 1543 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1544 struct address_space *mapping, pgoff_t index, int flags) 1545 { 1546 struct to_kill *tk; 1547 unsigned long size = 0; 1548 1549 list_for_each_entry(tk, to_kill, nd) 1550 if (tk->size_shift) 1551 size = max(size, 1UL << tk->size_shift); 1552 1553 if (size) { 1554 /* 1555 * Unmap the largest mapping to avoid breaking up device-dax 1556 * mappings which are constant size. The actual size of the 1557 * mapping being torn down is communicated in siginfo, see 1558 * kill_proc() 1559 */ 1560 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1561 1562 unmap_mapping_range(mapping, start, size, 0); 1563 } 1564 1565 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1566 } 1567 1568 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1569 struct dev_pagemap *pgmap) 1570 { 1571 struct page *page = pfn_to_page(pfn); 1572 LIST_HEAD(to_kill); 1573 dax_entry_t cookie; 1574 int rc = 0; 1575 1576 /* 1577 * Pages instantiated by device-dax (not filesystem-dax) 1578 * may be compound pages. 1579 */ 1580 page = compound_head(page); 1581 1582 /* 1583 * Prevent the inode from being freed while we are interrogating 1584 * the address_space, typically this would be handled by 1585 * lock_page(), but dax pages do not use the page lock. This 1586 * also prevents changes to the mapping of this pfn until 1587 * poison signaling is complete. 1588 */ 1589 cookie = dax_lock_page(page); 1590 if (!cookie) 1591 return -EBUSY; 1592 1593 if (hwpoison_filter(page)) { 1594 rc = -EOPNOTSUPP; 1595 goto unlock; 1596 } 1597 1598 switch (pgmap->type) { 1599 case MEMORY_DEVICE_PRIVATE: 1600 case MEMORY_DEVICE_COHERENT: 1601 /* 1602 * TODO: Handle device pages which may need coordination 1603 * with device-side memory. 1604 */ 1605 rc = -ENXIO; 1606 goto unlock; 1607 default: 1608 break; 1609 } 1610 1611 /* 1612 * Use this flag as an indication that the dax page has been 1613 * remapped UC to prevent speculative consumption of poison. 1614 */ 1615 SetPageHWPoison(page); 1616 1617 /* 1618 * Unlike System-RAM there is no possibility to swap in a 1619 * different physical page at a given virtual address, so all 1620 * userspace consumption of ZONE_DEVICE memory necessitates 1621 * SIGBUS (i.e. MF_MUST_KILL) 1622 */ 1623 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1624 collect_procs(page, &to_kill, true); 1625 1626 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1627 unlock: 1628 dax_unlock_page(page, cookie); 1629 return rc; 1630 } 1631 1632 #ifdef CONFIG_FS_DAX 1633 /** 1634 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1635 * @mapping: address_space of the file in use 1636 * @index: start pgoff of the range within the file 1637 * @count: length of the range, in unit of PAGE_SIZE 1638 * @mf_flags: memory failure flags 1639 */ 1640 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1641 unsigned long count, int mf_flags) 1642 { 1643 LIST_HEAD(to_kill); 1644 dax_entry_t cookie; 1645 struct page *page; 1646 size_t end = index + count; 1647 1648 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1649 1650 for (; index < end; index++) { 1651 page = NULL; 1652 cookie = dax_lock_mapping_entry(mapping, index, &page); 1653 if (!cookie) 1654 return -EBUSY; 1655 if (!page) 1656 goto unlock; 1657 1658 SetPageHWPoison(page); 1659 1660 collect_procs_fsdax(page, mapping, index, &to_kill); 1661 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1662 index, mf_flags); 1663 unlock: 1664 dax_unlock_mapping_entry(mapping, index, cookie); 1665 } 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1669 #endif /* CONFIG_FS_DAX */ 1670 1671 #ifdef CONFIG_HUGETLB_PAGE 1672 /* 1673 * Struct raw_hwp_page represents information about "raw error page", 1674 * constructing singly linked list originated from ->private field of 1675 * SUBPAGE_INDEX_HWPOISON-th tail page. 1676 */ 1677 struct raw_hwp_page { 1678 struct llist_node node; 1679 struct page *page; 1680 }; 1681 1682 static inline struct llist_head *raw_hwp_list_head(struct page *hpage) 1683 { 1684 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON); 1685 } 1686 1687 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag) 1688 { 1689 struct llist_head *head; 1690 struct llist_node *t, *tnode; 1691 unsigned long count = 0; 1692 1693 head = raw_hwp_list_head(hpage); 1694 llist_for_each_safe(tnode, t, head->first) { 1695 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1696 1697 if (move_flag) 1698 SetPageHWPoison(p->page); 1699 kfree(p); 1700 count++; 1701 } 1702 llist_del_all(head); 1703 return count; 1704 } 1705 1706 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page) 1707 { 1708 struct llist_head *head; 1709 struct raw_hwp_page *raw_hwp; 1710 struct llist_node *t, *tnode; 1711 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0; 1712 1713 /* 1714 * Once the hwpoison hugepage has lost reliable raw error info, 1715 * there is little meaning to keep additional error info precisely, 1716 * so skip to add additional raw error info. 1717 */ 1718 if (HPageRawHwpUnreliable(hpage)) 1719 return -EHWPOISON; 1720 head = raw_hwp_list_head(hpage); 1721 llist_for_each_safe(tnode, t, head->first) { 1722 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1723 1724 if (p->page == page) 1725 return -EHWPOISON; 1726 } 1727 1728 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1729 if (raw_hwp) { 1730 raw_hwp->page = page; 1731 llist_add(&raw_hwp->node, head); 1732 /* the first error event will be counted in action_result(). */ 1733 if (ret) 1734 num_poisoned_pages_inc(); 1735 } else { 1736 /* 1737 * Failed to save raw error info. We no longer trace all 1738 * hwpoisoned subpages, and we need refuse to free/dissolve 1739 * this hwpoisoned hugepage. 1740 */ 1741 SetHPageRawHwpUnreliable(hpage); 1742 /* 1743 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not 1744 * used any more, so free it. 1745 */ 1746 __free_raw_hwp_pages(hpage, false); 1747 } 1748 return ret; 1749 } 1750 1751 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag) 1752 { 1753 /* 1754 * HPageVmemmapOptimized hugepages can't be freed because struct 1755 * pages for tail pages are required but they don't exist. 1756 */ 1757 if (move_flag && HPageVmemmapOptimized(hpage)) 1758 return 0; 1759 1760 /* 1761 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by 1762 * definition. 1763 */ 1764 if (HPageRawHwpUnreliable(hpage)) 1765 return 0; 1766 1767 return __free_raw_hwp_pages(hpage, move_flag); 1768 } 1769 1770 void hugetlb_clear_page_hwpoison(struct page *hpage) 1771 { 1772 if (HPageRawHwpUnreliable(hpage)) 1773 return; 1774 ClearPageHWPoison(hpage); 1775 free_raw_hwp_pages(hpage, true); 1776 } 1777 1778 /* 1779 * Called from hugetlb code with hugetlb_lock held. 1780 * 1781 * Return values: 1782 * 0 - free hugepage 1783 * 1 - in-use hugepage 1784 * 2 - not a hugepage 1785 * -EBUSY - the hugepage is busy (try to retry) 1786 * -EHWPOISON - the hugepage is already hwpoisoned 1787 */ 1788 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1789 { 1790 struct page *page = pfn_to_page(pfn); 1791 struct page *head = compound_head(page); 1792 int ret = 2; /* fallback to normal page handling */ 1793 bool count_increased = false; 1794 1795 if (!PageHeadHuge(head)) 1796 goto out; 1797 1798 if (flags & MF_COUNT_INCREASED) { 1799 ret = 1; 1800 count_increased = true; 1801 } else if (HPageFreed(head)) { 1802 ret = 0; 1803 } else if (HPageMigratable(head)) { 1804 ret = get_page_unless_zero(head); 1805 if (ret) 1806 count_increased = true; 1807 } else { 1808 ret = -EBUSY; 1809 if (!(flags & MF_NO_RETRY)) 1810 goto out; 1811 } 1812 1813 if (hugetlb_set_page_hwpoison(head, page)) { 1814 ret = -EHWPOISON; 1815 goto out; 1816 } 1817 1818 return ret; 1819 out: 1820 if (count_increased) 1821 put_page(head); 1822 return ret; 1823 } 1824 1825 /* 1826 * Taking refcount of hugetlb pages needs extra care about race conditions 1827 * with basic operations like hugepage allocation/free/demotion. 1828 * So some of prechecks for hwpoison (pinning, and testing/setting 1829 * PageHWPoison) should be done in single hugetlb_lock range. 1830 */ 1831 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1832 { 1833 int res; 1834 struct page *p = pfn_to_page(pfn); 1835 struct page *head; 1836 unsigned long page_flags; 1837 1838 *hugetlb = 1; 1839 retry: 1840 res = get_huge_page_for_hwpoison(pfn, flags); 1841 if (res == 2) { /* fallback to normal page handling */ 1842 *hugetlb = 0; 1843 return 0; 1844 } else if (res == -EHWPOISON) { 1845 pr_err("%#lx: already hardware poisoned\n", pfn); 1846 if (flags & MF_ACTION_REQUIRED) { 1847 head = compound_head(p); 1848 res = kill_accessing_process(current, page_to_pfn(head), flags); 1849 } 1850 return res; 1851 } else if (res == -EBUSY) { 1852 if (!(flags & MF_NO_RETRY)) { 1853 flags |= MF_NO_RETRY; 1854 goto retry; 1855 } 1856 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1857 return res; 1858 } 1859 1860 head = compound_head(p); 1861 lock_page(head); 1862 1863 if (hwpoison_filter(p)) { 1864 hugetlb_clear_page_hwpoison(head); 1865 res = -EOPNOTSUPP; 1866 goto out; 1867 } 1868 1869 /* 1870 * Handling free hugepage. The possible race with hugepage allocation 1871 * or demotion can be prevented by PageHWPoison flag. 1872 */ 1873 if (res == 0) { 1874 unlock_page(head); 1875 if (__page_handle_poison(p) >= 0) { 1876 page_ref_inc(p); 1877 res = MF_RECOVERED; 1878 } else { 1879 res = MF_FAILED; 1880 } 1881 action_result(pfn, MF_MSG_FREE_HUGE, res); 1882 return res == MF_RECOVERED ? 0 : -EBUSY; 1883 } 1884 1885 page_flags = head->flags; 1886 1887 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1888 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1889 res = -EBUSY; 1890 goto out; 1891 } 1892 1893 return identify_page_state(pfn, p, page_flags); 1894 out: 1895 unlock_page(head); 1896 return res; 1897 } 1898 1899 #else 1900 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1901 { 1902 return 0; 1903 } 1904 1905 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag) 1906 { 1907 return 0; 1908 } 1909 #endif /* CONFIG_HUGETLB_PAGE */ 1910 1911 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1912 struct dev_pagemap *pgmap) 1913 { 1914 struct page *page = pfn_to_page(pfn); 1915 int rc = -ENXIO; 1916 1917 if (flags & MF_COUNT_INCREASED) 1918 /* 1919 * Drop the extra refcount in case we come from madvise(). 1920 */ 1921 put_page(page); 1922 1923 /* device metadata space is not recoverable */ 1924 if (!pgmap_pfn_valid(pgmap, pfn)) 1925 goto out; 1926 1927 /* 1928 * Call driver's implementation to handle the memory failure, otherwise 1929 * fall back to generic handler. 1930 */ 1931 if (pgmap->ops->memory_failure) { 1932 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 1933 /* 1934 * Fall back to generic handler too if operation is not 1935 * supported inside the driver/device/filesystem. 1936 */ 1937 if (rc != -EOPNOTSUPP) 1938 goto out; 1939 } 1940 1941 rc = mf_generic_kill_procs(pfn, flags, pgmap); 1942 out: 1943 /* drop pgmap ref acquired in caller */ 1944 put_dev_pagemap(pgmap); 1945 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1946 return rc; 1947 } 1948 1949 static DEFINE_MUTEX(mf_mutex); 1950 1951 /** 1952 * memory_failure - Handle memory failure of a page. 1953 * @pfn: Page Number of the corrupted page 1954 * @flags: fine tune action taken 1955 * 1956 * This function is called by the low level machine check code 1957 * of an architecture when it detects hardware memory corruption 1958 * of a page. It tries its best to recover, which includes 1959 * dropping pages, killing processes etc. 1960 * 1961 * The function is primarily of use for corruptions that 1962 * happen outside the current execution context (e.g. when 1963 * detected by a background scrubber) 1964 * 1965 * Must run in process context (e.g. a work queue) with interrupts 1966 * enabled and no spinlocks hold. 1967 * 1968 * Return: 0 for successfully handled the memory error, 1969 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 1970 * < 0(except -EOPNOTSUPP) on failure. 1971 */ 1972 int memory_failure(unsigned long pfn, int flags) 1973 { 1974 struct page *p; 1975 struct page *hpage; 1976 struct dev_pagemap *pgmap; 1977 int res = 0; 1978 unsigned long page_flags; 1979 bool retry = true; 1980 int hugetlb = 0; 1981 1982 if (!sysctl_memory_failure_recovery) 1983 panic("Memory failure on page %lx", pfn); 1984 1985 mutex_lock(&mf_mutex); 1986 1987 if (!(flags & MF_SW_SIMULATED)) 1988 hw_memory_failure = true; 1989 1990 p = pfn_to_online_page(pfn); 1991 if (!p) { 1992 res = arch_memory_failure(pfn, flags); 1993 if (res == 0) 1994 goto unlock_mutex; 1995 1996 if (pfn_valid(pfn)) { 1997 pgmap = get_dev_pagemap(pfn, NULL); 1998 if (pgmap) { 1999 res = memory_failure_dev_pagemap(pfn, flags, 2000 pgmap); 2001 goto unlock_mutex; 2002 } 2003 } 2004 pr_err("%#lx: memory outside kernel control\n", pfn); 2005 res = -ENXIO; 2006 goto unlock_mutex; 2007 } 2008 2009 try_again: 2010 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2011 if (hugetlb) 2012 goto unlock_mutex; 2013 2014 if (TestSetPageHWPoison(p)) { 2015 pr_err("%#lx: already hardware poisoned\n", pfn); 2016 res = -EHWPOISON; 2017 if (flags & MF_ACTION_REQUIRED) 2018 res = kill_accessing_process(current, pfn, flags); 2019 if (flags & MF_COUNT_INCREASED) 2020 put_page(p); 2021 goto unlock_mutex; 2022 } 2023 2024 hpage = compound_head(p); 2025 2026 /* 2027 * We need/can do nothing about count=0 pages. 2028 * 1) it's a free page, and therefore in safe hand: 2029 * prep_new_page() will be the gate keeper. 2030 * 2) it's part of a non-compound high order page. 2031 * Implies some kernel user: cannot stop them from 2032 * R/W the page; let's pray that the page has been 2033 * used and will be freed some time later. 2034 * In fact it's dangerous to directly bump up page count from 0, 2035 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2036 */ 2037 if (!(flags & MF_COUNT_INCREASED)) { 2038 res = get_hwpoison_page(p, flags); 2039 if (!res) { 2040 if (is_free_buddy_page(p)) { 2041 if (take_page_off_buddy(p)) { 2042 page_ref_inc(p); 2043 res = MF_RECOVERED; 2044 } else { 2045 /* We lost the race, try again */ 2046 if (retry) { 2047 ClearPageHWPoison(p); 2048 retry = false; 2049 goto try_again; 2050 } 2051 res = MF_FAILED; 2052 } 2053 action_result(pfn, MF_MSG_BUDDY, res); 2054 res = res == MF_RECOVERED ? 0 : -EBUSY; 2055 } else { 2056 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2057 res = -EBUSY; 2058 } 2059 goto unlock_mutex; 2060 } else if (res < 0) { 2061 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2062 res = -EBUSY; 2063 goto unlock_mutex; 2064 } 2065 } 2066 2067 if (PageTransHuge(hpage)) { 2068 /* 2069 * The flag must be set after the refcount is bumped 2070 * otherwise it may race with THP split. 2071 * And the flag can't be set in get_hwpoison_page() since 2072 * it is called by soft offline too and it is just called 2073 * for !MF_COUNT_INCREASE. So here seems to be the best 2074 * place. 2075 * 2076 * Don't need care about the above error handling paths for 2077 * get_hwpoison_page() since they handle either free page 2078 * or unhandlable page. The refcount is bumped iff the 2079 * page is a valid handlable page. 2080 */ 2081 SetPageHasHWPoisoned(hpage); 2082 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 2083 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2084 res = -EBUSY; 2085 goto unlock_mutex; 2086 } 2087 VM_BUG_ON_PAGE(!page_count(p), p); 2088 } 2089 2090 /* 2091 * We ignore non-LRU pages for good reasons. 2092 * - PG_locked is only well defined for LRU pages and a few others 2093 * - to avoid races with __SetPageLocked() 2094 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2095 * The check (unnecessarily) ignores LRU pages being isolated and 2096 * walked by the page reclaim code, however that's not a big loss. 2097 */ 2098 shake_page(p); 2099 2100 lock_page(p); 2101 2102 /* 2103 * We're only intended to deal with the non-Compound page here. 2104 * However, the page could have changed compound pages due to 2105 * race window. If this happens, we could try again to hopefully 2106 * handle the page next round. 2107 */ 2108 if (PageCompound(p)) { 2109 if (retry) { 2110 ClearPageHWPoison(p); 2111 unlock_page(p); 2112 put_page(p); 2113 flags &= ~MF_COUNT_INCREASED; 2114 retry = false; 2115 goto try_again; 2116 } 2117 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2118 res = -EBUSY; 2119 goto unlock_page; 2120 } 2121 2122 /* 2123 * We use page flags to determine what action should be taken, but 2124 * the flags can be modified by the error containment action. One 2125 * example is an mlocked page, where PG_mlocked is cleared by 2126 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2127 * correctly, we save a copy of the page flags at this time. 2128 */ 2129 page_flags = p->flags; 2130 2131 if (hwpoison_filter(p)) { 2132 TestClearPageHWPoison(p); 2133 unlock_page(p); 2134 put_page(p); 2135 res = -EOPNOTSUPP; 2136 goto unlock_mutex; 2137 } 2138 2139 /* 2140 * __munlock_pagevec may clear a writeback page's LRU flag without 2141 * page_lock. We need wait writeback completion for this page or it 2142 * may trigger vfs BUG while evict inode. 2143 */ 2144 if (!PageLRU(p) && !PageWriteback(p)) 2145 goto identify_page_state; 2146 2147 /* 2148 * It's very difficult to mess with pages currently under IO 2149 * and in many cases impossible, so we just avoid it here. 2150 */ 2151 wait_on_page_writeback(p); 2152 2153 /* 2154 * Now take care of user space mappings. 2155 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2156 */ 2157 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2158 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2159 res = -EBUSY; 2160 goto unlock_page; 2161 } 2162 2163 /* 2164 * Torn down by someone else? 2165 */ 2166 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2167 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2168 res = -EBUSY; 2169 goto unlock_page; 2170 } 2171 2172 identify_page_state: 2173 res = identify_page_state(pfn, p, page_flags); 2174 mutex_unlock(&mf_mutex); 2175 return res; 2176 unlock_page: 2177 unlock_page(p); 2178 unlock_mutex: 2179 mutex_unlock(&mf_mutex); 2180 return res; 2181 } 2182 EXPORT_SYMBOL_GPL(memory_failure); 2183 2184 #define MEMORY_FAILURE_FIFO_ORDER 4 2185 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2186 2187 struct memory_failure_entry { 2188 unsigned long pfn; 2189 int flags; 2190 }; 2191 2192 struct memory_failure_cpu { 2193 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2194 MEMORY_FAILURE_FIFO_SIZE); 2195 spinlock_t lock; 2196 struct work_struct work; 2197 }; 2198 2199 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2200 2201 /** 2202 * memory_failure_queue - Schedule handling memory failure of a page. 2203 * @pfn: Page Number of the corrupted page 2204 * @flags: Flags for memory failure handling 2205 * 2206 * This function is called by the low level hardware error handler 2207 * when it detects hardware memory corruption of a page. It schedules 2208 * the recovering of error page, including dropping pages, killing 2209 * processes etc. 2210 * 2211 * The function is primarily of use for corruptions that 2212 * happen outside the current execution context (e.g. when 2213 * detected by a background scrubber) 2214 * 2215 * Can run in IRQ context. 2216 */ 2217 void memory_failure_queue(unsigned long pfn, int flags) 2218 { 2219 struct memory_failure_cpu *mf_cpu; 2220 unsigned long proc_flags; 2221 struct memory_failure_entry entry = { 2222 .pfn = pfn, 2223 .flags = flags, 2224 }; 2225 2226 mf_cpu = &get_cpu_var(memory_failure_cpu); 2227 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2228 if (kfifo_put(&mf_cpu->fifo, entry)) 2229 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2230 else 2231 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2232 pfn); 2233 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2234 put_cpu_var(memory_failure_cpu); 2235 } 2236 EXPORT_SYMBOL_GPL(memory_failure_queue); 2237 2238 static void memory_failure_work_func(struct work_struct *work) 2239 { 2240 struct memory_failure_cpu *mf_cpu; 2241 struct memory_failure_entry entry = { 0, }; 2242 unsigned long proc_flags; 2243 int gotten; 2244 2245 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2246 for (;;) { 2247 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2248 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2249 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2250 if (!gotten) 2251 break; 2252 if (entry.flags & MF_SOFT_OFFLINE) 2253 soft_offline_page(entry.pfn, entry.flags); 2254 else 2255 memory_failure(entry.pfn, entry.flags); 2256 } 2257 } 2258 2259 /* 2260 * Process memory_failure work queued on the specified CPU. 2261 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2262 */ 2263 void memory_failure_queue_kick(int cpu) 2264 { 2265 struct memory_failure_cpu *mf_cpu; 2266 2267 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2268 cancel_work_sync(&mf_cpu->work); 2269 memory_failure_work_func(&mf_cpu->work); 2270 } 2271 2272 static int __init memory_failure_init(void) 2273 { 2274 struct memory_failure_cpu *mf_cpu; 2275 int cpu; 2276 2277 for_each_possible_cpu(cpu) { 2278 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2279 spin_lock_init(&mf_cpu->lock); 2280 INIT_KFIFO(mf_cpu->fifo); 2281 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2282 } 2283 2284 return 0; 2285 } 2286 core_initcall(memory_failure_init); 2287 2288 #undef pr_fmt 2289 #define pr_fmt(fmt) "" fmt 2290 #define unpoison_pr_info(fmt, pfn, rs) \ 2291 ({ \ 2292 if (__ratelimit(rs)) \ 2293 pr_info(fmt, pfn); \ 2294 }) 2295 2296 /** 2297 * unpoison_memory - Unpoison a previously poisoned page 2298 * @pfn: Page number of the to be unpoisoned page 2299 * 2300 * Software-unpoison a page that has been poisoned by 2301 * memory_failure() earlier. 2302 * 2303 * This is only done on the software-level, so it only works 2304 * for linux injected failures, not real hardware failures 2305 * 2306 * Returns 0 for success, otherwise -errno. 2307 */ 2308 int unpoison_memory(unsigned long pfn) 2309 { 2310 struct page *page; 2311 struct page *p; 2312 int ret = -EBUSY; 2313 int freeit = 0; 2314 unsigned long count = 1; 2315 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2316 DEFAULT_RATELIMIT_BURST); 2317 2318 if (!pfn_valid(pfn)) 2319 return -ENXIO; 2320 2321 p = pfn_to_page(pfn); 2322 page = compound_head(p); 2323 2324 mutex_lock(&mf_mutex); 2325 2326 if (hw_memory_failure) { 2327 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2328 pfn, &unpoison_rs); 2329 ret = -EOPNOTSUPP; 2330 goto unlock_mutex; 2331 } 2332 2333 if (!PageHWPoison(p)) { 2334 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2335 pfn, &unpoison_rs); 2336 goto unlock_mutex; 2337 } 2338 2339 if (page_count(page) > 1) { 2340 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2341 pfn, &unpoison_rs); 2342 goto unlock_mutex; 2343 } 2344 2345 if (page_mapped(page)) { 2346 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2347 pfn, &unpoison_rs); 2348 goto unlock_mutex; 2349 } 2350 2351 if (page_mapping(page)) { 2352 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2353 pfn, &unpoison_rs); 2354 goto unlock_mutex; 2355 } 2356 2357 if (PageSlab(page) || PageTable(page)) 2358 goto unlock_mutex; 2359 2360 ret = get_hwpoison_page(p, MF_UNPOISON); 2361 if (!ret) { 2362 if (PageHuge(p)) { 2363 count = free_raw_hwp_pages(page, false); 2364 if (count == 0) { 2365 ret = -EBUSY; 2366 goto unlock_mutex; 2367 } 2368 } 2369 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; 2370 } else if (ret < 0) { 2371 if (ret == -EHWPOISON) { 2372 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2373 } else 2374 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2375 pfn, &unpoison_rs); 2376 } else { 2377 if (PageHuge(p)) { 2378 count = free_raw_hwp_pages(page, false); 2379 if (count == 0) { 2380 ret = -EBUSY; 2381 goto unlock_mutex; 2382 } 2383 } 2384 freeit = !!TestClearPageHWPoison(p); 2385 2386 put_page(page); 2387 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2388 put_page(page); 2389 ret = 0; 2390 } 2391 } 2392 2393 unlock_mutex: 2394 mutex_unlock(&mf_mutex); 2395 if (!ret || freeit) { 2396 num_poisoned_pages_sub(count); 2397 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2398 page_to_pfn(p), &unpoison_rs); 2399 } 2400 return ret; 2401 } 2402 EXPORT_SYMBOL(unpoison_memory); 2403 2404 static bool isolate_page(struct page *page, struct list_head *pagelist) 2405 { 2406 bool isolated = false; 2407 bool lru = PageLRU(page); 2408 2409 if (PageHuge(page)) { 2410 isolated = !isolate_hugetlb(page, pagelist); 2411 } else { 2412 if (lru) 2413 isolated = !isolate_lru_page(page); 2414 else 2415 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2416 2417 if (isolated) 2418 list_add(&page->lru, pagelist); 2419 } 2420 2421 if (isolated && lru) 2422 inc_node_page_state(page, NR_ISOLATED_ANON + 2423 page_is_file_lru(page)); 2424 2425 /* 2426 * If we succeed to isolate the page, we grabbed another refcount on 2427 * the page, so we can safely drop the one we got from get_any_pages(). 2428 * If we failed to isolate the page, it means that we cannot go further 2429 * and we will return an error, so drop the reference we got from 2430 * get_any_pages() as well. 2431 */ 2432 put_page(page); 2433 return isolated; 2434 } 2435 2436 /* 2437 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2438 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2439 * If the page is mapped, it migrates the contents over. 2440 */ 2441 static int __soft_offline_page(struct page *page) 2442 { 2443 long ret = 0; 2444 unsigned long pfn = page_to_pfn(page); 2445 struct page *hpage = compound_head(page); 2446 char const *msg_page[] = {"page", "hugepage"}; 2447 bool huge = PageHuge(page); 2448 LIST_HEAD(pagelist); 2449 struct migration_target_control mtc = { 2450 .nid = NUMA_NO_NODE, 2451 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2452 }; 2453 2454 lock_page(page); 2455 if (!PageHuge(page)) 2456 wait_on_page_writeback(page); 2457 if (PageHWPoison(page)) { 2458 unlock_page(page); 2459 put_page(page); 2460 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2461 return 0; 2462 } 2463 2464 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2465 /* 2466 * Try to invalidate first. This should work for 2467 * non dirty unmapped page cache pages. 2468 */ 2469 ret = invalidate_inode_page(page); 2470 unlock_page(page); 2471 2472 if (ret) { 2473 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2474 page_handle_poison(page, false, true); 2475 return 0; 2476 } 2477 2478 if (isolate_page(hpage, &pagelist)) { 2479 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2480 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2481 if (!ret) { 2482 bool release = !huge; 2483 2484 if (!page_handle_poison(page, huge, release)) 2485 ret = -EBUSY; 2486 } else { 2487 if (!list_empty(&pagelist)) 2488 putback_movable_pages(&pagelist); 2489 2490 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2491 pfn, msg_page[huge], ret, &page->flags); 2492 if (ret > 0) 2493 ret = -EBUSY; 2494 } 2495 } else { 2496 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2497 pfn, msg_page[huge], page_count(page), &page->flags); 2498 ret = -EBUSY; 2499 } 2500 return ret; 2501 } 2502 2503 static int soft_offline_in_use_page(struct page *page) 2504 { 2505 struct page *hpage = compound_head(page); 2506 2507 if (!PageHuge(page) && PageTransHuge(hpage)) 2508 if (try_to_split_thp_page(page, "soft offline") < 0) 2509 return -EBUSY; 2510 return __soft_offline_page(page); 2511 } 2512 2513 static int soft_offline_free_page(struct page *page) 2514 { 2515 int rc = 0; 2516 2517 if (!page_handle_poison(page, true, false)) 2518 rc = -EBUSY; 2519 2520 return rc; 2521 } 2522 2523 static void put_ref_page(struct page *page) 2524 { 2525 if (page) 2526 put_page(page); 2527 } 2528 2529 /** 2530 * soft_offline_page - Soft offline a page. 2531 * @pfn: pfn to soft-offline 2532 * @flags: flags. Same as memory_failure(). 2533 * 2534 * Returns 0 on success 2535 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2536 * < 0 otherwise negated errno. 2537 * 2538 * Soft offline a page, by migration or invalidation, 2539 * without killing anything. This is for the case when 2540 * a page is not corrupted yet (so it's still valid to access), 2541 * but has had a number of corrected errors and is better taken 2542 * out. 2543 * 2544 * The actual policy on when to do that is maintained by 2545 * user space. 2546 * 2547 * This should never impact any application or cause data loss, 2548 * however it might take some time. 2549 * 2550 * This is not a 100% solution for all memory, but tries to be 2551 * ``good enough'' for the majority of memory. 2552 */ 2553 int soft_offline_page(unsigned long pfn, int flags) 2554 { 2555 int ret; 2556 bool try_again = true; 2557 struct page *page, *ref_page = NULL; 2558 2559 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2560 2561 if (!pfn_valid(pfn)) 2562 return -ENXIO; 2563 if (flags & MF_COUNT_INCREASED) 2564 ref_page = pfn_to_page(pfn); 2565 2566 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2567 page = pfn_to_online_page(pfn); 2568 if (!page) { 2569 put_ref_page(ref_page); 2570 return -EIO; 2571 } 2572 2573 mutex_lock(&mf_mutex); 2574 2575 if (PageHWPoison(page)) { 2576 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2577 put_ref_page(ref_page); 2578 mutex_unlock(&mf_mutex); 2579 return 0; 2580 } 2581 2582 retry: 2583 get_online_mems(); 2584 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2585 put_online_mems(); 2586 2587 if (hwpoison_filter(page)) { 2588 if (ret > 0) 2589 put_page(page); 2590 else 2591 put_ref_page(ref_page); 2592 2593 mutex_unlock(&mf_mutex); 2594 return -EOPNOTSUPP; 2595 } 2596 2597 if (ret > 0) { 2598 ret = soft_offline_in_use_page(page); 2599 } else if (ret == 0) { 2600 if (soft_offline_free_page(page) && try_again) { 2601 try_again = false; 2602 flags &= ~MF_COUNT_INCREASED; 2603 goto retry; 2604 } 2605 } 2606 2607 mutex_unlock(&mf_mutex); 2608 2609 return ret; 2610 } 2611 2612 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 2613 { 2614 int i; 2615 2616 /* 2617 * A further optimization is to have per section refcounted 2618 * num_poisoned_pages. But that would need more space per memmap, so 2619 * for now just do a quick global check to speed up this routine in the 2620 * absence of bad pages. 2621 */ 2622 if (atomic_long_read(&num_poisoned_pages) == 0) 2623 return; 2624 2625 for (i = 0; i < nr_pages; i++) { 2626 if (PageHWPoison(&memmap[i])) { 2627 num_poisoned_pages_dec(); 2628 ClearPageHWPoison(&memmap[i]); 2629 } 2630 } 2631 } 2632