xref: /openbmc/linux/mm/memory-failure.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/kfifo.h>
57 #include "internal.h"
58 
59 int sysctl_memory_failure_early_kill __read_mostly = 0;
60 
61 int sysctl_memory_failure_recovery __read_mostly = 1;
62 
63 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
64 
65 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
66 
67 u32 hwpoison_filter_enable = 0;
68 u32 hwpoison_filter_dev_major = ~0U;
69 u32 hwpoison_filter_dev_minor = ~0U;
70 u64 hwpoison_filter_flags_mask;
71 u64 hwpoison_filter_flags_value;
72 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
77 
78 static int hwpoison_filter_dev(struct page *p)
79 {
80 	struct address_space *mapping;
81 	dev_t dev;
82 
83 	if (hwpoison_filter_dev_major == ~0U &&
84 	    hwpoison_filter_dev_minor == ~0U)
85 		return 0;
86 
87 	/*
88 	 * page_mapping() does not accept slab pages.
89 	 */
90 	if (PageSlab(p))
91 		return -EINVAL;
92 
93 	mapping = page_mapping(p);
94 	if (mapping == NULL || mapping->host == NULL)
95 		return -EINVAL;
96 
97 	dev = mapping->host->i_sb->s_dev;
98 	if (hwpoison_filter_dev_major != ~0U &&
99 	    hwpoison_filter_dev_major != MAJOR(dev))
100 		return -EINVAL;
101 	if (hwpoison_filter_dev_minor != ~0U &&
102 	    hwpoison_filter_dev_minor != MINOR(dev))
103 		return -EINVAL;
104 
105 	return 0;
106 }
107 
108 static int hwpoison_filter_flags(struct page *p)
109 {
110 	if (!hwpoison_filter_flags_mask)
111 		return 0;
112 
113 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
114 				    hwpoison_filter_flags_value)
115 		return 0;
116 	else
117 		return -EINVAL;
118 }
119 
120 /*
121  * This allows stress tests to limit test scope to a collection of tasks
122  * by putting them under some memcg. This prevents killing unrelated/important
123  * processes such as /sbin/init. Note that the target task may share clean
124  * pages with init (eg. libc text), which is harmless. If the target task
125  * share _dirty_ pages with another task B, the test scheme must make sure B
126  * is also included in the memcg. At last, due to race conditions this filter
127  * can only guarantee that the page either belongs to the memcg tasks, or is
128  * a freed page.
129  */
130 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
131 u64 hwpoison_filter_memcg;
132 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
133 static int hwpoison_filter_task(struct page *p)
134 {
135 	struct mem_cgroup *mem;
136 	struct cgroup_subsys_state *css;
137 	unsigned long ino;
138 
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	mem = try_get_mem_cgroup_from_page(p);
143 	if (!mem)
144 		return -EINVAL;
145 
146 	css = mem_cgroup_css(mem);
147 	/* root_mem_cgroup has NULL dentries */
148 	if (!css->cgroup->dentry)
149 		return -EINVAL;
150 
151 	ino = css->cgroup->dentry->d_inode->i_ino;
152 	css_put(css);
153 
154 	if (ino != hwpoison_filter_memcg)
155 		return -EINVAL;
156 
157 	return 0;
158 }
159 #else
160 static int hwpoison_filter_task(struct page *p) { return 0; }
161 #endif
162 
163 int hwpoison_filter(struct page *p)
164 {
165 	if (!hwpoison_filter_enable)
166 		return 0;
167 
168 	if (hwpoison_filter_dev(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_flags(p))
172 		return -EINVAL;
173 
174 	if (hwpoison_filter_task(p))
175 		return -EINVAL;
176 
177 	return 0;
178 }
179 #else
180 int hwpoison_filter(struct page *p)
181 {
182 	return 0;
183 }
184 #endif
185 
186 EXPORT_SYMBOL_GPL(hwpoison_filter);
187 
188 /*
189  * Send all the processes who have the page mapped an ``action optional''
190  * signal.
191  */
192 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
193 			unsigned long pfn, struct page *page)
194 {
195 	struct siginfo si;
196 	int ret;
197 
198 	printk(KERN_ERR
199 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
200 		pfn, t->comm, t->pid);
201 	si.si_signo = SIGBUS;
202 	si.si_errno = 0;
203 	si.si_code = BUS_MCEERR_AO;
204 	si.si_addr = (void *)addr;
205 #ifdef __ARCH_SI_TRAPNO
206 	si.si_trapno = trapno;
207 #endif
208 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
209 	/*
210 	 * Don't use force here, it's convenient if the signal
211 	 * can be temporarily blocked.
212 	 * This could cause a loop when the user sets SIGBUS
213 	 * to SIG_IGN, but hopefully no one will do that?
214 	 */
215 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
216 	if (ret < 0)
217 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
218 		       t->comm, t->pid, ret);
219 	return ret;
220 }
221 
222 /*
223  * When a unknown page type is encountered drain as many buffers as possible
224  * in the hope to turn the page into a LRU or free page, which we can handle.
225  */
226 void shake_page(struct page *p, int access)
227 {
228 	if (!PageSlab(p)) {
229 		lru_add_drain_all();
230 		if (PageLRU(p))
231 			return;
232 		drain_all_pages();
233 		if (PageLRU(p) || is_free_buddy_page(p))
234 			return;
235 	}
236 
237 	/*
238 	 * Only call shrink_slab here (which would also shrink other caches) if
239 	 * access is not potentially fatal.
240 	 */
241 	if (access) {
242 		int nr;
243 		do {
244 			struct shrink_control shrink = {
245 				.gfp_mask = GFP_KERNEL,
246 			};
247 
248 			nr = shrink_slab(&shrink, 1000, 1000);
249 			if (page_count(p) == 1)
250 				break;
251 		} while (nr > 10);
252 	}
253 }
254 EXPORT_SYMBOL_GPL(shake_page);
255 
256 /*
257  * Kill all processes that have a poisoned page mapped and then isolate
258  * the page.
259  *
260  * General strategy:
261  * Find all processes having the page mapped and kill them.
262  * But we keep a page reference around so that the page is not
263  * actually freed yet.
264  * Then stash the page away
265  *
266  * There's no convenient way to get back to mapped processes
267  * from the VMAs. So do a brute-force search over all
268  * running processes.
269  *
270  * Remember that machine checks are not common (or rather
271  * if they are common you have other problems), so this shouldn't
272  * be a performance issue.
273  *
274  * Also there are some races possible while we get from the
275  * error detection to actually handle it.
276  */
277 
278 struct to_kill {
279 	struct list_head nd;
280 	struct task_struct *tsk;
281 	unsigned long addr;
282 	char addr_valid;
283 };
284 
285 /*
286  * Failure handling: if we can't find or can't kill a process there's
287  * not much we can do.	We just print a message and ignore otherwise.
288  */
289 
290 /*
291  * Schedule a process for later kill.
292  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
293  * TBD would GFP_NOIO be enough?
294  */
295 static void add_to_kill(struct task_struct *tsk, struct page *p,
296 		       struct vm_area_struct *vma,
297 		       struct list_head *to_kill,
298 		       struct to_kill **tkc)
299 {
300 	struct to_kill *tk;
301 
302 	if (*tkc) {
303 		tk = *tkc;
304 		*tkc = NULL;
305 	} else {
306 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
307 		if (!tk) {
308 			printk(KERN_ERR
309 		"MCE: Out of memory while machine check handling\n");
310 			return;
311 		}
312 	}
313 	tk->addr = page_address_in_vma(p, vma);
314 	tk->addr_valid = 1;
315 
316 	/*
317 	 * In theory we don't have to kill when the page was
318 	 * munmaped. But it could be also a mremap. Since that's
319 	 * likely very rare kill anyways just out of paranoia, but use
320 	 * a SIGKILL because the error is not contained anymore.
321 	 */
322 	if (tk->addr == -EFAULT) {
323 		pr_info("MCE: Unable to find user space address %lx in %s\n",
324 			page_to_pfn(p), tsk->comm);
325 		tk->addr_valid = 0;
326 	}
327 	get_task_struct(tsk);
328 	tk->tsk = tsk;
329 	list_add_tail(&tk->nd, to_kill);
330 }
331 
332 /*
333  * Kill the processes that have been collected earlier.
334  *
335  * Only do anything when DOIT is set, otherwise just free the list
336  * (this is used for clean pages which do not need killing)
337  * Also when FAIL is set do a force kill because something went
338  * wrong earlier.
339  */
340 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
341 			  int fail, struct page *page, unsigned long pfn)
342 {
343 	struct to_kill *tk, *next;
344 
345 	list_for_each_entry_safe (tk, next, to_kill, nd) {
346 		if (doit) {
347 			/*
348 			 * In case something went wrong with munmapping
349 			 * make sure the process doesn't catch the
350 			 * signal and then access the memory. Just kill it.
351 			 */
352 			if (fail || tk->addr_valid == 0) {
353 				printk(KERN_ERR
354 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
355 					pfn, tk->tsk->comm, tk->tsk->pid);
356 				force_sig(SIGKILL, tk->tsk);
357 			}
358 
359 			/*
360 			 * In theory the process could have mapped
361 			 * something else on the address in-between. We could
362 			 * check for that, but we need to tell the
363 			 * process anyways.
364 			 */
365 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
366 					      pfn, page) < 0)
367 				printk(KERN_ERR
368 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
369 					pfn, tk->tsk->comm, tk->tsk->pid);
370 		}
371 		put_task_struct(tk->tsk);
372 		kfree(tk);
373 	}
374 }
375 
376 static int task_early_kill(struct task_struct *tsk)
377 {
378 	if (!tsk->mm)
379 		return 0;
380 	if (tsk->flags & PF_MCE_PROCESS)
381 		return !!(tsk->flags & PF_MCE_EARLY);
382 	return sysctl_memory_failure_early_kill;
383 }
384 
385 /*
386  * Collect processes when the error hit an anonymous page.
387  */
388 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
389 			      struct to_kill **tkc)
390 {
391 	struct vm_area_struct *vma;
392 	struct task_struct *tsk;
393 	struct anon_vma *av;
394 
395 	av = page_lock_anon_vma(page);
396 	if (av == NULL)	/* Not actually mapped anymore */
397 		return;
398 
399 	read_lock(&tasklist_lock);
400 	for_each_process (tsk) {
401 		struct anon_vma_chain *vmac;
402 
403 		if (!task_early_kill(tsk))
404 			continue;
405 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
406 			vma = vmac->vma;
407 			if (!page_mapped_in_vma(page, vma))
408 				continue;
409 			if (vma->vm_mm == tsk->mm)
410 				add_to_kill(tsk, page, vma, to_kill, tkc);
411 		}
412 	}
413 	read_unlock(&tasklist_lock);
414 	page_unlock_anon_vma(av);
415 }
416 
417 /*
418  * Collect processes when the error hit a file mapped page.
419  */
420 static void collect_procs_file(struct page *page, struct list_head *to_kill,
421 			      struct to_kill **tkc)
422 {
423 	struct vm_area_struct *vma;
424 	struct task_struct *tsk;
425 	struct prio_tree_iter iter;
426 	struct address_space *mapping = page->mapping;
427 
428 	mutex_lock(&mapping->i_mmap_mutex);
429 	read_lock(&tasklist_lock);
430 	for_each_process(tsk) {
431 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
432 
433 		if (!task_early_kill(tsk))
434 			continue;
435 
436 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
437 				      pgoff) {
438 			/*
439 			 * Send early kill signal to tasks where a vma covers
440 			 * the page but the corrupted page is not necessarily
441 			 * mapped it in its pte.
442 			 * Assume applications who requested early kill want
443 			 * to be informed of all such data corruptions.
444 			 */
445 			if (vma->vm_mm == tsk->mm)
446 				add_to_kill(tsk, page, vma, to_kill, tkc);
447 		}
448 	}
449 	read_unlock(&tasklist_lock);
450 	mutex_unlock(&mapping->i_mmap_mutex);
451 }
452 
453 /*
454  * Collect the processes who have the corrupted page mapped to kill.
455  * This is done in two steps for locking reasons.
456  * First preallocate one tokill structure outside the spin locks,
457  * so that we can kill at least one process reasonably reliable.
458  */
459 static void collect_procs(struct page *page, struct list_head *tokill)
460 {
461 	struct to_kill *tk;
462 
463 	if (!page->mapping)
464 		return;
465 
466 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
467 	if (!tk)
468 		return;
469 	if (PageAnon(page))
470 		collect_procs_anon(page, tokill, &tk);
471 	else
472 		collect_procs_file(page, tokill, &tk);
473 	kfree(tk);
474 }
475 
476 /*
477  * Error handlers for various types of pages.
478  */
479 
480 enum outcome {
481 	IGNORED,	/* Error: cannot be handled */
482 	FAILED,		/* Error: handling failed */
483 	DELAYED,	/* Will be handled later */
484 	RECOVERED,	/* Successfully recovered */
485 };
486 
487 static const char *action_name[] = {
488 	[IGNORED] = "Ignored",
489 	[FAILED] = "Failed",
490 	[DELAYED] = "Delayed",
491 	[RECOVERED] = "Recovered",
492 };
493 
494 /*
495  * XXX: It is possible that a page is isolated from LRU cache,
496  * and then kept in swap cache or failed to remove from page cache.
497  * The page count will stop it from being freed by unpoison.
498  * Stress tests should be aware of this memory leak problem.
499  */
500 static int delete_from_lru_cache(struct page *p)
501 {
502 	if (!isolate_lru_page(p)) {
503 		/*
504 		 * Clear sensible page flags, so that the buddy system won't
505 		 * complain when the page is unpoison-and-freed.
506 		 */
507 		ClearPageActive(p);
508 		ClearPageUnevictable(p);
509 		/*
510 		 * drop the page count elevated by isolate_lru_page()
511 		 */
512 		page_cache_release(p);
513 		return 0;
514 	}
515 	return -EIO;
516 }
517 
518 /*
519  * Error hit kernel page.
520  * Do nothing, try to be lucky and not touch this instead. For a few cases we
521  * could be more sophisticated.
522  */
523 static int me_kernel(struct page *p, unsigned long pfn)
524 {
525 	return IGNORED;
526 }
527 
528 /*
529  * Page in unknown state. Do nothing.
530  */
531 static int me_unknown(struct page *p, unsigned long pfn)
532 {
533 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
534 	return FAILED;
535 }
536 
537 /*
538  * Clean (or cleaned) page cache page.
539  */
540 static int me_pagecache_clean(struct page *p, unsigned long pfn)
541 {
542 	int err;
543 	int ret = FAILED;
544 	struct address_space *mapping;
545 
546 	delete_from_lru_cache(p);
547 
548 	/*
549 	 * For anonymous pages we're done the only reference left
550 	 * should be the one m_f() holds.
551 	 */
552 	if (PageAnon(p))
553 		return RECOVERED;
554 
555 	/*
556 	 * Now truncate the page in the page cache. This is really
557 	 * more like a "temporary hole punch"
558 	 * Don't do this for block devices when someone else
559 	 * has a reference, because it could be file system metadata
560 	 * and that's not safe to truncate.
561 	 */
562 	mapping = page_mapping(p);
563 	if (!mapping) {
564 		/*
565 		 * Page has been teared down in the meanwhile
566 		 */
567 		return FAILED;
568 	}
569 
570 	/*
571 	 * Truncation is a bit tricky. Enable it per file system for now.
572 	 *
573 	 * Open: to take i_mutex or not for this? Right now we don't.
574 	 */
575 	if (mapping->a_ops->error_remove_page) {
576 		err = mapping->a_ops->error_remove_page(mapping, p);
577 		if (err != 0) {
578 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
579 					pfn, err);
580 		} else if (page_has_private(p) &&
581 				!try_to_release_page(p, GFP_NOIO)) {
582 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
583 		} else {
584 			ret = RECOVERED;
585 		}
586 	} else {
587 		/*
588 		 * If the file system doesn't support it just invalidate
589 		 * This fails on dirty or anything with private pages
590 		 */
591 		if (invalidate_inode_page(p))
592 			ret = RECOVERED;
593 		else
594 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
595 				pfn);
596 	}
597 	return ret;
598 }
599 
600 /*
601  * Dirty cache page page
602  * Issues: when the error hit a hole page the error is not properly
603  * propagated.
604  */
605 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
606 {
607 	struct address_space *mapping = page_mapping(p);
608 
609 	SetPageError(p);
610 	/* TBD: print more information about the file. */
611 	if (mapping) {
612 		/*
613 		 * IO error will be reported by write(), fsync(), etc.
614 		 * who check the mapping.
615 		 * This way the application knows that something went
616 		 * wrong with its dirty file data.
617 		 *
618 		 * There's one open issue:
619 		 *
620 		 * The EIO will be only reported on the next IO
621 		 * operation and then cleared through the IO map.
622 		 * Normally Linux has two mechanisms to pass IO error
623 		 * first through the AS_EIO flag in the address space
624 		 * and then through the PageError flag in the page.
625 		 * Since we drop pages on memory failure handling the
626 		 * only mechanism open to use is through AS_AIO.
627 		 *
628 		 * This has the disadvantage that it gets cleared on
629 		 * the first operation that returns an error, while
630 		 * the PageError bit is more sticky and only cleared
631 		 * when the page is reread or dropped.  If an
632 		 * application assumes it will always get error on
633 		 * fsync, but does other operations on the fd before
634 		 * and the page is dropped between then the error
635 		 * will not be properly reported.
636 		 *
637 		 * This can already happen even without hwpoisoned
638 		 * pages: first on metadata IO errors (which only
639 		 * report through AS_EIO) or when the page is dropped
640 		 * at the wrong time.
641 		 *
642 		 * So right now we assume that the application DTRT on
643 		 * the first EIO, but we're not worse than other parts
644 		 * of the kernel.
645 		 */
646 		mapping_set_error(mapping, EIO);
647 	}
648 
649 	return me_pagecache_clean(p, pfn);
650 }
651 
652 /*
653  * Clean and dirty swap cache.
654  *
655  * Dirty swap cache page is tricky to handle. The page could live both in page
656  * cache and swap cache(ie. page is freshly swapped in). So it could be
657  * referenced concurrently by 2 types of PTEs:
658  * normal PTEs and swap PTEs. We try to handle them consistently by calling
659  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
660  * and then
661  *      - clear dirty bit to prevent IO
662  *      - remove from LRU
663  *      - but keep in the swap cache, so that when we return to it on
664  *        a later page fault, we know the application is accessing
665  *        corrupted data and shall be killed (we installed simple
666  *        interception code in do_swap_page to catch it).
667  *
668  * Clean swap cache pages can be directly isolated. A later page fault will
669  * bring in the known good data from disk.
670  */
671 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
672 {
673 	ClearPageDirty(p);
674 	/* Trigger EIO in shmem: */
675 	ClearPageUptodate(p);
676 
677 	if (!delete_from_lru_cache(p))
678 		return DELAYED;
679 	else
680 		return FAILED;
681 }
682 
683 static int me_swapcache_clean(struct page *p, unsigned long pfn)
684 {
685 	delete_from_swap_cache(p);
686 
687 	if (!delete_from_lru_cache(p))
688 		return RECOVERED;
689 	else
690 		return FAILED;
691 }
692 
693 /*
694  * Huge pages. Needs work.
695  * Issues:
696  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
697  *   To narrow down kill region to one page, we need to break up pmd.
698  */
699 static int me_huge_page(struct page *p, unsigned long pfn)
700 {
701 	int res = 0;
702 	struct page *hpage = compound_head(p);
703 	/*
704 	 * We can safely recover from error on free or reserved (i.e.
705 	 * not in-use) hugepage by dequeuing it from freelist.
706 	 * To check whether a hugepage is in-use or not, we can't use
707 	 * page->lru because it can be used in other hugepage operations,
708 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
709 	 * So instead we use page_mapping() and PageAnon().
710 	 * We assume that this function is called with page lock held,
711 	 * so there is no race between isolation and mapping/unmapping.
712 	 */
713 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
714 		res = dequeue_hwpoisoned_huge_page(hpage);
715 		if (!res)
716 			return RECOVERED;
717 	}
718 	return DELAYED;
719 }
720 
721 /*
722  * Various page states we can handle.
723  *
724  * A page state is defined by its current page->flags bits.
725  * The table matches them in order and calls the right handler.
726  *
727  * This is quite tricky because we can access page at any time
728  * in its live cycle, so all accesses have to be extremely careful.
729  *
730  * This is not complete. More states could be added.
731  * For any missing state don't attempt recovery.
732  */
733 
734 #define dirty		(1UL << PG_dirty)
735 #define sc		(1UL << PG_swapcache)
736 #define unevict		(1UL << PG_unevictable)
737 #define mlock		(1UL << PG_mlocked)
738 #define writeback	(1UL << PG_writeback)
739 #define lru		(1UL << PG_lru)
740 #define swapbacked	(1UL << PG_swapbacked)
741 #define head		(1UL << PG_head)
742 #define tail		(1UL << PG_tail)
743 #define compound	(1UL << PG_compound)
744 #define slab		(1UL << PG_slab)
745 #define reserved	(1UL << PG_reserved)
746 
747 static struct page_state {
748 	unsigned long mask;
749 	unsigned long res;
750 	char *msg;
751 	int (*action)(struct page *p, unsigned long pfn);
752 } error_states[] = {
753 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
754 	/*
755 	 * free pages are specially detected outside this table:
756 	 * PG_buddy pages only make a small fraction of all free pages.
757 	 */
758 
759 	/*
760 	 * Could in theory check if slab page is free or if we can drop
761 	 * currently unused objects without touching them. But just
762 	 * treat it as standard kernel for now.
763 	 */
764 	{ slab,		slab,		"kernel slab",	me_kernel },
765 
766 #ifdef CONFIG_PAGEFLAGS_EXTENDED
767 	{ head,		head,		"huge",		me_huge_page },
768 	{ tail,		tail,		"huge",		me_huge_page },
769 #else
770 	{ compound,	compound,	"huge",		me_huge_page },
771 #endif
772 
773 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
774 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
775 
776 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
777 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
778 
779 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
780 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
781 
782 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
783 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
784 
785 	/*
786 	 * Catchall entry: must be at end.
787 	 */
788 	{ 0,		0,		"unknown page state",	me_unknown },
789 };
790 
791 #undef dirty
792 #undef sc
793 #undef unevict
794 #undef mlock
795 #undef writeback
796 #undef lru
797 #undef swapbacked
798 #undef head
799 #undef tail
800 #undef compound
801 #undef slab
802 #undef reserved
803 
804 static void action_result(unsigned long pfn, char *msg, int result)
805 {
806 	struct page *page = pfn_to_page(pfn);
807 
808 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
809 		pfn,
810 		PageDirty(page) ? "dirty " : "",
811 		msg, action_name[result]);
812 }
813 
814 static int page_action(struct page_state *ps, struct page *p,
815 			unsigned long pfn)
816 {
817 	int result;
818 	int count;
819 
820 	result = ps->action(p, pfn);
821 	action_result(pfn, ps->msg, result);
822 
823 	count = page_count(p) - 1;
824 	if (ps->action == me_swapcache_dirty && result == DELAYED)
825 		count--;
826 	if (count != 0) {
827 		printk(KERN_ERR
828 		       "MCE %#lx: %s page still referenced by %d users\n",
829 		       pfn, ps->msg, count);
830 		result = FAILED;
831 	}
832 
833 	/* Could do more checks here if page looks ok */
834 	/*
835 	 * Could adjust zone counters here to correct for the missing page.
836 	 */
837 
838 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
839 }
840 
841 /*
842  * Do all that is necessary to remove user space mappings. Unmap
843  * the pages and send SIGBUS to the processes if the data was dirty.
844  */
845 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
846 				  int trapno)
847 {
848 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
849 	struct address_space *mapping;
850 	LIST_HEAD(tokill);
851 	int ret;
852 	int kill = 1;
853 	struct page *hpage = compound_head(p);
854 	struct page *ppage;
855 
856 	if (PageReserved(p) || PageSlab(p))
857 		return SWAP_SUCCESS;
858 
859 	/*
860 	 * This check implies we don't kill processes if their pages
861 	 * are in the swap cache early. Those are always late kills.
862 	 */
863 	if (!page_mapped(hpage))
864 		return SWAP_SUCCESS;
865 
866 	if (PageKsm(p))
867 		return SWAP_FAIL;
868 
869 	if (PageSwapCache(p)) {
870 		printk(KERN_ERR
871 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
872 		ttu |= TTU_IGNORE_HWPOISON;
873 	}
874 
875 	/*
876 	 * Propagate the dirty bit from PTEs to struct page first, because we
877 	 * need this to decide if we should kill or just drop the page.
878 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
879 	 * be called inside page lock (it's recommended but not enforced).
880 	 */
881 	mapping = page_mapping(hpage);
882 	if (!PageDirty(hpage) && mapping &&
883 	    mapping_cap_writeback_dirty(mapping)) {
884 		if (page_mkclean(hpage)) {
885 			SetPageDirty(hpage);
886 		} else {
887 			kill = 0;
888 			ttu |= TTU_IGNORE_HWPOISON;
889 			printk(KERN_INFO
890 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
891 				pfn);
892 		}
893 	}
894 
895 	/*
896 	 * ppage: poisoned page
897 	 *   if p is regular page(4k page)
898 	 *        ppage == real poisoned page;
899 	 *   else p is hugetlb or THP, ppage == head page.
900 	 */
901 	ppage = hpage;
902 
903 	if (PageTransHuge(hpage)) {
904 		/*
905 		 * Verify that this isn't a hugetlbfs head page, the check for
906 		 * PageAnon is just for avoid tripping a split_huge_page
907 		 * internal debug check, as split_huge_page refuses to deal with
908 		 * anything that isn't an anon page. PageAnon can't go away fro
909 		 * under us because we hold a refcount on the hpage, without a
910 		 * refcount on the hpage. split_huge_page can't be safely called
911 		 * in the first place, having a refcount on the tail isn't
912 		 * enough * to be safe.
913 		 */
914 		if (!PageHuge(hpage) && PageAnon(hpage)) {
915 			if (unlikely(split_huge_page(hpage))) {
916 				/*
917 				 * FIXME: if splitting THP is failed, it is
918 				 * better to stop the following operation rather
919 				 * than causing panic by unmapping. System might
920 				 * survive if the page is freed later.
921 				 */
922 				printk(KERN_INFO
923 					"MCE %#lx: failed to split THP\n", pfn);
924 
925 				BUG_ON(!PageHWPoison(p));
926 				return SWAP_FAIL;
927 			}
928 			/* THP is split, so ppage should be the real poisoned page. */
929 			ppage = p;
930 		}
931 	}
932 
933 	/*
934 	 * First collect all the processes that have the page
935 	 * mapped in dirty form.  This has to be done before try_to_unmap,
936 	 * because ttu takes the rmap data structures down.
937 	 *
938 	 * Error handling: We ignore errors here because
939 	 * there's nothing that can be done.
940 	 */
941 	if (kill)
942 		collect_procs(ppage, &tokill);
943 
944 	if (hpage != ppage)
945 		lock_page(ppage);
946 
947 	ret = try_to_unmap(ppage, ttu);
948 	if (ret != SWAP_SUCCESS)
949 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
950 				pfn, page_mapcount(ppage));
951 
952 	if (hpage != ppage)
953 		unlock_page(ppage);
954 
955 	/*
956 	 * Now that the dirty bit has been propagated to the
957 	 * struct page and all unmaps done we can decide if
958 	 * killing is needed or not.  Only kill when the page
959 	 * was dirty, otherwise the tokill list is merely
960 	 * freed.  When there was a problem unmapping earlier
961 	 * use a more force-full uncatchable kill to prevent
962 	 * any accesses to the poisoned memory.
963 	 */
964 	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
965 		      ret != SWAP_SUCCESS, p, pfn);
966 
967 	return ret;
968 }
969 
970 static void set_page_hwpoison_huge_page(struct page *hpage)
971 {
972 	int i;
973 	int nr_pages = 1 << compound_trans_order(hpage);
974 	for (i = 0; i < nr_pages; i++)
975 		SetPageHWPoison(hpage + i);
976 }
977 
978 static void clear_page_hwpoison_huge_page(struct page *hpage)
979 {
980 	int i;
981 	int nr_pages = 1 << compound_trans_order(hpage);
982 	for (i = 0; i < nr_pages; i++)
983 		ClearPageHWPoison(hpage + i);
984 }
985 
986 int __memory_failure(unsigned long pfn, int trapno, int flags)
987 {
988 	struct page_state *ps;
989 	struct page *p;
990 	struct page *hpage;
991 	int res;
992 	unsigned int nr_pages;
993 
994 	if (!sysctl_memory_failure_recovery)
995 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
996 
997 	if (!pfn_valid(pfn)) {
998 		printk(KERN_ERR
999 		       "MCE %#lx: memory outside kernel control\n",
1000 		       pfn);
1001 		return -ENXIO;
1002 	}
1003 
1004 	p = pfn_to_page(pfn);
1005 	hpage = compound_head(p);
1006 	if (TestSetPageHWPoison(p)) {
1007 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1008 		return 0;
1009 	}
1010 
1011 	nr_pages = 1 << compound_trans_order(hpage);
1012 	atomic_long_add(nr_pages, &mce_bad_pages);
1013 
1014 	/*
1015 	 * We need/can do nothing about count=0 pages.
1016 	 * 1) it's a free page, and therefore in safe hand:
1017 	 *    prep_new_page() will be the gate keeper.
1018 	 * 2) it's a free hugepage, which is also safe:
1019 	 *    an affected hugepage will be dequeued from hugepage freelist,
1020 	 *    so there's no concern about reusing it ever after.
1021 	 * 3) it's part of a non-compound high order page.
1022 	 *    Implies some kernel user: cannot stop them from
1023 	 *    R/W the page; let's pray that the page has been
1024 	 *    used and will be freed some time later.
1025 	 * In fact it's dangerous to directly bump up page count from 0,
1026 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1027 	 */
1028 	if (!(flags & MF_COUNT_INCREASED) &&
1029 		!get_page_unless_zero(hpage)) {
1030 		if (is_free_buddy_page(p)) {
1031 			action_result(pfn, "free buddy", DELAYED);
1032 			return 0;
1033 		} else if (PageHuge(hpage)) {
1034 			/*
1035 			 * Check "just unpoisoned", "filter hit", and
1036 			 * "race with other subpage."
1037 			 */
1038 			lock_page(hpage);
1039 			if (!PageHWPoison(hpage)
1040 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1041 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1042 				atomic_long_sub(nr_pages, &mce_bad_pages);
1043 				return 0;
1044 			}
1045 			set_page_hwpoison_huge_page(hpage);
1046 			res = dequeue_hwpoisoned_huge_page(hpage);
1047 			action_result(pfn, "free huge",
1048 				      res ? IGNORED : DELAYED);
1049 			unlock_page(hpage);
1050 			return res;
1051 		} else {
1052 			action_result(pfn, "high order kernel", IGNORED);
1053 			return -EBUSY;
1054 		}
1055 	}
1056 
1057 	/*
1058 	 * We ignore non-LRU pages for good reasons.
1059 	 * - PG_locked is only well defined for LRU pages and a few others
1060 	 * - to avoid races with __set_page_locked()
1061 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1062 	 * The check (unnecessarily) ignores LRU pages being isolated and
1063 	 * walked by the page reclaim code, however that's not a big loss.
1064 	 */
1065 	if (!PageHuge(p) && !PageTransCompound(p)) {
1066 		if (!PageLRU(p))
1067 			shake_page(p, 0);
1068 		if (!PageLRU(p)) {
1069 			/*
1070 			 * shake_page could have turned it free.
1071 			 */
1072 			if (is_free_buddy_page(p)) {
1073 				action_result(pfn, "free buddy, 2nd try",
1074 						DELAYED);
1075 				return 0;
1076 			}
1077 			action_result(pfn, "non LRU", IGNORED);
1078 			put_page(p);
1079 			return -EBUSY;
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * Lock the page and wait for writeback to finish.
1085 	 * It's very difficult to mess with pages currently under IO
1086 	 * and in many cases impossible, so we just avoid it here.
1087 	 */
1088 	lock_page(hpage);
1089 
1090 	/*
1091 	 * unpoison always clear PG_hwpoison inside page lock
1092 	 */
1093 	if (!PageHWPoison(p)) {
1094 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1095 		res = 0;
1096 		goto out;
1097 	}
1098 	if (hwpoison_filter(p)) {
1099 		if (TestClearPageHWPoison(p))
1100 			atomic_long_sub(nr_pages, &mce_bad_pages);
1101 		unlock_page(hpage);
1102 		put_page(hpage);
1103 		return 0;
1104 	}
1105 
1106 	/*
1107 	 * For error on the tail page, we should set PG_hwpoison
1108 	 * on the head page to show that the hugepage is hwpoisoned
1109 	 */
1110 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1111 		action_result(pfn, "hugepage already hardware poisoned",
1112 				IGNORED);
1113 		unlock_page(hpage);
1114 		put_page(hpage);
1115 		return 0;
1116 	}
1117 	/*
1118 	 * Set PG_hwpoison on all pages in an error hugepage,
1119 	 * because containment is done in hugepage unit for now.
1120 	 * Since we have done TestSetPageHWPoison() for the head page with
1121 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1122 	 */
1123 	if (PageHuge(p))
1124 		set_page_hwpoison_huge_page(hpage);
1125 
1126 	wait_on_page_writeback(p);
1127 
1128 	/*
1129 	 * Now take care of user space mappings.
1130 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1131 	 */
1132 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1133 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1134 		res = -EBUSY;
1135 		goto out;
1136 	}
1137 
1138 	/*
1139 	 * Torn down by someone else?
1140 	 */
1141 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1142 		action_result(pfn, "already truncated LRU", IGNORED);
1143 		res = -EBUSY;
1144 		goto out;
1145 	}
1146 
1147 	res = -EBUSY;
1148 	for (ps = error_states;; ps++) {
1149 		if ((p->flags & ps->mask) == ps->res) {
1150 			res = page_action(ps, p, pfn);
1151 			break;
1152 		}
1153 	}
1154 out:
1155 	unlock_page(hpage);
1156 	return res;
1157 }
1158 EXPORT_SYMBOL_GPL(__memory_failure);
1159 
1160 /**
1161  * memory_failure - Handle memory failure of a page.
1162  * @pfn: Page Number of the corrupted page
1163  * @trapno: Trap number reported in the signal to user space.
1164  *
1165  * This function is called by the low level machine check code
1166  * of an architecture when it detects hardware memory corruption
1167  * of a page. It tries its best to recover, which includes
1168  * dropping pages, killing processes etc.
1169  *
1170  * The function is primarily of use for corruptions that
1171  * happen outside the current execution context (e.g. when
1172  * detected by a background scrubber)
1173  *
1174  * Must run in process context (e.g. a work queue) with interrupts
1175  * enabled and no spinlocks hold.
1176  */
1177 void memory_failure(unsigned long pfn, int trapno)
1178 {
1179 	__memory_failure(pfn, trapno, 0);
1180 }
1181 
1182 #define MEMORY_FAILURE_FIFO_ORDER	4
1183 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1184 
1185 struct memory_failure_entry {
1186 	unsigned long pfn;
1187 	int trapno;
1188 	int flags;
1189 };
1190 
1191 struct memory_failure_cpu {
1192 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1193 		      MEMORY_FAILURE_FIFO_SIZE);
1194 	spinlock_t lock;
1195 	struct work_struct work;
1196 };
1197 
1198 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1199 
1200 /**
1201  * memory_failure_queue - Schedule handling memory failure of a page.
1202  * @pfn: Page Number of the corrupted page
1203  * @trapno: Trap number reported in the signal to user space.
1204  * @flags: Flags for memory failure handling
1205  *
1206  * This function is called by the low level hardware error handler
1207  * when it detects hardware memory corruption of a page. It schedules
1208  * the recovering of error page, including dropping pages, killing
1209  * processes etc.
1210  *
1211  * The function is primarily of use for corruptions that
1212  * happen outside the current execution context (e.g. when
1213  * detected by a background scrubber)
1214  *
1215  * Can run in IRQ context.
1216  */
1217 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1218 {
1219 	struct memory_failure_cpu *mf_cpu;
1220 	unsigned long proc_flags;
1221 	struct memory_failure_entry entry = {
1222 		.pfn =		pfn,
1223 		.trapno =	trapno,
1224 		.flags =	flags,
1225 	};
1226 
1227 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1228 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1229 	if (kfifo_put(&mf_cpu->fifo, &entry))
1230 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1231 	else
1232 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1233 		       pfn);
1234 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1235 	put_cpu_var(memory_failure_cpu);
1236 }
1237 EXPORT_SYMBOL_GPL(memory_failure_queue);
1238 
1239 static void memory_failure_work_func(struct work_struct *work)
1240 {
1241 	struct memory_failure_cpu *mf_cpu;
1242 	struct memory_failure_entry entry = { 0, };
1243 	unsigned long proc_flags;
1244 	int gotten;
1245 
1246 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1247 	for (;;) {
1248 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1249 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1250 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1251 		if (!gotten)
1252 			break;
1253 		__memory_failure(entry.pfn, entry.trapno, entry.flags);
1254 	}
1255 }
1256 
1257 static int __init memory_failure_init(void)
1258 {
1259 	struct memory_failure_cpu *mf_cpu;
1260 	int cpu;
1261 
1262 	for_each_possible_cpu(cpu) {
1263 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1264 		spin_lock_init(&mf_cpu->lock);
1265 		INIT_KFIFO(mf_cpu->fifo);
1266 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1267 	}
1268 
1269 	return 0;
1270 }
1271 core_initcall(memory_failure_init);
1272 
1273 /**
1274  * unpoison_memory - Unpoison a previously poisoned page
1275  * @pfn: Page number of the to be unpoisoned page
1276  *
1277  * Software-unpoison a page that has been poisoned by
1278  * memory_failure() earlier.
1279  *
1280  * This is only done on the software-level, so it only works
1281  * for linux injected failures, not real hardware failures
1282  *
1283  * Returns 0 for success, otherwise -errno.
1284  */
1285 int unpoison_memory(unsigned long pfn)
1286 {
1287 	struct page *page;
1288 	struct page *p;
1289 	int freeit = 0;
1290 	unsigned int nr_pages;
1291 
1292 	if (!pfn_valid(pfn))
1293 		return -ENXIO;
1294 
1295 	p = pfn_to_page(pfn);
1296 	page = compound_head(p);
1297 
1298 	if (!PageHWPoison(p)) {
1299 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1300 		return 0;
1301 	}
1302 
1303 	nr_pages = 1 << compound_trans_order(page);
1304 
1305 	if (!get_page_unless_zero(page)) {
1306 		/*
1307 		 * Since HWPoisoned hugepage should have non-zero refcount,
1308 		 * race between memory failure and unpoison seems to happen.
1309 		 * In such case unpoison fails and memory failure runs
1310 		 * to the end.
1311 		 */
1312 		if (PageHuge(page)) {
1313 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1314 			return 0;
1315 		}
1316 		if (TestClearPageHWPoison(p))
1317 			atomic_long_sub(nr_pages, &mce_bad_pages);
1318 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1319 		return 0;
1320 	}
1321 
1322 	lock_page(page);
1323 	/*
1324 	 * This test is racy because PG_hwpoison is set outside of page lock.
1325 	 * That's acceptable because that won't trigger kernel panic. Instead,
1326 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1327 	 * the free buddy page pool.
1328 	 */
1329 	if (TestClearPageHWPoison(page)) {
1330 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1331 		atomic_long_sub(nr_pages, &mce_bad_pages);
1332 		freeit = 1;
1333 		if (PageHuge(page))
1334 			clear_page_hwpoison_huge_page(page);
1335 	}
1336 	unlock_page(page);
1337 
1338 	put_page(page);
1339 	if (freeit)
1340 		put_page(page);
1341 
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL(unpoison_memory);
1345 
1346 static struct page *new_page(struct page *p, unsigned long private, int **x)
1347 {
1348 	int nid = page_to_nid(p);
1349 	if (PageHuge(p))
1350 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1351 						   nid);
1352 	else
1353 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1354 }
1355 
1356 /*
1357  * Safely get reference count of an arbitrary page.
1358  * Returns 0 for a free page, -EIO for a zero refcount page
1359  * that is not free, and 1 for any other page type.
1360  * For 1 the page is returned with increased page count, otherwise not.
1361  */
1362 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1363 {
1364 	int ret;
1365 
1366 	if (flags & MF_COUNT_INCREASED)
1367 		return 1;
1368 
1369 	/*
1370 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1371 	 * This is a big hammer, a better would be nicer.
1372 	 */
1373 	lock_memory_hotplug();
1374 
1375 	/*
1376 	 * Isolate the page, so that it doesn't get reallocated if it
1377 	 * was free.
1378 	 */
1379 	set_migratetype_isolate(p);
1380 	/*
1381 	 * When the target page is a free hugepage, just remove it
1382 	 * from free hugepage list.
1383 	 */
1384 	if (!get_page_unless_zero(compound_head(p))) {
1385 		if (PageHuge(p)) {
1386 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1387 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1388 		} else if (is_free_buddy_page(p)) {
1389 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1390 			/* Set hwpoison bit while page is still isolated */
1391 			SetPageHWPoison(p);
1392 			ret = 0;
1393 		} else {
1394 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1395 				pfn, p->flags);
1396 			ret = -EIO;
1397 		}
1398 	} else {
1399 		/* Not a free page */
1400 		ret = 1;
1401 	}
1402 	unset_migratetype_isolate(p);
1403 	unlock_memory_hotplug();
1404 	return ret;
1405 }
1406 
1407 static int soft_offline_huge_page(struct page *page, int flags)
1408 {
1409 	int ret;
1410 	unsigned long pfn = page_to_pfn(page);
1411 	struct page *hpage = compound_head(page);
1412 	LIST_HEAD(pagelist);
1413 
1414 	ret = get_any_page(page, pfn, flags);
1415 	if (ret < 0)
1416 		return ret;
1417 	if (ret == 0)
1418 		goto done;
1419 
1420 	if (PageHWPoison(hpage)) {
1421 		put_page(hpage);
1422 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1423 		return -EBUSY;
1424 	}
1425 
1426 	/* Keep page count to indicate a given hugepage is isolated. */
1427 
1428 	list_add(&hpage->lru, &pagelist);
1429 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1430 				true);
1431 	if (ret) {
1432 		struct page *page1, *page2;
1433 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1434 			put_page(page1);
1435 
1436 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1437 			 pfn, ret, page->flags);
1438 		if (ret > 0)
1439 			ret = -EIO;
1440 		return ret;
1441 	}
1442 done:
1443 	if (!PageHWPoison(hpage))
1444 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1445 	set_page_hwpoison_huge_page(hpage);
1446 	dequeue_hwpoisoned_huge_page(hpage);
1447 	/* keep elevated page count for bad page */
1448 	return ret;
1449 }
1450 
1451 /**
1452  * soft_offline_page - Soft offline a page.
1453  * @page: page to offline
1454  * @flags: flags. Same as memory_failure().
1455  *
1456  * Returns 0 on success, otherwise negated errno.
1457  *
1458  * Soft offline a page, by migration or invalidation,
1459  * without killing anything. This is for the case when
1460  * a page is not corrupted yet (so it's still valid to access),
1461  * but has had a number of corrected errors and is better taken
1462  * out.
1463  *
1464  * The actual policy on when to do that is maintained by
1465  * user space.
1466  *
1467  * This should never impact any application or cause data loss,
1468  * however it might take some time.
1469  *
1470  * This is not a 100% solution for all memory, but tries to be
1471  * ``good enough'' for the majority of memory.
1472  */
1473 int soft_offline_page(struct page *page, int flags)
1474 {
1475 	int ret;
1476 	unsigned long pfn = page_to_pfn(page);
1477 
1478 	if (PageHuge(page))
1479 		return soft_offline_huge_page(page, flags);
1480 
1481 	ret = get_any_page(page, pfn, flags);
1482 	if (ret < 0)
1483 		return ret;
1484 	if (ret == 0)
1485 		goto done;
1486 
1487 	/*
1488 	 * Page cache page we can handle?
1489 	 */
1490 	if (!PageLRU(page)) {
1491 		/*
1492 		 * Try to free it.
1493 		 */
1494 		put_page(page);
1495 		shake_page(page, 1);
1496 
1497 		/*
1498 		 * Did it turn free?
1499 		 */
1500 		ret = get_any_page(page, pfn, 0);
1501 		if (ret < 0)
1502 			return ret;
1503 		if (ret == 0)
1504 			goto done;
1505 	}
1506 	if (!PageLRU(page)) {
1507 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508 				pfn, page->flags);
1509 		return -EIO;
1510 	}
1511 
1512 	lock_page(page);
1513 	wait_on_page_writeback(page);
1514 
1515 	/*
1516 	 * Synchronized using the page lock with memory_failure()
1517 	 */
1518 	if (PageHWPoison(page)) {
1519 		unlock_page(page);
1520 		put_page(page);
1521 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522 		return -EBUSY;
1523 	}
1524 
1525 	/*
1526 	 * Try to invalidate first. This should work for
1527 	 * non dirty unmapped page cache pages.
1528 	 */
1529 	ret = invalidate_inode_page(page);
1530 	unlock_page(page);
1531 	/*
1532 	 * RED-PEN would be better to keep it isolated here, but we
1533 	 * would need to fix isolation locking first.
1534 	 */
1535 	if (ret == 1) {
1536 		put_page(page);
1537 		ret = 0;
1538 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539 		goto done;
1540 	}
1541 
1542 	/*
1543 	 * Simple invalidation didn't work.
1544 	 * Try to migrate to a new page instead. migrate.c
1545 	 * handles a large number of cases for us.
1546 	 */
1547 	ret = isolate_lru_page(page);
1548 	/*
1549 	 * Drop page reference which is came from get_any_page()
1550 	 * successful isolate_lru_page() already took another one.
1551 	 */
1552 	put_page(page);
1553 	if (!ret) {
1554 		LIST_HEAD(pagelist);
1555 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1556 					    page_is_file_cache(page));
1557 		list_add(&page->lru, &pagelist);
1558 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559 								0, true);
1560 		if (ret) {
1561 			putback_lru_pages(&pagelist);
1562 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563 				pfn, ret, page->flags);
1564 			if (ret > 0)
1565 				ret = -EIO;
1566 		}
1567 	} else {
1568 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569 				pfn, ret, page_count(page), page->flags);
1570 	}
1571 	if (ret)
1572 		return ret;
1573 
1574 done:
1575 	atomic_long_add(1, &mce_bad_pages);
1576 	SetPageHWPoison(page);
1577 	/* keep elevated page count for bad page */
1578 	return ret;
1579 }
1580