xref: /openbmc/linux/mm/memory-failure.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 static bool __page_handle_poison(struct page *page)
72 {
73 	int ret;
74 
75 	zone_pcp_disable(page_zone(page));
76 	ret = dissolve_free_huge_page(page);
77 	if (!ret)
78 		ret = take_page_off_buddy(page);
79 	zone_pcp_enable(page_zone(page));
80 
81 	return ret > 0;
82 }
83 
84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85 {
86 	if (hugepage_or_freepage) {
87 		/*
88 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 		 * returns 0 for non-hugetlb pages as well.
90 		 */
91 		if (!__page_handle_poison(page))
92 			/*
93 			 * We could fail to take off the target page from buddy
94 			 * for example due to racy page allocation, but that's
95 			 * acceptable because soft-offlined page is not broken
96 			 * and if someone really want to use it, they should
97 			 * take it.
98 			 */
99 			return false;
100 	}
101 
102 	SetPageHWPoison(page);
103 	if (release)
104 		put_page(page);
105 	page_ref_inc(page);
106 	num_poisoned_pages_inc();
107 
108 	return true;
109 }
110 
111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112 
113 u32 hwpoison_filter_enable = 0;
114 u32 hwpoison_filter_dev_major = ~0U;
115 u32 hwpoison_filter_dev_minor = ~0U;
116 u64 hwpoison_filter_flags_mask;
117 u64 hwpoison_filter_flags_value;
118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
123 
124 static int hwpoison_filter_dev(struct page *p)
125 {
126 	struct address_space *mapping;
127 	dev_t dev;
128 
129 	if (hwpoison_filter_dev_major == ~0U &&
130 	    hwpoison_filter_dev_minor == ~0U)
131 		return 0;
132 
133 	/*
134 	 * page_mapping() does not accept slab pages.
135 	 */
136 	if (PageSlab(p))
137 		return -EINVAL;
138 
139 	mapping = page_mapping(p);
140 	if (mapping == NULL || mapping->host == NULL)
141 		return -EINVAL;
142 
143 	dev = mapping->host->i_sb->s_dev;
144 	if (hwpoison_filter_dev_major != ~0U &&
145 	    hwpoison_filter_dev_major != MAJOR(dev))
146 		return -EINVAL;
147 	if (hwpoison_filter_dev_minor != ~0U &&
148 	    hwpoison_filter_dev_minor != MINOR(dev))
149 		return -EINVAL;
150 
151 	return 0;
152 }
153 
154 static int hwpoison_filter_flags(struct page *p)
155 {
156 	if (!hwpoison_filter_flags_mask)
157 		return 0;
158 
159 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 				    hwpoison_filter_flags_value)
161 		return 0;
162 	else
163 		return -EINVAL;
164 }
165 
166 /*
167  * This allows stress tests to limit test scope to a collection of tasks
168  * by putting them under some memcg. This prevents killing unrelated/important
169  * processes such as /sbin/init. Note that the target task may share clean
170  * pages with init (eg. libc text), which is harmless. If the target task
171  * share _dirty_ pages with another task B, the test scheme must make sure B
172  * is also included in the memcg. At last, due to race conditions this filter
173  * can only guarantee that the page either belongs to the memcg tasks, or is
174  * a freed page.
175  */
176 #ifdef CONFIG_MEMCG
177 u64 hwpoison_filter_memcg;
178 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179 static int hwpoison_filter_task(struct page *p)
180 {
181 	if (!hwpoison_filter_memcg)
182 		return 0;
183 
184 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
185 		return -EINVAL;
186 
187 	return 0;
188 }
189 #else
190 static int hwpoison_filter_task(struct page *p) { return 0; }
191 #endif
192 
193 int hwpoison_filter(struct page *p)
194 {
195 	if (!hwpoison_filter_enable)
196 		return 0;
197 
198 	if (hwpoison_filter_dev(p))
199 		return -EINVAL;
200 
201 	if (hwpoison_filter_flags(p))
202 		return -EINVAL;
203 
204 	if (hwpoison_filter_task(p))
205 		return -EINVAL;
206 
207 	return 0;
208 }
209 #else
210 int hwpoison_filter(struct page *p)
211 {
212 	return 0;
213 }
214 #endif
215 
216 EXPORT_SYMBOL_GPL(hwpoison_filter);
217 
218 /*
219  * Kill all processes that have a poisoned page mapped and then isolate
220  * the page.
221  *
222  * General strategy:
223  * Find all processes having the page mapped and kill them.
224  * But we keep a page reference around so that the page is not
225  * actually freed yet.
226  * Then stash the page away
227  *
228  * There's no convenient way to get back to mapped processes
229  * from the VMAs. So do a brute-force search over all
230  * running processes.
231  *
232  * Remember that machine checks are not common (or rather
233  * if they are common you have other problems), so this shouldn't
234  * be a performance issue.
235  *
236  * Also there are some races possible while we get from the
237  * error detection to actually handle it.
238  */
239 
240 struct to_kill {
241 	struct list_head nd;
242 	struct task_struct *tsk;
243 	unsigned long addr;
244 	short size_shift;
245 };
246 
247 /*
248  * Send all the processes who have the page mapped a signal.
249  * ``action optional'' if they are not immediately affected by the error
250  * ``action required'' if error happened in current execution context
251  */
252 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
253 {
254 	struct task_struct *t = tk->tsk;
255 	short addr_lsb = tk->size_shift;
256 	int ret = 0;
257 
258 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
259 			pfn, t->comm, t->pid);
260 
261 	if (flags & MF_ACTION_REQUIRED) {
262 		if (t == current)
263 			ret = force_sig_mceerr(BUS_MCEERR_AR,
264 					 (void __user *)tk->addr, addr_lsb);
265 		else
266 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
267 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 				addr_lsb, t);
269 	} else {
270 		/*
271 		 * Don't use force here, it's convenient if the signal
272 		 * can be temporarily blocked.
273 		 * This could cause a loop when the user sets SIGBUS
274 		 * to SIG_IGN, but hopefully no one will do that?
275 		 */
276 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
277 				      addr_lsb, t);  /* synchronous? */
278 	}
279 	if (ret < 0)
280 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
281 			t->comm, t->pid, ret);
282 	return ret;
283 }
284 
285 /*
286  * Unknown page type encountered. Try to check whether it can turn PageLRU by
287  * lru_add_drain_all.
288  */
289 void shake_page(struct page *p)
290 {
291 	if (PageHuge(p))
292 		return;
293 
294 	if (!PageSlab(p)) {
295 		lru_add_drain_all();
296 		if (PageLRU(p) || is_free_buddy_page(p))
297 			return;
298 	}
299 
300 	/*
301 	 * TODO: Could shrink slab caches here if a lightweight range-based
302 	 * shrinker will be available.
303 	 */
304 }
305 EXPORT_SYMBOL_GPL(shake_page);
306 
307 static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 		struct vm_area_struct *vma)
309 {
310 	unsigned long address = vma_address(page, vma);
311 	unsigned long ret = 0;
312 	pgd_t *pgd;
313 	p4d_t *p4d;
314 	pud_t *pud;
315 	pmd_t *pmd;
316 	pte_t *pte;
317 
318 	pgd = pgd_offset(vma->vm_mm, address);
319 	if (!pgd_present(*pgd))
320 		return 0;
321 	p4d = p4d_offset(pgd, address);
322 	if (!p4d_present(*p4d))
323 		return 0;
324 	pud = pud_offset(p4d, address);
325 	if (!pud_present(*pud))
326 		return 0;
327 	if (pud_devmap(*pud))
328 		return PUD_SHIFT;
329 	pmd = pmd_offset(pud, address);
330 	if (!pmd_present(*pmd))
331 		return 0;
332 	if (pmd_devmap(*pmd))
333 		return PMD_SHIFT;
334 	pte = pte_offset_map(pmd, address);
335 	if (pte_present(*pte) && pte_devmap(*pte))
336 		ret = PAGE_SHIFT;
337 	pte_unmap(pte);
338 	return ret;
339 }
340 
341 /*
342  * Failure handling: if we can't find or can't kill a process there's
343  * not much we can do.	We just print a message and ignore otherwise.
344  */
345 
346 /*
347  * Schedule a process for later kill.
348  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349  */
350 static void add_to_kill(struct task_struct *tsk, struct page *p,
351 		       struct vm_area_struct *vma,
352 		       struct list_head *to_kill)
353 {
354 	struct to_kill *tk;
355 
356 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 	if (!tk) {
358 		pr_err("Memory failure: Out of memory while machine check handling\n");
359 		return;
360 	}
361 
362 	tk->addr = page_address_in_vma(p, vma);
363 	if (is_zone_device_page(p))
364 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 	else
366 		tk->size_shift = page_shift(compound_head(p));
367 
368 	/*
369 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 	 * so "tk->size_shift == 0" effectively checks no mapping on
372 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 	 * to a process' address space, it's possible not all N VMAs
374 	 * contain mappings for the page, but at least one VMA does.
375 	 * Only deliver SIGBUS with payload derived from the VMA that
376 	 * has a mapping for the page.
377 	 */
378 	if (tk->addr == -EFAULT) {
379 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 			page_to_pfn(p), tsk->comm);
381 	} else if (tk->size_shift == 0) {
382 		kfree(tk);
383 		return;
384 	}
385 
386 	get_task_struct(tsk);
387 	tk->tsk = tsk;
388 	list_add_tail(&tk->nd, to_kill);
389 }
390 
391 /*
392  * Kill the processes that have been collected earlier.
393  *
394  * Only do anything when FORCEKILL is set, otherwise just free the
395  * list (this is used for clean pages which do not need killing)
396  * Also when FAIL is set do a force kill because something went
397  * wrong earlier.
398  */
399 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 		unsigned long pfn, int flags)
401 {
402 	struct to_kill *tk, *next;
403 
404 	list_for_each_entry_safe (tk, next, to_kill, nd) {
405 		if (forcekill) {
406 			/*
407 			 * In case something went wrong with munmapping
408 			 * make sure the process doesn't catch the
409 			 * signal and then access the memory. Just kill it.
410 			 */
411 			if (fail || tk->addr == -EFAULT) {
412 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 				       pfn, tk->tsk->comm, tk->tsk->pid);
414 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 						 tk->tsk, PIDTYPE_PID);
416 			}
417 
418 			/*
419 			 * In theory the process could have mapped
420 			 * something else on the address in-between. We could
421 			 * check for that, but we need to tell the
422 			 * process anyways.
423 			 */
424 			else if (kill_proc(tk, pfn, flags) < 0)
425 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 				       pfn, tk->tsk->comm, tk->tsk->pid);
427 		}
428 		put_task_struct(tk->tsk);
429 		kfree(tk);
430 	}
431 }
432 
433 /*
434  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435  * on behalf of the thread group. Return task_struct of the (first found)
436  * dedicated thread if found, and return NULL otherwise.
437  *
438  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439  * have to call rcu_read_lock/unlock() in this function.
440  */
441 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442 {
443 	struct task_struct *t;
444 
445 	for_each_thread(tsk, t) {
446 		if (t->flags & PF_MCE_PROCESS) {
447 			if (t->flags & PF_MCE_EARLY)
448 				return t;
449 		} else {
450 			if (sysctl_memory_failure_early_kill)
451 				return t;
452 		}
453 	}
454 	return NULL;
455 }
456 
457 /*
458  * Determine whether a given process is "early kill" process which expects
459  * to be signaled when some page under the process is hwpoisoned.
460  * Return task_struct of the dedicated thread (main thread unless explicitly
461  * specified) if the process is "early kill" and otherwise returns NULL.
462  *
463  * Note that the above is true for Action Optional case. For Action Required
464  * case, it's only meaningful to the current thread which need to be signaled
465  * with SIGBUS, this error is Action Optional for other non current
466  * processes sharing the same error page,if the process is "early kill", the
467  * task_struct of the dedicated thread will also be returned.
468  */
469 static struct task_struct *task_early_kill(struct task_struct *tsk,
470 					   int force_early)
471 {
472 	if (!tsk->mm)
473 		return NULL;
474 	/*
475 	 * Comparing ->mm here because current task might represent
476 	 * a subthread, while tsk always points to the main thread.
477 	 */
478 	if (force_early && tsk->mm == current->mm)
479 		return current;
480 
481 	return find_early_kill_thread(tsk);
482 }
483 
484 /*
485  * Collect processes when the error hit an anonymous page.
486  */
487 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 				int force_early)
489 {
490 	struct vm_area_struct *vma;
491 	struct task_struct *tsk;
492 	struct anon_vma *av;
493 	pgoff_t pgoff;
494 
495 	av = page_lock_anon_vma_read(page);
496 	if (av == NULL)	/* Not actually mapped anymore */
497 		return;
498 
499 	pgoff = page_to_pgoff(page);
500 	read_lock(&tasklist_lock);
501 	for_each_process (tsk) {
502 		struct anon_vma_chain *vmac;
503 		struct task_struct *t = task_early_kill(tsk, force_early);
504 
505 		if (!t)
506 			continue;
507 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 					       pgoff, pgoff) {
509 			vma = vmac->vma;
510 			if (!page_mapped_in_vma(page, vma))
511 				continue;
512 			if (vma->vm_mm == t->mm)
513 				add_to_kill(t, page, vma, to_kill);
514 		}
515 	}
516 	read_unlock(&tasklist_lock);
517 	page_unlock_anon_vma_read(av);
518 }
519 
520 /*
521  * Collect processes when the error hit a file mapped page.
522  */
523 static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 				int force_early)
525 {
526 	struct vm_area_struct *vma;
527 	struct task_struct *tsk;
528 	struct address_space *mapping = page->mapping;
529 	pgoff_t pgoff;
530 
531 	i_mmap_lock_read(mapping);
532 	read_lock(&tasklist_lock);
533 	pgoff = page_to_pgoff(page);
534 	for_each_process(tsk) {
535 		struct task_struct *t = task_early_kill(tsk, force_early);
536 
537 		if (!t)
538 			continue;
539 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 				      pgoff) {
541 			/*
542 			 * Send early kill signal to tasks where a vma covers
543 			 * the page but the corrupted page is not necessarily
544 			 * mapped it in its pte.
545 			 * Assume applications who requested early kill want
546 			 * to be informed of all such data corruptions.
547 			 */
548 			if (vma->vm_mm == t->mm)
549 				add_to_kill(t, page, vma, to_kill);
550 		}
551 	}
552 	read_unlock(&tasklist_lock);
553 	i_mmap_unlock_read(mapping);
554 }
555 
556 /*
557  * Collect the processes who have the corrupted page mapped to kill.
558  */
559 static void collect_procs(struct page *page, struct list_head *tokill,
560 				int force_early)
561 {
562 	if (!page->mapping)
563 		return;
564 
565 	if (PageAnon(page))
566 		collect_procs_anon(page, tokill, force_early);
567 	else
568 		collect_procs_file(page, tokill, force_early);
569 }
570 
571 struct hwp_walk {
572 	struct to_kill tk;
573 	unsigned long pfn;
574 	int flags;
575 };
576 
577 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578 {
579 	tk->addr = addr;
580 	tk->size_shift = shift;
581 }
582 
583 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 				unsigned long poisoned_pfn, struct to_kill *tk)
585 {
586 	unsigned long pfn = 0;
587 
588 	if (pte_present(pte)) {
589 		pfn = pte_pfn(pte);
590 	} else {
591 		swp_entry_t swp = pte_to_swp_entry(pte);
592 
593 		if (is_hwpoison_entry(swp))
594 			pfn = hwpoison_entry_to_pfn(swp);
595 	}
596 
597 	if (!pfn || pfn != poisoned_pfn)
598 		return 0;
599 
600 	set_to_kill(tk, addr, shift);
601 	return 1;
602 }
603 
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 				      struct hwp_walk *hwp)
607 {
608 	pmd_t pmd = *pmdp;
609 	unsigned long pfn;
610 	unsigned long hwpoison_vaddr;
611 
612 	if (!pmd_present(pmd))
613 		return 0;
614 	pfn = pmd_pfn(pmd);
615 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 		return 1;
619 	}
620 	return 0;
621 }
622 #else
623 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 				      struct hwp_walk *hwp)
625 {
626 	return 0;
627 }
628 #endif
629 
630 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 			      unsigned long end, struct mm_walk *walk)
632 {
633 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 	int ret = 0;
635 	pte_t *ptep, *mapped_pte;
636 	spinlock_t *ptl;
637 
638 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 	if (ptl) {
640 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 		spin_unlock(ptl);
642 		goto out;
643 	}
644 
645 	if (pmd_trans_unstable(pmdp))
646 		goto out;
647 
648 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
649 						addr, &ptl);
650 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
652 					     hwp->pfn, &hwp->tk);
653 		if (ret == 1)
654 			break;
655 	}
656 	pte_unmap_unlock(mapped_pte, ptl);
657 out:
658 	cond_resched();
659 	return ret;
660 }
661 
662 #ifdef CONFIG_HUGETLB_PAGE
663 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 			    unsigned long addr, unsigned long end,
665 			    struct mm_walk *walk)
666 {
667 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 	pte_t pte = huge_ptep_get(ptep);
669 	struct hstate *h = hstate_vma(walk->vma);
670 
671 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
672 				      hwp->pfn, &hwp->tk);
673 }
674 #else
675 #define hwpoison_hugetlb_range	NULL
676 #endif
677 
678 static const struct mm_walk_ops hwp_walk_ops = {
679 	.pmd_entry = hwpoison_pte_range,
680 	.hugetlb_entry = hwpoison_hugetlb_range,
681 };
682 
683 /*
684  * Sends SIGBUS to the current process with error info.
685  *
686  * This function is intended to handle "Action Required" MCEs on already
687  * hardware poisoned pages. They could happen, for example, when
688  * memory_failure() failed to unmap the error page at the first call, or
689  * when multiple local machine checks happened on different CPUs.
690  *
691  * MCE handler currently has no easy access to the error virtual address,
692  * so this function walks page table to find it. The returned virtual address
693  * is proper in most cases, but it could be wrong when the application
694  * process has multiple entries mapping the error page.
695  */
696 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
697 				  int flags)
698 {
699 	int ret;
700 	struct hwp_walk priv = {
701 		.pfn = pfn,
702 	};
703 	priv.tk.tsk = p;
704 
705 	mmap_read_lock(p->mm);
706 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
707 			      (void *)&priv);
708 	if (ret == 1 && priv.tk.addr)
709 		kill_proc(&priv.tk, pfn, flags);
710 	mmap_read_unlock(p->mm);
711 	return ret ? -EFAULT : -EHWPOISON;
712 }
713 
714 static const char *action_name[] = {
715 	[MF_IGNORED] = "Ignored",
716 	[MF_FAILED] = "Failed",
717 	[MF_DELAYED] = "Delayed",
718 	[MF_RECOVERED] = "Recovered",
719 };
720 
721 static const char * const action_page_types[] = {
722 	[MF_MSG_KERNEL]			= "reserved kernel page",
723 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
724 	[MF_MSG_SLAB]			= "kernel slab page",
725 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
726 	[MF_MSG_HUGE]			= "huge page",
727 	[MF_MSG_FREE_HUGE]		= "free huge page",
728 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
729 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
730 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
731 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
732 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
733 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
734 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
735 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
736 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
737 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
738 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
739 	[MF_MSG_BUDDY]			= "free buddy page",
740 	[MF_MSG_DAX]			= "dax page",
741 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
742 	[MF_MSG_UNKNOWN]		= "unknown page",
743 };
744 
745 /*
746  * XXX: It is possible that a page is isolated from LRU cache,
747  * and then kept in swap cache or failed to remove from page cache.
748  * The page count will stop it from being freed by unpoison.
749  * Stress tests should be aware of this memory leak problem.
750  */
751 static int delete_from_lru_cache(struct page *p)
752 {
753 	if (!isolate_lru_page(p)) {
754 		/*
755 		 * Clear sensible page flags, so that the buddy system won't
756 		 * complain when the page is unpoison-and-freed.
757 		 */
758 		ClearPageActive(p);
759 		ClearPageUnevictable(p);
760 
761 		/*
762 		 * Poisoned page might never drop its ref count to 0 so we have
763 		 * to uncharge it manually from its memcg.
764 		 */
765 		mem_cgroup_uncharge(page_folio(p));
766 
767 		/*
768 		 * drop the page count elevated by isolate_lru_page()
769 		 */
770 		put_page(p);
771 		return 0;
772 	}
773 	return -EIO;
774 }
775 
776 static int truncate_error_page(struct page *p, unsigned long pfn,
777 				struct address_space *mapping)
778 {
779 	int ret = MF_FAILED;
780 
781 	if (mapping->a_ops->error_remove_page) {
782 		int err = mapping->a_ops->error_remove_page(mapping, p);
783 
784 		if (err != 0) {
785 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
786 				pfn, err);
787 		} else if (page_has_private(p) &&
788 			   !try_to_release_page(p, GFP_NOIO)) {
789 			pr_info("Memory failure: %#lx: failed to release buffers\n",
790 				pfn);
791 		} else {
792 			ret = MF_RECOVERED;
793 		}
794 	} else {
795 		/*
796 		 * If the file system doesn't support it just invalidate
797 		 * This fails on dirty or anything with private pages
798 		 */
799 		if (invalidate_inode_page(p))
800 			ret = MF_RECOVERED;
801 		else
802 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
803 				pfn);
804 	}
805 
806 	return ret;
807 }
808 
809 struct page_state {
810 	unsigned long mask;
811 	unsigned long res;
812 	enum mf_action_page_type type;
813 
814 	/* Callback ->action() has to unlock the relevant page inside it. */
815 	int (*action)(struct page_state *ps, struct page *p);
816 };
817 
818 /*
819  * Return true if page is still referenced by others, otherwise return
820  * false.
821  *
822  * The extra_pins is true when one extra refcount is expected.
823  */
824 static bool has_extra_refcount(struct page_state *ps, struct page *p,
825 			       bool extra_pins)
826 {
827 	int count = page_count(p) - 1;
828 
829 	if (extra_pins)
830 		count -= 1;
831 
832 	if (count > 0) {
833 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
834 		       page_to_pfn(p), action_page_types[ps->type], count);
835 		return true;
836 	}
837 
838 	return false;
839 }
840 
841 /*
842  * Error hit kernel page.
843  * Do nothing, try to be lucky and not touch this instead. For a few cases we
844  * could be more sophisticated.
845  */
846 static int me_kernel(struct page_state *ps, struct page *p)
847 {
848 	unlock_page(p);
849 	return MF_IGNORED;
850 }
851 
852 /*
853  * Page in unknown state. Do nothing.
854  */
855 static int me_unknown(struct page_state *ps, struct page *p)
856 {
857 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
858 	unlock_page(p);
859 	return MF_FAILED;
860 }
861 
862 /*
863  * Clean (or cleaned) page cache page.
864  */
865 static int me_pagecache_clean(struct page_state *ps, struct page *p)
866 {
867 	int ret;
868 	struct address_space *mapping;
869 	bool extra_pins;
870 
871 	delete_from_lru_cache(p);
872 
873 	/*
874 	 * For anonymous pages we're done the only reference left
875 	 * should be the one m_f() holds.
876 	 */
877 	if (PageAnon(p)) {
878 		ret = MF_RECOVERED;
879 		goto out;
880 	}
881 
882 	/*
883 	 * Now truncate the page in the page cache. This is really
884 	 * more like a "temporary hole punch"
885 	 * Don't do this for block devices when someone else
886 	 * has a reference, because it could be file system metadata
887 	 * and that's not safe to truncate.
888 	 */
889 	mapping = page_mapping(p);
890 	if (!mapping) {
891 		/*
892 		 * Page has been teared down in the meanwhile
893 		 */
894 		ret = MF_FAILED;
895 		goto out;
896 	}
897 
898 	/*
899 	 * The shmem page is kept in page cache instead of truncating
900 	 * so is expected to have an extra refcount after error-handling.
901 	 */
902 	extra_pins = shmem_mapping(mapping);
903 
904 	/*
905 	 * Truncation is a bit tricky. Enable it per file system for now.
906 	 *
907 	 * Open: to take i_rwsem or not for this? Right now we don't.
908 	 */
909 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
910 	if (has_extra_refcount(ps, p, extra_pins))
911 		ret = MF_FAILED;
912 
913 out:
914 	unlock_page(p);
915 
916 	return ret;
917 }
918 
919 /*
920  * Dirty pagecache page
921  * Issues: when the error hit a hole page the error is not properly
922  * propagated.
923  */
924 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
925 {
926 	struct address_space *mapping = page_mapping(p);
927 
928 	SetPageError(p);
929 	/* TBD: print more information about the file. */
930 	if (mapping) {
931 		/*
932 		 * IO error will be reported by write(), fsync(), etc.
933 		 * who check the mapping.
934 		 * This way the application knows that something went
935 		 * wrong with its dirty file data.
936 		 *
937 		 * There's one open issue:
938 		 *
939 		 * The EIO will be only reported on the next IO
940 		 * operation and then cleared through the IO map.
941 		 * Normally Linux has two mechanisms to pass IO error
942 		 * first through the AS_EIO flag in the address space
943 		 * and then through the PageError flag in the page.
944 		 * Since we drop pages on memory failure handling the
945 		 * only mechanism open to use is through AS_AIO.
946 		 *
947 		 * This has the disadvantage that it gets cleared on
948 		 * the first operation that returns an error, while
949 		 * the PageError bit is more sticky and only cleared
950 		 * when the page is reread or dropped.  If an
951 		 * application assumes it will always get error on
952 		 * fsync, but does other operations on the fd before
953 		 * and the page is dropped between then the error
954 		 * will not be properly reported.
955 		 *
956 		 * This can already happen even without hwpoisoned
957 		 * pages: first on metadata IO errors (which only
958 		 * report through AS_EIO) or when the page is dropped
959 		 * at the wrong time.
960 		 *
961 		 * So right now we assume that the application DTRT on
962 		 * the first EIO, but we're not worse than other parts
963 		 * of the kernel.
964 		 */
965 		mapping_set_error(mapping, -EIO);
966 	}
967 
968 	return me_pagecache_clean(ps, p);
969 }
970 
971 /*
972  * Clean and dirty swap cache.
973  *
974  * Dirty swap cache page is tricky to handle. The page could live both in page
975  * cache and swap cache(ie. page is freshly swapped in). So it could be
976  * referenced concurrently by 2 types of PTEs:
977  * normal PTEs and swap PTEs. We try to handle them consistently by calling
978  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
979  * and then
980  *      - clear dirty bit to prevent IO
981  *      - remove from LRU
982  *      - but keep in the swap cache, so that when we return to it on
983  *        a later page fault, we know the application is accessing
984  *        corrupted data and shall be killed (we installed simple
985  *        interception code in do_swap_page to catch it).
986  *
987  * Clean swap cache pages can be directly isolated. A later page fault will
988  * bring in the known good data from disk.
989  */
990 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
991 {
992 	int ret;
993 	bool extra_pins = false;
994 
995 	ClearPageDirty(p);
996 	/* Trigger EIO in shmem: */
997 	ClearPageUptodate(p);
998 
999 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1000 	unlock_page(p);
1001 
1002 	if (ret == MF_DELAYED)
1003 		extra_pins = true;
1004 
1005 	if (has_extra_refcount(ps, p, extra_pins))
1006 		ret = MF_FAILED;
1007 
1008 	return ret;
1009 }
1010 
1011 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1012 {
1013 	int ret;
1014 
1015 	delete_from_swap_cache(p);
1016 
1017 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1018 	unlock_page(p);
1019 
1020 	if (has_extra_refcount(ps, p, false))
1021 		ret = MF_FAILED;
1022 
1023 	return ret;
1024 }
1025 
1026 /*
1027  * Huge pages. Needs work.
1028  * Issues:
1029  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1030  *   To narrow down kill region to one page, we need to break up pmd.
1031  */
1032 static int me_huge_page(struct page_state *ps, struct page *p)
1033 {
1034 	int res;
1035 	struct page *hpage = compound_head(p);
1036 	struct address_space *mapping;
1037 
1038 	if (!PageHuge(hpage))
1039 		return MF_DELAYED;
1040 
1041 	mapping = page_mapping(hpage);
1042 	if (mapping) {
1043 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1044 		unlock_page(hpage);
1045 	} else {
1046 		res = MF_FAILED;
1047 		unlock_page(hpage);
1048 		/*
1049 		 * migration entry prevents later access on error anonymous
1050 		 * hugepage, so we can free and dissolve it into buddy to
1051 		 * save healthy subpages.
1052 		 */
1053 		if (PageAnon(hpage))
1054 			put_page(hpage);
1055 		if (__page_handle_poison(p)) {
1056 			page_ref_inc(p);
1057 			res = MF_RECOVERED;
1058 		}
1059 	}
1060 
1061 	if (has_extra_refcount(ps, p, false))
1062 		res = MF_FAILED;
1063 
1064 	return res;
1065 }
1066 
1067 /*
1068  * Various page states we can handle.
1069  *
1070  * A page state is defined by its current page->flags bits.
1071  * The table matches them in order and calls the right handler.
1072  *
1073  * This is quite tricky because we can access page at any time
1074  * in its live cycle, so all accesses have to be extremely careful.
1075  *
1076  * This is not complete. More states could be added.
1077  * For any missing state don't attempt recovery.
1078  */
1079 
1080 #define dirty		(1UL << PG_dirty)
1081 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1082 #define unevict		(1UL << PG_unevictable)
1083 #define mlock		(1UL << PG_mlocked)
1084 #define lru		(1UL << PG_lru)
1085 #define head		(1UL << PG_head)
1086 #define slab		(1UL << PG_slab)
1087 #define reserved	(1UL << PG_reserved)
1088 
1089 static struct page_state error_states[] = {
1090 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1091 	/*
1092 	 * free pages are specially detected outside this table:
1093 	 * PG_buddy pages only make a small fraction of all free pages.
1094 	 */
1095 
1096 	/*
1097 	 * Could in theory check if slab page is free or if we can drop
1098 	 * currently unused objects without touching them. But just
1099 	 * treat it as standard kernel for now.
1100 	 */
1101 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1102 
1103 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1104 
1105 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1106 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1107 
1108 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1109 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1110 
1111 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1112 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1113 
1114 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1115 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1116 
1117 	/*
1118 	 * Catchall entry: must be at end.
1119 	 */
1120 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1121 };
1122 
1123 #undef dirty
1124 #undef sc
1125 #undef unevict
1126 #undef mlock
1127 #undef lru
1128 #undef head
1129 #undef slab
1130 #undef reserved
1131 
1132 /*
1133  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1134  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1135  */
1136 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1137 			  enum mf_result result)
1138 {
1139 	trace_memory_failure_event(pfn, type, result);
1140 
1141 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1142 		pfn, action_page_types[type], action_name[result]);
1143 }
1144 
1145 static int page_action(struct page_state *ps, struct page *p,
1146 			unsigned long pfn)
1147 {
1148 	int result;
1149 
1150 	/* page p should be unlocked after returning from ps->action().  */
1151 	result = ps->action(ps, p);
1152 
1153 	action_result(pfn, ps->type, result);
1154 
1155 	/* Could do more checks here if page looks ok */
1156 	/*
1157 	 * Could adjust zone counters here to correct for the missing page.
1158 	 */
1159 
1160 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1161 }
1162 
1163 static inline bool PageHWPoisonTakenOff(struct page *page)
1164 {
1165 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1166 }
1167 
1168 void SetPageHWPoisonTakenOff(struct page *page)
1169 {
1170 	set_page_private(page, MAGIC_HWPOISON);
1171 }
1172 
1173 void ClearPageHWPoisonTakenOff(struct page *page)
1174 {
1175 	if (PageHWPoison(page))
1176 		set_page_private(page, 0);
1177 }
1178 
1179 /*
1180  * Return true if a page type of a given page is supported by hwpoison
1181  * mechanism (while handling could fail), otherwise false.  This function
1182  * does not return true for hugetlb or device memory pages, so it's assumed
1183  * to be called only in the context where we never have such pages.
1184  */
1185 static inline bool HWPoisonHandlable(struct page *page)
1186 {
1187 	return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1188 }
1189 
1190 static int __get_hwpoison_page(struct page *page)
1191 {
1192 	struct page *head = compound_head(page);
1193 	int ret = 0;
1194 	bool hugetlb = false;
1195 
1196 	ret = get_hwpoison_huge_page(head, &hugetlb);
1197 	if (hugetlb)
1198 		return ret;
1199 
1200 	/*
1201 	 * This check prevents from calling get_hwpoison_unless_zero()
1202 	 * for any unsupported type of page in order to reduce the risk of
1203 	 * unexpected races caused by taking a page refcount.
1204 	 */
1205 	if (!HWPoisonHandlable(head))
1206 		return -EBUSY;
1207 
1208 	if (get_page_unless_zero(head)) {
1209 		if (head == compound_head(page))
1210 			return 1;
1211 
1212 		pr_info("Memory failure: %#lx cannot catch tail\n",
1213 			page_to_pfn(page));
1214 		put_page(head);
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 static int get_any_page(struct page *p, unsigned long flags)
1221 {
1222 	int ret = 0, pass = 0;
1223 	bool count_increased = false;
1224 
1225 	if (flags & MF_COUNT_INCREASED)
1226 		count_increased = true;
1227 
1228 try_again:
1229 	if (!count_increased) {
1230 		ret = __get_hwpoison_page(p);
1231 		if (!ret) {
1232 			if (page_count(p)) {
1233 				/* We raced with an allocation, retry. */
1234 				if (pass++ < 3)
1235 					goto try_again;
1236 				ret = -EBUSY;
1237 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1238 				/* We raced with put_page, retry. */
1239 				if (pass++ < 3)
1240 					goto try_again;
1241 				ret = -EIO;
1242 			}
1243 			goto out;
1244 		} else if (ret == -EBUSY) {
1245 			/*
1246 			 * We raced with (possibly temporary) unhandlable
1247 			 * page, retry.
1248 			 */
1249 			if (pass++ < 3) {
1250 				shake_page(p);
1251 				goto try_again;
1252 			}
1253 			ret = -EIO;
1254 			goto out;
1255 		}
1256 	}
1257 
1258 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1259 		ret = 1;
1260 	} else {
1261 		/*
1262 		 * A page we cannot handle. Check whether we can turn
1263 		 * it into something we can handle.
1264 		 */
1265 		if (pass++ < 3) {
1266 			put_page(p);
1267 			shake_page(p);
1268 			count_increased = false;
1269 			goto try_again;
1270 		}
1271 		put_page(p);
1272 		ret = -EIO;
1273 	}
1274 out:
1275 	if (ret == -EIO)
1276 		dump_page(p, "hwpoison: unhandlable page");
1277 
1278 	return ret;
1279 }
1280 
1281 static int __get_unpoison_page(struct page *page)
1282 {
1283 	struct page *head = compound_head(page);
1284 	int ret = 0;
1285 	bool hugetlb = false;
1286 
1287 	ret = get_hwpoison_huge_page(head, &hugetlb);
1288 	if (hugetlb)
1289 		return ret;
1290 
1291 	/*
1292 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1293 	 * but also isolated from buddy freelist, so need to identify the
1294 	 * state and have to cancel both operations to unpoison.
1295 	 */
1296 	if (PageHWPoisonTakenOff(page))
1297 		return -EHWPOISON;
1298 
1299 	return get_page_unless_zero(page) ? 1 : 0;
1300 }
1301 
1302 /**
1303  * get_hwpoison_page() - Get refcount for memory error handling
1304  * @p:		Raw error page (hit by memory error)
1305  * @flags:	Flags controlling behavior of error handling
1306  *
1307  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1308  * error on it, after checking that the error page is in a well-defined state
1309  * (defined as a page-type we can successfully handle the memory error on it,
1310  * such as LRU page and hugetlb page).
1311  *
1312  * Memory error handling could be triggered at any time on any type of page,
1313  * so it's prone to race with typical memory management lifecycle (like
1314  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1315  * extra care for the error page's state (as done in __get_hwpoison_page()),
1316  * and has some retry logic in get_any_page().
1317  *
1318  * When called from unpoison_memory(), the caller should already ensure that
1319  * the given page has PG_hwpoison. So it's never reused for other page
1320  * allocations, and __get_unpoison_page() never races with them.
1321  *
1322  * Return: 0 on failure,
1323  *         1 on success for in-use pages in a well-defined state,
1324  *         -EIO for pages on which we can not handle memory errors,
1325  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1326  *         operations like allocation and free,
1327  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1328  */
1329 static int get_hwpoison_page(struct page *p, unsigned long flags)
1330 {
1331 	int ret;
1332 
1333 	zone_pcp_disable(page_zone(p));
1334 	if (flags & MF_UNPOISON)
1335 		ret = __get_unpoison_page(p);
1336 	else
1337 		ret = get_any_page(p, flags);
1338 	zone_pcp_enable(page_zone(p));
1339 
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Do all that is necessary to remove user space mappings. Unmap
1345  * the pages and send SIGBUS to the processes if the data was dirty.
1346  */
1347 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1348 				  int flags, struct page *hpage)
1349 {
1350 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1351 	struct address_space *mapping;
1352 	LIST_HEAD(tokill);
1353 	bool unmap_success;
1354 	int kill = 1, forcekill;
1355 	bool mlocked = PageMlocked(hpage);
1356 
1357 	/*
1358 	 * Here we are interested only in user-mapped pages, so skip any
1359 	 * other types of pages.
1360 	 */
1361 	if (PageReserved(p) || PageSlab(p))
1362 		return true;
1363 	if (!(PageLRU(hpage) || PageHuge(p)))
1364 		return true;
1365 
1366 	/*
1367 	 * This check implies we don't kill processes if their pages
1368 	 * are in the swap cache early. Those are always late kills.
1369 	 */
1370 	if (!page_mapped(hpage))
1371 		return true;
1372 
1373 	if (PageKsm(p)) {
1374 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1375 		return false;
1376 	}
1377 
1378 	if (PageSwapCache(p)) {
1379 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1380 			pfn);
1381 		ttu |= TTU_IGNORE_HWPOISON;
1382 	}
1383 
1384 	/*
1385 	 * Propagate the dirty bit from PTEs to struct page first, because we
1386 	 * need this to decide if we should kill or just drop the page.
1387 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 	 * be called inside page lock (it's recommended but not enforced).
1389 	 */
1390 	mapping = page_mapping(hpage);
1391 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1392 	    mapping_can_writeback(mapping)) {
1393 		if (page_mkclean(hpage)) {
1394 			SetPageDirty(hpage);
1395 		} else {
1396 			kill = 0;
1397 			ttu |= TTU_IGNORE_HWPOISON;
1398 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1399 				pfn);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * First collect all the processes that have the page
1405 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1406 	 * because ttu takes the rmap data structures down.
1407 	 *
1408 	 * Error handling: We ignore errors here because
1409 	 * there's nothing that can be done.
1410 	 */
1411 	if (kill)
1412 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1413 
1414 	if (!PageHuge(hpage)) {
1415 		try_to_unmap(hpage, ttu);
1416 	} else {
1417 		if (!PageAnon(hpage)) {
1418 			/*
1419 			 * For hugetlb pages in shared mappings, try_to_unmap
1420 			 * could potentially call huge_pmd_unshare.  Because of
1421 			 * this, take semaphore in write mode here and set
1422 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1423 			 * at this higher level.
1424 			 */
1425 			mapping = hugetlb_page_mapping_lock_write(hpage);
1426 			if (mapping) {
1427 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1428 				i_mmap_unlock_write(mapping);
1429 			} else
1430 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1431 		} else {
1432 			try_to_unmap(hpage, ttu);
1433 		}
1434 	}
1435 
1436 	unmap_success = !page_mapped(hpage);
1437 	if (!unmap_success)
1438 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1439 		       pfn, page_mapcount(hpage));
1440 
1441 	/*
1442 	 * try_to_unmap() might put mlocked page in lru cache, so call
1443 	 * shake_page() again to ensure that it's flushed.
1444 	 */
1445 	if (mlocked)
1446 		shake_page(hpage);
1447 
1448 	/*
1449 	 * Now that the dirty bit has been propagated to the
1450 	 * struct page and all unmaps done we can decide if
1451 	 * killing is needed or not.  Only kill when the page
1452 	 * was dirty or the process is not restartable,
1453 	 * otherwise the tokill list is merely
1454 	 * freed.  When there was a problem unmapping earlier
1455 	 * use a more force-full uncatchable kill to prevent
1456 	 * any accesses to the poisoned memory.
1457 	 */
1458 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1459 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1460 
1461 	return unmap_success;
1462 }
1463 
1464 static int identify_page_state(unsigned long pfn, struct page *p,
1465 				unsigned long page_flags)
1466 {
1467 	struct page_state *ps;
1468 
1469 	/*
1470 	 * The first check uses the current page flags which may not have any
1471 	 * relevant information. The second check with the saved page flags is
1472 	 * carried out only if the first check can't determine the page status.
1473 	 */
1474 	for (ps = error_states;; ps++)
1475 		if ((p->flags & ps->mask) == ps->res)
1476 			break;
1477 
1478 	page_flags |= (p->flags & (1UL << PG_dirty));
1479 
1480 	if (!ps->mask)
1481 		for (ps = error_states;; ps++)
1482 			if ((page_flags & ps->mask) == ps->res)
1483 				break;
1484 	return page_action(ps, p, pfn);
1485 }
1486 
1487 static int try_to_split_thp_page(struct page *page, const char *msg)
1488 {
1489 	lock_page(page);
1490 	if (unlikely(split_huge_page(page))) {
1491 		unsigned long pfn = page_to_pfn(page);
1492 
1493 		unlock_page(page);
1494 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1495 		put_page(page);
1496 		return -EBUSY;
1497 	}
1498 	unlock_page(page);
1499 
1500 	return 0;
1501 }
1502 
1503 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1504 {
1505 	struct page *p = pfn_to_page(pfn);
1506 	struct page *head = compound_head(p);
1507 	int res;
1508 	unsigned long page_flags;
1509 
1510 	if (TestSetPageHWPoison(head)) {
1511 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1512 		       pfn);
1513 		res = -EHWPOISON;
1514 		if (flags & MF_ACTION_REQUIRED)
1515 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1516 		return res;
1517 	}
1518 
1519 	num_poisoned_pages_inc();
1520 
1521 	if (!(flags & MF_COUNT_INCREASED)) {
1522 		res = get_hwpoison_page(p, flags);
1523 		if (!res) {
1524 			lock_page(head);
1525 			if (hwpoison_filter(p)) {
1526 				if (TestClearPageHWPoison(head))
1527 					num_poisoned_pages_dec();
1528 				unlock_page(head);
1529 				return 0;
1530 			}
1531 			unlock_page(head);
1532 			res = MF_FAILED;
1533 			if (__page_handle_poison(p)) {
1534 				page_ref_inc(p);
1535 				res = MF_RECOVERED;
1536 			}
1537 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1538 			return res == MF_RECOVERED ? 0 : -EBUSY;
1539 		} else if (res < 0) {
1540 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1541 			return -EBUSY;
1542 		}
1543 	}
1544 
1545 	lock_page(head);
1546 	page_flags = head->flags;
1547 
1548 	/*
1549 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1550 	 * simply disable it. In order to make it work properly, we need
1551 	 * make sure that:
1552 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1553 	 *    entry properly works, and
1554 	 *  - other mm code walking over page table is aware of pud-aligned
1555 	 *    hwpoison entries.
1556 	 */
1557 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1558 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1559 		res = -EBUSY;
1560 		goto out;
1561 	}
1562 
1563 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1564 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1565 		res = -EBUSY;
1566 		goto out;
1567 	}
1568 
1569 	return identify_page_state(pfn, p, page_flags);
1570 out:
1571 	unlock_page(head);
1572 	return res;
1573 }
1574 
1575 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1576 		struct dev_pagemap *pgmap)
1577 {
1578 	struct page *page = pfn_to_page(pfn);
1579 	unsigned long size = 0;
1580 	struct to_kill *tk;
1581 	LIST_HEAD(tokill);
1582 	int rc = -EBUSY;
1583 	loff_t start;
1584 	dax_entry_t cookie;
1585 
1586 	if (flags & MF_COUNT_INCREASED)
1587 		/*
1588 		 * Drop the extra refcount in case we come from madvise().
1589 		 */
1590 		put_page(page);
1591 
1592 	/* device metadata space is not recoverable */
1593 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1594 		rc = -ENXIO;
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * Prevent the inode from being freed while we are interrogating
1600 	 * the address_space, typically this would be handled by
1601 	 * lock_page(), but dax pages do not use the page lock. This
1602 	 * also prevents changes to the mapping of this pfn until
1603 	 * poison signaling is complete.
1604 	 */
1605 	cookie = dax_lock_page(page);
1606 	if (!cookie)
1607 		goto out;
1608 
1609 	if (hwpoison_filter(page)) {
1610 		rc = 0;
1611 		goto unlock;
1612 	}
1613 
1614 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1615 		/*
1616 		 * TODO: Handle HMM pages which may need coordination
1617 		 * with device-side memory.
1618 		 */
1619 		goto unlock;
1620 	}
1621 
1622 	/*
1623 	 * Use this flag as an indication that the dax page has been
1624 	 * remapped UC to prevent speculative consumption of poison.
1625 	 */
1626 	SetPageHWPoison(page);
1627 
1628 	/*
1629 	 * Unlike System-RAM there is no possibility to swap in a
1630 	 * different physical page at a given virtual address, so all
1631 	 * userspace consumption of ZONE_DEVICE memory necessitates
1632 	 * SIGBUS (i.e. MF_MUST_KILL)
1633 	 */
1634 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1635 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1636 
1637 	list_for_each_entry(tk, &tokill, nd)
1638 		if (tk->size_shift)
1639 			size = max(size, 1UL << tk->size_shift);
1640 	if (size) {
1641 		/*
1642 		 * Unmap the largest mapping to avoid breaking up
1643 		 * device-dax mappings which are constant size. The
1644 		 * actual size of the mapping being torn down is
1645 		 * communicated in siginfo, see kill_proc()
1646 		 */
1647 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1648 		unmap_mapping_range(page->mapping, start, size, 0);
1649 	}
1650 	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1651 	rc = 0;
1652 unlock:
1653 	dax_unlock_page(page, cookie);
1654 out:
1655 	/* drop pgmap ref acquired in caller */
1656 	put_dev_pagemap(pgmap);
1657 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1658 	return rc;
1659 }
1660 
1661 static DEFINE_MUTEX(mf_mutex);
1662 
1663 /**
1664  * memory_failure - Handle memory failure of a page.
1665  * @pfn: Page Number of the corrupted page
1666  * @flags: fine tune action taken
1667  *
1668  * This function is called by the low level machine check code
1669  * of an architecture when it detects hardware memory corruption
1670  * of a page. It tries its best to recover, which includes
1671  * dropping pages, killing processes etc.
1672  *
1673  * The function is primarily of use for corruptions that
1674  * happen outside the current execution context (e.g. when
1675  * detected by a background scrubber)
1676  *
1677  * Must run in process context (e.g. a work queue) with interrupts
1678  * enabled and no spinlocks hold.
1679  */
1680 int memory_failure(unsigned long pfn, int flags)
1681 {
1682 	struct page *p;
1683 	struct page *hpage;
1684 	struct page *orig_head;
1685 	struct dev_pagemap *pgmap;
1686 	int res = 0;
1687 	unsigned long page_flags;
1688 	bool retry = true;
1689 
1690 	if (!sysctl_memory_failure_recovery)
1691 		panic("Memory failure on page %lx", pfn);
1692 
1693 	mutex_lock(&mf_mutex);
1694 
1695 	p = pfn_to_online_page(pfn);
1696 	if (!p) {
1697 		res = arch_memory_failure(pfn, flags);
1698 		if (res == 0)
1699 			goto unlock_mutex;
1700 
1701 		if (pfn_valid(pfn)) {
1702 			pgmap = get_dev_pagemap(pfn, NULL);
1703 			if (pgmap) {
1704 				res = memory_failure_dev_pagemap(pfn, flags,
1705 								 pgmap);
1706 				goto unlock_mutex;
1707 			}
1708 		}
1709 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1710 			pfn);
1711 		res = -ENXIO;
1712 		goto unlock_mutex;
1713 	}
1714 
1715 try_again:
1716 	if (PageHuge(p)) {
1717 		res = memory_failure_hugetlb(pfn, flags);
1718 		goto unlock_mutex;
1719 	}
1720 
1721 	if (TestSetPageHWPoison(p)) {
1722 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1723 			pfn);
1724 		res = -EHWPOISON;
1725 		if (flags & MF_ACTION_REQUIRED)
1726 			res = kill_accessing_process(current, pfn, flags);
1727 		goto unlock_mutex;
1728 	}
1729 
1730 	orig_head = hpage = compound_head(p);
1731 	num_poisoned_pages_inc();
1732 
1733 	/*
1734 	 * We need/can do nothing about count=0 pages.
1735 	 * 1) it's a free page, and therefore in safe hand:
1736 	 *    prep_new_page() will be the gate keeper.
1737 	 * 2) it's part of a non-compound high order page.
1738 	 *    Implies some kernel user: cannot stop them from
1739 	 *    R/W the page; let's pray that the page has been
1740 	 *    used and will be freed some time later.
1741 	 * In fact it's dangerous to directly bump up page count from 0,
1742 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1743 	 */
1744 	if (!(flags & MF_COUNT_INCREASED)) {
1745 		res = get_hwpoison_page(p, flags);
1746 		if (!res) {
1747 			if (is_free_buddy_page(p)) {
1748 				if (take_page_off_buddy(p)) {
1749 					page_ref_inc(p);
1750 					res = MF_RECOVERED;
1751 				} else {
1752 					/* We lost the race, try again */
1753 					if (retry) {
1754 						ClearPageHWPoison(p);
1755 						num_poisoned_pages_dec();
1756 						retry = false;
1757 						goto try_again;
1758 					}
1759 					res = MF_FAILED;
1760 				}
1761 				action_result(pfn, MF_MSG_BUDDY, res);
1762 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1763 			} else {
1764 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1765 				res = -EBUSY;
1766 			}
1767 			goto unlock_mutex;
1768 		} else if (res < 0) {
1769 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1770 			res = -EBUSY;
1771 			goto unlock_mutex;
1772 		}
1773 	}
1774 
1775 	if (PageTransHuge(hpage)) {
1776 		/*
1777 		 * The flag must be set after the refcount is bumped
1778 		 * otherwise it may race with THP split.
1779 		 * And the flag can't be set in get_hwpoison_page() since
1780 		 * it is called by soft offline too and it is just called
1781 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1782 		 * place.
1783 		 *
1784 		 * Don't need care about the above error handling paths for
1785 		 * get_hwpoison_page() since they handle either free page
1786 		 * or unhandlable page.  The refcount is bumped iff the
1787 		 * page is a valid handlable page.
1788 		 */
1789 		SetPageHasHWPoisoned(hpage);
1790 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1791 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1792 			res = -EBUSY;
1793 			goto unlock_mutex;
1794 		}
1795 		VM_BUG_ON_PAGE(!page_count(p), p);
1796 	}
1797 
1798 	/*
1799 	 * We ignore non-LRU pages for good reasons.
1800 	 * - PG_locked is only well defined for LRU pages and a few others
1801 	 * - to avoid races with __SetPageLocked()
1802 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1803 	 * The check (unnecessarily) ignores LRU pages being isolated and
1804 	 * walked by the page reclaim code, however that's not a big loss.
1805 	 */
1806 	shake_page(p);
1807 
1808 	lock_page(p);
1809 
1810 	/*
1811 	 * The page could have changed compound pages during the locking.
1812 	 * If this happens just bail out.
1813 	 */
1814 	if (PageCompound(p) && compound_head(p) != orig_head) {
1815 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1816 		res = -EBUSY;
1817 		goto unlock_page;
1818 	}
1819 
1820 	/*
1821 	 * We use page flags to determine what action should be taken, but
1822 	 * the flags can be modified by the error containment action.  One
1823 	 * example is an mlocked page, where PG_mlocked is cleared by
1824 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1825 	 * correctly, we save a copy of the page flags at this time.
1826 	 */
1827 	page_flags = p->flags;
1828 
1829 	if (hwpoison_filter(p)) {
1830 		if (TestClearPageHWPoison(p))
1831 			num_poisoned_pages_dec();
1832 		unlock_page(p);
1833 		put_page(p);
1834 		goto unlock_mutex;
1835 	}
1836 
1837 	/*
1838 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1839 	 * page_lock. We need wait writeback completion for this page or it
1840 	 * may trigger vfs BUG while evict inode.
1841 	 */
1842 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1843 		goto identify_page_state;
1844 
1845 	/*
1846 	 * It's very difficult to mess with pages currently under IO
1847 	 * and in many cases impossible, so we just avoid it here.
1848 	 */
1849 	wait_on_page_writeback(p);
1850 
1851 	/*
1852 	 * Now take care of user space mappings.
1853 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1854 	 */
1855 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1856 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1857 		res = -EBUSY;
1858 		goto unlock_page;
1859 	}
1860 
1861 	/*
1862 	 * Torn down by someone else?
1863 	 */
1864 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1865 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1866 		res = -EBUSY;
1867 		goto unlock_page;
1868 	}
1869 
1870 identify_page_state:
1871 	res = identify_page_state(pfn, p, page_flags);
1872 	mutex_unlock(&mf_mutex);
1873 	return res;
1874 unlock_page:
1875 	unlock_page(p);
1876 unlock_mutex:
1877 	mutex_unlock(&mf_mutex);
1878 	return res;
1879 }
1880 EXPORT_SYMBOL_GPL(memory_failure);
1881 
1882 #define MEMORY_FAILURE_FIFO_ORDER	4
1883 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1884 
1885 struct memory_failure_entry {
1886 	unsigned long pfn;
1887 	int flags;
1888 };
1889 
1890 struct memory_failure_cpu {
1891 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1892 		      MEMORY_FAILURE_FIFO_SIZE);
1893 	spinlock_t lock;
1894 	struct work_struct work;
1895 };
1896 
1897 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1898 
1899 /**
1900  * memory_failure_queue - Schedule handling memory failure of a page.
1901  * @pfn: Page Number of the corrupted page
1902  * @flags: Flags for memory failure handling
1903  *
1904  * This function is called by the low level hardware error handler
1905  * when it detects hardware memory corruption of a page. It schedules
1906  * the recovering of error page, including dropping pages, killing
1907  * processes etc.
1908  *
1909  * The function is primarily of use for corruptions that
1910  * happen outside the current execution context (e.g. when
1911  * detected by a background scrubber)
1912  *
1913  * Can run in IRQ context.
1914  */
1915 void memory_failure_queue(unsigned long pfn, int flags)
1916 {
1917 	struct memory_failure_cpu *mf_cpu;
1918 	unsigned long proc_flags;
1919 	struct memory_failure_entry entry = {
1920 		.pfn =		pfn,
1921 		.flags =	flags,
1922 	};
1923 
1924 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1925 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1926 	if (kfifo_put(&mf_cpu->fifo, entry))
1927 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1928 	else
1929 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1930 		       pfn);
1931 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1932 	put_cpu_var(memory_failure_cpu);
1933 }
1934 EXPORT_SYMBOL_GPL(memory_failure_queue);
1935 
1936 static void memory_failure_work_func(struct work_struct *work)
1937 {
1938 	struct memory_failure_cpu *mf_cpu;
1939 	struct memory_failure_entry entry = { 0, };
1940 	unsigned long proc_flags;
1941 	int gotten;
1942 
1943 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1944 	for (;;) {
1945 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1946 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1947 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1948 		if (!gotten)
1949 			break;
1950 		if (entry.flags & MF_SOFT_OFFLINE)
1951 			soft_offline_page(entry.pfn, entry.flags);
1952 		else
1953 			memory_failure(entry.pfn, entry.flags);
1954 	}
1955 }
1956 
1957 /*
1958  * Process memory_failure work queued on the specified CPU.
1959  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1960  */
1961 void memory_failure_queue_kick(int cpu)
1962 {
1963 	struct memory_failure_cpu *mf_cpu;
1964 
1965 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1966 	cancel_work_sync(&mf_cpu->work);
1967 	memory_failure_work_func(&mf_cpu->work);
1968 }
1969 
1970 static int __init memory_failure_init(void)
1971 {
1972 	struct memory_failure_cpu *mf_cpu;
1973 	int cpu;
1974 
1975 	for_each_possible_cpu(cpu) {
1976 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1977 		spin_lock_init(&mf_cpu->lock);
1978 		INIT_KFIFO(mf_cpu->fifo);
1979 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1980 	}
1981 
1982 	return 0;
1983 }
1984 core_initcall(memory_failure_init);
1985 
1986 #define unpoison_pr_info(fmt, pfn, rs)			\
1987 ({							\
1988 	if (__ratelimit(rs))				\
1989 		pr_info(fmt, pfn);			\
1990 })
1991 
1992 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
1993 {
1994 	if (TestClearPageHWPoison(p)) {
1995 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1996 				 page_to_pfn(p), rs);
1997 		num_poisoned_pages_dec();
1998 		return 1;
1999 	}
2000 	return 0;
2001 }
2002 
2003 static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2004 					  struct page *p)
2005 {
2006 	if (put_page_back_buddy(p)) {
2007 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2008 				 page_to_pfn(p), rs);
2009 		return 0;
2010 	}
2011 	return -EBUSY;
2012 }
2013 
2014 /**
2015  * unpoison_memory - Unpoison a previously poisoned page
2016  * @pfn: Page number of the to be unpoisoned page
2017  *
2018  * Software-unpoison a page that has been poisoned by
2019  * memory_failure() earlier.
2020  *
2021  * This is only done on the software-level, so it only works
2022  * for linux injected failures, not real hardware failures
2023  *
2024  * Returns 0 for success, otherwise -errno.
2025  */
2026 int unpoison_memory(unsigned long pfn)
2027 {
2028 	struct page *page;
2029 	struct page *p;
2030 	int ret = -EBUSY;
2031 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2032 					DEFAULT_RATELIMIT_BURST);
2033 
2034 	if (!pfn_valid(pfn))
2035 		return -ENXIO;
2036 
2037 	p = pfn_to_page(pfn);
2038 	page = compound_head(p);
2039 
2040 	mutex_lock(&mf_mutex);
2041 
2042 	if (!PageHWPoison(p)) {
2043 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2044 				 pfn, &unpoison_rs);
2045 		goto unlock_mutex;
2046 	}
2047 
2048 	if (page_count(page) > 1) {
2049 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2050 				 pfn, &unpoison_rs);
2051 		goto unlock_mutex;
2052 	}
2053 
2054 	if (page_mapped(page)) {
2055 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2056 				 pfn, &unpoison_rs);
2057 		goto unlock_mutex;
2058 	}
2059 
2060 	if (page_mapping(page)) {
2061 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2062 				 pfn, &unpoison_rs);
2063 		goto unlock_mutex;
2064 	}
2065 
2066 	if (PageSlab(page) || PageTable(page))
2067 		goto unlock_mutex;
2068 
2069 	ret = get_hwpoison_page(p, MF_UNPOISON);
2070 	if (!ret) {
2071 		if (clear_page_hwpoison(&unpoison_rs, page))
2072 			ret = 0;
2073 		else
2074 			ret = -EBUSY;
2075 	} else if (ret < 0) {
2076 		if (ret == -EHWPOISON) {
2077 			ret = unpoison_taken_off_page(&unpoison_rs, p);
2078 		} else
2079 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2080 					 pfn, &unpoison_rs);
2081 	} else {
2082 		int freeit = clear_page_hwpoison(&unpoison_rs, p);
2083 
2084 		put_page(page);
2085 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2086 			put_page(page);
2087 			ret = 0;
2088 		}
2089 	}
2090 
2091 unlock_mutex:
2092 	mutex_unlock(&mf_mutex);
2093 	return ret;
2094 }
2095 EXPORT_SYMBOL(unpoison_memory);
2096 
2097 static bool isolate_page(struct page *page, struct list_head *pagelist)
2098 {
2099 	bool isolated = false;
2100 	bool lru = PageLRU(page);
2101 
2102 	if (PageHuge(page)) {
2103 		isolated = isolate_huge_page(page, pagelist);
2104 	} else {
2105 		if (lru)
2106 			isolated = !isolate_lru_page(page);
2107 		else
2108 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2109 
2110 		if (isolated)
2111 			list_add(&page->lru, pagelist);
2112 	}
2113 
2114 	if (isolated && lru)
2115 		inc_node_page_state(page, NR_ISOLATED_ANON +
2116 				    page_is_file_lru(page));
2117 
2118 	/*
2119 	 * If we succeed to isolate the page, we grabbed another refcount on
2120 	 * the page, so we can safely drop the one we got from get_any_pages().
2121 	 * If we failed to isolate the page, it means that we cannot go further
2122 	 * and we will return an error, so drop the reference we got from
2123 	 * get_any_pages() as well.
2124 	 */
2125 	put_page(page);
2126 	return isolated;
2127 }
2128 
2129 /*
2130  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2131  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2132  * If the page is mapped, it migrates the contents over.
2133  */
2134 static int __soft_offline_page(struct page *page)
2135 {
2136 	int ret = 0;
2137 	unsigned long pfn = page_to_pfn(page);
2138 	struct page *hpage = compound_head(page);
2139 	char const *msg_page[] = {"page", "hugepage"};
2140 	bool huge = PageHuge(page);
2141 	LIST_HEAD(pagelist);
2142 	struct migration_target_control mtc = {
2143 		.nid = NUMA_NO_NODE,
2144 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2145 	};
2146 
2147 	/*
2148 	 * Check PageHWPoison again inside page lock because PageHWPoison
2149 	 * is set by memory_failure() outside page lock. Note that
2150 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2151 	 * so there's no race between soft_offline_page() and memory_failure().
2152 	 */
2153 	lock_page(page);
2154 	if (!PageHuge(page))
2155 		wait_on_page_writeback(page);
2156 	if (PageHWPoison(page)) {
2157 		unlock_page(page);
2158 		put_page(page);
2159 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2160 		return 0;
2161 	}
2162 
2163 	if (!PageHuge(page))
2164 		/*
2165 		 * Try to invalidate first. This should work for
2166 		 * non dirty unmapped page cache pages.
2167 		 */
2168 		ret = invalidate_inode_page(page);
2169 	unlock_page(page);
2170 
2171 	/*
2172 	 * RED-PEN would be better to keep it isolated here, but we
2173 	 * would need to fix isolation locking first.
2174 	 */
2175 	if (ret) {
2176 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2177 		page_handle_poison(page, false, true);
2178 		return 0;
2179 	}
2180 
2181 	if (isolate_page(hpage, &pagelist)) {
2182 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2183 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2184 		if (!ret) {
2185 			bool release = !huge;
2186 
2187 			if (!page_handle_poison(page, huge, release))
2188 				ret = -EBUSY;
2189 		} else {
2190 			if (!list_empty(&pagelist))
2191 				putback_movable_pages(&pagelist);
2192 
2193 			pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
2194 				pfn, msg_page[huge], ret, &page->flags);
2195 			if (ret > 0)
2196 				ret = -EBUSY;
2197 		}
2198 	} else {
2199 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2200 			pfn, msg_page[huge], page_count(page), &page->flags);
2201 		ret = -EBUSY;
2202 	}
2203 	return ret;
2204 }
2205 
2206 static int soft_offline_in_use_page(struct page *page)
2207 {
2208 	struct page *hpage = compound_head(page);
2209 
2210 	if (!PageHuge(page) && PageTransHuge(hpage))
2211 		if (try_to_split_thp_page(page, "soft offline") < 0)
2212 			return -EBUSY;
2213 	return __soft_offline_page(page);
2214 }
2215 
2216 static int soft_offline_free_page(struct page *page)
2217 {
2218 	int rc = 0;
2219 
2220 	if (!page_handle_poison(page, true, false))
2221 		rc = -EBUSY;
2222 
2223 	return rc;
2224 }
2225 
2226 static void put_ref_page(struct page *page)
2227 {
2228 	if (page)
2229 		put_page(page);
2230 }
2231 
2232 /**
2233  * soft_offline_page - Soft offline a page.
2234  * @pfn: pfn to soft-offline
2235  * @flags: flags. Same as memory_failure().
2236  *
2237  * Returns 0 on success, otherwise negated errno.
2238  *
2239  * Soft offline a page, by migration or invalidation,
2240  * without killing anything. This is for the case when
2241  * a page is not corrupted yet (so it's still valid to access),
2242  * but has had a number of corrected errors and is better taken
2243  * out.
2244  *
2245  * The actual policy on when to do that is maintained by
2246  * user space.
2247  *
2248  * This should never impact any application or cause data loss,
2249  * however it might take some time.
2250  *
2251  * This is not a 100% solution for all memory, but tries to be
2252  * ``good enough'' for the majority of memory.
2253  */
2254 int soft_offline_page(unsigned long pfn, int flags)
2255 {
2256 	int ret;
2257 	bool try_again = true;
2258 	struct page *page, *ref_page = NULL;
2259 
2260 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2261 
2262 	if (!pfn_valid(pfn))
2263 		return -ENXIO;
2264 	if (flags & MF_COUNT_INCREASED)
2265 		ref_page = pfn_to_page(pfn);
2266 
2267 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2268 	page = pfn_to_online_page(pfn);
2269 	if (!page) {
2270 		put_ref_page(ref_page);
2271 		return -EIO;
2272 	}
2273 
2274 	mutex_lock(&mf_mutex);
2275 
2276 	if (PageHWPoison(page)) {
2277 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2278 		put_ref_page(ref_page);
2279 		mutex_unlock(&mf_mutex);
2280 		return 0;
2281 	}
2282 
2283 retry:
2284 	get_online_mems();
2285 	ret = get_hwpoison_page(page, flags);
2286 	put_online_mems();
2287 
2288 	if (ret > 0) {
2289 		ret = soft_offline_in_use_page(page);
2290 	} else if (ret == 0) {
2291 		if (soft_offline_free_page(page) && try_again) {
2292 			try_again = false;
2293 			flags &= ~MF_COUNT_INCREASED;
2294 			goto retry;
2295 		}
2296 	}
2297 
2298 	mutex_unlock(&mf_mutex);
2299 
2300 	return ret;
2301 }
2302