1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 69 { 70 if (hugepage_or_freepage) { 71 /* 72 * Doing this check for free pages is also fine since dissolve_free_huge_page 73 * returns 0 for non-hugetlb pages as well. 74 */ 75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page)) 76 /* 77 * We could fail to take off the target page from buddy 78 * for example due to racy page allocaiton, but that's 79 * acceptable because soft-offlined page is not broken 80 * and if someone really want to use it, they should 81 * take it. 82 */ 83 return false; 84 } 85 86 SetPageHWPoison(page); 87 if (release) 88 put_page(page); 89 page_ref_inc(page); 90 num_poisoned_pages_inc(); 91 92 return true; 93 } 94 95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 96 97 u32 hwpoison_filter_enable = 0; 98 u32 hwpoison_filter_dev_major = ~0U; 99 u32 hwpoison_filter_dev_minor = ~0U; 100 u64 hwpoison_filter_flags_mask; 101 u64 hwpoison_filter_flags_value; 102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 107 108 static int hwpoison_filter_dev(struct page *p) 109 { 110 struct address_space *mapping; 111 dev_t dev; 112 113 if (hwpoison_filter_dev_major == ~0U && 114 hwpoison_filter_dev_minor == ~0U) 115 return 0; 116 117 /* 118 * page_mapping() does not accept slab pages. 119 */ 120 if (PageSlab(p)) 121 return -EINVAL; 122 123 mapping = page_mapping(p); 124 if (mapping == NULL || mapping->host == NULL) 125 return -EINVAL; 126 127 dev = mapping->host->i_sb->s_dev; 128 if (hwpoison_filter_dev_major != ~0U && 129 hwpoison_filter_dev_major != MAJOR(dev)) 130 return -EINVAL; 131 if (hwpoison_filter_dev_minor != ~0U && 132 hwpoison_filter_dev_minor != MINOR(dev)) 133 return -EINVAL; 134 135 return 0; 136 } 137 138 static int hwpoison_filter_flags(struct page *p) 139 { 140 if (!hwpoison_filter_flags_mask) 141 return 0; 142 143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 144 hwpoison_filter_flags_value) 145 return 0; 146 else 147 return -EINVAL; 148 } 149 150 /* 151 * This allows stress tests to limit test scope to a collection of tasks 152 * by putting them under some memcg. This prevents killing unrelated/important 153 * processes such as /sbin/init. Note that the target task may share clean 154 * pages with init (eg. libc text), which is harmless. If the target task 155 * share _dirty_ pages with another task B, the test scheme must make sure B 156 * is also included in the memcg. At last, due to race conditions this filter 157 * can only guarantee that the page either belongs to the memcg tasks, or is 158 * a freed page. 159 */ 160 #ifdef CONFIG_MEMCG 161 u64 hwpoison_filter_memcg; 162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 163 static int hwpoison_filter_task(struct page *p) 164 { 165 if (!hwpoison_filter_memcg) 166 return 0; 167 168 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 169 return -EINVAL; 170 171 return 0; 172 } 173 #else 174 static int hwpoison_filter_task(struct page *p) { return 0; } 175 #endif 176 177 int hwpoison_filter(struct page *p) 178 { 179 if (!hwpoison_filter_enable) 180 return 0; 181 182 if (hwpoison_filter_dev(p)) 183 return -EINVAL; 184 185 if (hwpoison_filter_flags(p)) 186 return -EINVAL; 187 188 if (hwpoison_filter_task(p)) 189 return -EINVAL; 190 191 return 0; 192 } 193 #else 194 int hwpoison_filter(struct page *p) 195 { 196 return 0; 197 } 198 #endif 199 200 EXPORT_SYMBOL_GPL(hwpoison_filter); 201 202 /* 203 * Kill all processes that have a poisoned page mapped and then isolate 204 * the page. 205 * 206 * General strategy: 207 * Find all processes having the page mapped and kill them. 208 * But we keep a page reference around so that the page is not 209 * actually freed yet. 210 * Then stash the page away 211 * 212 * There's no convenient way to get back to mapped processes 213 * from the VMAs. So do a brute-force search over all 214 * running processes. 215 * 216 * Remember that machine checks are not common (or rather 217 * if they are common you have other problems), so this shouldn't 218 * be a performance issue. 219 * 220 * Also there are some races possible while we get from the 221 * error detection to actually handle it. 222 */ 223 224 struct to_kill { 225 struct list_head nd; 226 struct task_struct *tsk; 227 unsigned long addr; 228 short size_shift; 229 }; 230 231 /* 232 * Send all the processes who have the page mapped a signal. 233 * ``action optional'' if they are not immediately affected by the error 234 * ``action required'' if error happened in current execution context 235 */ 236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 237 { 238 struct task_struct *t = tk->tsk; 239 short addr_lsb = tk->size_shift; 240 int ret = 0; 241 242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 243 pfn, t->comm, t->pid); 244 245 if (flags & MF_ACTION_REQUIRED) { 246 WARN_ON_ONCE(t != current); 247 ret = force_sig_mceerr(BUS_MCEERR_AR, 248 (void __user *)tk->addr, addr_lsb); 249 } else { 250 /* 251 * Don't use force here, it's convenient if the signal 252 * can be temporarily blocked. 253 * This could cause a loop when the user sets SIGBUS 254 * to SIG_IGN, but hopefully no one will do that? 255 */ 256 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 257 addr_lsb, t); /* synchronous? */ 258 } 259 if (ret < 0) 260 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 261 t->comm, t->pid, ret); 262 return ret; 263 } 264 265 /* 266 * When a unknown page type is encountered drain as many buffers as possible 267 * in the hope to turn the page into a LRU or free page, which we can handle. 268 */ 269 void shake_page(struct page *p, int access) 270 { 271 if (PageHuge(p)) 272 return; 273 274 if (!PageSlab(p)) { 275 lru_add_drain_all(); 276 if (PageLRU(p)) 277 return; 278 drain_all_pages(page_zone(p)); 279 if (PageLRU(p) || is_free_buddy_page(p)) 280 return; 281 } 282 283 /* 284 * Only call shrink_node_slabs here (which would also shrink 285 * other caches) if access is not potentially fatal. 286 */ 287 if (access) 288 drop_slab_node(page_to_nid(p)); 289 } 290 EXPORT_SYMBOL_GPL(shake_page); 291 292 static unsigned long dev_pagemap_mapping_shift(struct page *page, 293 struct vm_area_struct *vma) 294 { 295 unsigned long address = vma_address(page, vma); 296 pgd_t *pgd; 297 p4d_t *p4d; 298 pud_t *pud; 299 pmd_t *pmd; 300 pte_t *pte; 301 302 pgd = pgd_offset(vma->vm_mm, address); 303 if (!pgd_present(*pgd)) 304 return 0; 305 p4d = p4d_offset(pgd, address); 306 if (!p4d_present(*p4d)) 307 return 0; 308 pud = pud_offset(p4d, address); 309 if (!pud_present(*pud)) 310 return 0; 311 if (pud_devmap(*pud)) 312 return PUD_SHIFT; 313 pmd = pmd_offset(pud, address); 314 if (!pmd_present(*pmd)) 315 return 0; 316 if (pmd_devmap(*pmd)) 317 return PMD_SHIFT; 318 pte = pte_offset_map(pmd, address); 319 if (!pte_present(*pte)) 320 return 0; 321 if (pte_devmap(*pte)) 322 return PAGE_SHIFT; 323 return 0; 324 } 325 326 /* 327 * Failure handling: if we can't find or can't kill a process there's 328 * not much we can do. We just print a message and ignore otherwise. 329 */ 330 331 /* 332 * Schedule a process for later kill. 333 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 334 */ 335 static void add_to_kill(struct task_struct *tsk, struct page *p, 336 struct vm_area_struct *vma, 337 struct list_head *to_kill) 338 { 339 struct to_kill *tk; 340 341 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 342 if (!tk) { 343 pr_err("Memory failure: Out of memory while machine check handling\n"); 344 return; 345 } 346 347 tk->addr = page_address_in_vma(p, vma); 348 if (is_zone_device_page(p)) 349 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 350 else 351 tk->size_shift = page_shift(compound_head(p)); 352 353 /* 354 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 355 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 356 * so "tk->size_shift == 0" effectively checks no mapping on 357 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 358 * to a process' address space, it's possible not all N VMAs 359 * contain mappings for the page, but at least one VMA does. 360 * Only deliver SIGBUS with payload derived from the VMA that 361 * has a mapping for the page. 362 */ 363 if (tk->addr == -EFAULT) { 364 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 365 page_to_pfn(p), tsk->comm); 366 } else if (tk->size_shift == 0) { 367 kfree(tk); 368 return; 369 } 370 371 get_task_struct(tsk); 372 tk->tsk = tsk; 373 list_add_tail(&tk->nd, to_kill); 374 } 375 376 /* 377 * Kill the processes that have been collected earlier. 378 * 379 * Only do anything when DOIT is set, otherwise just free the list 380 * (this is used for clean pages which do not need killing) 381 * Also when FAIL is set do a force kill because something went 382 * wrong earlier. 383 */ 384 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 385 unsigned long pfn, int flags) 386 { 387 struct to_kill *tk, *next; 388 389 list_for_each_entry_safe (tk, next, to_kill, nd) { 390 if (forcekill) { 391 /* 392 * In case something went wrong with munmapping 393 * make sure the process doesn't catch the 394 * signal and then access the memory. Just kill it. 395 */ 396 if (fail || tk->addr == -EFAULT) { 397 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 398 pfn, tk->tsk->comm, tk->tsk->pid); 399 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 400 tk->tsk, PIDTYPE_PID); 401 } 402 403 /* 404 * In theory the process could have mapped 405 * something else on the address in-between. We could 406 * check for that, but we need to tell the 407 * process anyways. 408 */ 409 else if (kill_proc(tk, pfn, flags) < 0) 410 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 411 pfn, tk->tsk->comm, tk->tsk->pid); 412 } 413 put_task_struct(tk->tsk); 414 kfree(tk); 415 } 416 } 417 418 /* 419 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 420 * on behalf of the thread group. Return task_struct of the (first found) 421 * dedicated thread if found, and return NULL otherwise. 422 * 423 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 424 * have to call rcu_read_lock/unlock() in this function. 425 */ 426 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 427 { 428 struct task_struct *t; 429 430 for_each_thread(tsk, t) { 431 if (t->flags & PF_MCE_PROCESS) { 432 if (t->flags & PF_MCE_EARLY) 433 return t; 434 } else { 435 if (sysctl_memory_failure_early_kill) 436 return t; 437 } 438 } 439 return NULL; 440 } 441 442 /* 443 * Determine whether a given process is "early kill" process which expects 444 * to be signaled when some page under the process is hwpoisoned. 445 * Return task_struct of the dedicated thread (main thread unless explicitly 446 * specified) if the process is "early kill," and otherwise returns NULL. 447 * 448 * Note that the above is true for Action Optional case, but not for Action 449 * Required case where SIGBUS should sent only to the current thread. 450 */ 451 static struct task_struct *task_early_kill(struct task_struct *tsk, 452 int force_early) 453 { 454 if (!tsk->mm) 455 return NULL; 456 if (force_early) { 457 /* 458 * Comparing ->mm here because current task might represent 459 * a subthread, while tsk always points to the main thread. 460 */ 461 if (tsk->mm == current->mm) 462 return current; 463 else 464 return NULL; 465 } 466 return find_early_kill_thread(tsk); 467 } 468 469 /* 470 * Collect processes when the error hit an anonymous page. 471 */ 472 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 473 int force_early) 474 { 475 struct vm_area_struct *vma; 476 struct task_struct *tsk; 477 struct anon_vma *av; 478 pgoff_t pgoff; 479 480 av = page_lock_anon_vma_read(page); 481 if (av == NULL) /* Not actually mapped anymore */ 482 return; 483 484 pgoff = page_to_pgoff(page); 485 read_lock(&tasklist_lock); 486 for_each_process (tsk) { 487 struct anon_vma_chain *vmac; 488 struct task_struct *t = task_early_kill(tsk, force_early); 489 490 if (!t) 491 continue; 492 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 493 pgoff, pgoff) { 494 vma = vmac->vma; 495 if (!page_mapped_in_vma(page, vma)) 496 continue; 497 if (vma->vm_mm == t->mm) 498 add_to_kill(t, page, vma, to_kill); 499 } 500 } 501 read_unlock(&tasklist_lock); 502 page_unlock_anon_vma_read(av); 503 } 504 505 /* 506 * Collect processes when the error hit a file mapped page. 507 */ 508 static void collect_procs_file(struct page *page, struct list_head *to_kill, 509 int force_early) 510 { 511 struct vm_area_struct *vma; 512 struct task_struct *tsk; 513 struct address_space *mapping = page->mapping; 514 pgoff_t pgoff; 515 516 i_mmap_lock_read(mapping); 517 read_lock(&tasklist_lock); 518 pgoff = page_to_pgoff(page); 519 for_each_process(tsk) { 520 struct task_struct *t = task_early_kill(tsk, force_early); 521 522 if (!t) 523 continue; 524 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 525 pgoff) { 526 /* 527 * Send early kill signal to tasks where a vma covers 528 * the page but the corrupted page is not necessarily 529 * mapped it in its pte. 530 * Assume applications who requested early kill want 531 * to be informed of all such data corruptions. 532 */ 533 if (vma->vm_mm == t->mm) 534 add_to_kill(t, page, vma, to_kill); 535 } 536 } 537 read_unlock(&tasklist_lock); 538 i_mmap_unlock_read(mapping); 539 } 540 541 /* 542 * Collect the processes who have the corrupted page mapped to kill. 543 */ 544 static void collect_procs(struct page *page, struct list_head *tokill, 545 int force_early) 546 { 547 if (!page->mapping) 548 return; 549 550 if (PageAnon(page)) 551 collect_procs_anon(page, tokill, force_early); 552 else 553 collect_procs_file(page, tokill, force_early); 554 } 555 556 static const char *action_name[] = { 557 [MF_IGNORED] = "Ignored", 558 [MF_FAILED] = "Failed", 559 [MF_DELAYED] = "Delayed", 560 [MF_RECOVERED] = "Recovered", 561 }; 562 563 static const char * const action_page_types[] = { 564 [MF_MSG_KERNEL] = "reserved kernel page", 565 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 566 [MF_MSG_SLAB] = "kernel slab page", 567 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 568 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 569 [MF_MSG_HUGE] = "huge page", 570 [MF_MSG_FREE_HUGE] = "free huge page", 571 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 572 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 573 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 574 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 575 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 576 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 577 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 578 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 579 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 580 [MF_MSG_CLEAN_LRU] = "clean LRU page", 581 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 582 [MF_MSG_BUDDY] = "free buddy page", 583 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 584 [MF_MSG_DAX] = "dax page", 585 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 586 [MF_MSG_UNKNOWN] = "unknown page", 587 }; 588 589 /* 590 * XXX: It is possible that a page is isolated from LRU cache, 591 * and then kept in swap cache or failed to remove from page cache. 592 * The page count will stop it from being freed by unpoison. 593 * Stress tests should be aware of this memory leak problem. 594 */ 595 static int delete_from_lru_cache(struct page *p) 596 { 597 if (!isolate_lru_page(p)) { 598 /* 599 * Clear sensible page flags, so that the buddy system won't 600 * complain when the page is unpoison-and-freed. 601 */ 602 ClearPageActive(p); 603 ClearPageUnevictable(p); 604 605 /* 606 * Poisoned page might never drop its ref count to 0 so we have 607 * to uncharge it manually from its memcg. 608 */ 609 mem_cgroup_uncharge(p); 610 611 /* 612 * drop the page count elevated by isolate_lru_page() 613 */ 614 put_page(p); 615 return 0; 616 } 617 return -EIO; 618 } 619 620 static int truncate_error_page(struct page *p, unsigned long pfn, 621 struct address_space *mapping) 622 { 623 int ret = MF_FAILED; 624 625 if (mapping->a_ops->error_remove_page) { 626 int err = mapping->a_ops->error_remove_page(mapping, p); 627 628 if (err != 0) { 629 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 630 pfn, err); 631 } else if (page_has_private(p) && 632 !try_to_release_page(p, GFP_NOIO)) { 633 pr_info("Memory failure: %#lx: failed to release buffers\n", 634 pfn); 635 } else { 636 ret = MF_RECOVERED; 637 } 638 } else { 639 /* 640 * If the file system doesn't support it just invalidate 641 * This fails on dirty or anything with private pages 642 */ 643 if (invalidate_inode_page(p)) 644 ret = MF_RECOVERED; 645 else 646 pr_info("Memory failure: %#lx: Failed to invalidate\n", 647 pfn); 648 } 649 650 return ret; 651 } 652 653 /* 654 * Error hit kernel page. 655 * Do nothing, try to be lucky and not touch this instead. For a few cases we 656 * could be more sophisticated. 657 */ 658 static int me_kernel(struct page *p, unsigned long pfn) 659 { 660 return MF_IGNORED; 661 } 662 663 /* 664 * Page in unknown state. Do nothing. 665 */ 666 static int me_unknown(struct page *p, unsigned long pfn) 667 { 668 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 669 return MF_FAILED; 670 } 671 672 /* 673 * Clean (or cleaned) page cache page. 674 */ 675 static int me_pagecache_clean(struct page *p, unsigned long pfn) 676 { 677 struct address_space *mapping; 678 679 delete_from_lru_cache(p); 680 681 /* 682 * For anonymous pages we're done the only reference left 683 * should be the one m_f() holds. 684 */ 685 if (PageAnon(p)) 686 return MF_RECOVERED; 687 688 /* 689 * Now truncate the page in the page cache. This is really 690 * more like a "temporary hole punch" 691 * Don't do this for block devices when someone else 692 * has a reference, because it could be file system metadata 693 * and that's not safe to truncate. 694 */ 695 mapping = page_mapping(p); 696 if (!mapping) { 697 /* 698 * Page has been teared down in the meanwhile 699 */ 700 return MF_FAILED; 701 } 702 703 /* 704 * Truncation is a bit tricky. Enable it per file system for now. 705 * 706 * Open: to take i_mutex or not for this? Right now we don't. 707 */ 708 return truncate_error_page(p, pfn, mapping); 709 } 710 711 /* 712 * Dirty pagecache page 713 * Issues: when the error hit a hole page the error is not properly 714 * propagated. 715 */ 716 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 717 { 718 struct address_space *mapping = page_mapping(p); 719 720 SetPageError(p); 721 /* TBD: print more information about the file. */ 722 if (mapping) { 723 /* 724 * IO error will be reported by write(), fsync(), etc. 725 * who check the mapping. 726 * This way the application knows that something went 727 * wrong with its dirty file data. 728 * 729 * There's one open issue: 730 * 731 * The EIO will be only reported on the next IO 732 * operation and then cleared through the IO map. 733 * Normally Linux has two mechanisms to pass IO error 734 * first through the AS_EIO flag in the address space 735 * and then through the PageError flag in the page. 736 * Since we drop pages on memory failure handling the 737 * only mechanism open to use is through AS_AIO. 738 * 739 * This has the disadvantage that it gets cleared on 740 * the first operation that returns an error, while 741 * the PageError bit is more sticky and only cleared 742 * when the page is reread or dropped. If an 743 * application assumes it will always get error on 744 * fsync, but does other operations on the fd before 745 * and the page is dropped between then the error 746 * will not be properly reported. 747 * 748 * This can already happen even without hwpoisoned 749 * pages: first on metadata IO errors (which only 750 * report through AS_EIO) or when the page is dropped 751 * at the wrong time. 752 * 753 * So right now we assume that the application DTRT on 754 * the first EIO, but we're not worse than other parts 755 * of the kernel. 756 */ 757 mapping_set_error(mapping, -EIO); 758 } 759 760 return me_pagecache_clean(p, pfn); 761 } 762 763 /* 764 * Clean and dirty swap cache. 765 * 766 * Dirty swap cache page is tricky to handle. The page could live both in page 767 * cache and swap cache(ie. page is freshly swapped in). So it could be 768 * referenced concurrently by 2 types of PTEs: 769 * normal PTEs and swap PTEs. We try to handle them consistently by calling 770 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 771 * and then 772 * - clear dirty bit to prevent IO 773 * - remove from LRU 774 * - but keep in the swap cache, so that when we return to it on 775 * a later page fault, we know the application is accessing 776 * corrupted data and shall be killed (we installed simple 777 * interception code in do_swap_page to catch it). 778 * 779 * Clean swap cache pages can be directly isolated. A later page fault will 780 * bring in the known good data from disk. 781 */ 782 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 783 { 784 ClearPageDirty(p); 785 /* Trigger EIO in shmem: */ 786 ClearPageUptodate(p); 787 788 if (!delete_from_lru_cache(p)) 789 return MF_DELAYED; 790 else 791 return MF_FAILED; 792 } 793 794 static int me_swapcache_clean(struct page *p, unsigned long pfn) 795 { 796 delete_from_swap_cache(p); 797 798 if (!delete_from_lru_cache(p)) 799 return MF_RECOVERED; 800 else 801 return MF_FAILED; 802 } 803 804 /* 805 * Huge pages. Needs work. 806 * Issues: 807 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 808 * To narrow down kill region to one page, we need to break up pmd. 809 */ 810 static int me_huge_page(struct page *p, unsigned long pfn) 811 { 812 int res = 0; 813 struct page *hpage = compound_head(p); 814 struct address_space *mapping; 815 816 if (!PageHuge(hpage)) 817 return MF_DELAYED; 818 819 mapping = page_mapping(hpage); 820 if (mapping) { 821 res = truncate_error_page(hpage, pfn, mapping); 822 } else { 823 unlock_page(hpage); 824 /* 825 * migration entry prevents later access on error anonymous 826 * hugepage, so we can free and dissolve it into buddy to 827 * save healthy subpages. 828 */ 829 if (PageAnon(hpage)) 830 put_page(hpage); 831 dissolve_free_huge_page(p); 832 res = MF_RECOVERED; 833 lock_page(hpage); 834 } 835 836 return res; 837 } 838 839 /* 840 * Various page states we can handle. 841 * 842 * A page state is defined by its current page->flags bits. 843 * The table matches them in order and calls the right handler. 844 * 845 * This is quite tricky because we can access page at any time 846 * in its live cycle, so all accesses have to be extremely careful. 847 * 848 * This is not complete. More states could be added. 849 * For any missing state don't attempt recovery. 850 */ 851 852 #define dirty (1UL << PG_dirty) 853 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 854 #define unevict (1UL << PG_unevictable) 855 #define mlock (1UL << PG_mlocked) 856 #define lru (1UL << PG_lru) 857 #define head (1UL << PG_head) 858 #define slab (1UL << PG_slab) 859 #define reserved (1UL << PG_reserved) 860 861 static struct page_state { 862 unsigned long mask; 863 unsigned long res; 864 enum mf_action_page_type type; 865 int (*action)(struct page *p, unsigned long pfn); 866 } error_states[] = { 867 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 868 /* 869 * free pages are specially detected outside this table: 870 * PG_buddy pages only make a small fraction of all free pages. 871 */ 872 873 /* 874 * Could in theory check if slab page is free or if we can drop 875 * currently unused objects without touching them. But just 876 * treat it as standard kernel for now. 877 */ 878 { slab, slab, MF_MSG_SLAB, me_kernel }, 879 880 { head, head, MF_MSG_HUGE, me_huge_page }, 881 882 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 883 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 884 885 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 886 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 887 888 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 889 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 890 891 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 892 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 893 894 /* 895 * Catchall entry: must be at end. 896 */ 897 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 898 }; 899 900 #undef dirty 901 #undef sc 902 #undef unevict 903 #undef mlock 904 #undef lru 905 #undef head 906 #undef slab 907 #undef reserved 908 909 /* 910 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 911 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 912 */ 913 static void action_result(unsigned long pfn, enum mf_action_page_type type, 914 enum mf_result result) 915 { 916 trace_memory_failure_event(pfn, type, result); 917 918 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 919 pfn, action_page_types[type], action_name[result]); 920 } 921 922 static int page_action(struct page_state *ps, struct page *p, 923 unsigned long pfn) 924 { 925 int result; 926 int count; 927 928 result = ps->action(p, pfn); 929 930 count = page_count(p) - 1; 931 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 932 count--; 933 if (count > 0) { 934 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 935 pfn, action_page_types[ps->type], count); 936 result = MF_FAILED; 937 } 938 action_result(pfn, ps->type, result); 939 940 /* Could do more checks here if page looks ok */ 941 /* 942 * Could adjust zone counters here to correct for the missing page. 943 */ 944 945 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 946 } 947 948 /** 949 * get_hwpoison_page() - Get refcount for memory error handling: 950 * @page: raw error page (hit by memory error) 951 * 952 * Return: return 0 if failed to grab the refcount, otherwise true (some 953 * non-zero value.) 954 */ 955 static int get_hwpoison_page(struct page *page) 956 { 957 struct page *head = compound_head(page); 958 959 if (!PageHuge(head) && PageTransHuge(head)) { 960 /* 961 * Non anonymous thp exists only in allocation/free time. We 962 * can't handle such a case correctly, so let's give it up. 963 * This should be better than triggering BUG_ON when kernel 964 * tries to touch the "partially handled" page. 965 */ 966 if (!PageAnon(head)) { 967 pr_err("Memory failure: %#lx: non anonymous thp\n", 968 page_to_pfn(page)); 969 return 0; 970 } 971 } 972 973 if (get_page_unless_zero(head)) { 974 if (head == compound_head(page)) 975 return 1; 976 977 pr_info("Memory failure: %#lx cannot catch tail\n", 978 page_to_pfn(page)); 979 put_page(head); 980 } 981 982 return 0; 983 } 984 985 /* 986 * Do all that is necessary to remove user space mappings. Unmap 987 * the pages and send SIGBUS to the processes if the data was dirty. 988 */ 989 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 990 int flags, struct page **hpagep) 991 { 992 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 993 struct address_space *mapping; 994 LIST_HEAD(tokill); 995 bool unmap_success = true; 996 int kill = 1, forcekill; 997 struct page *hpage = *hpagep; 998 bool mlocked = PageMlocked(hpage); 999 1000 /* 1001 * Here we are interested only in user-mapped pages, so skip any 1002 * other types of pages. 1003 */ 1004 if (PageReserved(p) || PageSlab(p)) 1005 return true; 1006 if (!(PageLRU(hpage) || PageHuge(p))) 1007 return true; 1008 1009 /* 1010 * This check implies we don't kill processes if their pages 1011 * are in the swap cache early. Those are always late kills. 1012 */ 1013 if (!page_mapped(hpage)) 1014 return true; 1015 1016 if (PageKsm(p)) { 1017 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1018 return false; 1019 } 1020 1021 if (PageSwapCache(p)) { 1022 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1023 pfn); 1024 ttu |= TTU_IGNORE_HWPOISON; 1025 } 1026 1027 /* 1028 * Propagate the dirty bit from PTEs to struct page first, because we 1029 * need this to decide if we should kill or just drop the page. 1030 * XXX: the dirty test could be racy: set_page_dirty() may not always 1031 * be called inside page lock (it's recommended but not enforced). 1032 */ 1033 mapping = page_mapping(hpage); 1034 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1035 mapping_can_writeback(mapping)) { 1036 if (page_mkclean(hpage)) { 1037 SetPageDirty(hpage); 1038 } else { 1039 kill = 0; 1040 ttu |= TTU_IGNORE_HWPOISON; 1041 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1042 pfn); 1043 } 1044 } 1045 1046 /* 1047 * First collect all the processes that have the page 1048 * mapped in dirty form. This has to be done before try_to_unmap, 1049 * because ttu takes the rmap data structures down. 1050 * 1051 * Error handling: We ignore errors here because 1052 * there's nothing that can be done. 1053 */ 1054 if (kill) 1055 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1056 1057 if (!PageHuge(hpage)) { 1058 unmap_success = try_to_unmap(hpage, ttu); 1059 } else { 1060 /* 1061 * For hugetlb pages, try_to_unmap could potentially call 1062 * huge_pmd_unshare. Because of this, take semaphore in 1063 * write mode here and set TTU_RMAP_LOCKED to indicate we 1064 * have taken the lock at this higer level. 1065 * 1066 * Note that the call to hugetlb_page_mapping_lock_write 1067 * is necessary even if mapping is already set. It handles 1068 * ugliness of potentially having to drop page lock to obtain 1069 * i_mmap_rwsem. 1070 */ 1071 mapping = hugetlb_page_mapping_lock_write(hpage); 1072 1073 if (mapping) { 1074 unmap_success = try_to_unmap(hpage, 1075 ttu|TTU_RMAP_LOCKED); 1076 i_mmap_unlock_write(mapping); 1077 } else { 1078 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n", 1079 pfn); 1080 unmap_success = false; 1081 } 1082 } 1083 if (!unmap_success) 1084 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1085 pfn, page_mapcount(hpage)); 1086 1087 /* 1088 * try_to_unmap() might put mlocked page in lru cache, so call 1089 * shake_page() again to ensure that it's flushed. 1090 */ 1091 if (mlocked) 1092 shake_page(hpage, 0); 1093 1094 /* 1095 * Now that the dirty bit has been propagated to the 1096 * struct page and all unmaps done we can decide if 1097 * killing is needed or not. Only kill when the page 1098 * was dirty or the process is not restartable, 1099 * otherwise the tokill list is merely 1100 * freed. When there was a problem unmapping earlier 1101 * use a more force-full uncatchable kill to prevent 1102 * any accesses to the poisoned memory. 1103 */ 1104 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1105 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1106 1107 return unmap_success; 1108 } 1109 1110 static int identify_page_state(unsigned long pfn, struct page *p, 1111 unsigned long page_flags) 1112 { 1113 struct page_state *ps; 1114 1115 /* 1116 * The first check uses the current page flags which may not have any 1117 * relevant information. The second check with the saved page flags is 1118 * carried out only if the first check can't determine the page status. 1119 */ 1120 for (ps = error_states;; ps++) 1121 if ((p->flags & ps->mask) == ps->res) 1122 break; 1123 1124 page_flags |= (p->flags & (1UL << PG_dirty)); 1125 1126 if (!ps->mask) 1127 for (ps = error_states;; ps++) 1128 if ((page_flags & ps->mask) == ps->res) 1129 break; 1130 return page_action(ps, p, pfn); 1131 } 1132 1133 static int try_to_split_thp_page(struct page *page, const char *msg) 1134 { 1135 lock_page(page); 1136 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1137 unsigned long pfn = page_to_pfn(page); 1138 1139 unlock_page(page); 1140 if (!PageAnon(page)) 1141 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn); 1142 else 1143 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1144 put_page(page); 1145 return -EBUSY; 1146 } 1147 unlock_page(page); 1148 1149 return 0; 1150 } 1151 1152 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1153 { 1154 struct page *p = pfn_to_page(pfn); 1155 struct page *head = compound_head(p); 1156 int res; 1157 unsigned long page_flags; 1158 1159 if (TestSetPageHWPoison(head)) { 1160 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1161 pfn); 1162 return 0; 1163 } 1164 1165 num_poisoned_pages_inc(); 1166 1167 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1168 /* 1169 * Check "filter hit" and "race with other subpage." 1170 */ 1171 lock_page(head); 1172 if (PageHWPoison(head)) { 1173 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1174 || (p != head && TestSetPageHWPoison(head))) { 1175 num_poisoned_pages_dec(); 1176 unlock_page(head); 1177 return 0; 1178 } 1179 } 1180 unlock_page(head); 1181 dissolve_free_huge_page(p); 1182 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1183 return 0; 1184 } 1185 1186 lock_page(head); 1187 page_flags = head->flags; 1188 1189 if (!PageHWPoison(head)) { 1190 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1191 num_poisoned_pages_dec(); 1192 unlock_page(head); 1193 put_page(head); 1194 return 0; 1195 } 1196 1197 /* 1198 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1199 * simply disable it. In order to make it work properly, we need 1200 * make sure that: 1201 * - conversion of a pud that maps an error hugetlb into hwpoison 1202 * entry properly works, and 1203 * - other mm code walking over page table is aware of pud-aligned 1204 * hwpoison entries. 1205 */ 1206 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1207 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1208 res = -EBUSY; 1209 goto out; 1210 } 1211 1212 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1213 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1214 res = -EBUSY; 1215 goto out; 1216 } 1217 1218 res = identify_page_state(pfn, p, page_flags); 1219 out: 1220 unlock_page(head); 1221 return res; 1222 } 1223 1224 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1225 struct dev_pagemap *pgmap) 1226 { 1227 struct page *page = pfn_to_page(pfn); 1228 const bool unmap_success = true; 1229 unsigned long size = 0; 1230 struct to_kill *tk; 1231 LIST_HEAD(tokill); 1232 int rc = -EBUSY; 1233 loff_t start; 1234 dax_entry_t cookie; 1235 1236 /* 1237 * Prevent the inode from being freed while we are interrogating 1238 * the address_space, typically this would be handled by 1239 * lock_page(), but dax pages do not use the page lock. This 1240 * also prevents changes to the mapping of this pfn until 1241 * poison signaling is complete. 1242 */ 1243 cookie = dax_lock_page(page); 1244 if (!cookie) 1245 goto out; 1246 1247 if (hwpoison_filter(page)) { 1248 rc = 0; 1249 goto unlock; 1250 } 1251 1252 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1253 /* 1254 * TODO: Handle HMM pages which may need coordination 1255 * with device-side memory. 1256 */ 1257 goto unlock; 1258 } 1259 1260 /* 1261 * Use this flag as an indication that the dax page has been 1262 * remapped UC to prevent speculative consumption of poison. 1263 */ 1264 SetPageHWPoison(page); 1265 1266 /* 1267 * Unlike System-RAM there is no possibility to swap in a 1268 * different physical page at a given virtual address, so all 1269 * userspace consumption of ZONE_DEVICE memory necessitates 1270 * SIGBUS (i.e. MF_MUST_KILL) 1271 */ 1272 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1273 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1274 1275 list_for_each_entry(tk, &tokill, nd) 1276 if (tk->size_shift) 1277 size = max(size, 1UL << tk->size_shift); 1278 if (size) { 1279 /* 1280 * Unmap the largest mapping to avoid breaking up 1281 * device-dax mappings which are constant size. The 1282 * actual size of the mapping being torn down is 1283 * communicated in siginfo, see kill_proc() 1284 */ 1285 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1286 unmap_mapping_range(page->mapping, start, start + size, 0); 1287 } 1288 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1289 rc = 0; 1290 unlock: 1291 dax_unlock_page(page, cookie); 1292 out: 1293 /* drop pgmap ref acquired in caller */ 1294 put_dev_pagemap(pgmap); 1295 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1296 return rc; 1297 } 1298 1299 /** 1300 * memory_failure - Handle memory failure of a page. 1301 * @pfn: Page Number of the corrupted page 1302 * @flags: fine tune action taken 1303 * 1304 * This function is called by the low level machine check code 1305 * of an architecture when it detects hardware memory corruption 1306 * of a page. It tries its best to recover, which includes 1307 * dropping pages, killing processes etc. 1308 * 1309 * The function is primarily of use for corruptions that 1310 * happen outside the current execution context (e.g. when 1311 * detected by a background scrubber) 1312 * 1313 * Must run in process context (e.g. a work queue) with interrupts 1314 * enabled and no spinlocks hold. 1315 */ 1316 int memory_failure(unsigned long pfn, int flags) 1317 { 1318 struct page *p; 1319 struct page *hpage; 1320 struct page *orig_head; 1321 struct dev_pagemap *pgmap; 1322 int res; 1323 unsigned long page_flags; 1324 1325 if (!sysctl_memory_failure_recovery) 1326 panic("Memory failure on page %lx", pfn); 1327 1328 p = pfn_to_online_page(pfn); 1329 if (!p) { 1330 if (pfn_valid(pfn)) { 1331 pgmap = get_dev_pagemap(pfn, NULL); 1332 if (pgmap) 1333 return memory_failure_dev_pagemap(pfn, flags, 1334 pgmap); 1335 } 1336 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1337 pfn); 1338 return -ENXIO; 1339 } 1340 1341 if (PageHuge(p)) 1342 return memory_failure_hugetlb(pfn, flags); 1343 if (TestSetPageHWPoison(p)) { 1344 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1345 pfn); 1346 return 0; 1347 } 1348 1349 orig_head = hpage = compound_head(p); 1350 num_poisoned_pages_inc(); 1351 1352 /* 1353 * We need/can do nothing about count=0 pages. 1354 * 1) it's a free page, and therefore in safe hand: 1355 * prep_new_page() will be the gate keeper. 1356 * 2) it's part of a non-compound high order page. 1357 * Implies some kernel user: cannot stop them from 1358 * R/W the page; let's pray that the page has been 1359 * used and will be freed some time later. 1360 * In fact it's dangerous to directly bump up page count from 0, 1361 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1362 */ 1363 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1364 if (is_free_buddy_page(p)) { 1365 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1366 return 0; 1367 } else { 1368 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1369 return -EBUSY; 1370 } 1371 } 1372 1373 if (PageTransHuge(hpage)) { 1374 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1375 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1376 return -EBUSY; 1377 } 1378 VM_BUG_ON_PAGE(!page_count(p), p); 1379 } 1380 1381 /* 1382 * We ignore non-LRU pages for good reasons. 1383 * - PG_locked is only well defined for LRU pages and a few others 1384 * - to avoid races with __SetPageLocked() 1385 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1386 * The check (unnecessarily) ignores LRU pages being isolated and 1387 * walked by the page reclaim code, however that's not a big loss. 1388 */ 1389 shake_page(p, 0); 1390 /* shake_page could have turned it free. */ 1391 if (!PageLRU(p) && is_free_buddy_page(p)) { 1392 if (flags & MF_COUNT_INCREASED) 1393 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1394 else 1395 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1396 return 0; 1397 } 1398 1399 lock_page(p); 1400 1401 /* 1402 * The page could have changed compound pages during the locking. 1403 * If this happens just bail out. 1404 */ 1405 if (PageCompound(p) && compound_head(p) != orig_head) { 1406 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1407 res = -EBUSY; 1408 goto out; 1409 } 1410 1411 /* 1412 * We use page flags to determine what action should be taken, but 1413 * the flags can be modified by the error containment action. One 1414 * example is an mlocked page, where PG_mlocked is cleared by 1415 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1416 * correctly, we save a copy of the page flags at this time. 1417 */ 1418 page_flags = p->flags; 1419 1420 /* 1421 * unpoison always clear PG_hwpoison inside page lock 1422 */ 1423 if (!PageHWPoison(p)) { 1424 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1425 num_poisoned_pages_dec(); 1426 unlock_page(p); 1427 put_page(p); 1428 return 0; 1429 } 1430 if (hwpoison_filter(p)) { 1431 if (TestClearPageHWPoison(p)) 1432 num_poisoned_pages_dec(); 1433 unlock_page(p); 1434 put_page(p); 1435 return 0; 1436 } 1437 1438 if (!PageTransTail(p) && !PageLRU(p)) 1439 goto identify_page_state; 1440 1441 /* 1442 * It's very difficult to mess with pages currently under IO 1443 * and in many cases impossible, so we just avoid it here. 1444 */ 1445 wait_on_page_writeback(p); 1446 1447 /* 1448 * Now take care of user space mappings. 1449 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1450 */ 1451 if (!hwpoison_user_mappings(p, pfn, flags, &p)) { 1452 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1453 res = -EBUSY; 1454 goto out; 1455 } 1456 1457 /* 1458 * Torn down by someone else? 1459 */ 1460 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1461 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1462 res = -EBUSY; 1463 goto out; 1464 } 1465 1466 identify_page_state: 1467 res = identify_page_state(pfn, p, page_flags); 1468 out: 1469 unlock_page(p); 1470 return res; 1471 } 1472 EXPORT_SYMBOL_GPL(memory_failure); 1473 1474 #define MEMORY_FAILURE_FIFO_ORDER 4 1475 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1476 1477 struct memory_failure_entry { 1478 unsigned long pfn; 1479 int flags; 1480 }; 1481 1482 struct memory_failure_cpu { 1483 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1484 MEMORY_FAILURE_FIFO_SIZE); 1485 spinlock_t lock; 1486 struct work_struct work; 1487 }; 1488 1489 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1490 1491 /** 1492 * memory_failure_queue - Schedule handling memory failure of a page. 1493 * @pfn: Page Number of the corrupted page 1494 * @flags: Flags for memory failure handling 1495 * 1496 * This function is called by the low level hardware error handler 1497 * when it detects hardware memory corruption of a page. It schedules 1498 * the recovering of error page, including dropping pages, killing 1499 * processes etc. 1500 * 1501 * The function is primarily of use for corruptions that 1502 * happen outside the current execution context (e.g. when 1503 * detected by a background scrubber) 1504 * 1505 * Can run in IRQ context. 1506 */ 1507 void memory_failure_queue(unsigned long pfn, int flags) 1508 { 1509 struct memory_failure_cpu *mf_cpu; 1510 unsigned long proc_flags; 1511 struct memory_failure_entry entry = { 1512 .pfn = pfn, 1513 .flags = flags, 1514 }; 1515 1516 mf_cpu = &get_cpu_var(memory_failure_cpu); 1517 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1518 if (kfifo_put(&mf_cpu->fifo, entry)) 1519 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1520 else 1521 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1522 pfn); 1523 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1524 put_cpu_var(memory_failure_cpu); 1525 } 1526 EXPORT_SYMBOL_GPL(memory_failure_queue); 1527 1528 static void memory_failure_work_func(struct work_struct *work) 1529 { 1530 struct memory_failure_cpu *mf_cpu; 1531 struct memory_failure_entry entry = { 0, }; 1532 unsigned long proc_flags; 1533 int gotten; 1534 1535 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1536 for (;;) { 1537 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1538 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1539 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1540 if (!gotten) 1541 break; 1542 if (entry.flags & MF_SOFT_OFFLINE) 1543 soft_offline_page(entry.pfn, entry.flags); 1544 else 1545 memory_failure(entry.pfn, entry.flags); 1546 } 1547 } 1548 1549 /* 1550 * Process memory_failure work queued on the specified CPU. 1551 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1552 */ 1553 void memory_failure_queue_kick(int cpu) 1554 { 1555 struct memory_failure_cpu *mf_cpu; 1556 1557 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1558 cancel_work_sync(&mf_cpu->work); 1559 memory_failure_work_func(&mf_cpu->work); 1560 } 1561 1562 static int __init memory_failure_init(void) 1563 { 1564 struct memory_failure_cpu *mf_cpu; 1565 int cpu; 1566 1567 for_each_possible_cpu(cpu) { 1568 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1569 spin_lock_init(&mf_cpu->lock); 1570 INIT_KFIFO(mf_cpu->fifo); 1571 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1572 } 1573 1574 return 0; 1575 } 1576 core_initcall(memory_failure_init); 1577 1578 #define unpoison_pr_info(fmt, pfn, rs) \ 1579 ({ \ 1580 if (__ratelimit(rs)) \ 1581 pr_info(fmt, pfn); \ 1582 }) 1583 1584 /** 1585 * unpoison_memory - Unpoison a previously poisoned page 1586 * @pfn: Page number of the to be unpoisoned page 1587 * 1588 * Software-unpoison a page that has been poisoned by 1589 * memory_failure() earlier. 1590 * 1591 * This is only done on the software-level, so it only works 1592 * for linux injected failures, not real hardware failures 1593 * 1594 * Returns 0 for success, otherwise -errno. 1595 */ 1596 int unpoison_memory(unsigned long pfn) 1597 { 1598 struct page *page; 1599 struct page *p; 1600 int freeit = 0; 1601 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1602 DEFAULT_RATELIMIT_BURST); 1603 1604 if (!pfn_valid(pfn)) 1605 return -ENXIO; 1606 1607 p = pfn_to_page(pfn); 1608 page = compound_head(p); 1609 1610 if (!PageHWPoison(p)) { 1611 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1612 pfn, &unpoison_rs); 1613 return 0; 1614 } 1615 1616 if (page_count(page) > 1) { 1617 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1618 pfn, &unpoison_rs); 1619 return 0; 1620 } 1621 1622 if (page_mapped(page)) { 1623 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1624 pfn, &unpoison_rs); 1625 return 0; 1626 } 1627 1628 if (page_mapping(page)) { 1629 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1630 pfn, &unpoison_rs); 1631 return 0; 1632 } 1633 1634 /* 1635 * unpoison_memory() can encounter thp only when the thp is being 1636 * worked by memory_failure() and the page lock is not held yet. 1637 * In such case, we yield to memory_failure() and make unpoison fail. 1638 */ 1639 if (!PageHuge(page) && PageTransHuge(page)) { 1640 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1641 pfn, &unpoison_rs); 1642 return 0; 1643 } 1644 1645 if (!get_hwpoison_page(p)) { 1646 if (TestClearPageHWPoison(p)) 1647 num_poisoned_pages_dec(); 1648 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1649 pfn, &unpoison_rs); 1650 return 0; 1651 } 1652 1653 lock_page(page); 1654 /* 1655 * This test is racy because PG_hwpoison is set outside of page lock. 1656 * That's acceptable because that won't trigger kernel panic. Instead, 1657 * the PG_hwpoison page will be caught and isolated on the entrance to 1658 * the free buddy page pool. 1659 */ 1660 if (TestClearPageHWPoison(page)) { 1661 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1662 pfn, &unpoison_rs); 1663 num_poisoned_pages_dec(); 1664 freeit = 1; 1665 } 1666 unlock_page(page); 1667 1668 put_page(page); 1669 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1670 put_page(page); 1671 1672 return 0; 1673 } 1674 EXPORT_SYMBOL(unpoison_memory); 1675 1676 /* 1677 * Safely get reference count of an arbitrary page. 1678 * Returns 0 for a free page, -EIO for a zero refcount page 1679 * that is not free, and 1 for any other page type. 1680 * For 1 the page is returned with increased page count, otherwise not. 1681 */ 1682 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1683 { 1684 int ret; 1685 1686 if (flags & MF_COUNT_INCREASED) 1687 return 1; 1688 1689 /* 1690 * When the target page is a free hugepage, just remove it 1691 * from free hugepage list. 1692 */ 1693 if (!get_hwpoison_page(p)) { 1694 if (PageHuge(p)) { 1695 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1696 ret = 0; 1697 } else if (is_free_buddy_page(p)) { 1698 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1699 ret = 0; 1700 } else if (page_count(p)) { 1701 /* raced with allocation */ 1702 ret = -EBUSY; 1703 } else { 1704 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1705 __func__, pfn, p->flags); 1706 ret = -EIO; 1707 } 1708 } else { 1709 /* Not a free page */ 1710 ret = 1; 1711 } 1712 return ret; 1713 } 1714 1715 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1716 { 1717 int ret = __get_any_page(page, pfn, flags); 1718 1719 if (ret == -EBUSY) 1720 ret = __get_any_page(page, pfn, flags); 1721 1722 if (ret == 1 && !PageHuge(page) && 1723 !PageLRU(page) && !__PageMovable(page)) { 1724 /* 1725 * Try to free it. 1726 */ 1727 put_page(page); 1728 shake_page(page, 1); 1729 1730 /* 1731 * Did it turn free? 1732 */ 1733 ret = __get_any_page(page, pfn, 0); 1734 if (ret == 1 && !PageLRU(page)) { 1735 /* Drop page reference which is from __get_any_page() */ 1736 put_page(page); 1737 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1738 pfn, page->flags, &page->flags); 1739 return -EIO; 1740 } 1741 } 1742 return ret; 1743 } 1744 1745 static bool isolate_page(struct page *page, struct list_head *pagelist) 1746 { 1747 bool isolated = false; 1748 bool lru = PageLRU(page); 1749 1750 if (PageHuge(page)) { 1751 isolated = isolate_huge_page(page, pagelist); 1752 } else { 1753 if (lru) 1754 isolated = !isolate_lru_page(page); 1755 else 1756 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1757 1758 if (isolated) 1759 list_add(&page->lru, pagelist); 1760 } 1761 1762 if (isolated && lru) 1763 inc_node_page_state(page, NR_ISOLATED_ANON + 1764 page_is_file_lru(page)); 1765 1766 /* 1767 * If we succeed to isolate the page, we grabbed another refcount on 1768 * the page, so we can safely drop the one we got from get_any_pages(). 1769 * If we failed to isolate the page, it means that we cannot go further 1770 * and we will return an error, so drop the reference we got from 1771 * get_any_pages() as well. 1772 */ 1773 put_page(page); 1774 return isolated; 1775 } 1776 1777 /* 1778 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 1779 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 1780 * If the page is mapped, it migrates the contents over. 1781 */ 1782 static int __soft_offline_page(struct page *page) 1783 { 1784 int ret = 0; 1785 unsigned long pfn = page_to_pfn(page); 1786 struct page *hpage = compound_head(page); 1787 char const *msg_page[] = {"page", "hugepage"}; 1788 bool huge = PageHuge(page); 1789 LIST_HEAD(pagelist); 1790 struct migration_target_control mtc = { 1791 .nid = NUMA_NO_NODE, 1792 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1793 }; 1794 1795 /* 1796 * Check PageHWPoison again inside page lock because PageHWPoison 1797 * is set by memory_failure() outside page lock. Note that 1798 * memory_failure() also double-checks PageHWPoison inside page lock, 1799 * so there's no race between soft_offline_page() and memory_failure(). 1800 */ 1801 lock_page(page); 1802 if (!PageHuge(page)) 1803 wait_on_page_writeback(page); 1804 if (PageHWPoison(page)) { 1805 unlock_page(page); 1806 put_page(page); 1807 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1808 return 0; 1809 } 1810 1811 if (!PageHuge(page)) 1812 /* 1813 * Try to invalidate first. This should work for 1814 * non dirty unmapped page cache pages. 1815 */ 1816 ret = invalidate_inode_page(page); 1817 unlock_page(page); 1818 1819 /* 1820 * RED-PEN would be better to keep it isolated here, but we 1821 * would need to fix isolation locking first. 1822 */ 1823 if (ret) { 1824 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1825 page_handle_poison(page, false, true); 1826 return 0; 1827 } 1828 1829 if (isolate_page(hpage, &pagelist)) { 1830 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 1831 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE); 1832 if (!ret) { 1833 bool release = !huge; 1834 1835 if (!page_handle_poison(page, huge, release)) 1836 ret = -EBUSY; 1837 } else { 1838 if (!list_empty(&pagelist)) 1839 putback_movable_pages(&pagelist); 1840 1841 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n", 1842 pfn, msg_page[huge], ret, page->flags, &page->flags); 1843 if (ret > 0) 1844 ret = -EIO; 1845 } 1846 } else { 1847 pr_info("soft offline: %#lx: %s isolation failed: %d, page count %d, type %lx (%pGp)\n", 1848 pfn, msg_page[huge], ret, page_count(page), page->flags, &page->flags); 1849 ret = -EBUSY; 1850 } 1851 return ret; 1852 } 1853 1854 static int soft_offline_in_use_page(struct page *page) 1855 { 1856 struct page *hpage = compound_head(page); 1857 1858 if (!PageHuge(page) && PageTransHuge(hpage)) 1859 if (try_to_split_thp_page(page, "soft offline") < 0) 1860 return -EBUSY; 1861 return __soft_offline_page(page); 1862 } 1863 1864 static int soft_offline_free_page(struct page *page) 1865 { 1866 int rc = 0; 1867 1868 if (!page_handle_poison(page, true, false)) 1869 rc = -EBUSY; 1870 1871 return rc; 1872 } 1873 1874 /** 1875 * soft_offline_page - Soft offline a page. 1876 * @pfn: pfn to soft-offline 1877 * @flags: flags. Same as memory_failure(). 1878 * 1879 * Returns 0 on success, otherwise negated errno. 1880 * 1881 * Soft offline a page, by migration or invalidation, 1882 * without killing anything. This is for the case when 1883 * a page is not corrupted yet (so it's still valid to access), 1884 * but has had a number of corrected errors and is better taken 1885 * out. 1886 * 1887 * The actual policy on when to do that is maintained by 1888 * user space. 1889 * 1890 * This should never impact any application or cause data loss, 1891 * however it might take some time. 1892 * 1893 * This is not a 100% solution for all memory, but tries to be 1894 * ``good enough'' for the majority of memory. 1895 */ 1896 int soft_offline_page(unsigned long pfn, int flags) 1897 { 1898 int ret; 1899 struct page *page; 1900 bool try_again = true; 1901 1902 if (!pfn_valid(pfn)) 1903 return -ENXIO; 1904 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1905 page = pfn_to_online_page(pfn); 1906 if (!page) 1907 return -EIO; 1908 1909 if (PageHWPoison(page)) { 1910 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1911 if (flags & MF_COUNT_INCREASED) 1912 put_page(page); 1913 return 0; 1914 } 1915 1916 retry: 1917 get_online_mems(); 1918 ret = get_any_page(page, pfn, flags); 1919 put_online_mems(); 1920 1921 if (ret > 0) 1922 ret = soft_offline_in_use_page(page); 1923 else if (ret == 0) 1924 if (soft_offline_free_page(page) && try_again) { 1925 try_again = false; 1926 goto retry; 1927 } 1928 1929 return ret; 1930 } 1931