xref: /openbmc/linux/mm/memory-failure.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 	if (hugepage_or_freepage) {
71 		/*
72 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 		 * returns 0 for non-hugetlb pages as well.
74 		 */
75 		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 			/*
77 			 * We could fail to take off the target page from buddy
78 			 * for example due to racy page allocaiton, but that's
79 			 * acceptable because soft-offlined page is not broken
80 			 * and if someone really want to use it, they should
81 			 * take it.
82 			 */
83 			return false;
84 	}
85 
86 	SetPageHWPoison(page);
87 	if (release)
88 		put_page(page);
89 	page_ref_inc(page);
90 	num_poisoned_pages_inc();
91 
92 	return true;
93 }
94 
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96 
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107 
108 static int hwpoison_filter_dev(struct page *p)
109 {
110 	struct address_space *mapping;
111 	dev_t dev;
112 
113 	if (hwpoison_filter_dev_major == ~0U &&
114 	    hwpoison_filter_dev_minor == ~0U)
115 		return 0;
116 
117 	/*
118 	 * page_mapping() does not accept slab pages.
119 	 */
120 	if (PageSlab(p))
121 		return -EINVAL;
122 
123 	mapping = page_mapping(p);
124 	if (mapping == NULL || mapping->host == NULL)
125 		return -EINVAL;
126 
127 	dev = mapping->host->i_sb->s_dev;
128 	if (hwpoison_filter_dev_major != ~0U &&
129 	    hwpoison_filter_dev_major != MAJOR(dev))
130 		return -EINVAL;
131 	if (hwpoison_filter_dev_minor != ~0U &&
132 	    hwpoison_filter_dev_minor != MINOR(dev))
133 		return -EINVAL;
134 
135 	return 0;
136 }
137 
138 static int hwpoison_filter_flags(struct page *p)
139 {
140 	if (!hwpoison_filter_flags_mask)
141 		return 0;
142 
143 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 				    hwpoison_filter_flags_value)
145 		return 0;
146 	else
147 		return -EINVAL;
148 }
149 
150 /*
151  * This allows stress tests to limit test scope to a collection of tasks
152  * by putting them under some memcg. This prevents killing unrelated/important
153  * processes such as /sbin/init. Note that the target task may share clean
154  * pages with init (eg. libc text), which is harmless. If the target task
155  * share _dirty_ pages with another task B, the test scheme must make sure B
156  * is also included in the memcg. At last, due to race conditions this filter
157  * can only guarantee that the page either belongs to the memcg tasks, or is
158  * a freed page.
159  */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163 static int hwpoison_filter_task(struct page *p)
164 {
165 	if (!hwpoison_filter_memcg)
166 		return 0;
167 
168 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 		return -EINVAL;
170 
171 	return 0;
172 }
173 #else
174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176 
177 int hwpoison_filter(struct page *p)
178 {
179 	if (!hwpoison_filter_enable)
180 		return 0;
181 
182 	if (hwpoison_filter_dev(p))
183 		return -EINVAL;
184 
185 	if (hwpoison_filter_flags(p))
186 		return -EINVAL;
187 
188 	if (hwpoison_filter_task(p))
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 #else
194 int hwpoison_filter(struct page *p)
195 {
196 	return 0;
197 }
198 #endif
199 
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201 
202 /*
203  * Kill all processes that have a poisoned page mapped and then isolate
204  * the page.
205  *
206  * General strategy:
207  * Find all processes having the page mapped and kill them.
208  * But we keep a page reference around so that the page is not
209  * actually freed yet.
210  * Then stash the page away
211  *
212  * There's no convenient way to get back to mapped processes
213  * from the VMAs. So do a brute-force search over all
214  * running processes.
215  *
216  * Remember that machine checks are not common (or rather
217  * if they are common you have other problems), so this shouldn't
218  * be a performance issue.
219  *
220  * Also there are some races possible while we get from the
221  * error detection to actually handle it.
222  */
223 
224 struct to_kill {
225 	struct list_head nd;
226 	struct task_struct *tsk;
227 	unsigned long addr;
228 	short size_shift;
229 };
230 
231 /*
232  * Send all the processes who have the page mapped a signal.
233  * ``action optional'' if they are not immediately affected by the error
234  * ``action required'' if error happened in current execution context
235  */
236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 	struct task_struct *t = tk->tsk;
239 	short addr_lsb = tk->size_shift;
240 	int ret = 0;
241 
242 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 			pfn, t->comm, t->pid);
244 
245 	if (flags & MF_ACTION_REQUIRED) {
246 		WARN_ON_ONCE(t != current);
247 		ret = force_sig_mceerr(BUS_MCEERR_AR,
248 					 (void __user *)tk->addr, addr_lsb);
249 	} else {
250 		/*
251 		 * Don't use force here, it's convenient if the signal
252 		 * can be temporarily blocked.
253 		 * This could cause a loop when the user sets SIGBUS
254 		 * to SIG_IGN, but hopefully no one will do that?
255 		 */
256 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257 				      addr_lsb, t);  /* synchronous? */
258 	}
259 	if (ret < 0)
260 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261 			t->comm, t->pid, ret);
262 	return ret;
263 }
264 
265 /*
266  * When a unknown page type is encountered drain as many buffers as possible
267  * in the hope to turn the page into a LRU or free page, which we can handle.
268  */
269 void shake_page(struct page *p, int access)
270 {
271 	if (PageHuge(p))
272 		return;
273 
274 	if (!PageSlab(p)) {
275 		lru_add_drain_all();
276 		if (PageLRU(p))
277 			return;
278 		drain_all_pages(page_zone(p));
279 		if (PageLRU(p) || is_free_buddy_page(p))
280 			return;
281 	}
282 
283 	/*
284 	 * Only call shrink_node_slabs here (which would also shrink
285 	 * other caches) if access is not potentially fatal.
286 	 */
287 	if (access)
288 		drop_slab_node(page_to_nid(p));
289 }
290 EXPORT_SYMBOL_GPL(shake_page);
291 
292 static unsigned long dev_pagemap_mapping_shift(struct page *page,
293 		struct vm_area_struct *vma)
294 {
295 	unsigned long address = vma_address(page, vma);
296 	pgd_t *pgd;
297 	p4d_t *p4d;
298 	pud_t *pud;
299 	pmd_t *pmd;
300 	pte_t *pte;
301 
302 	pgd = pgd_offset(vma->vm_mm, address);
303 	if (!pgd_present(*pgd))
304 		return 0;
305 	p4d = p4d_offset(pgd, address);
306 	if (!p4d_present(*p4d))
307 		return 0;
308 	pud = pud_offset(p4d, address);
309 	if (!pud_present(*pud))
310 		return 0;
311 	if (pud_devmap(*pud))
312 		return PUD_SHIFT;
313 	pmd = pmd_offset(pud, address);
314 	if (!pmd_present(*pmd))
315 		return 0;
316 	if (pmd_devmap(*pmd))
317 		return PMD_SHIFT;
318 	pte = pte_offset_map(pmd, address);
319 	if (!pte_present(*pte))
320 		return 0;
321 	if (pte_devmap(*pte))
322 		return PAGE_SHIFT;
323 	return 0;
324 }
325 
326 /*
327  * Failure handling: if we can't find or can't kill a process there's
328  * not much we can do.	We just print a message and ignore otherwise.
329  */
330 
331 /*
332  * Schedule a process for later kill.
333  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
334  */
335 static void add_to_kill(struct task_struct *tsk, struct page *p,
336 		       struct vm_area_struct *vma,
337 		       struct list_head *to_kill)
338 {
339 	struct to_kill *tk;
340 
341 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
342 	if (!tk) {
343 		pr_err("Memory failure: Out of memory while machine check handling\n");
344 		return;
345 	}
346 
347 	tk->addr = page_address_in_vma(p, vma);
348 	if (is_zone_device_page(p))
349 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
350 	else
351 		tk->size_shift = page_shift(compound_head(p));
352 
353 	/*
354 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
355 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
356 	 * so "tk->size_shift == 0" effectively checks no mapping on
357 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
358 	 * to a process' address space, it's possible not all N VMAs
359 	 * contain mappings for the page, but at least one VMA does.
360 	 * Only deliver SIGBUS with payload derived from the VMA that
361 	 * has a mapping for the page.
362 	 */
363 	if (tk->addr == -EFAULT) {
364 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
365 			page_to_pfn(p), tsk->comm);
366 	} else if (tk->size_shift == 0) {
367 		kfree(tk);
368 		return;
369 	}
370 
371 	get_task_struct(tsk);
372 	tk->tsk = tsk;
373 	list_add_tail(&tk->nd, to_kill);
374 }
375 
376 /*
377  * Kill the processes that have been collected earlier.
378  *
379  * Only do anything when DOIT is set, otherwise just free the list
380  * (this is used for clean pages which do not need killing)
381  * Also when FAIL is set do a force kill because something went
382  * wrong earlier.
383  */
384 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
385 		unsigned long pfn, int flags)
386 {
387 	struct to_kill *tk, *next;
388 
389 	list_for_each_entry_safe (tk, next, to_kill, nd) {
390 		if (forcekill) {
391 			/*
392 			 * In case something went wrong with munmapping
393 			 * make sure the process doesn't catch the
394 			 * signal and then access the memory. Just kill it.
395 			 */
396 			if (fail || tk->addr == -EFAULT) {
397 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
398 				       pfn, tk->tsk->comm, tk->tsk->pid);
399 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
400 						 tk->tsk, PIDTYPE_PID);
401 			}
402 
403 			/*
404 			 * In theory the process could have mapped
405 			 * something else on the address in-between. We could
406 			 * check for that, but we need to tell the
407 			 * process anyways.
408 			 */
409 			else if (kill_proc(tk, pfn, flags) < 0)
410 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
411 				       pfn, tk->tsk->comm, tk->tsk->pid);
412 		}
413 		put_task_struct(tk->tsk);
414 		kfree(tk);
415 	}
416 }
417 
418 /*
419  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
420  * on behalf of the thread group. Return task_struct of the (first found)
421  * dedicated thread if found, and return NULL otherwise.
422  *
423  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
424  * have to call rcu_read_lock/unlock() in this function.
425  */
426 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
427 {
428 	struct task_struct *t;
429 
430 	for_each_thread(tsk, t) {
431 		if (t->flags & PF_MCE_PROCESS) {
432 			if (t->flags & PF_MCE_EARLY)
433 				return t;
434 		} else {
435 			if (sysctl_memory_failure_early_kill)
436 				return t;
437 		}
438 	}
439 	return NULL;
440 }
441 
442 /*
443  * Determine whether a given process is "early kill" process which expects
444  * to be signaled when some page under the process is hwpoisoned.
445  * Return task_struct of the dedicated thread (main thread unless explicitly
446  * specified) if the process is "early kill," and otherwise returns NULL.
447  *
448  * Note that the above is true for Action Optional case, but not for Action
449  * Required case where SIGBUS should sent only to the current thread.
450  */
451 static struct task_struct *task_early_kill(struct task_struct *tsk,
452 					   int force_early)
453 {
454 	if (!tsk->mm)
455 		return NULL;
456 	if (force_early) {
457 		/*
458 		 * Comparing ->mm here because current task might represent
459 		 * a subthread, while tsk always points to the main thread.
460 		 */
461 		if (tsk->mm == current->mm)
462 			return current;
463 		else
464 			return NULL;
465 	}
466 	return find_early_kill_thread(tsk);
467 }
468 
469 /*
470  * Collect processes when the error hit an anonymous page.
471  */
472 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
473 				int force_early)
474 {
475 	struct vm_area_struct *vma;
476 	struct task_struct *tsk;
477 	struct anon_vma *av;
478 	pgoff_t pgoff;
479 
480 	av = page_lock_anon_vma_read(page);
481 	if (av == NULL)	/* Not actually mapped anymore */
482 		return;
483 
484 	pgoff = page_to_pgoff(page);
485 	read_lock(&tasklist_lock);
486 	for_each_process (tsk) {
487 		struct anon_vma_chain *vmac;
488 		struct task_struct *t = task_early_kill(tsk, force_early);
489 
490 		if (!t)
491 			continue;
492 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
493 					       pgoff, pgoff) {
494 			vma = vmac->vma;
495 			if (!page_mapped_in_vma(page, vma))
496 				continue;
497 			if (vma->vm_mm == t->mm)
498 				add_to_kill(t, page, vma, to_kill);
499 		}
500 	}
501 	read_unlock(&tasklist_lock);
502 	page_unlock_anon_vma_read(av);
503 }
504 
505 /*
506  * Collect processes when the error hit a file mapped page.
507  */
508 static void collect_procs_file(struct page *page, struct list_head *to_kill,
509 				int force_early)
510 {
511 	struct vm_area_struct *vma;
512 	struct task_struct *tsk;
513 	struct address_space *mapping = page->mapping;
514 	pgoff_t pgoff;
515 
516 	i_mmap_lock_read(mapping);
517 	read_lock(&tasklist_lock);
518 	pgoff = page_to_pgoff(page);
519 	for_each_process(tsk) {
520 		struct task_struct *t = task_early_kill(tsk, force_early);
521 
522 		if (!t)
523 			continue;
524 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
525 				      pgoff) {
526 			/*
527 			 * Send early kill signal to tasks where a vma covers
528 			 * the page but the corrupted page is not necessarily
529 			 * mapped it in its pte.
530 			 * Assume applications who requested early kill want
531 			 * to be informed of all such data corruptions.
532 			 */
533 			if (vma->vm_mm == t->mm)
534 				add_to_kill(t, page, vma, to_kill);
535 		}
536 	}
537 	read_unlock(&tasklist_lock);
538 	i_mmap_unlock_read(mapping);
539 }
540 
541 /*
542  * Collect the processes who have the corrupted page mapped to kill.
543  */
544 static void collect_procs(struct page *page, struct list_head *tokill,
545 				int force_early)
546 {
547 	if (!page->mapping)
548 		return;
549 
550 	if (PageAnon(page))
551 		collect_procs_anon(page, tokill, force_early);
552 	else
553 		collect_procs_file(page, tokill, force_early);
554 }
555 
556 static const char *action_name[] = {
557 	[MF_IGNORED] = "Ignored",
558 	[MF_FAILED] = "Failed",
559 	[MF_DELAYED] = "Delayed",
560 	[MF_RECOVERED] = "Recovered",
561 };
562 
563 static const char * const action_page_types[] = {
564 	[MF_MSG_KERNEL]			= "reserved kernel page",
565 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
566 	[MF_MSG_SLAB]			= "kernel slab page",
567 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
568 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
569 	[MF_MSG_HUGE]			= "huge page",
570 	[MF_MSG_FREE_HUGE]		= "free huge page",
571 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
572 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
573 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
574 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
575 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
576 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
577 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
578 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
579 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
580 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
581 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
582 	[MF_MSG_BUDDY]			= "free buddy page",
583 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
584 	[MF_MSG_DAX]			= "dax page",
585 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
586 	[MF_MSG_UNKNOWN]		= "unknown page",
587 };
588 
589 /*
590  * XXX: It is possible that a page is isolated from LRU cache,
591  * and then kept in swap cache or failed to remove from page cache.
592  * The page count will stop it from being freed by unpoison.
593  * Stress tests should be aware of this memory leak problem.
594  */
595 static int delete_from_lru_cache(struct page *p)
596 {
597 	if (!isolate_lru_page(p)) {
598 		/*
599 		 * Clear sensible page flags, so that the buddy system won't
600 		 * complain when the page is unpoison-and-freed.
601 		 */
602 		ClearPageActive(p);
603 		ClearPageUnevictable(p);
604 
605 		/*
606 		 * Poisoned page might never drop its ref count to 0 so we have
607 		 * to uncharge it manually from its memcg.
608 		 */
609 		mem_cgroup_uncharge(p);
610 
611 		/*
612 		 * drop the page count elevated by isolate_lru_page()
613 		 */
614 		put_page(p);
615 		return 0;
616 	}
617 	return -EIO;
618 }
619 
620 static int truncate_error_page(struct page *p, unsigned long pfn,
621 				struct address_space *mapping)
622 {
623 	int ret = MF_FAILED;
624 
625 	if (mapping->a_ops->error_remove_page) {
626 		int err = mapping->a_ops->error_remove_page(mapping, p);
627 
628 		if (err != 0) {
629 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
630 				pfn, err);
631 		} else if (page_has_private(p) &&
632 			   !try_to_release_page(p, GFP_NOIO)) {
633 			pr_info("Memory failure: %#lx: failed to release buffers\n",
634 				pfn);
635 		} else {
636 			ret = MF_RECOVERED;
637 		}
638 	} else {
639 		/*
640 		 * If the file system doesn't support it just invalidate
641 		 * This fails on dirty or anything with private pages
642 		 */
643 		if (invalidate_inode_page(p))
644 			ret = MF_RECOVERED;
645 		else
646 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
647 				pfn);
648 	}
649 
650 	return ret;
651 }
652 
653 /*
654  * Error hit kernel page.
655  * Do nothing, try to be lucky and not touch this instead. For a few cases we
656  * could be more sophisticated.
657  */
658 static int me_kernel(struct page *p, unsigned long pfn)
659 {
660 	return MF_IGNORED;
661 }
662 
663 /*
664  * Page in unknown state. Do nothing.
665  */
666 static int me_unknown(struct page *p, unsigned long pfn)
667 {
668 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
669 	return MF_FAILED;
670 }
671 
672 /*
673  * Clean (or cleaned) page cache page.
674  */
675 static int me_pagecache_clean(struct page *p, unsigned long pfn)
676 {
677 	struct address_space *mapping;
678 
679 	delete_from_lru_cache(p);
680 
681 	/*
682 	 * For anonymous pages we're done the only reference left
683 	 * should be the one m_f() holds.
684 	 */
685 	if (PageAnon(p))
686 		return MF_RECOVERED;
687 
688 	/*
689 	 * Now truncate the page in the page cache. This is really
690 	 * more like a "temporary hole punch"
691 	 * Don't do this for block devices when someone else
692 	 * has a reference, because it could be file system metadata
693 	 * and that's not safe to truncate.
694 	 */
695 	mapping = page_mapping(p);
696 	if (!mapping) {
697 		/*
698 		 * Page has been teared down in the meanwhile
699 		 */
700 		return MF_FAILED;
701 	}
702 
703 	/*
704 	 * Truncation is a bit tricky. Enable it per file system for now.
705 	 *
706 	 * Open: to take i_mutex or not for this? Right now we don't.
707 	 */
708 	return truncate_error_page(p, pfn, mapping);
709 }
710 
711 /*
712  * Dirty pagecache page
713  * Issues: when the error hit a hole page the error is not properly
714  * propagated.
715  */
716 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
717 {
718 	struct address_space *mapping = page_mapping(p);
719 
720 	SetPageError(p);
721 	/* TBD: print more information about the file. */
722 	if (mapping) {
723 		/*
724 		 * IO error will be reported by write(), fsync(), etc.
725 		 * who check the mapping.
726 		 * This way the application knows that something went
727 		 * wrong with its dirty file data.
728 		 *
729 		 * There's one open issue:
730 		 *
731 		 * The EIO will be only reported on the next IO
732 		 * operation and then cleared through the IO map.
733 		 * Normally Linux has two mechanisms to pass IO error
734 		 * first through the AS_EIO flag in the address space
735 		 * and then through the PageError flag in the page.
736 		 * Since we drop pages on memory failure handling the
737 		 * only mechanism open to use is through AS_AIO.
738 		 *
739 		 * This has the disadvantage that it gets cleared on
740 		 * the first operation that returns an error, while
741 		 * the PageError bit is more sticky and only cleared
742 		 * when the page is reread or dropped.  If an
743 		 * application assumes it will always get error on
744 		 * fsync, but does other operations on the fd before
745 		 * and the page is dropped between then the error
746 		 * will not be properly reported.
747 		 *
748 		 * This can already happen even without hwpoisoned
749 		 * pages: first on metadata IO errors (which only
750 		 * report through AS_EIO) or when the page is dropped
751 		 * at the wrong time.
752 		 *
753 		 * So right now we assume that the application DTRT on
754 		 * the first EIO, but we're not worse than other parts
755 		 * of the kernel.
756 		 */
757 		mapping_set_error(mapping, -EIO);
758 	}
759 
760 	return me_pagecache_clean(p, pfn);
761 }
762 
763 /*
764  * Clean and dirty swap cache.
765  *
766  * Dirty swap cache page is tricky to handle. The page could live both in page
767  * cache and swap cache(ie. page is freshly swapped in). So it could be
768  * referenced concurrently by 2 types of PTEs:
769  * normal PTEs and swap PTEs. We try to handle them consistently by calling
770  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
771  * and then
772  *      - clear dirty bit to prevent IO
773  *      - remove from LRU
774  *      - but keep in the swap cache, so that when we return to it on
775  *        a later page fault, we know the application is accessing
776  *        corrupted data and shall be killed (we installed simple
777  *        interception code in do_swap_page to catch it).
778  *
779  * Clean swap cache pages can be directly isolated. A later page fault will
780  * bring in the known good data from disk.
781  */
782 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
783 {
784 	ClearPageDirty(p);
785 	/* Trigger EIO in shmem: */
786 	ClearPageUptodate(p);
787 
788 	if (!delete_from_lru_cache(p))
789 		return MF_DELAYED;
790 	else
791 		return MF_FAILED;
792 }
793 
794 static int me_swapcache_clean(struct page *p, unsigned long pfn)
795 {
796 	delete_from_swap_cache(p);
797 
798 	if (!delete_from_lru_cache(p))
799 		return MF_RECOVERED;
800 	else
801 		return MF_FAILED;
802 }
803 
804 /*
805  * Huge pages. Needs work.
806  * Issues:
807  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
808  *   To narrow down kill region to one page, we need to break up pmd.
809  */
810 static int me_huge_page(struct page *p, unsigned long pfn)
811 {
812 	int res = 0;
813 	struct page *hpage = compound_head(p);
814 	struct address_space *mapping;
815 
816 	if (!PageHuge(hpage))
817 		return MF_DELAYED;
818 
819 	mapping = page_mapping(hpage);
820 	if (mapping) {
821 		res = truncate_error_page(hpage, pfn, mapping);
822 	} else {
823 		unlock_page(hpage);
824 		/*
825 		 * migration entry prevents later access on error anonymous
826 		 * hugepage, so we can free and dissolve it into buddy to
827 		 * save healthy subpages.
828 		 */
829 		if (PageAnon(hpage))
830 			put_page(hpage);
831 		dissolve_free_huge_page(p);
832 		res = MF_RECOVERED;
833 		lock_page(hpage);
834 	}
835 
836 	return res;
837 }
838 
839 /*
840  * Various page states we can handle.
841  *
842  * A page state is defined by its current page->flags bits.
843  * The table matches them in order and calls the right handler.
844  *
845  * This is quite tricky because we can access page at any time
846  * in its live cycle, so all accesses have to be extremely careful.
847  *
848  * This is not complete. More states could be added.
849  * For any missing state don't attempt recovery.
850  */
851 
852 #define dirty		(1UL << PG_dirty)
853 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
854 #define unevict		(1UL << PG_unevictable)
855 #define mlock		(1UL << PG_mlocked)
856 #define lru		(1UL << PG_lru)
857 #define head		(1UL << PG_head)
858 #define slab		(1UL << PG_slab)
859 #define reserved	(1UL << PG_reserved)
860 
861 static struct page_state {
862 	unsigned long mask;
863 	unsigned long res;
864 	enum mf_action_page_type type;
865 	int (*action)(struct page *p, unsigned long pfn);
866 } error_states[] = {
867 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
868 	/*
869 	 * free pages are specially detected outside this table:
870 	 * PG_buddy pages only make a small fraction of all free pages.
871 	 */
872 
873 	/*
874 	 * Could in theory check if slab page is free or if we can drop
875 	 * currently unused objects without touching them. But just
876 	 * treat it as standard kernel for now.
877 	 */
878 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
879 
880 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
881 
882 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
883 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
884 
885 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
886 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
887 
888 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
889 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
890 
891 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
892 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
893 
894 	/*
895 	 * Catchall entry: must be at end.
896 	 */
897 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
898 };
899 
900 #undef dirty
901 #undef sc
902 #undef unevict
903 #undef mlock
904 #undef lru
905 #undef head
906 #undef slab
907 #undef reserved
908 
909 /*
910  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
911  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
912  */
913 static void action_result(unsigned long pfn, enum mf_action_page_type type,
914 			  enum mf_result result)
915 {
916 	trace_memory_failure_event(pfn, type, result);
917 
918 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
919 		pfn, action_page_types[type], action_name[result]);
920 }
921 
922 static int page_action(struct page_state *ps, struct page *p,
923 			unsigned long pfn)
924 {
925 	int result;
926 	int count;
927 
928 	result = ps->action(p, pfn);
929 
930 	count = page_count(p) - 1;
931 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
932 		count--;
933 	if (count > 0) {
934 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
935 		       pfn, action_page_types[ps->type], count);
936 		result = MF_FAILED;
937 	}
938 	action_result(pfn, ps->type, result);
939 
940 	/* Could do more checks here if page looks ok */
941 	/*
942 	 * Could adjust zone counters here to correct for the missing page.
943 	 */
944 
945 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
946 }
947 
948 /**
949  * get_hwpoison_page() - Get refcount for memory error handling:
950  * @page:	raw error page (hit by memory error)
951  *
952  * Return: return 0 if failed to grab the refcount, otherwise true (some
953  * non-zero value.)
954  */
955 static int get_hwpoison_page(struct page *page)
956 {
957 	struct page *head = compound_head(page);
958 
959 	if (!PageHuge(head) && PageTransHuge(head)) {
960 		/*
961 		 * Non anonymous thp exists only in allocation/free time. We
962 		 * can't handle such a case correctly, so let's give it up.
963 		 * This should be better than triggering BUG_ON when kernel
964 		 * tries to touch the "partially handled" page.
965 		 */
966 		if (!PageAnon(head)) {
967 			pr_err("Memory failure: %#lx: non anonymous thp\n",
968 				page_to_pfn(page));
969 			return 0;
970 		}
971 	}
972 
973 	if (get_page_unless_zero(head)) {
974 		if (head == compound_head(page))
975 			return 1;
976 
977 		pr_info("Memory failure: %#lx cannot catch tail\n",
978 			page_to_pfn(page));
979 		put_page(head);
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Do all that is necessary to remove user space mappings. Unmap
987  * the pages and send SIGBUS to the processes if the data was dirty.
988  */
989 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
990 				  int flags, struct page **hpagep)
991 {
992 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
993 	struct address_space *mapping;
994 	LIST_HEAD(tokill);
995 	bool unmap_success = true;
996 	int kill = 1, forcekill;
997 	struct page *hpage = *hpagep;
998 	bool mlocked = PageMlocked(hpage);
999 
1000 	/*
1001 	 * Here we are interested only in user-mapped pages, so skip any
1002 	 * other types of pages.
1003 	 */
1004 	if (PageReserved(p) || PageSlab(p))
1005 		return true;
1006 	if (!(PageLRU(hpage) || PageHuge(p)))
1007 		return true;
1008 
1009 	/*
1010 	 * This check implies we don't kill processes if their pages
1011 	 * are in the swap cache early. Those are always late kills.
1012 	 */
1013 	if (!page_mapped(hpage))
1014 		return true;
1015 
1016 	if (PageKsm(p)) {
1017 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1018 		return false;
1019 	}
1020 
1021 	if (PageSwapCache(p)) {
1022 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1023 			pfn);
1024 		ttu |= TTU_IGNORE_HWPOISON;
1025 	}
1026 
1027 	/*
1028 	 * Propagate the dirty bit from PTEs to struct page first, because we
1029 	 * need this to decide if we should kill or just drop the page.
1030 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1031 	 * be called inside page lock (it's recommended but not enforced).
1032 	 */
1033 	mapping = page_mapping(hpage);
1034 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1035 	    mapping_can_writeback(mapping)) {
1036 		if (page_mkclean(hpage)) {
1037 			SetPageDirty(hpage);
1038 		} else {
1039 			kill = 0;
1040 			ttu |= TTU_IGNORE_HWPOISON;
1041 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1042 				pfn);
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * First collect all the processes that have the page
1048 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1049 	 * because ttu takes the rmap data structures down.
1050 	 *
1051 	 * Error handling: We ignore errors here because
1052 	 * there's nothing that can be done.
1053 	 */
1054 	if (kill)
1055 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1056 
1057 	if (!PageHuge(hpage)) {
1058 		unmap_success = try_to_unmap(hpage, ttu);
1059 	} else {
1060 		/*
1061 		 * For hugetlb pages, try_to_unmap could potentially call
1062 		 * huge_pmd_unshare.  Because of this, take semaphore in
1063 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1064 		 * have taken the lock at this higer level.
1065 		 *
1066 		 * Note that the call to hugetlb_page_mapping_lock_write
1067 		 * is necessary even if mapping is already set.  It handles
1068 		 * ugliness of potentially having to drop page lock to obtain
1069 		 * i_mmap_rwsem.
1070 		 */
1071 		mapping = hugetlb_page_mapping_lock_write(hpage);
1072 
1073 		if (mapping) {
1074 			unmap_success = try_to_unmap(hpage,
1075 						     ttu|TTU_RMAP_LOCKED);
1076 			i_mmap_unlock_write(mapping);
1077 		} else {
1078 			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1079 				pfn);
1080 			unmap_success = false;
1081 		}
1082 	}
1083 	if (!unmap_success)
1084 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1085 		       pfn, page_mapcount(hpage));
1086 
1087 	/*
1088 	 * try_to_unmap() might put mlocked page in lru cache, so call
1089 	 * shake_page() again to ensure that it's flushed.
1090 	 */
1091 	if (mlocked)
1092 		shake_page(hpage, 0);
1093 
1094 	/*
1095 	 * Now that the dirty bit has been propagated to the
1096 	 * struct page and all unmaps done we can decide if
1097 	 * killing is needed or not.  Only kill when the page
1098 	 * was dirty or the process is not restartable,
1099 	 * otherwise the tokill list is merely
1100 	 * freed.  When there was a problem unmapping earlier
1101 	 * use a more force-full uncatchable kill to prevent
1102 	 * any accesses to the poisoned memory.
1103 	 */
1104 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1105 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1106 
1107 	return unmap_success;
1108 }
1109 
1110 static int identify_page_state(unsigned long pfn, struct page *p,
1111 				unsigned long page_flags)
1112 {
1113 	struct page_state *ps;
1114 
1115 	/*
1116 	 * The first check uses the current page flags which may not have any
1117 	 * relevant information. The second check with the saved page flags is
1118 	 * carried out only if the first check can't determine the page status.
1119 	 */
1120 	for (ps = error_states;; ps++)
1121 		if ((p->flags & ps->mask) == ps->res)
1122 			break;
1123 
1124 	page_flags |= (p->flags & (1UL << PG_dirty));
1125 
1126 	if (!ps->mask)
1127 		for (ps = error_states;; ps++)
1128 			if ((page_flags & ps->mask) == ps->res)
1129 				break;
1130 	return page_action(ps, p, pfn);
1131 }
1132 
1133 static int try_to_split_thp_page(struct page *page, const char *msg)
1134 {
1135 	lock_page(page);
1136 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1137 		unsigned long pfn = page_to_pfn(page);
1138 
1139 		unlock_page(page);
1140 		if (!PageAnon(page))
1141 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1142 		else
1143 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1144 		put_page(page);
1145 		return -EBUSY;
1146 	}
1147 	unlock_page(page);
1148 
1149 	return 0;
1150 }
1151 
1152 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1153 {
1154 	struct page *p = pfn_to_page(pfn);
1155 	struct page *head = compound_head(p);
1156 	int res;
1157 	unsigned long page_flags;
1158 
1159 	if (TestSetPageHWPoison(head)) {
1160 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1161 		       pfn);
1162 		return 0;
1163 	}
1164 
1165 	num_poisoned_pages_inc();
1166 
1167 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1168 		/*
1169 		 * Check "filter hit" and "race with other subpage."
1170 		 */
1171 		lock_page(head);
1172 		if (PageHWPoison(head)) {
1173 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1174 			    || (p != head && TestSetPageHWPoison(head))) {
1175 				num_poisoned_pages_dec();
1176 				unlock_page(head);
1177 				return 0;
1178 			}
1179 		}
1180 		unlock_page(head);
1181 		dissolve_free_huge_page(p);
1182 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1183 		return 0;
1184 	}
1185 
1186 	lock_page(head);
1187 	page_flags = head->flags;
1188 
1189 	if (!PageHWPoison(head)) {
1190 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1191 		num_poisoned_pages_dec();
1192 		unlock_page(head);
1193 		put_page(head);
1194 		return 0;
1195 	}
1196 
1197 	/*
1198 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1199 	 * simply disable it. In order to make it work properly, we need
1200 	 * make sure that:
1201 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1202 	 *    entry properly works, and
1203 	 *  - other mm code walking over page table is aware of pud-aligned
1204 	 *    hwpoison entries.
1205 	 */
1206 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1207 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1208 		res = -EBUSY;
1209 		goto out;
1210 	}
1211 
1212 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1213 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1214 		res = -EBUSY;
1215 		goto out;
1216 	}
1217 
1218 	res = identify_page_state(pfn, p, page_flags);
1219 out:
1220 	unlock_page(head);
1221 	return res;
1222 }
1223 
1224 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1225 		struct dev_pagemap *pgmap)
1226 {
1227 	struct page *page = pfn_to_page(pfn);
1228 	const bool unmap_success = true;
1229 	unsigned long size = 0;
1230 	struct to_kill *tk;
1231 	LIST_HEAD(tokill);
1232 	int rc = -EBUSY;
1233 	loff_t start;
1234 	dax_entry_t cookie;
1235 
1236 	/*
1237 	 * Prevent the inode from being freed while we are interrogating
1238 	 * the address_space, typically this would be handled by
1239 	 * lock_page(), but dax pages do not use the page lock. This
1240 	 * also prevents changes to the mapping of this pfn until
1241 	 * poison signaling is complete.
1242 	 */
1243 	cookie = dax_lock_page(page);
1244 	if (!cookie)
1245 		goto out;
1246 
1247 	if (hwpoison_filter(page)) {
1248 		rc = 0;
1249 		goto unlock;
1250 	}
1251 
1252 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1253 		/*
1254 		 * TODO: Handle HMM pages which may need coordination
1255 		 * with device-side memory.
1256 		 */
1257 		goto unlock;
1258 	}
1259 
1260 	/*
1261 	 * Use this flag as an indication that the dax page has been
1262 	 * remapped UC to prevent speculative consumption of poison.
1263 	 */
1264 	SetPageHWPoison(page);
1265 
1266 	/*
1267 	 * Unlike System-RAM there is no possibility to swap in a
1268 	 * different physical page at a given virtual address, so all
1269 	 * userspace consumption of ZONE_DEVICE memory necessitates
1270 	 * SIGBUS (i.e. MF_MUST_KILL)
1271 	 */
1272 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1273 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1274 
1275 	list_for_each_entry(tk, &tokill, nd)
1276 		if (tk->size_shift)
1277 			size = max(size, 1UL << tk->size_shift);
1278 	if (size) {
1279 		/*
1280 		 * Unmap the largest mapping to avoid breaking up
1281 		 * device-dax mappings which are constant size. The
1282 		 * actual size of the mapping being torn down is
1283 		 * communicated in siginfo, see kill_proc()
1284 		 */
1285 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1286 		unmap_mapping_range(page->mapping, start, start + size, 0);
1287 	}
1288 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1289 	rc = 0;
1290 unlock:
1291 	dax_unlock_page(page, cookie);
1292 out:
1293 	/* drop pgmap ref acquired in caller */
1294 	put_dev_pagemap(pgmap);
1295 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1296 	return rc;
1297 }
1298 
1299 /**
1300  * memory_failure - Handle memory failure of a page.
1301  * @pfn: Page Number of the corrupted page
1302  * @flags: fine tune action taken
1303  *
1304  * This function is called by the low level machine check code
1305  * of an architecture when it detects hardware memory corruption
1306  * of a page. It tries its best to recover, which includes
1307  * dropping pages, killing processes etc.
1308  *
1309  * The function is primarily of use for corruptions that
1310  * happen outside the current execution context (e.g. when
1311  * detected by a background scrubber)
1312  *
1313  * Must run in process context (e.g. a work queue) with interrupts
1314  * enabled and no spinlocks hold.
1315  */
1316 int memory_failure(unsigned long pfn, int flags)
1317 {
1318 	struct page *p;
1319 	struct page *hpage;
1320 	struct page *orig_head;
1321 	struct dev_pagemap *pgmap;
1322 	int res;
1323 	unsigned long page_flags;
1324 
1325 	if (!sysctl_memory_failure_recovery)
1326 		panic("Memory failure on page %lx", pfn);
1327 
1328 	p = pfn_to_online_page(pfn);
1329 	if (!p) {
1330 		if (pfn_valid(pfn)) {
1331 			pgmap = get_dev_pagemap(pfn, NULL);
1332 			if (pgmap)
1333 				return memory_failure_dev_pagemap(pfn, flags,
1334 								  pgmap);
1335 		}
1336 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1337 			pfn);
1338 		return -ENXIO;
1339 	}
1340 
1341 	if (PageHuge(p))
1342 		return memory_failure_hugetlb(pfn, flags);
1343 	if (TestSetPageHWPoison(p)) {
1344 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1345 			pfn);
1346 		return 0;
1347 	}
1348 
1349 	orig_head = hpage = compound_head(p);
1350 	num_poisoned_pages_inc();
1351 
1352 	/*
1353 	 * We need/can do nothing about count=0 pages.
1354 	 * 1) it's a free page, and therefore in safe hand:
1355 	 *    prep_new_page() will be the gate keeper.
1356 	 * 2) it's part of a non-compound high order page.
1357 	 *    Implies some kernel user: cannot stop them from
1358 	 *    R/W the page; let's pray that the page has been
1359 	 *    used and will be freed some time later.
1360 	 * In fact it's dangerous to directly bump up page count from 0,
1361 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1362 	 */
1363 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1364 		if (is_free_buddy_page(p)) {
1365 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1366 			return 0;
1367 		} else {
1368 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1369 			return -EBUSY;
1370 		}
1371 	}
1372 
1373 	if (PageTransHuge(hpage)) {
1374 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1375 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1376 			return -EBUSY;
1377 		}
1378 		VM_BUG_ON_PAGE(!page_count(p), p);
1379 	}
1380 
1381 	/*
1382 	 * We ignore non-LRU pages for good reasons.
1383 	 * - PG_locked is only well defined for LRU pages and a few others
1384 	 * - to avoid races with __SetPageLocked()
1385 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1386 	 * The check (unnecessarily) ignores LRU pages being isolated and
1387 	 * walked by the page reclaim code, however that's not a big loss.
1388 	 */
1389 	shake_page(p, 0);
1390 	/* shake_page could have turned it free. */
1391 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1392 		if (flags & MF_COUNT_INCREASED)
1393 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1394 		else
1395 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1396 		return 0;
1397 	}
1398 
1399 	lock_page(p);
1400 
1401 	/*
1402 	 * The page could have changed compound pages during the locking.
1403 	 * If this happens just bail out.
1404 	 */
1405 	if (PageCompound(p) && compound_head(p) != orig_head) {
1406 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1407 		res = -EBUSY;
1408 		goto out;
1409 	}
1410 
1411 	/*
1412 	 * We use page flags to determine what action should be taken, but
1413 	 * the flags can be modified by the error containment action.  One
1414 	 * example is an mlocked page, where PG_mlocked is cleared by
1415 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1416 	 * correctly, we save a copy of the page flags at this time.
1417 	 */
1418 	page_flags = p->flags;
1419 
1420 	/*
1421 	 * unpoison always clear PG_hwpoison inside page lock
1422 	 */
1423 	if (!PageHWPoison(p)) {
1424 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1425 		num_poisoned_pages_dec();
1426 		unlock_page(p);
1427 		put_page(p);
1428 		return 0;
1429 	}
1430 	if (hwpoison_filter(p)) {
1431 		if (TestClearPageHWPoison(p))
1432 			num_poisoned_pages_dec();
1433 		unlock_page(p);
1434 		put_page(p);
1435 		return 0;
1436 	}
1437 
1438 	if (!PageTransTail(p) && !PageLRU(p))
1439 		goto identify_page_state;
1440 
1441 	/*
1442 	 * It's very difficult to mess with pages currently under IO
1443 	 * and in many cases impossible, so we just avoid it here.
1444 	 */
1445 	wait_on_page_writeback(p);
1446 
1447 	/*
1448 	 * Now take care of user space mappings.
1449 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1450 	 */
1451 	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1452 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1453 		res = -EBUSY;
1454 		goto out;
1455 	}
1456 
1457 	/*
1458 	 * Torn down by someone else?
1459 	 */
1460 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1461 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1462 		res = -EBUSY;
1463 		goto out;
1464 	}
1465 
1466 identify_page_state:
1467 	res = identify_page_state(pfn, p, page_flags);
1468 out:
1469 	unlock_page(p);
1470 	return res;
1471 }
1472 EXPORT_SYMBOL_GPL(memory_failure);
1473 
1474 #define MEMORY_FAILURE_FIFO_ORDER	4
1475 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1476 
1477 struct memory_failure_entry {
1478 	unsigned long pfn;
1479 	int flags;
1480 };
1481 
1482 struct memory_failure_cpu {
1483 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1484 		      MEMORY_FAILURE_FIFO_SIZE);
1485 	spinlock_t lock;
1486 	struct work_struct work;
1487 };
1488 
1489 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1490 
1491 /**
1492  * memory_failure_queue - Schedule handling memory failure of a page.
1493  * @pfn: Page Number of the corrupted page
1494  * @flags: Flags for memory failure handling
1495  *
1496  * This function is called by the low level hardware error handler
1497  * when it detects hardware memory corruption of a page. It schedules
1498  * the recovering of error page, including dropping pages, killing
1499  * processes etc.
1500  *
1501  * The function is primarily of use for corruptions that
1502  * happen outside the current execution context (e.g. when
1503  * detected by a background scrubber)
1504  *
1505  * Can run in IRQ context.
1506  */
1507 void memory_failure_queue(unsigned long pfn, int flags)
1508 {
1509 	struct memory_failure_cpu *mf_cpu;
1510 	unsigned long proc_flags;
1511 	struct memory_failure_entry entry = {
1512 		.pfn =		pfn,
1513 		.flags =	flags,
1514 	};
1515 
1516 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1517 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1518 	if (kfifo_put(&mf_cpu->fifo, entry))
1519 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1520 	else
1521 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1522 		       pfn);
1523 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1524 	put_cpu_var(memory_failure_cpu);
1525 }
1526 EXPORT_SYMBOL_GPL(memory_failure_queue);
1527 
1528 static void memory_failure_work_func(struct work_struct *work)
1529 {
1530 	struct memory_failure_cpu *mf_cpu;
1531 	struct memory_failure_entry entry = { 0, };
1532 	unsigned long proc_flags;
1533 	int gotten;
1534 
1535 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1536 	for (;;) {
1537 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1538 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1539 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1540 		if (!gotten)
1541 			break;
1542 		if (entry.flags & MF_SOFT_OFFLINE)
1543 			soft_offline_page(entry.pfn, entry.flags);
1544 		else
1545 			memory_failure(entry.pfn, entry.flags);
1546 	}
1547 }
1548 
1549 /*
1550  * Process memory_failure work queued on the specified CPU.
1551  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1552  */
1553 void memory_failure_queue_kick(int cpu)
1554 {
1555 	struct memory_failure_cpu *mf_cpu;
1556 
1557 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1558 	cancel_work_sync(&mf_cpu->work);
1559 	memory_failure_work_func(&mf_cpu->work);
1560 }
1561 
1562 static int __init memory_failure_init(void)
1563 {
1564 	struct memory_failure_cpu *mf_cpu;
1565 	int cpu;
1566 
1567 	for_each_possible_cpu(cpu) {
1568 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1569 		spin_lock_init(&mf_cpu->lock);
1570 		INIT_KFIFO(mf_cpu->fifo);
1571 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1572 	}
1573 
1574 	return 0;
1575 }
1576 core_initcall(memory_failure_init);
1577 
1578 #define unpoison_pr_info(fmt, pfn, rs)			\
1579 ({							\
1580 	if (__ratelimit(rs))				\
1581 		pr_info(fmt, pfn);			\
1582 })
1583 
1584 /**
1585  * unpoison_memory - Unpoison a previously poisoned page
1586  * @pfn: Page number of the to be unpoisoned page
1587  *
1588  * Software-unpoison a page that has been poisoned by
1589  * memory_failure() earlier.
1590  *
1591  * This is only done on the software-level, so it only works
1592  * for linux injected failures, not real hardware failures
1593  *
1594  * Returns 0 for success, otherwise -errno.
1595  */
1596 int unpoison_memory(unsigned long pfn)
1597 {
1598 	struct page *page;
1599 	struct page *p;
1600 	int freeit = 0;
1601 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1602 					DEFAULT_RATELIMIT_BURST);
1603 
1604 	if (!pfn_valid(pfn))
1605 		return -ENXIO;
1606 
1607 	p = pfn_to_page(pfn);
1608 	page = compound_head(p);
1609 
1610 	if (!PageHWPoison(p)) {
1611 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1612 				 pfn, &unpoison_rs);
1613 		return 0;
1614 	}
1615 
1616 	if (page_count(page) > 1) {
1617 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1618 				 pfn, &unpoison_rs);
1619 		return 0;
1620 	}
1621 
1622 	if (page_mapped(page)) {
1623 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1624 				 pfn, &unpoison_rs);
1625 		return 0;
1626 	}
1627 
1628 	if (page_mapping(page)) {
1629 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1630 				 pfn, &unpoison_rs);
1631 		return 0;
1632 	}
1633 
1634 	/*
1635 	 * unpoison_memory() can encounter thp only when the thp is being
1636 	 * worked by memory_failure() and the page lock is not held yet.
1637 	 * In such case, we yield to memory_failure() and make unpoison fail.
1638 	 */
1639 	if (!PageHuge(page) && PageTransHuge(page)) {
1640 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1641 				 pfn, &unpoison_rs);
1642 		return 0;
1643 	}
1644 
1645 	if (!get_hwpoison_page(p)) {
1646 		if (TestClearPageHWPoison(p))
1647 			num_poisoned_pages_dec();
1648 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1649 				 pfn, &unpoison_rs);
1650 		return 0;
1651 	}
1652 
1653 	lock_page(page);
1654 	/*
1655 	 * This test is racy because PG_hwpoison is set outside of page lock.
1656 	 * That's acceptable because that won't trigger kernel panic. Instead,
1657 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1658 	 * the free buddy page pool.
1659 	 */
1660 	if (TestClearPageHWPoison(page)) {
1661 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1662 				 pfn, &unpoison_rs);
1663 		num_poisoned_pages_dec();
1664 		freeit = 1;
1665 	}
1666 	unlock_page(page);
1667 
1668 	put_page(page);
1669 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1670 		put_page(page);
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(unpoison_memory);
1675 
1676 /*
1677  * Safely get reference count of an arbitrary page.
1678  * Returns 0 for a free page, -EIO for a zero refcount page
1679  * that is not free, and 1 for any other page type.
1680  * For 1 the page is returned with increased page count, otherwise not.
1681  */
1682 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1683 {
1684 	int ret;
1685 
1686 	if (flags & MF_COUNT_INCREASED)
1687 		return 1;
1688 
1689 	/*
1690 	 * When the target page is a free hugepage, just remove it
1691 	 * from free hugepage list.
1692 	 */
1693 	if (!get_hwpoison_page(p)) {
1694 		if (PageHuge(p)) {
1695 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1696 			ret = 0;
1697 		} else if (is_free_buddy_page(p)) {
1698 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1699 			ret = 0;
1700 		} else if (page_count(p)) {
1701 			/* raced with allocation */
1702 			ret = -EBUSY;
1703 		} else {
1704 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1705 				__func__, pfn, p->flags);
1706 			ret = -EIO;
1707 		}
1708 	} else {
1709 		/* Not a free page */
1710 		ret = 1;
1711 	}
1712 	return ret;
1713 }
1714 
1715 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1716 {
1717 	int ret = __get_any_page(page, pfn, flags);
1718 
1719 	if (ret == -EBUSY)
1720 		ret = __get_any_page(page, pfn, flags);
1721 
1722 	if (ret == 1 && !PageHuge(page) &&
1723 	    !PageLRU(page) && !__PageMovable(page)) {
1724 		/*
1725 		 * Try to free it.
1726 		 */
1727 		put_page(page);
1728 		shake_page(page, 1);
1729 
1730 		/*
1731 		 * Did it turn free?
1732 		 */
1733 		ret = __get_any_page(page, pfn, 0);
1734 		if (ret == 1 && !PageLRU(page)) {
1735 			/* Drop page reference which is from __get_any_page() */
1736 			put_page(page);
1737 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1738 				pfn, page->flags, &page->flags);
1739 			return -EIO;
1740 		}
1741 	}
1742 	return ret;
1743 }
1744 
1745 static bool isolate_page(struct page *page, struct list_head *pagelist)
1746 {
1747 	bool isolated = false;
1748 	bool lru = PageLRU(page);
1749 
1750 	if (PageHuge(page)) {
1751 		isolated = isolate_huge_page(page, pagelist);
1752 	} else {
1753 		if (lru)
1754 			isolated = !isolate_lru_page(page);
1755 		else
1756 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1757 
1758 		if (isolated)
1759 			list_add(&page->lru, pagelist);
1760 	}
1761 
1762 	if (isolated && lru)
1763 		inc_node_page_state(page, NR_ISOLATED_ANON +
1764 				    page_is_file_lru(page));
1765 
1766 	/*
1767 	 * If we succeed to isolate the page, we grabbed another refcount on
1768 	 * the page, so we can safely drop the one we got from get_any_pages().
1769 	 * If we failed to isolate the page, it means that we cannot go further
1770 	 * and we will return an error, so drop the reference we got from
1771 	 * get_any_pages() as well.
1772 	 */
1773 	put_page(page);
1774 	return isolated;
1775 }
1776 
1777 /*
1778  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1779  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1780  * If the page is mapped, it migrates the contents over.
1781  */
1782 static int __soft_offline_page(struct page *page)
1783 {
1784 	int ret = 0;
1785 	unsigned long pfn = page_to_pfn(page);
1786 	struct page *hpage = compound_head(page);
1787 	char const *msg_page[] = {"page", "hugepage"};
1788 	bool huge = PageHuge(page);
1789 	LIST_HEAD(pagelist);
1790 	struct migration_target_control mtc = {
1791 		.nid = NUMA_NO_NODE,
1792 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1793 	};
1794 
1795 	/*
1796 	 * Check PageHWPoison again inside page lock because PageHWPoison
1797 	 * is set by memory_failure() outside page lock. Note that
1798 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1799 	 * so there's no race between soft_offline_page() and memory_failure().
1800 	 */
1801 	lock_page(page);
1802 	if (!PageHuge(page))
1803 		wait_on_page_writeback(page);
1804 	if (PageHWPoison(page)) {
1805 		unlock_page(page);
1806 		put_page(page);
1807 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1808 		return 0;
1809 	}
1810 
1811 	if (!PageHuge(page))
1812 		/*
1813 		 * Try to invalidate first. This should work for
1814 		 * non dirty unmapped page cache pages.
1815 		 */
1816 		ret = invalidate_inode_page(page);
1817 	unlock_page(page);
1818 
1819 	/*
1820 	 * RED-PEN would be better to keep it isolated here, but we
1821 	 * would need to fix isolation locking first.
1822 	 */
1823 	if (ret) {
1824 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1825 		page_handle_poison(page, false, true);
1826 		return 0;
1827 	}
1828 
1829 	if (isolate_page(hpage, &pagelist)) {
1830 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1831 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1832 		if (!ret) {
1833 			bool release = !huge;
1834 
1835 			if (!page_handle_poison(page, huge, release))
1836 				ret = -EBUSY;
1837 		} else {
1838 			if (!list_empty(&pagelist))
1839 				putback_movable_pages(&pagelist);
1840 
1841 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1842 				pfn, msg_page[huge], ret, page->flags, &page->flags);
1843 			if (ret > 0)
1844 				ret = -EIO;
1845 		}
1846 	} else {
1847 		pr_info("soft offline: %#lx: %s isolation failed: %d, page count %d, type %lx (%pGp)\n",
1848 			pfn, msg_page[huge], ret, page_count(page), page->flags, &page->flags);
1849 		ret = -EBUSY;
1850 	}
1851 	return ret;
1852 }
1853 
1854 static int soft_offline_in_use_page(struct page *page)
1855 {
1856 	struct page *hpage = compound_head(page);
1857 
1858 	if (!PageHuge(page) && PageTransHuge(hpage))
1859 		if (try_to_split_thp_page(page, "soft offline") < 0)
1860 			return -EBUSY;
1861 	return __soft_offline_page(page);
1862 }
1863 
1864 static int soft_offline_free_page(struct page *page)
1865 {
1866 	int rc = 0;
1867 
1868 	if (!page_handle_poison(page, true, false))
1869 		rc = -EBUSY;
1870 
1871 	return rc;
1872 }
1873 
1874 /**
1875  * soft_offline_page - Soft offline a page.
1876  * @pfn: pfn to soft-offline
1877  * @flags: flags. Same as memory_failure().
1878  *
1879  * Returns 0 on success, otherwise negated errno.
1880  *
1881  * Soft offline a page, by migration or invalidation,
1882  * without killing anything. This is for the case when
1883  * a page is not corrupted yet (so it's still valid to access),
1884  * but has had a number of corrected errors and is better taken
1885  * out.
1886  *
1887  * The actual policy on when to do that is maintained by
1888  * user space.
1889  *
1890  * This should never impact any application or cause data loss,
1891  * however it might take some time.
1892  *
1893  * This is not a 100% solution for all memory, but tries to be
1894  * ``good enough'' for the majority of memory.
1895  */
1896 int soft_offline_page(unsigned long pfn, int flags)
1897 {
1898 	int ret;
1899 	struct page *page;
1900 	bool try_again = true;
1901 
1902 	if (!pfn_valid(pfn))
1903 		return -ENXIO;
1904 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1905 	page = pfn_to_online_page(pfn);
1906 	if (!page)
1907 		return -EIO;
1908 
1909 	if (PageHWPoison(page)) {
1910 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1911 		if (flags & MF_COUNT_INCREASED)
1912 			put_page(page);
1913 		return 0;
1914 	}
1915 
1916 retry:
1917 	get_online_mems();
1918 	ret = get_any_page(page, pfn, flags);
1919 	put_online_mems();
1920 
1921 	if (ret > 0)
1922 		ret = soft_offline_in_use_page(page);
1923 	else if (ret == 0)
1924 		if (soft_offline_free_page(page) && try_again) {
1925 			try_again = false;
1926 			goto retry;
1927 		}
1928 
1929 	return ret;
1930 }
1931