xref: /openbmc/linux/mm/memory-failure.c (revision 6a613ac6)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	printk(KERN_ERR
188 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
189 		pfn, t->comm, t->pid);
190 	si.si_signo = SIGBUS;
191 	si.si_errno = 0;
192 	si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 	si.si_trapno = trapno;
195 #endif
196 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197 
198 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 		si.si_code = BUS_MCEERR_AR;
200 		ret = force_sig_info(SIGBUS, &si, current);
201 	} else {
202 		/*
203 		 * Don't use force here, it's convenient if the signal
204 		 * can be temporarily blocked.
205 		 * This could cause a loop when the user sets SIGBUS
206 		 * to SIG_IGN, but hopefully no one will do that?
207 		 */
208 		si.si_code = BUS_MCEERR_AO;
209 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
210 	}
211 	if (ret < 0)
212 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
213 		       t->comm, t->pid, ret);
214 	return ret;
215 }
216 
217 /*
218  * When a unknown page type is encountered drain as many buffers as possible
219  * in the hope to turn the page into a LRU or free page, which we can handle.
220  */
221 void shake_page(struct page *p, int access)
222 {
223 	if (!PageSlab(p)) {
224 		lru_add_drain_all();
225 		if (PageLRU(p))
226 			return;
227 		drain_all_pages(page_zone(p));
228 		if (PageLRU(p) || is_free_buddy_page(p))
229 			return;
230 	}
231 
232 	/*
233 	 * Only call shrink_node_slabs here (which would also shrink
234 	 * other caches) if access is not potentially fatal.
235 	 */
236 	if (access)
237 		drop_slab_node(page_to_nid(p));
238 }
239 EXPORT_SYMBOL_GPL(shake_page);
240 
241 /*
242  * Kill all processes that have a poisoned page mapped and then isolate
243  * the page.
244  *
245  * General strategy:
246  * Find all processes having the page mapped and kill them.
247  * But we keep a page reference around so that the page is not
248  * actually freed yet.
249  * Then stash the page away
250  *
251  * There's no convenient way to get back to mapped processes
252  * from the VMAs. So do a brute-force search over all
253  * running processes.
254  *
255  * Remember that machine checks are not common (or rather
256  * if they are common you have other problems), so this shouldn't
257  * be a performance issue.
258  *
259  * Also there are some races possible while we get from the
260  * error detection to actually handle it.
261  */
262 
263 struct to_kill {
264 	struct list_head nd;
265 	struct task_struct *tsk;
266 	unsigned long addr;
267 	char addr_valid;
268 };
269 
270 /*
271  * Failure handling: if we can't find or can't kill a process there's
272  * not much we can do.	We just print a message and ignore otherwise.
273  */
274 
275 /*
276  * Schedule a process for later kill.
277  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278  * TBD would GFP_NOIO be enough?
279  */
280 static void add_to_kill(struct task_struct *tsk, struct page *p,
281 		       struct vm_area_struct *vma,
282 		       struct list_head *to_kill,
283 		       struct to_kill **tkc)
284 {
285 	struct to_kill *tk;
286 
287 	if (*tkc) {
288 		tk = *tkc;
289 		*tkc = NULL;
290 	} else {
291 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 		if (!tk) {
293 			printk(KERN_ERR
294 		"MCE: Out of memory while machine check handling\n");
295 			return;
296 		}
297 	}
298 	tk->addr = page_address_in_vma(p, vma);
299 	tk->addr_valid = 1;
300 
301 	/*
302 	 * In theory we don't have to kill when the page was
303 	 * munmaped. But it could be also a mremap. Since that's
304 	 * likely very rare kill anyways just out of paranoia, but use
305 	 * a SIGKILL because the error is not contained anymore.
306 	 */
307 	if (tk->addr == -EFAULT) {
308 		pr_info("MCE: Unable to find user space address %lx in %s\n",
309 			page_to_pfn(p), tsk->comm);
310 		tk->addr_valid = 0;
311 	}
312 	get_task_struct(tsk);
313 	tk->tsk = tsk;
314 	list_add_tail(&tk->nd, to_kill);
315 }
316 
317 /*
318  * Kill the processes that have been collected earlier.
319  *
320  * Only do anything when DOIT is set, otherwise just free the list
321  * (this is used for clean pages which do not need killing)
322  * Also when FAIL is set do a force kill because something went
323  * wrong earlier.
324  */
325 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
326 			  int fail, struct page *page, unsigned long pfn,
327 			  int flags)
328 {
329 	struct to_kill *tk, *next;
330 
331 	list_for_each_entry_safe (tk, next, to_kill, nd) {
332 		if (forcekill) {
333 			/*
334 			 * In case something went wrong with munmapping
335 			 * make sure the process doesn't catch the
336 			 * signal and then access the memory. Just kill it.
337 			 */
338 			if (fail || tk->addr_valid == 0) {
339 				printk(KERN_ERR
340 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 					pfn, tk->tsk->comm, tk->tsk->pid);
342 				force_sig(SIGKILL, tk->tsk);
343 			}
344 
345 			/*
346 			 * In theory the process could have mapped
347 			 * something else on the address in-between. We could
348 			 * check for that, but we need to tell the
349 			 * process anyways.
350 			 */
351 			else if (kill_proc(tk->tsk, tk->addr, trapno,
352 					      pfn, page, flags) < 0)
353 				printk(KERN_ERR
354 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 					pfn, tk->tsk->comm, tk->tsk->pid);
356 		}
357 		put_task_struct(tk->tsk);
358 		kfree(tk);
359 	}
360 }
361 
362 /*
363  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364  * on behalf of the thread group. Return task_struct of the (first found)
365  * dedicated thread if found, and return NULL otherwise.
366  *
367  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368  * have to call rcu_read_lock/unlock() in this function.
369  */
370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 	struct task_struct *t;
373 
374 	for_each_thread(tsk, t)
375 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 			return t;
377 	return NULL;
378 }
379 
380 /*
381  * Determine whether a given process is "early kill" process which expects
382  * to be signaled when some page under the process is hwpoisoned.
383  * Return task_struct of the dedicated thread (main thread unless explicitly
384  * specified) if the process is "early kill," and otherwise returns NULL.
385  */
386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 					   int force_early)
388 {
389 	struct task_struct *t;
390 	if (!tsk->mm)
391 		return NULL;
392 	if (force_early)
393 		return tsk;
394 	t = find_early_kill_thread(tsk);
395 	if (t)
396 		return t;
397 	if (sysctl_memory_failure_early_kill)
398 		return tsk;
399 	return NULL;
400 }
401 
402 /*
403  * Collect processes when the error hit an anonymous page.
404  */
405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 			      struct to_kill **tkc, int force_early)
407 {
408 	struct vm_area_struct *vma;
409 	struct task_struct *tsk;
410 	struct anon_vma *av;
411 	pgoff_t pgoff;
412 
413 	av = page_lock_anon_vma_read(page);
414 	if (av == NULL)	/* Not actually mapped anymore */
415 		return;
416 
417 	pgoff = page_to_pgoff(page);
418 	read_lock(&tasklist_lock);
419 	for_each_process (tsk) {
420 		struct anon_vma_chain *vmac;
421 		struct task_struct *t = task_early_kill(tsk, force_early);
422 
423 		if (!t)
424 			continue;
425 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 					       pgoff, pgoff) {
427 			vma = vmac->vma;
428 			if (!page_mapped_in_vma(page, vma))
429 				continue;
430 			if (vma->vm_mm == t->mm)
431 				add_to_kill(t, page, vma, to_kill, tkc);
432 		}
433 	}
434 	read_unlock(&tasklist_lock);
435 	page_unlock_anon_vma_read(av);
436 }
437 
438 /*
439  * Collect processes when the error hit a file mapped page.
440  */
441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 			      struct to_kill **tkc, int force_early)
443 {
444 	struct vm_area_struct *vma;
445 	struct task_struct *tsk;
446 	struct address_space *mapping = page->mapping;
447 
448 	i_mmap_lock_read(mapping);
449 	read_lock(&tasklist_lock);
450 	for_each_process(tsk) {
451 		pgoff_t pgoff = page_to_pgoff(page);
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 				      pgoff) {
458 			/*
459 			 * Send early kill signal to tasks where a vma covers
460 			 * the page but the corrupted page is not necessarily
461 			 * mapped it in its pte.
462 			 * Assume applications who requested early kill want
463 			 * to be informed of all such data corruptions.
464 			 */
465 			if (vma->vm_mm == t->mm)
466 				add_to_kill(t, page, vma, to_kill, tkc);
467 		}
468 	}
469 	read_unlock(&tasklist_lock);
470 	i_mmap_unlock_read(mapping);
471 }
472 
473 /*
474  * Collect the processes who have the corrupted page mapped to kill.
475  * This is done in two steps for locking reasons.
476  * First preallocate one tokill structure outside the spin locks,
477  * so that we can kill at least one process reasonably reliable.
478  */
479 static void collect_procs(struct page *page, struct list_head *tokill,
480 				int force_early)
481 {
482 	struct to_kill *tk;
483 
484 	if (!page->mapping)
485 		return;
486 
487 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 	if (!tk)
489 		return;
490 	if (PageAnon(page))
491 		collect_procs_anon(page, tokill, &tk, force_early);
492 	else
493 		collect_procs_file(page, tokill, &tk, force_early);
494 	kfree(tk);
495 }
496 
497 static const char *action_name[] = {
498 	[MF_IGNORED] = "Ignored",
499 	[MF_FAILED] = "Failed",
500 	[MF_DELAYED] = "Delayed",
501 	[MF_RECOVERED] = "Recovered",
502 };
503 
504 static const char * const action_page_types[] = {
505 	[MF_MSG_KERNEL]			= "reserved kernel page",
506 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
507 	[MF_MSG_SLAB]			= "kernel slab page",
508 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
509 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
510 	[MF_MSG_HUGE]			= "huge page",
511 	[MF_MSG_FREE_HUGE]		= "free huge page",
512 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
513 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
514 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
515 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
516 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
517 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
518 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
519 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
520 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
521 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
522 	[MF_MSG_BUDDY]			= "free buddy page",
523 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
524 	[MF_MSG_UNKNOWN]		= "unknown page",
525 };
526 
527 /*
528  * XXX: It is possible that a page is isolated from LRU cache,
529  * and then kept in swap cache or failed to remove from page cache.
530  * The page count will stop it from being freed by unpoison.
531  * Stress tests should be aware of this memory leak problem.
532  */
533 static int delete_from_lru_cache(struct page *p)
534 {
535 	if (!isolate_lru_page(p)) {
536 		/*
537 		 * Clear sensible page flags, so that the buddy system won't
538 		 * complain when the page is unpoison-and-freed.
539 		 */
540 		ClearPageActive(p);
541 		ClearPageUnevictable(p);
542 		/*
543 		 * drop the page count elevated by isolate_lru_page()
544 		 */
545 		page_cache_release(p);
546 		return 0;
547 	}
548 	return -EIO;
549 }
550 
551 /*
552  * Error hit kernel page.
553  * Do nothing, try to be lucky and not touch this instead. For a few cases we
554  * could be more sophisticated.
555  */
556 static int me_kernel(struct page *p, unsigned long pfn)
557 {
558 	return MF_IGNORED;
559 }
560 
561 /*
562  * Page in unknown state. Do nothing.
563  */
564 static int me_unknown(struct page *p, unsigned long pfn)
565 {
566 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
567 	return MF_FAILED;
568 }
569 
570 /*
571  * Clean (or cleaned) page cache page.
572  */
573 static int me_pagecache_clean(struct page *p, unsigned long pfn)
574 {
575 	int err;
576 	int ret = MF_FAILED;
577 	struct address_space *mapping;
578 
579 	delete_from_lru_cache(p);
580 
581 	/*
582 	 * For anonymous pages we're done the only reference left
583 	 * should be the one m_f() holds.
584 	 */
585 	if (PageAnon(p))
586 		return MF_RECOVERED;
587 
588 	/*
589 	 * Now truncate the page in the page cache. This is really
590 	 * more like a "temporary hole punch"
591 	 * Don't do this for block devices when someone else
592 	 * has a reference, because it could be file system metadata
593 	 * and that's not safe to truncate.
594 	 */
595 	mapping = page_mapping(p);
596 	if (!mapping) {
597 		/*
598 		 * Page has been teared down in the meanwhile
599 		 */
600 		return MF_FAILED;
601 	}
602 
603 	/*
604 	 * Truncation is a bit tricky. Enable it per file system for now.
605 	 *
606 	 * Open: to take i_mutex or not for this? Right now we don't.
607 	 */
608 	if (mapping->a_ops->error_remove_page) {
609 		err = mapping->a_ops->error_remove_page(mapping, p);
610 		if (err != 0) {
611 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
612 					pfn, err);
613 		} else if (page_has_private(p) &&
614 				!try_to_release_page(p, GFP_NOIO)) {
615 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
616 		} else {
617 			ret = MF_RECOVERED;
618 		}
619 	} else {
620 		/*
621 		 * If the file system doesn't support it just invalidate
622 		 * This fails on dirty or anything with private pages
623 		 */
624 		if (invalidate_inode_page(p))
625 			ret = MF_RECOVERED;
626 		else
627 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
628 				pfn);
629 	}
630 	return ret;
631 }
632 
633 /*
634  * Dirty pagecache page
635  * Issues: when the error hit a hole page the error is not properly
636  * propagated.
637  */
638 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
639 {
640 	struct address_space *mapping = page_mapping(p);
641 
642 	SetPageError(p);
643 	/* TBD: print more information about the file. */
644 	if (mapping) {
645 		/*
646 		 * IO error will be reported by write(), fsync(), etc.
647 		 * who check the mapping.
648 		 * This way the application knows that something went
649 		 * wrong with its dirty file data.
650 		 *
651 		 * There's one open issue:
652 		 *
653 		 * The EIO will be only reported on the next IO
654 		 * operation and then cleared through the IO map.
655 		 * Normally Linux has two mechanisms to pass IO error
656 		 * first through the AS_EIO flag in the address space
657 		 * and then through the PageError flag in the page.
658 		 * Since we drop pages on memory failure handling the
659 		 * only mechanism open to use is through AS_AIO.
660 		 *
661 		 * This has the disadvantage that it gets cleared on
662 		 * the first operation that returns an error, while
663 		 * the PageError bit is more sticky and only cleared
664 		 * when the page is reread or dropped.  If an
665 		 * application assumes it will always get error on
666 		 * fsync, but does other operations on the fd before
667 		 * and the page is dropped between then the error
668 		 * will not be properly reported.
669 		 *
670 		 * This can already happen even without hwpoisoned
671 		 * pages: first on metadata IO errors (which only
672 		 * report through AS_EIO) or when the page is dropped
673 		 * at the wrong time.
674 		 *
675 		 * So right now we assume that the application DTRT on
676 		 * the first EIO, but we're not worse than other parts
677 		 * of the kernel.
678 		 */
679 		mapping_set_error(mapping, EIO);
680 	}
681 
682 	return me_pagecache_clean(p, pfn);
683 }
684 
685 /*
686  * Clean and dirty swap cache.
687  *
688  * Dirty swap cache page is tricky to handle. The page could live both in page
689  * cache and swap cache(ie. page is freshly swapped in). So it could be
690  * referenced concurrently by 2 types of PTEs:
691  * normal PTEs and swap PTEs. We try to handle them consistently by calling
692  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
693  * and then
694  *      - clear dirty bit to prevent IO
695  *      - remove from LRU
696  *      - but keep in the swap cache, so that when we return to it on
697  *        a later page fault, we know the application is accessing
698  *        corrupted data and shall be killed (we installed simple
699  *        interception code in do_swap_page to catch it).
700  *
701  * Clean swap cache pages can be directly isolated. A later page fault will
702  * bring in the known good data from disk.
703  */
704 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
705 {
706 	ClearPageDirty(p);
707 	/* Trigger EIO in shmem: */
708 	ClearPageUptodate(p);
709 
710 	if (!delete_from_lru_cache(p))
711 		return MF_DELAYED;
712 	else
713 		return MF_FAILED;
714 }
715 
716 static int me_swapcache_clean(struct page *p, unsigned long pfn)
717 {
718 	delete_from_swap_cache(p);
719 
720 	if (!delete_from_lru_cache(p))
721 		return MF_RECOVERED;
722 	else
723 		return MF_FAILED;
724 }
725 
726 /*
727  * Huge pages. Needs work.
728  * Issues:
729  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
730  *   To narrow down kill region to one page, we need to break up pmd.
731  */
732 static int me_huge_page(struct page *p, unsigned long pfn)
733 {
734 	int res = 0;
735 	struct page *hpage = compound_head(p);
736 
737 	if (!PageHuge(hpage))
738 		return MF_DELAYED;
739 
740 	/*
741 	 * We can safely recover from error on free or reserved (i.e.
742 	 * not in-use) hugepage by dequeuing it from freelist.
743 	 * To check whether a hugepage is in-use or not, we can't use
744 	 * page->lru because it can be used in other hugepage operations,
745 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 	 * So instead we use page_mapping() and PageAnon().
747 	 * We assume that this function is called with page lock held,
748 	 * so there is no race between isolation and mapping/unmapping.
749 	 */
750 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
751 		res = dequeue_hwpoisoned_huge_page(hpage);
752 		if (!res)
753 			return MF_RECOVERED;
754 	}
755 	return MF_DELAYED;
756 }
757 
758 /*
759  * Various page states we can handle.
760  *
761  * A page state is defined by its current page->flags bits.
762  * The table matches them in order and calls the right handler.
763  *
764  * This is quite tricky because we can access page at any time
765  * in its live cycle, so all accesses have to be extremely careful.
766  *
767  * This is not complete. More states could be added.
768  * For any missing state don't attempt recovery.
769  */
770 
771 #define dirty		(1UL << PG_dirty)
772 #define sc		(1UL << PG_swapcache)
773 #define unevict		(1UL << PG_unevictable)
774 #define mlock		(1UL << PG_mlocked)
775 #define writeback	(1UL << PG_writeback)
776 #define lru		(1UL << PG_lru)
777 #define swapbacked	(1UL << PG_swapbacked)
778 #define head		(1UL << PG_head)
779 #define slab		(1UL << PG_slab)
780 #define reserved	(1UL << PG_reserved)
781 
782 static struct page_state {
783 	unsigned long mask;
784 	unsigned long res;
785 	enum mf_action_page_type type;
786 	int (*action)(struct page *p, unsigned long pfn);
787 } error_states[] = {
788 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
789 	/*
790 	 * free pages are specially detected outside this table:
791 	 * PG_buddy pages only make a small fraction of all free pages.
792 	 */
793 
794 	/*
795 	 * Could in theory check if slab page is free or if we can drop
796 	 * currently unused objects without touching them. But just
797 	 * treat it as standard kernel for now.
798 	 */
799 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
800 
801 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
802 
803 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
804 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
805 
806 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
807 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
808 
809 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
810 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
811 
812 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
813 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
814 
815 	/*
816 	 * Catchall entry: must be at end.
817 	 */
818 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
819 };
820 
821 #undef dirty
822 #undef sc
823 #undef unevict
824 #undef mlock
825 #undef writeback
826 #undef lru
827 #undef swapbacked
828 #undef head
829 #undef tail
830 #undef compound
831 #undef slab
832 #undef reserved
833 
834 /*
835  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837  */
838 static void action_result(unsigned long pfn, enum mf_action_page_type type,
839 			  enum mf_result result)
840 {
841 	trace_memory_failure_event(pfn, type, result);
842 
843 	pr_err("MCE %#lx: recovery action for %s: %s\n",
844 		pfn, action_page_types[type], action_name[result]);
845 }
846 
847 static int page_action(struct page_state *ps, struct page *p,
848 			unsigned long pfn)
849 {
850 	int result;
851 	int count;
852 
853 	result = ps->action(p, pfn);
854 
855 	count = page_count(p) - 1;
856 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
857 		count--;
858 	if (count != 0) {
859 		printk(KERN_ERR
860 		       "MCE %#lx: %s still referenced by %d users\n",
861 		       pfn, action_page_types[ps->type], count);
862 		result = MF_FAILED;
863 	}
864 	action_result(pfn, ps->type, result);
865 
866 	/* Could do more checks here if page looks ok */
867 	/*
868 	 * Could adjust zone counters here to correct for the missing page.
869 	 */
870 
871 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
872 }
873 
874 /**
875  * get_hwpoison_page() - Get refcount for memory error handling:
876  * @page:	raw error page (hit by memory error)
877  *
878  * Return: return 0 if failed to grab the refcount, otherwise true (some
879  * non-zero value.)
880  */
881 int get_hwpoison_page(struct page *page)
882 {
883 	struct page *head = compound_head(page);
884 
885 	if (PageHuge(head))
886 		return get_page_unless_zero(head);
887 
888 	/*
889 	 * Thp tail page has special refcounting rule (refcount of tail pages
890 	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
891 	 * directly for tail pages.
892 	 */
893 	if (PageTransHuge(head)) {
894 		/*
895 		 * Non anonymous thp exists only in allocation/free time. We
896 		 * can't handle such a case correctly, so let's give it up.
897 		 * This should be better than triggering BUG_ON when kernel
898 		 * tries to touch the "partially handled" page.
899 		 */
900 		if (!PageAnon(head)) {
901 			pr_err("MCE: %#lx: non anonymous thp\n",
902 				page_to_pfn(page));
903 			return 0;
904 		}
905 
906 		if (get_page_unless_zero(head)) {
907 			if (PageTail(page))
908 				get_page(page);
909 			return 1;
910 		} else {
911 			return 0;
912 		}
913 	}
914 
915 	return get_page_unless_zero(page);
916 }
917 EXPORT_SYMBOL_GPL(get_hwpoison_page);
918 
919 /**
920  * put_hwpoison_page() - Put refcount for memory error handling:
921  * @page:	raw error page (hit by memory error)
922  */
923 void put_hwpoison_page(struct page *page)
924 {
925 	struct page *head = compound_head(page);
926 
927 	if (PageHuge(head)) {
928 		put_page(head);
929 		return;
930 	}
931 
932 	if (PageTransHuge(head))
933 		if (page != head)
934 			put_page(head);
935 
936 	put_page(page);
937 }
938 EXPORT_SYMBOL_GPL(put_hwpoison_page);
939 
940 /*
941  * Do all that is necessary to remove user space mappings. Unmap
942  * the pages and send SIGBUS to the processes if the data was dirty.
943  */
944 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
945 				  int trapno, int flags, struct page **hpagep)
946 {
947 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
948 	struct address_space *mapping;
949 	LIST_HEAD(tokill);
950 	int ret;
951 	int kill = 1, forcekill;
952 	struct page *hpage = *hpagep;
953 
954 	/*
955 	 * Here we are interested only in user-mapped pages, so skip any
956 	 * other types of pages.
957 	 */
958 	if (PageReserved(p) || PageSlab(p))
959 		return SWAP_SUCCESS;
960 	if (!(PageLRU(hpage) || PageHuge(p)))
961 		return SWAP_SUCCESS;
962 
963 	/*
964 	 * This check implies we don't kill processes if their pages
965 	 * are in the swap cache early. Those are always late kills.
966 	 */
967 	if (!page_mapped(hpage))
968 		return SWAP_SUCCESS;
969 
970 	if (PageKsm(p)) {
971 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
972 		return SWAP_FAIL;
973 	}
974 
975 	if (PageSwapCache(p)) {
976 		printk(KERN_ERR
977 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
978 		ttu |= TTU_IGNORE_HWPOISON;
979 	}
980 
981 	/*
982 	 * Propagate the dirty bit from PTEs to struct page first, because we
983 	 * need this to decide if we should kill or just drop the page.
984 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
985 	 * be called inside page lock (it's recommended but not enforced).
986 	 */
987 	mapping = page_mapping(hpage);
988 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
989 	    mapping_cap_writeback_dirty(mapping)) {
990 		if (page_mkclean(hpage)) {
991 			SetPageDirty(hpage);
992 		} else {
993 			kill = 0;
994 			ttu |= TTU_IGNORE_HWPOISON;
995 			printk(KERN_INFO
996 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
997 				pfn);
998 		}
999 	}
1000 
1001 	/*
1002 	 * First collect all the processes that have the page
1003 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1004 	 * because ttu takes the rmap data structures down.
1005 	 *
1006 	 * Error handling: We ignore errors here because
1007 	 * there's nothing that can be done.
1008 	 */
1009 	if (kill)
1010 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1011 
1012 	ret = try_to_unmap(hpage, ttu);
1013 	if (ret != SWAP_SUCCESS)
1014 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1015 				pfn, page_mapcount(hpage));
1016 
1017 	/*
1018 	 * Now that the dirty bit has been propagated to the
1019 	 * struct page and all unmaps done we can decide if
1020 	 * killing is needed or not.  Only kill when the page
1021 	 * was dirty or the process is not restartable,
1022 	 * otherwise the tokill list is merely
1023 	 * freed.  When there was a problem unmapping earlier
1024 	 * use a more force-full uncatchable kill to prevent
1025 	 * any accesses to the poisoned memory.
1026 	 */
1027 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1028 	kill_procs(&tokill, forcekill, trapno,
1029 		      ret != SWAP_SUCCESS, p, pfn, flags);
1030 
1031 	return ret;
1032 }
1033 
1034 static void set_page_hwpoison_huge_page(struct page *hpage)
1035 {
1036 	int i;
1037 	int nr_pages = 1 << compound_order(hpage);
1038 	for (i = 0; i < nr_pages; i++)
1039 		SetPageHWPoison(hpage + i);
1040 }
1041 
1042 static void clear_page_hwpoison_huge_page(struct page *hpage)
1043 {
1044 	int i;
1045 	int nr_pages = 1 << compound_order(hpage);
1046 	for (i = 0; i < nr_pages; i++)
1047 		ClearPageHWPoison(hpage + i);
1048 }
1049 
1050 /**
1051  * memory_failure - Handle memory failure of a page.
1052  * @pfn: Page Number of the corrupted page
1053  * @trapno: Trap number reported in the signal to user space.
1054  * @flags: fine tune action taken
1055  *
1056  * This function is called by the low level machine check code
1057  * of an architecture when it detects hardware memory corruption
1058  * of a page. It tries its best to recover, which includes
1059  * dropping pages, killing processes etc.
1060  *
1061  * The function is primarily of use for corruptions that
1062  * happen outside the current execution context (e.g. when
1063  * detected by a background scrubber)
1064  *
1065  * Must run in process context (e.g. a work queue) with interrupts
1066  * enabled and no spinlocks hold.
1067  */
1068 int memory_failure(unsigned long pfn, int trapno, int flags)
1069 {
1070 	struct page_state *ps;
1071 	struct page *p;
1072 	struct page *hpage;
1073 	struct page *orig_head;
1074 	int res;
1075 	unsigned int nr_pages;
1076 	unsigned long page_flags;
1077 
1078 	if (!sysctl_memory_failure_recovery)
1079 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1080 
1081 	if (!pfn_valid(pfn)) {
1082 		printk(KERN_ERR
1083 		       "MCE %#lx: memory outside kernel control\n",
1084 		       pfn);
1085 		return -ENXIO;
1086 	}
1087 
1088 	p = pfn_to_page(pfn);
1089 	orig_head = hpage = compound_head(p);
1090 	if (TestSetPageHWPoison(p)) {
1091 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1092 		return 0;
1093 	}
1094 
1095 	/*
1096 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1097 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1098 	 * transparent hugepages, they are supposed to be split and error
1099 	 * measurement is done in normal page units.  So nr_pages should be one
1100 	 * in this case.
1101 	 */
1102 	if (PageHuge(p))
1103 		nr_pages = 1 << compound_order(hpage);
1104 	else /* normal page or thp */
1105 		nr_pages = 1;
1106 	num_poisoned_pages_add(nr_pages);
1107 
1108 	/*
1109 	 * We need/can do nothing about count=0 pages.
1110 	 * 1) it's a free page, and therefore in safe hand:
1111 	 *    prep_new_page() will be the gate keeper.
1112 	 * 2) it's a free hugepage, which is also safe:
1113 	 *    an affected hugepage will be dequeued from hugepage freelist,
1114 	 *    so there's no concern about reusing it ever after.
1115 	 * 3) it's part of a non-compound high order page.
1116 	 *    Implies some kernel user: cannot stop them from
1117 	 *    R/W the page; let's pray that the page has been
1118 	 *    used and will be freed some time later.
1119 	 * In fact it's dangerous to directly bump up page count from 0,
1120 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1121 	 */
1122 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123 		if (is_free_buddy_page(p)) {
1124 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1125 			return 0;
1126 		} else if (PageHuge(hpage)) {
1127 			/*
1128 			 * Check "filter hit" and "race with other subpage."
1129 			 */
1130 			lock_page(hpage);
1131 			if (PageHWPoison(hpage)) {
1132 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1133 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1134 					num_poisoned_pages_sub(nr_pages);
1135 					unlock_page(hpage);
1136 					return 0;
1137 				}
1138 			}
1139 			set_page_hwpoison_huge_page(hpage);
1140 			res = dequeue_hwpoisoned_huge_page(hpage);
1141 			action_result(pfn, MF_MSG_FREE_HUGE,
1142 				      res ? MF_IGNORED : MF_DELAYED);
1143 			unlock_page(hpage);
1144 			return res;
1145 		} else {
1146 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1147 			return -EBUSY;
1148 		}
1149 	}
1150 
1151 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1152 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1153 			if (!PageAnon(hpage))
1154 				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1155 			else
1156 				pr_err("MCE: %#lx: thp split failed\n", pfn);
1157 			if (TestClearPageHWPoison(p))
1158 				num_poisoned_pages_sub(nr_pages);
1159 			put_hwpoison_page(p);
1160 			return -EBUSY;
1161 		}
1162 		VM_BUG_ON_PAGE(!page_count(p), p);
1163 		hpage = compound_head(p);
1164 	}
1165 
1166 	/*
1167 	 * We ignore non-LRU pages for good reasons.
1168 	 * - PG_locked is only well defined for LRU pages and a few others
1169 	 * - to avoid races with __set_page_locked()
1170 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1171 	 * The check (unnecessarily) ignores LRU pages being isolated and
1172 	 * walked by the page reclaim code, however that's not a big loss.
1173 	 */
1174 	if (!PageHuge(p)) {
1175 		if (!PageLRU(p))
1176 			shake_page(p, 0);
1177 		if (!PageLRU(p)) {
1178 			/*
1179 			 * shake_page could have turned it free.
1180 			 */
1181 			if (is_free_buddy_page(p)) {
1182 				if (flags & MF_COUNT_INCREASED)
1183 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1184 				else
1185 					action_result(pfn, MF_MSG_BUDDY_2ND,
1186 						      MF_DELAYED);
1187 				return 0;
1188 			}
1189 		}
1190 	}
1191 
1192 	lock_page(hpage);
1193 
1194 	/*
1195 	 * The page could have changed compound pages during the locking.
1196 	 * If this happens just bail out.
1197 	 */
1198 	if (PageCompound(p) && compound_head(p) != orig_head) {
1199 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1200 		res = -EBUSY;
1201 		goto out;
1202 	}
1203 
1204 	/*
1205 	 * We use page flags to determine what action should be taken, but
1206 	 * the flags can be modified by the error containment action.  One
1207 	 * example is an mlocked page, where PG_mlocked is cleared by
1208 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1209 	 * correctly, we save a copy of the page flags at this time.
1210 	 */
1211 	page_flags = p->flags;
1212 
1213 	/*
1214 	 * unpoison always clear PG_hwpoison inside page lock
1215 	 */
1216 	if (!PageHWPoison(p)) {
1217 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1218 		num_poisoned_pages_sub(nr_pages);
1219 		unlock_page(hpage);
1220 		put_hwpoison_page(hpage);
1221 		return 0;
1222 	}
1223 	if (hwpoison_filter(p)) {
1224 		if (TestClearPageHWPoison(p))
1225 			num_poisoned_pages_sub(nr_pages);
1226 		unlock_page(hpage);
1227 		put_hwpoison_page(hpage);
1228 		return 0;
1229 	}
1230 
1231 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1232 		goto identify_page_state;
1233 
1234 	/*
1235 	 * For error on the tail page, we should set PG_hwpoison
1236 	 * on the head page to show that the hugepage is hwpoisoned
1237 	 */
1238 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1239 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1240 		unlock_page(hpage);
1241 		put_hwpoison_page(hpage);
1242 		return 0;
1243 	}
1244 	/*
1245 	 * Set PG_hwpoison on all pages in an error hugepage,
1246 	 * because containment is done in hugepage unit for now.
1247 	 * Since we have done TestSetPageHWPoison() for the head page with
1248 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1249 	 */
1250 	if (PageHuge(p))
1251 		set_page_hwpoison_huge_page(hpage);
1252 
1253 	/*
1254 	 * It's very difficult to mess with pages currently under IO
1255 	 * and in many cases impossible, so we just avoid it here.
1256 	 */
1257 	wait_on_page_writeback(p);
1258 
1259 	/*
1260 	 * Now take care of user space mappings.
1261 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1262 	 *
1263 	 * When the raw error page is thp tail page, hpage points to the raw
1264 	 * page after thp split.
1265 	 */
1266 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1267 	    != SWAP_SUCCESS) {
1268 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1269 		res = -EBUSY;
1270 		goto out;
1271 	}
1272 
1273 	/*
1274 	 * Torn down by someone else?
1275 	 */
1276 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1277 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1278 		res = -EBUSY;
1279 		goto out;
1280 	}
1281 
1282 identify_page_state:
1283 	res = -EBUSY;
1284 	/*
1285 	 * The first check uses the current page flags which may not have any
1286 	 * relevant information. The second check with the saved page flagss is
1287 	 * carried out only if the first check can't determine the page status.
1288 	 */
1289 	for (ps = error_states;; ps++)
1290 		if ((p->flags & ps->mask) == ps->res)
1291 			break;
1292 
1293 	page_flags |= (p->flags & (1UL << PG_dirty));
1294 
1295 	if (!ps->mask)
1296 		for (ps = error_states;; ps++)
1297 			if ((page_flags & ps->mask) == ps->res)
1298 				break;
1299 	res = page_action(ps, p, pfn);
1300 out:
1301 	unlock_page(hpage);
1302 	return res;
1303 }
1304 EXPORT_SYMBOL_GPL(memory_failure);
1305 
1306 #define MEMORY_FAILURE_FIFO_ORDER	4
1307 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1308 
1309 struct memory_failure_entry {
1310 	unsigned long pfn;
1311 	int trapno;
1312 	int flags;
1313 };
1314 
1315 struct memory_failure_cpu {
1316 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1317 		      MEMORY_FAILURE_FIFO_SIZE);
1318 	spinlock_t lock;
1319 	struct work_struct work;
1320 };
1321 
1322 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1323 
1324 /**
1325  * memory_failure_queue - Schedule handling memory failure of a page.
1326  * @pfn: Page Number of the corrupted page
1327  * @trapno: Trap number reported in the signal to user space.
1328  * @flags: Flags for memory failure handling
1329  *
1330  * This function is called by the low level hardware error handler
1331  * when it detects hardware memory corruption of a page. It schedules
1332  * the recovering of error page, including dropping pages, killing
1333  * processes etc.
1334  *
1335  * The function is primarily of use for corruptions that
1336  * happen outside the current execution context (e.g. when
1337  * detected by a background scrubber)
1338  *
1339  * Can run in IRQ context.
1340  */
1341 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1342 {
1343 	struct memory_failure_cpu *mf_cpu;
1344 	unsigned long proc_flags;
1345 	struct memory_failure_entry entry = {
1346 		.pfn =		pfn,
1347 		.trapno =	trapno,
1348 		.flags =	flags,
1349 	};
1350 
1351 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1352 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1353 	if (kfifo_put(&mf_cpu->fifo, entry))
1354 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1355 	else
1356 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1357 		       pfn);
1358 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1359 	put_cpu_var(memory_failure_cpu);
1360 }
1361 EXPORT_SYMBOL_GPL(memory_failure_queue);
1362 
1363 static void memory_failure_work_func(struct work_struct *work)
1364 {
1365 	struct memory_failure_cpu *mf_cpu;
1366 	struct memory_failure_entry entry = { 0, };
1367 	unsigned long proc_flags;
1368 	int gotten;
1369 
1370 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1371 	for (;;) {
1372 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1373 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1374 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1375 		if (!gotten)
1376 			break;
1377 		if (entry.flags & MF_SOFT_OFFLINE)
1378 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1379 		else
1380 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1381 	}
1382 }
1383 
1384 static int __init memory_failure_init(void)
1385 {
1386 	struct memory_failure_cpu *mf_cpu;
1387 	int cpu;
1388 
1389 	for_each_possible_cpu(cpu) {
1390 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1391 		spin_lock_init(&mf_cpu->lock);
1392 		INIT_KFIFO(mf_cpu->fifo);
1393 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1394 	}
1395 
1396 	return 0;
1397 }
1398 core_initcall(memory_failure_init);
1399 
1400 #define unpoison_pr_info(fmt, pfn, rs)			\
1401 ({							\
1402 	if (__ratelimit(rs))				\
1403 		pr_info(fmt, pfn);			\
1404 })
1405 
1406 /**
1407  * unpoison_memory - Unpoison a previously poisoned page
1408  * @pfn: Page number of the to be unpoisoned page
1409  *
1410  * Software-unpoison a page that has been poisoned by
1411  * memory_failure() earlier.
1412  *
1413  * This is only done on the software-level, so it only works
1414  * for linux injected failures, not real hardware failures
1415  *
1416  * Returns 0 for success, otherwise -errno.
1417  */
1418 int unpoison_memory(unsigned long pfn)
1419 {
1420 	struct page *page;
1421 	struct page *p;
1422 	int freeit = 0;
1423 	unsigned int nr_pages;
1424 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1425 					DEFAULT_RATELIMIT_BURST);
1426 
1427 	if (!pfn_valid(pfn))
1428 		return -ENXIO;
1429 
1430 	p = pfn_to_page(pfn);
1431 	page = compound_head(p);
1432 
1433 	if (!PageHWPoison(p)) {
1434 		unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1435 				 pfn, &unpoison_rs);
1436 		return 0;
1437 	}
1438 
1439 	if (page_count(page) > 1) {
1440 		unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1441 				 pfn, &unpoison_rs);
1442 		return 0;
1443 	}
1444 
1445 	if (page_mapped(page)) {
1446 		unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1447 				 pfn, &unpoison_rs);
1448 		return 0;
1449 	}
1450 
1451 	if (page_mapping(page)) {
1452 		unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1453 				 pfn, &unpoison_rs);
1454 		return 0;
1455 	}
1456 
1457 	/*
1458 	 * unpoison_memory() can encounter thp only when the thp is being
1459 	 * worked by memory_failure() and the page lock is not held yet.
1460 	 * In such case, we yield to memory_failure() and make unpoison fail.
1461 	 */
1462 	if (!PageHuge(page) && PageTransHuge(page)) {
1463 		unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1464 				 pfn, &unpoison_rs);
1465 		return 0;
1466 	}
1467 
1468 	nr_pages = 1 << compound_order(page);
1469 
1470 	if (!get_hwpoison_page(p)) {
1471 		/*
1472 		 * Since HWPoisoned hugepage should have non-zero refcount,
1473 		 * race between memory failure and unpoison seems to happen.
1474 		 * In such case unpoison fails and memory failure runs
1475 		 * to the end.
1476 		 */
1477 		if (PageHuge(page)) {
1478 			unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1479 					 pfn, &unpoison_rs);
1480 			return 0;
1481 		}
1482 		if (TestClearPageHWPoison(p))
1483 			num_poisoned_pages_dec();
1484 		unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1485 				 pfn, &unpoison_rs);
1486 		return 0;
1487 	}
1488 
1489 	lock_page(page);
1490 	/*
1491 	 * This test is racy because PG_hwpoison is set outside of page lock.
1492 	 * That's acceptable because that won't trigger kernel panic. Instead,
1493 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1494 	 * the free buddy page pool.
1495 	 */
1496 	if (TestClearPageHWPoison(page)) {
1497 		unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1498 				 pfn, &unpoison_rs);
1499 		num_poisoned_pages_sub(nr_pages);
1500 		freeit = 1;
1501 		if (PageHuge(page))
1502 			clear_page_hwpoison_huge_page(page);
1503 	}
1504 	unlock_page(page);
1505 
1506 	put_hwpoison_page(page);
1507 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1508 		put_hwpoison_page(page);
1509 
1510 	return 0;
1511 }
1512 EXPORT_SYMBOL(unpoison_memory);
1513 
1514 static struct page *new_page(struct page *p, unsigned long private, int **x)
1515 {
1516 	int nid = page_to_nid(p);
1517 	if (PageHuge(p))
1518 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1519 						   nid);
1520 	else
1521 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1522 }
1523 
1524 /*
1525  * Safely get reference count of an arbitrary page.
1526  * Returns 0 for a free page, -EIO for a zero refcount page
1527  * that is not free, and 1 for any other page type.
1528  * For 1 the page is returned with increased page count, otherwise not.
1529  */
1530 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1531 {
1532 	int ret;
1533 
1534 	if (flags & MF_COUNT_INCREASED)
1535 		return 1;
1536 
1537 	/*
1538 	 * When the target page is a free hugepage, just remove it
1539 	 * from free hugepage list.
1540 	 */
1541 	if (!get_hwpoison_page(p)) {
1542 		if (PageHuge(p)) {
1543 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1544 			ret = 0;
1545 		} else if (is_free_buddy_page(p)) {
1546 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1547 			ret = 0;
1548 		} else {
1549 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1550 				__func__, pfn, p->flags);
1551 			ret = -EIO;
1552 		}
1553 	} else {
1554 		/* Not a free page */
1555 		ret = 1;
1556 	}
1557 	return ret;
1558 }
1559 
1560 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1561 {
1562 	int ret = __get_any_page(page, pfn, flags);
1563 
1564 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1565 		/*
1566 		 * Try to free it.
1567 		 */
1568 		put_hwpoison_page(page);
1569 		shake_page(page, 1);
1570 
1571 		/*
1572 		 * Did it turn free?
1573 		 */
1574 		ret = __get_any_page(page, pfn, 0);
1575 		if (!PageLRU(page)) {
1576 			/* Drop page reference which is from __get_any_page() */
1577 			put_hwpoison_page(page);
1578 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1579 				pfn, page->flags);
1580 			return -EIO;
1581 		}
1582 	}
1583 	return ret;
1584 }
1585 
1586 static int soft_offline_huge_page(struct page *page, int flags)
1587 {
1588 	int ret;
1589 	unsigned long pfn = page_to_pfn(page);
1590 	struct page *hpage = compound_head(page);
1591 	LIST_HEAD(pagelist);
1592 
1593 	/*
1594 	 * This double-check of PageHWPoison is to avoid the race with
1595 	 * memory_failure(). See also comment in __soft_offline_page().
1596 	 */
1597 	lock_page(hpage);
1598 	if (PageHWPoison(hpage)) {
1599 		unlock_page(hpage);
1600 		put_hwpoison_page(hpage);
1601 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1602 		return -EBUSY;
1603 	}
1604 	unlock_page(hpage);
1605 
1606 	ret = isolate_huge_page(hpage, &pagelist);
1607 	/*
1608 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1609 	 * so need to drop one here.
1610 	 */
1611 	put_hwpoison_page(hpage);
1612 	if (!ret) {
1613 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1614 		return -EBUSY;
1615 	}
1616 
1617 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1618 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1619 	if (ret) {
1620 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1621 			pfn, ret, page->flags);
1622 		/*
1623 		 * We know that soft_offline_huge_page() tries to migrate
1624 		 * only one hugepage pointed to by hpage, so we need not
1625 		 * run through the pagelist here.
1626 		 */
1627 		putback_active_hugepage(hpage);
1628 		if (ret > 0)
1629 			ret = -EIO;
1630 	} else {
1631 		/* overcommit hugetlb page will be freed to buddy */
1632 		if (PageHuge(page)) {
1633 			set_page_hwpoison_huge_page(hpage);
1634 			dequeue_hwpoisoned_huge_page(hpage);
1635 			num_poisoned_pages_add(1 << compound_order(hpage));
1636 		} else {
1637 			SetPageHWPoison(page);
1638 			num_poisoned_pages_inc();
1639 		}
1640 	}
1641 	return ret;
1642 }
1643 
1644 static int __soft_offline_page(struct page *page, int flags)
1645 {
1646 	int ret;
1647 	unsigned long pfn = page_to_pfn(page);
1648 
1649 	/*
1650 	 * Check PageHWPoison again inside page lock because PageHWPoison
1651 	 * is set by memory_failure() outside page lock. Note that
1652 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1653 	 * so there's no race between soft_offline_page() and memory_failure().
1654 	 */
1655 	lock_page(page);
1656 	wait_on_page_writeback(page);
1657 	if (PageHWPoison(page)) {
1658 		unlock_page(page);
1659 		put_hwpoison_page(page);
1660 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1661 		return -EBUSY;
1662 	}
1663 	/*
1664 	 * Try to invalidate first. This should work for
1665 	 * non dirty unmapped page cache pages.
1666 	 */
1667 	ret = invalidate_inode_page(page);
1668 	unlock_page(page);
1669 	/*
1670 	 * RED-PEN would be better to keep it isolated here, but we
1671 	 * would need to fix isolation locking first.
1672 	 */
1673 	if (ret == 1) {
1674 		put_hwpoison_page(page);
1675 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1676 		SetPageHWPoison(page);
1677 		num_poisoned_pages_inc();
1678 		return 0;
1679 	}
1680 
1681 	/*
1682 	 * Simple invalidation didn't work.
1683 	 * Try to migrate to a new page instead. migrate.c
1684 	 * handles a large number of cases for us.
1685 	 */
1686 	ret = isolate_lru_page(page);
1687 	/*
1688 	 * Drop page reference which is came from get_any_page()
1689 	 * successful isolate_lru_page() already took another one.
1690 	 */
1691 	put_hwpoison_page(page);
1692 	if (!ret) {
1693 		LIST_HEAD(pagelist);
1694 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1695 					page_is_file_cache(page));
1696 		list_add(&page->lru, &pagelist);
1697 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1698 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1699 		if (ret) {
1700 			if (!list_empty(&pagelist)) {
1701 				list_del(&page->lru);
1702 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1703 						page_is_file_cache(page));
1704 				putback_lru_page(page);
1705 			}
1706 
1707 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1708 				pfn, ret, page->flags);
1709 			if (ret > 0)
1710 				ret = -EIO;
1711 		}
1712 	} else {
1713 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1714 			pfn, ret, page_count(page), page->flags);
1715 	}
1716 	return ret;
1717 }
1718 
1719 /**
1720  * soft_offline_page - Soft offline a page.
1721  * @page: page to offline
1722  * @flags: flags. Same as memory_failure().
1723  *
1724  * Returns 0 on success, otherwise negated errno.
1725  *
1726  * Soft offline a page, by migration or invalidation,
1727  * without killing anything. This is for the case when
1728  * a page is not corrupted yet (so it's still valid to access),
1729  * but has had a number of corrected errors and is better taken
1730  * out.
1731  *
1732  * The actual policy on when to do that is maintained by
1733  * user space.
1734  *
1735  * This should never impact any application or cause data loss,
1736  * however it might take some time.
1737  *
1738  * This is not a 100% solution for all memory, but tries to be
1739  * ``good enough'' for the majority of memory.
1740  */
1741 int soft_offline_page(struct page *page, int flags)
1742 {
1743 	int ret;
1744 	unsigned long pfn = page_to_pfn(page);
1745 	struct page *hpage = compound_head(page);
1746 
1747 	if (PageHWPoison(page)) {
1748 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1749 		if (flags & MF_COUNT_INCREASED)
1750 			put_hwpoison_page(page);
1751 		return -EBUSY;
1752 	}
1753 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1754 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1755 			pr_info("soft offline: %#lx: failed to split THP\n",
1756 				pfn);
1757 			if (flags & MF_COUNT_INCREASED)
1758 				put_hwpoison_page(page);
1759 			return -EBUSY;
1760 		}
1761 	}
1762 
1763 	get_online_mems();
1764 
1765 	ret = get_any_page(page, pfn, flags);
1766 	put_online_mems();
1767 	if (ret > 0) { /* for in-use pages */
1768 		if (PageHuge(page))
1769 			ret = soft_offline_huge_page(page, flags);
1770 		else
1771 			ret = __soft_offline_page(page, flags);
1772 	} else if (ret == 0) { /* for free pages */
1773 		if (PageHuge(page)) {
1774 			set_page_hwpoison_huge_page(hpage);
1775 			if (!dequeue_hwpoisoned_huge_page(hpage))
1776 				num_poisoned_pages_add(1 << compound_order(hpage));
1777 		} else {
1778 			if (!TestSetPageHWPoison(page))
1779 				num_poisoned_pages_inc();
1780 		}
1781 	}
1782 	return ret;
1783 }
1784