xref: /openbmc/linux/mm/memory-failure.c (revision 60bcf728)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 	if (hugepage_or_freepage) {
71 		/*
72 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 		 * returns 0 for non-hugetlb pages as well.
74 		 */
75 		if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 			/*
77 			 * We could fail to take off the target page from buddy
78 			 * for example due to racy page allocaiton, but that's
79 			 * acceptable because soft-offlined page is not broken
80 			 * and if someone really want to use it, they should
81 			 * take it.
82 			 */
83 			return false;
84 	}
85 
86 	SetPageHWPoison(page);
87 	if (release)
88 		put_page(page);
89 	page_ref_inc(page);
90 	num_poisoned_pages_inc();
91 
92 	return true;
93 }
94 
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96 
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107 
108 static int hwpoison_filter_dev(struct page *p)
109 {
110 	struct address_space *mapping;
111 	dev_t dev;
112 
113 	if (hwpoison_filter_dev_major == ~0U &&
114 	    hwpoison_filter_dev_minor == ~0U)
115 		return 0;
116 
117 	/*
118 	 * page_mapping() does not accept slab pages.
119 	 */
120 	if (PageSlab(p))
121 		return -EINVAL;
122 
123 	mapping = page_mapping(p);
124 	if (mapping == NULL || mapping->host == NULL)
125 		return -EINVAL;
126 
127 	dev = mapping->host->i_sb->s_dev;
128 	if (hwpoison_filter_dev_major != ~0U &&
129 	    hwpoison_filter_dev_major != MAJOR(dev))
130 		return -EINVAL;
131 	if (hwpoison_filter_dev_minor != ~0U &&
132 	    hwpoison_filter_dev_minor != MINOR(dev))
133 		return -EINVAL;
134 
135 	return 0;
136 }
137 
138 static int hwpoison_filter_flags(struct page *p)
139 {
140 	if (!hwpoison_filter_flags_mask)
141 		return 0;
142 
143 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 				    hwpoison_filter_flags_value)
145 		return 0;
146 	else
147 		return -EINVAL;
148 }
149 
150 /*
151  * This allows stress tests to limit test scope to a collection of tasks
152  * by putting them under some memcg. This prevents killing unrelated/important
153  * processes such as /sbin/init. Note that the target task may share clean
154  * pages with init (eg. libc text), which is harmless. If the target task
155  * share _dirty_ pages with another task B, the test scheme must make sure B
156  * is also included in the memcg. At last, due to race conditions this filter
157  * can only guarantee that the page either belongs to the memcg tasks, or is
158  * a freed page.
159  */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
163 static int hwpoison_filter_task(struct page *p)
164 {
165 	if (!hwpoison_filter_memcg)
166 		return 0;
167 
168 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 		return -EINVAL;
170 
171 	return 0;
172 }
173 #else
174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176 
177 int hwpoison_filter(struct page *p)
178 {
179 	if (!hwpoison_filter_enable)
180 		return 0;
181 
182 	if (hwpoison_filter_dev(p))
183 		return -EINVAL;
184 
185 	if (hwpoison_filter_flags(p))
186 		return -EINVAL;
187 
188 	if (hwpoison_filter_task(p))
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 #else
194 int hwpoison_filter(struct page *p)
195 {
196 	return 0;
197 }
198 #endif
199 
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201 
202 /*
203  * Kill all processes that have a poisoned page mapped and then isolate
204  * the page.
205  *
206  * General strategy:
207  * Find all processes having the page mapped and kill them.
208  * But we keep a page reference around so that the page is not
209  * actually freed yet.
210  * Then stash the page away
211  *
212  * There's no convenient way to get back to mapped processes
213  * from the VMAs. So do a brute-force search over all
214  * running processes.
215  *
216  * Remember that machine checks are not common (or rather
217  * if they are common you have other problems), so this shouldn't
218  * be a performance issue.
219  *
220  * Also there are some races possible while we get from the
221  * error detection to actually handle it.
222  */
223 
224 struct to_kill {
225 	struct list_head nd;
226 	struct task_struct *tsk;
227 	unsigned long addr;
228 	short size_shift;
229 };
230 
231 /*
232  * Send all the processes who have the page mapped a signal.
233  * ``action optional'' if they are not immediately affected by the error
234  * ``action required'' if error happened in current execution context
235  */
236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 	struct task_struct *t = tk->tsk;
239 	short addr_lsb = tk->size_shift;
240 	int ret = 0;
241 
242 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 			pfn, t->comm, t->pid);
244 
245 	if (flags & MF_ACTION_REQUIRED) {
246 		if (t == current)
247 			ret = force_sig_mceerr(BUS_MCEERR_AR,
248 					 (void __user *)tk->addr, addr_lsb);
249 		else
250 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
251 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
252 				addr_lsb, t);
253 	} else {
254 		/*
255 		 * Don't use force here, it's convenient if the signal
256 		 * can be temporarily blocked.
257 		 * This could cause a loop when the user sets SIGBUS
258 		 * to SIG_IGN, but hopefully no one will do that?
259 		 */
260 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
261 				      addr_lsb, t);  /* synchronous? */
262 	}
263 	if (ret < 0)
264 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
265 			t->comm, t->pid, ret);
266 	return ret;
267 }
268 
269 /*
270  * Unknown page type encountered. Try to check whether it can turn PageLRU by
271  * lru_add_drain_all, or a free page by reclaiming slabs when possible.
272  */
273 void shake_page(struct page *p, int access)
274 {
275 	if (PageHuge(p))
276 		return;
277 
278 	if (!PageSlab(p)) {
279 		lru_add_drain_all();
280 		if (PageLRU(p) || is_free_buddy_page(p))
281 			return;
282 	}
283 
284 	/*
285 	 * Only call shrink_node_slabs here (which would also shrink
286 	 * other caches) if access is not potentially fatal.
287 	 */
288 	if (access)
289 		drop_slab_node(page_to_nid(p));
290 }
291 EXPORT_SYMBOL_GPL(shake_page);
292 
293 static unsigned long dev_pagemap_mapping_shift(struct page *page,
294 		struct vm_area_struct *vma)
295 {
296 	unsigned long address = vma_address(page, vma);
297 	pgd_t *pgd;
298 	p4d_t *p4d;
299 	pud_t *pud;
300 	pmd_t *pmd;
301 	pte_t *pte;
302 
303 	pgd = pgd_offset(vma->vm_mm, address);
304 	if (!pgd_present(*pgd))
305 		return 0;
306 	p4d = p4d_offset(pgd, address);
307 	if (!p4d_present(*p4d))
308 		return 0;
309 	pud = pud_offset(p4d, address);
310 	if (!pud_present(*pud))
311 		return 0;
312 	if (pud_devmap(*pud))
313 		return PUD_SHIFT;
314 	pmd = pmd_offset(pud, address);
315 	if (!pmd_present(*pmd))
316 		return 0;
317 	if (pmd_devmap(*pmd))
318 		return PMD_SHIFT;
319 	pte = pte_offset_map(pmd, address);
320 	if (!pte_present(*pte))
321 		return 0;
322 	if (pte_devmap(*pte))
323 		return PAGE_SHIFT;
324 	return 0;
325 }
326 
327 /*
328  * Failure handling: if we can't find or can't kill a process there's
329  * not much we can do.	We just print a message and ignore otherwise.
330  */
331 
332 /*
333  * Schedule a process for later kill.
334  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
335  */
336 static void add_to_kill(struct task_struct *tsk, struct page *p,
337 		       struct vm_area_struct *vma,
338 		       struct list_head *to_kill)
339 {
340 	struct to_kill *tk;
341 
342 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
343 	if (!tk) {
344 		pr_err("Memory failure: Out of memory while machine check handling\n");
345 		return;
346 	}
347 
348 	tk->addr = page_address_in_vma(p, vma);
349 	if (is_zone_device_page(p))
350 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
351 	else
352 		tk->size_shift = page_shift(compound_head(p));
353 
354 	/*
355 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
356 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
357 	 * so "tk->size_shift == 0" effectively checks no mapping on
358 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
359 	 * to a process' address space, it's possible not all N VMAs
360 	 * contain mappings for the page, but at least one VMA does.
361 	 * Only deliver SIGBUS with payload derived from the VMA that
362 	 * has a mapping for the page.
363 	 */
364 	if (tk->addr == -EFAULT) {
365 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
366 			page_to_pfn(p), tsk->comm);
367 	} else if (tk->size_shift == 0) {
368 		kfree(tk);
369 		return;
370 	}
371 
372 	get_task_struct(tsk);
373 	tk->tsk = tsk;
374 	list_add_tail(&tk->nd, to_kill);
375 }
376 
377 /*
378  * Kill the processes that have been collected earlier.
379  *
380  * Only do anything when DOIT is set, otherwise just free the list
381  * (this is used for clean pages which do not need killing)
382  * Also when FAIL is set do a force kill because something went
383  * wrong earlier.
384  */
385 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
386 		unsigned long pfn, int flags)
387 {
388 	struct to_kill *tk, *next;
389 
390 	list_for_each_entry_safe (tk, next, to_kill, nd) {
391 		if (forcekill) {
392 			/*
393 			 * In case something went wrong with munmapping
394 			 * make sure the process doesn't catch the
395 			 * signal and then access the memory. Just kill it.
396 			 */
397 			if (fail || tk->addr == -EFAULT) {
398 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
399 				       pfn, tk->tsk->comm, tk->tsk->pid);
400 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
401 						 tk->tsk, PIDTYPE_PID);
402 			}
403 
404 			/*
405 			 * In theory the process could have mapped
406 			 * something else on the address in-between. We could
407 			 * check for that, but we need to tell the
408 			 * process anyways.
409 			 */
410 			else if (kill_proc(tk, pfn, flags) < 0)
411 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
412 				       pfn, tk->tsk->comm, tk->tsk->pid);
413 		}
414 		put_task_struct(tk->tsk);
415 		kfree(tk);
416 	}
417 }
418 
419 /*
420  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
421  * on behalf of the thread group. Return task_struct of the (first found)
422  * dedicated thread if found, and return NULL otherwise.
423  *
424  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
425  * have to call rcu_read_lock/unlock() in this function.
426  */
427 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
428 {
429 	struct task_struct *t;
430 
431 	for_each_thread(tsk, t) {
432 		if (t->flags & PF_MCE_PROCESS) {
433 			if (t->flags & PF_MCE_EARLY)
434 				return t;
435 		} else {
436 			if (sysctl_memory_failure_early_kill)
437 				return t;
438 		}
439 	}
440 	return NULL;
441 }
442 
443 /*
444  * Determine whether a given process is "early kill" process which expects
445  * to be signaled when some page under the process is hwpoisoned.
446  * Return task_struct of the dedicated thread (main thread unless explicitly
447  * specified) if the process is "early kill" and otherwise returns NULL.
448  *
449  * Note that the above is true for Action Optional case. For Action Required
450  * case, it's only meaningful to the current thread which need to be signaled
451  * with SIGBUS, this error is Action Optional for other non current
452  * processes sharing the same error page,if the process is "early kill", the
453  * task_struct of the dedicated thread will also be returned.
454  */
455 static struct task_struct *task_early_kill(struct task_struct *tsk,
456 					   int force_early)
457 {
458 	if (!tsk->mm)
459 		return NULL;
460 	/*
461 	 * Comparing ->mm here because current task might represent
462 	 * a subthread, while tsk always points to the main thread.
463 	 */
464 	if (force_early && tsk->mm == current->mm)
465 		return current;
466 
467 	return find_early_kill_thread(tsk);
468 }
469 
470 /*
471  * Collect processes when the error hit an anonymous page.
472  */
473 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
474 				int force_early)
475 {
476 	struct vm_area_struct *vma;
477 	struct task_struct *tsk;
478 	struct anon_vma *av;
479 	pgoff_t pgoff;
480 
481 	av = page_lock_anon_vma_read(page);
482 	if (av == NULL)	/* Not actually mapped anymore */
483 		return;
484 
485 	pgoff = page_to_pgoff(page);
486 	read_lock(&tasklist_lock);
487 	for_each_process (tsk) {
488 		struct anon_vma_chain *vmac;
489 		struct task_struct *t = task_early_kill(tsk, force_early);
490 
491 		if (!t)
492 			continue;
493 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
494 					       pgoff, pgoff) {
495 			vma = vmac->vma;
496 			if (!page_mapped_in_vma(page, vma))
497 				continue;
498 			if (vma->vm_mm == t->mm)
499 				add_to_kill(t, page, vma, to_kill);
500 		}
501 	}
502 	read_unlock(&tasklist_lock);
503 	page_unlock_anon_vma_read(av);
504 }
505 
506 /*
507  * Collect processes when the error hit a file mapped page.
508  */
509 static void collect_procs_file(struct page *page, struct list_head *to_kill,
510 				int force_early)
511 {
512 	struct vm_area_struct *vma;
513 	struct task_struct *tsk;
514 	struct address_space *mapping = page->mapping;
515 	pgoff_t pgoff;
516 
517 	i_mmap_lock_read(mapping);
518 	read_lock(&tasklist_lock);
519 	pgoff = page_to_pgoff(page);
520 	for_each_process(tsk) {
521 		struct task_struct *t = task_early_kill(tsk, force_early);
522 
523 		if (!t)
524 			continue;
525 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
526 				      pgoff) {
527 			/*
528 			 * Send early kill signal to tasks where a vma covers
529 			 * the page but the corrupted page is not necessarily
530 			 * mapped it in its pte.
531 			 * Assume applications who requested early kill want
532 			 * to be informed of all such data corruptions.
533 			 */
534 			if (vma->vm_mm == t->mm)
535 				add_to_kill(t, page, vma, to_kill);
536 		}
537 	}
538 	read_unlock(&tasklist_lock);
539 	i_mmap_unlock_read(mapping);
540 }
541 
542 /*
543  * Collect the processes who have the corrupted page mapped to kill.
544  */
545 static void collect_procs(struct page *page, struct list_head *tokill,
546 				int force_early)
547 {
548 	if (!page->mapping)
549 		return;
550 
551 	if (PageAnon(page))
552 		collect_procs_anon(page, tokill, force_early);
553 	else
554 		collect_procs_file(page, tokill, force_early);
555 }
556 
557 static const char *action_name[] = {
558 	[MF_IGNORED] = "Ignored",
559 	[MF_FAILED] = "Failed",
560 	[MF_DELAYED] = "Delayed",
561 	[MF_RECOVERED] = "Recovered",
562 };
563 
564 static const char * const action_page_types[] = {
565 	[MF_MSG_KERNEL]			= "reserved kernel page",
566 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
567 	[MF_MSG_SLAB]			= "kernel slab page",
568 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
569 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
570 	[MF_MSG_HUGE]			= "huge page",
571 	[MF_MSG_FREE_HUGE]		= "free huge page",
572 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
573 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
574 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
575 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
576 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
577 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
578 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
579 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
580 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
581 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
582 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
583 	[MF_MSG_BUDDY]			= "free buddy page",
584 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
585 	[MF_MSG_DAX]			= "dax page",
586 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
587 	[MF_MSG_UNKNOWN]		= "unknown page",
588 };
589 
590 /*
591  * XXX: It is possible that a page is isolated from LRU cache,
592  * and then kept in swap cache or failed to remove from page cache.
593  * The page count will stop it from being freed by unpoison.
594  * Stress tests should be aware of this memory leak problem.
595  */
596 static int delete_from_lru_cache(struct page *p)
597 {
598 	if (!isolate_lru_page(p)) {
599 		/*
600 		 * Clear sensible page flags, so that the buddy system won't
601 		 * complain when the page is unpoison-and-freed.
602 		 */
603 		ClearPageActive(p);
604 		ClearPageUnevictable(p);
605 
606 		/*
607 		 * Poisoned page might never drop its ref count to 0 so we have
608 		 * to uncharge it manually from its memcg.
609 		 */
610 		mem_cgroup_uncharge(p);
611 
612 		/*
613 		 * drop the page count elevated by isolate_lru_page()
614 		 */
615 		put_page(p);
616 		return 0;
617 	}
618 	return -EIO;
619 }
620 
621 static int truncate_error_page(struct page *p, unsigned long pfn,
622 				struct address_space *mapping)
623 {
624 	int ret = MF_FAILED;
625 
626 	if (mapping->a_ops->error_remove_page) {
627 		int err = mapping->a_ops->error_remove_page(mapping, p);
628 
629 		if (err != 0) {
630 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
631 				pfn, err);
632 		} else if (page_has_private(p) &&
633 			   !try_to_release_page(p, GFP_NOIO)) {
634 			pr_info("Memory failure: %#lx: failed to release buffers\n",
635 				pfn);
636 		} else {
637 			ret = MF_RECOVERED;
638 		}
639 	} else {
640 		/*
641 		 * If the file system doesn't support it just invalidate
642 		 * This fails on dirty or anything with private pages
643 		 */
644 		if (invalidate_inode_page(p))
645 			ret = MF_RECOVERED;
646 		else
647 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
648 				pfn);
649 	}
650 
651 	return ret;
652 }
653 
654 /*
655  * Error hit kernel page.
656  * Do nothing, try to be lucky and not touch this instead. For a few cases we
657  * could be more sophisticated.
658  */
659 static int me_kernel(struct page *p, unsigned long pfn)
660 {
661 	return MF_IGNORED;
662 }
663 
664 /*
665  * Page in unknown state. Do nothing.
666  */
667 static int me_unknown(struct page *p, unsigned long pfn)
668 {
669 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
670 	return MF_FAILED;
671 }
672 
673 /*
674  * Clean (or cleaned) page cache page.
675  */
676 static int me_pagecache_clean(struct page *p, unsigned long pfn)
677 {
678 	struct address_space *mapping;
679 
680 	delete_from_lru_cache(p);
681 
682 	/*
683 	 * For anonymous pages we're done the only reference left
684 	 * should be the one m_f() holds.
685 	 */
686 	if (PageAnon(p))
687 		return MF_RECOVERED;
688 
689 	/*
690 	 * Now truncate the page in the page cache. This is really
691 	 * more like a "temporary hole punch"
692 	 * Don't do this for block devices when someone else
693 	 * has a reference, because it could be file system metadata
694 	 * and that's not safe to truncate.
695 	 */
696 	mapping = page_mapping(p);
697 	if (!mapping) {
698 		/*
699 		 * Page has been teared down in the meanwhile
700 		 */
701 		return MF_FAILED;
702 	}
703 
704 	/*
705 	 * Truncation is a bit tricky. Enable it per file system for now.
706 	 *
707 	 * Open: to take i_mutex or not for this? Right now we don't.
708 	 */
709 	return truncate_error_page(p, pfn, mapping);
710 }
711 
712 /*
713  * Dirty pagecache page
714  * Issues: when the error hit a hole page the error is not properly
715  * propagated.
716  */
717 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
718 {
719 	struct address_space *mapping = page_mapping(p);
720 
721 	SetPageError(p);
722 	/* TBD: print more information about the file. */
723 	if (mapping) {
724 		/*
725 		 * IO error will be reported by write(), fsync(), etc.
726 		 * who check the mapping.
727 		 * This way the application knows that something went
728 		 * wrong with its dirty file data.
729 		 *
730 		 * There's one open issue:
731 		 *
732 		 * The EIO will be only reported on the next IO
733 		 * operation and then cleared through the IO map.
734 		 * Normally Linux has two mechanisms to pass IO error
735 		 * first through the AS_EIO flag in the address space
736 		 * and then through the PageError flag in the page.
737 		 * Since we drop pages on memory failure handling the
738 		 * only mechanism open to use is through AS_AIO.
739 		 *
740 		 * This has the disadvantage that it gets cleared on
741 		 * the first operation that returns an error, while
742 		 * the PageError bit is more sticky and only cleared
743 		 * when the page is reread or dropped.  If an
744 		 * application assumes it will always get error on
745 		 * fsync, but does other operations on the fd before
746 		 * and the page is dropped between then the error
747 		 * will not be properly reported.
748 		 *
749 		 * This can already happen even without hwpoisoned
750 		 * pages: first on metadata IO errors (which only
751 		 * report through AS_EIO) or when the page is dropped
752 		 * at the wrong time.
753 		 *
754 		 * So right now we assume that the application DTRT on
755 		 * the first EIO, but we're not worse than other parts
756 		 * of the kernel.
757 		 */
758 		mapping_set_error(mapping, -EIO);
759 	}
760 
761 	return me_pagecache_clean(p, pfn);
762 }
763 
764 /*
765  * Clean and dirty swap cache.
766  *
767  * Dirty swap cache page is tricky to handle. The page could live both in page
768  * cache and swap cache(ie. page is freshly swapped in). So it could be
769  * referenced concurrently by 2 types of PTEs:
770  * normal PTEs and swap PTEs. We try to handle them consistently by calling
771  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
772  * and then
773  *      - clear dirty bit to prevent IO
774  *      - remove from LRU
775  *      - but keep in the swap cache, so that when we return to it on
776  *        a later page fault, we know the application is accessing
777  *        corrupted data and shall be killed (we installed simple
778  *        interception code in do_swap_page to catch it).
779  *
780  * Clean swap cache pages can be directly isolated. A later page fault will
781  * bring in the known good data from disk.
782  */
783 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
784 {
785 	ClearPageDirty(p);
786 	/* Trigger EIO in shmem: */
787 	ClearPageUptodate(p);
788 
789 	if (!delete_from_lru_cache(p))
790 		return MF_DELAYED;
791 	else
792 		return MF_FAILED;
793 }
794 
795 static int me_swapcache_clean(struct page *p, unsigned long pfn)
796 {
797 	delete_from_swap_cache(p);
798 
799 	if (!delete_from_lru_cache(p))
800 		return MF_RECOVERED;
801 	else
802 		return MF_FAILED;
803 }
804 
805 /*
806  * Huge pages. Needs work.
807  * Issues:
808  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
809  *   To narrow down kill region to one page, we need to break up pmd.
810  */
811 static int me_huge_page(struct page *p, unsigned long pfn)
812 {
813 	int res;
814 	struct page *hpage = compound_head(p);
815 	struct address_space *mapping;
816 
817 	if (!PageHuge(hpage))
818 		return MF_DELAYED;
819 
820 	mapping = page_mapping(hpage);
821 	if (mapping) {
822 		res = truncate_error_page(hpage, pfn, mapping);
823 	} else {
824 		res = MF_FAILED;
825 		unlock_page(hpage);
826 		/*
827 		 * migration entry prevents later access on error anonymous
828 		 * hugepage, so we can free and dissolve it into buddy to
829 		 * save healthy subpages.
830 		 */
831 		if (PageAnon(hpage))
832 			put_page(hpage);
833 		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
834 			page_ref_inc(p);
835 			res = MF_RECOVERED;
836 		}
837 		lock_page(hpage);
838 	}
839 
840 	return res;
841 }
842 
843 /*
844  * Various page states we can handle.
845  *
846  * A page state is defined by its current page->flags bits.
847  * The table matches them in order and calls the right handler.
848  *
849  * This is quite tricky because we can access page at any time
850  * in its live cycle, so all accesses have to be extremely careful.
851  *
852  * This is not complete. More states could be added.
853  * For any missing state don't attempt recovery.
854  */
855 
856 #define dirty		(1UL << PG_dirty)
857 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
858 #define unevict		(1UL << PG_unevictable)
859 #define mlock		(1UL << PG_mlocked)
860 #define lru		(1UL << PG_lru)
861 #define head		(1UL << PG_head)
862 #define slab		(1UL << PG_slab)
863 #define reserved	(1UL << PG_reserved)
864 
865 static struct page_state {
866 	unsigned long mask;
867 	unsigned long res;
868 	enum mf_action_page_type type;
869 	int (*action)(struct page *p, unsigned long pfn);
870 } error_states[] = {
871 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
872 	/*
873 	 * free pages are specially detected outside this table:
874 	 * PG_buddy pages only make a small fraction of all free pages.
875 	 */
876 
877 	/*
878 	 * Could in theory check if slab page is free or if we can drop
879 	 * currently unused objects without touching them. But just
880 	 * treat it as standard kernel for now.
881 	 */
882 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
883 
884 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
885 
886 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
887 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
888 
889 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
890 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
891 
892 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
893 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
894 
895 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
896 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
897 
898 	/*
899 	 * Catchall entry: must be at end.
900 	 */
901 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
902 };
903 
904 #undef dirty
905 #undef sc
906 #undef unevict
907 #undef mlock
908 #undef lru
909 #undef head
910 #undef slab
911 #undef reserved
912 
913 /*
914  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
915  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
916  */
917 static void action_result(unsigned long pfn, enum mf_action_page_type type,
918 			  enum mf_result result)
919 {
920 	trace_memory_failure_event(pfn, type, result);
921 
922 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
923 		pfn, action_page_types[type], action_name[result]);
924 }
925 
926 static int page_action(struct page_state *ps, struct page *p,
927 			unsigned long pfn)
928 {
929 	int result;
930 	int count;
931 
932 	result = ps->action(p, pfn);
933 
934 	count = page_count(p) - 1;
935 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
936 		count--;
937 	if (count > 0) {
938 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
939 		       pfn, action_page_types[ps->type], count);
940 		result = MF_FAILED;
941 	}
942 	action_result(pfn, ps->type, result);
943 
944 	/* Could do more checks here if page looks ok */
945 	/*
946 	 * Could adjust zone counters here to correct for the missing page.
947 	 */
948 
949 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
950 }
951 
952 /**
953  * __get_hwpoison_page() - Get refcount for memory error handling:
954  * @page:	raw error page (hit by memory error)
955  *
956  * Return: return 0 if failed to grab the refcount, otherwise true (some
957  * non-zero value.)
958  */
959 static int __get_hwpoison_page(struct page *page)
960 {
961 	struct page *head = compound_head(page);
962 
963 	if (!PageHuge(head) && PageTransHuge(head)) {
964 		/*
965 		 * Non anonymous thp exists only in allocation/free time. We
966 		 * can't handle such a case correctly, so let's give it up.
967 		 * This should be better than triggering BUG_ON when kernel
968 		 * tries to touch the "partially handled" page.
969 		 */
970 		if (!PageAnon(head)) {
971 			pr_err("Memory failure: %#lx: non anonymous thp\n",
972 				page_to_pfn(page));
973 			return 0;
974 		}
975 	}
976 
977 	if (get_page_unless_zero(head)) {
978 		if (head == compound_head(page))
979 			return 1;
980 
981 		pr_info("Memory failure: %#lx cannot catch tail\n",
982 			page_to_pfn(page));
983 		put_page(head);
984 	}
985 
986 	return 0;
987 }
988 
989 /*
990  * Safely get reference count of an arbitrary page.
991  *
992  * Returns 0 for a free page, 1 for an in-use page,
993  * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
994  * allocation.
995  * We only incremented refcount in case the page was already in-use and it
996  * is a known type we can handle.
997  */
998 static int get_any_page(struct page *p, unsigned long flags)
999 {
1000 	int ret = 0, pass = 0;
1001 	bool count_increased = false;
1002 
1003 	if (flags & MF_COUNT_INCREASED)
1004 		count_increased = true;
1005 
1006 try_again:
1007 	if (!count_increased && !__get_hwpoison_page(p)) {
1008 		if (page_count(p)) {
1009 			/* We raced with an allocation, retry. */
1010 			if (pass++ < 3)
1011 				goto try_again;
1012 			ret = -EBUSY;
1013 		} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1014 			/* We raced with put_page, retry. */
1015 			if (pass++ < 3)
1016 				goto try_again;
1017 			ret = -EIO;
1018 		}
1019 	} else {
1020 		if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1021 			ret = 1;
1022 		} else {
1023 			/*
1024 			 * A page we cannot handle. Check whether we can turn
1025 			 * it into something we can handle.
1026 			 */
1027 			if (pass++ < 3) {
1028 				put_page(p);
1029 				shake_page(p, 1);
1030 				count_increased = false;
1031 				goto try_again;
1032 			}
1033 			put_page(p);
1034 			ret = -EIO;
1035 		}
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 static int get_hwpoison_page(struct page *p, unsigned long flags,
1042 			     enum mf_flags ctxt)
1043 {
1044 	int ret;
1045 
1046 	zone_pcp_disable(page_zone(p));
1047 	if (ctxt == MF_SOFT_OFFLINE)
1048 		ret = get_any_page(p, flags);
1049 	else
1050 		ret = __get_hwpoison_page(p);
1051 	zone_pcp_enable(page_zone(p));
1052 
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Do all that is necessary to remove user space mappings. Unmap
1058  * the pages and send SIGBUS to the processes if the data was dirty.
1059  */
1060 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1061 				  int flags, struct page **hpagep)
1062 {
1063 	enum ttu_flags ttu = TTU_IGNORE_MLOCK;
1064 	struct address_space *mapping;
1065 	LIST_HEAD(tokill);
1066 	bool unmap_success = true;
1067 	int kill = 1, forcekill;
1068 	struct page *hpage = *hpagep;
1069 	bool mlocked = PageMlocked(hpage);
1070 
1071 	/*
1072 	 * Here we are interested only in user-mapped pages, so skip any
1073 	 * other types of pages.
1074 	 */
1075 	if (PageReserved(p) || PageSlab(p))
1076 		return true;
1077 	if (!(PageLRU(hpage) || PageHuge(p)))
1078 		return true;
1079 
1080 	/*
1081 	 * This check implies we don't kill processes if their pages
1082 	 * are in the swap cache early. Those are always late kills.
1083 	 */
1084 	if (!page_mapped(hpage))
1085 		return true;
1086 
1087 	if (PageKsm(p)) {
1088 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1089 		return false;
1090 	}
1091 
1092 	if (PageSwapCache(p)) {
1093 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1094 			pfn);
1095 		ttu |= TTU_IGNORE_HWPOISON;
1096 	}
1097 
1098 	/*
1099 	 * Propagate the dirty bit from PTEs to struct page first, because we
1100 	 * need this to decide if we should kill or just drop the page.
1101 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1102 	 * be called inside page lock (it's recommended but not enforced).
1103 	 */
1104 	mapping = page_mapping(hpage);
1105 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1106 	    mapping_can_writeback(mapping)) {
1107 		if (page_mkclean(hpage)) {
1108 			SetPageDirty(hpage);
1109 		} else {
1110 			kill = 0;
1111 			ttu |= TTU_IGNORE_HWPOISON;
1112 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1113 				pfn);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * First collect all the processes that have the page
1119 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1120 	 * because ttu takes the rmap data structures down.
1121 	 *
1122 	 * Error handling: We ignore errors here because
1123 	 * there's nothing that can be done.
1124 	 */
1125 	if (kill)
1126 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1127 
1128 	if (!PageHuge(hpage)) {
1129 		unmap_success = try_to_unmap(hpage, ttu);
1130 	} else {
1131 		if (!PageAnon(hpage)) {
1132 			/*
1133 			 * For hugetlb pages in shared mappings, try_to_unmap
1134 			 * could potentially call huge_pmd_unshare.  Because of
1135 			 * this, take semaphore in write mode here and set
1136 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1137 			 * at this higer level.
1138 			 */
1139 			mapping = hugetlb_page_mapping_lock_write(hpage);
1140 			if (mapping) {
1141 				unmap_success = try_to_unmap(hpage,
1142 						     ttu|TTU_RMAP_LOCKED);
1143 				i_mmap_unlock_write(mapping);
1144 			} else {
1145 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1146 				unmap_success = false;
1147 			}
1148 		} else {
1149 			unmap_success = try_to_unmap(hpage, ttu);
1150 		}
1151 	}
1152 	if (!unmap_success)
1153 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1154 		       pfn, page_mapcount(hpage));
1155 
1156 	/*
1157 	 * try_to_unmap() might put mlocked page in lru cache, so call
1158 	 * shake_page() again to ensure that it's flushed.
1159 	 */
1160 	if (mlocked)
1161 		shake_page(hpage, 0);
1162 
1163 	/*
1164 	 * Now that the dirty bit has been propagated to the
1165 	 * struct page and all unmaps done we can decide if
1166 	 * killing is needed or not.  Only kill when the page
1167 	 * was dirty or the process is not restartable,
1168 	 * otherwise the tokill list is merely
1169 	 * freed.  When there was a problem unmapping earlier
1170 	 * use a more force-full uncatchable kill to prevent
1171 	 * any accesses to the poisoned memory.
1172 	 */
1173 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1174 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1175 
1176 	return unmap_success;
1177 }
1178 
1179 static int identify_page_state(unsigned long pfn, struct page *p,
1180 				unsigned long page_flags)
1181 {
1182 	struct page_state *ps;
1183 
1184 	/*
1185 	 * The first check uses the current page flags which may not have any
1186 	 * relevant information. The second check with the saved page flags is
1187 	 * carried out only if the first check can't determine the page status.
1188 	 */
1189 	for (ps = error_states;; ps++)
1190 		if ((p->flags & ps->mask) == ps->res)
1191 			break;
1192 
1193 	page_flags |= (p->flags & (1UL << PG_dirty));
1194 
1195 	if (!ps->mask)
1196 		for (ps = error_states;; ps++)
1197 			if ((page_flags & ps->mask) == ps->res)
1198 				break;
1199 	return page_action(ps, p, pfn);
1200 }
1201 
1202 static int try_to_split_thp_page(struct page *page, const char *msg)
1203 {
1204 	lock_page(page);
1205 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1206 		unsigned long pfn = page_to_pfn(page);
1207 
1208 		unlock_page(page);
1209 		if (!PageAnon(page))
1210 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1211 		else
1212 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1213 		put_page(page);
1214 		return -EBUSY;
1215 	}
1216 	unlock_page(page);
1217 
1218 	return 0;
1219 }
1220 
1221 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1222 {
1223 	struct page *p = pfn_to_page(pfn);
1224 	struct page *head = compound_head(p);
1225 	int res;
1226 	unsigned long page_flags;
1227 
1228 	if (TestSetPageHWPoison(head)) {
1229 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1230 		       pfn);
1231 		return 0;
1232 	}
1233 
1234 	num_poisoned_pages_inc();
1235 
1236 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1237 		/*
1238 		 * Check "filter hit" and "race with other subpage."
1239 		 */
1240 		lock_page(head);
1241 		if (PageHWPoison(head)) {
1242 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1243 			    || (p != head && TestSetPageHWPoison(head))) {
1244 				num_poisoned_pages_dec();
1245 				unlock_page(head);
1246 				return 0;
1247 			}
1248 		}
1249 		unlock_page(head);
1250 		res = MF_FAILED;
1251 		if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1252 			page_ref_inc(p);
1253 			res = MF_RECOVERED;
1254 		}
1255 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1256 		return res == MF_RECOVERED ? 0 : -EBUSY;
1257 	}
1258 
1259 	lock_page(head);
1260 	page_flags = head->flags;
1261 
1262 	if (!PageHWPoison(head)) {
1263 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1264 		num_poisoned_pages_dec();
1265 		unlock_page(head);
1266 		put_page(head);
1267 		return 0;
1268 	}
1269 
1270 	/*
1271 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1272 	 * simply disable it. In order to make it work properly, we need
1273 	 * make sure that:
1274 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1275 	 *    entry properly works, and
1276 	 *  - other mm code walking over page table is aware of pud-aligned
1277 	 *    hwpoison entries.
1278 	 */
1279 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1280 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1281 		res = -EBUSY;
1282 		goto out;
1283 	}
1284 
1285 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1286 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1287 		res = -EBUSY;
1288 		goto out;
1289 	}
1290 
1291 	res = identify_page_state(pfn, p, page_flags);
1292 out:
1293 	unlock_page(head);
1294 	return res;
1295 }
1296 
1297 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1298 		struct dev_pagemap *pgmap)
1299 {
1300 	struct page *page = pfn_to_page(pfn);
1301 	const bool unmap_success = true;
1302 	unsigned long size = 0;
1303 	struct to_kill *tk;
1304 	LIST_HEAD(tokill);
1305 	int rc = -EBUSY;
1306 	loff_t start;
1307 	dax_entry_t cookie;
1308 
1309 	if (flags & MF_COUNT_INCREASED)
1310 		/*
1311 		 * Drop the extra refcount in case we come from madvise().
1312 		 */
1313 		put_page(page);
1314 
1315 	/* device metadata space is not recoverable */
1316 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1317 		rc = -ENXIO;
1318 		goto out;
1319 	}
1320 
1321 	/*
1322 	 * Prevent the inode from being freed while we are interrogating
1323 	 * the address_space, typically this would be handled by
1324 	 * lock_page(), but dax pages do not use the page lock. This
1325 	 * also prevents changes to the mapping of this pfn until
1326 	 * poison signaling is complete.
1327 	 */
1328 	cookie = dax_lock_page(page);
1329 	if (!cookie)
1330 		goto out;
1331 
1332 	if (hwpoison_filter(page)) {
1333 		rc = 0;
1334 		goto unlock;
1335 	}
1336 
1337 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1338 		/*
1339 		 * TODO: Handle HMM pages which may need coordination
1340 		 * with device-side memory.
1341 		 */
1342 		goto unlock;
1343 	}
1344 
1345 	/*
1346 	 * Use this flag as an indication that the dax page has been
1347 	 * remapped UC to prevent speculative consumption of poison.
1348 	 */
1349 	SetPageHWPoison(page);
1350 
1351 	/*
1352 	 * Unlike System-RAM there is no possibility to swap in a
1353 	 * different physical page at a given virtual address, so all
1354 	 * userspace consumption of ZONE_DEVICE memory necessitates
1355 	 * SIGBUS (i.e. MF_MUST_KILL)
1356 	 */
1357 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1358 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1359 
1360 	list_for_each_entry(tk, &tokill, nd)
1361 		if (tk->size_shift)
1362 			size = max(size, 1UL << tk->size_shift);
1363 	if (size) {
1364 		/*
1365 		 * Unmap the largest mapping to avoid breaking up
1366 		 * device-dax mappings which are constant size. The
1367 		 * actual size of the mapping being torn down is
1368 		 * communicated in siginfo, see kill_proc()
1369 		 */
1370 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1371 		unmap_mapping_range(page->mapping, start, start + size, 0);
1372 	}
1373 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1374 	rc = 0;
1375 unlock:
1376 	dax_unlock_page(page, cookie);
1377 out:
1378 	/* drop pgmap ref acquired in caller */
1379 	put_dev_pagemap(pgmap);
1380 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1381 	return rc;
1382 }
1383 
1384 /**
1385  * memory_failure - Handle memory failure of a page.
1386  * @pfn: Page Number of the corrupted page
1387  * @flags: fine tune action taken
1388  *
1389  * This function is called by the low level machine check code
1390  * of an architecture when it detects hardware memory corruption
1391  * of a page. It tries its best to recover, which includes
1392  * dropping pages, killing processes etc.
1393  *
1394  * The function is primarily of use for corruptions that
1395  * happen outside the current execution context (e.g. when
1396  * detected by a background scrubber)
1397  *
1398  * Must run in process context (e.g. a work queue) with interrupts
1399  * enabled and no spinlocks hold.
1400  */
1401 int memory_failure(unsigned long pfn, int flags)
1402 {
1403 	struct page *p;
1404 	struct page *hpage;
1405 	struct page *orig_head;
1406 	struct dev_pagemap *pgmap;
1407 	int res;
1408 	unsigned long page_flags;
1409 	bool retry = true;
1410 
1411 	if (!sysctl_memory_failure_recovery)
1412 		panic("Memory failure on page %lx", pfn);
1413 
1414 	p = pfn_to_online_page(pfn);
1415 	if (!p) {
1416 		if (pfn_valid(pfn)) {
1417 			pgmap = get_dev_pagemap(pfn, NULL);
1418 			if (pgmap)
1419 				return memory_failure_dev_pagemap(pfn, flags,
1420 								  pgmap);
1421 		}
1422 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1423 			pfn);
1424 		return -ENXIO;
1425 	}
1426 
1427 try_again:
1428 	if (PageHuge(p))
1429 		return memory_failure_hugetlb(pfn, flags);
1430 	if (TestSetPageHWPoison(p)) {
1431 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1432 			pfn);
1433 		return 0;
1434 	}
1435 
1436 	orig_head = hpage = compound_head(p);
1437 	num_poisoned_pages_inc();
1438 
1439 	/*
1440 	 * We need/can do nothing about count=0 pages.
1441 	 * 1) it's a free page, and therefore in safe hand:
1442 	 *    prep_new_page() will be the gate keeper.
1443 	 * 2) it's part of a non-compound high order page.
1444 	 *    Implies some kernel user: cannot stop them from
1445 	 *    R/W the page; let's pray that the page has been
1446 	 *    used and will be freed some time later.
1447 	 * In fact it's dangerous to directly bump up page count from 0,
1448 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1449 	 */
1450 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
1451 		if (is_free_buddy_page(p)) {
1452 			if (take_page_off_buddy(p)) {
1453 				page_ref_inc(p);
1454 				res = MF_RECOVERED;
1455 			} else {
1456 				/* We lost the race, try again */
1457 				if (retry) {
1458 					ClearPageHWPoison(p);
1459 					num_poisoned_pages_dec();
1460 					retry = false;
1461 					goto try_again;
1462 				}
1463 				res = MF_FAILED;
1464 			}
1465 			action_result(pfn, MF_MSG_BUDDY, res);
1466 			return res == MF_RECOVERED ? 0 : -EBUSY;
1467 		} else {
1468 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1469 			return -EBUSY;
1470 		}
1471 	}
1472 
1473 	if (PageTransHuge(hpage)) {
1474 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1475 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1476 			return -EBUSY;
1477 		}
1478 		VM_BUG_ON_PAGE(!page_count(p), p);
1479 	}
1480 
1481 	/*
1482 	 * We ignore non-LRU pages for good reasons.
1483 	 * - PG_locked is only well defined for LRU pages and a few others
1484 	 * - to avoid races with __SetPageLocked()
1485 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1486 	 * The check (unnecessarily) ignores LRU pages being isolated and
1487 	 * walked by the page reclaim code, however that's not a big loss.
1488 	 */
1489 	shake_page(p, 0);
1490 
1491 	lock_page(p);
1492 
1493 	/*
1494 	 * The page could have changed compound pages during the locking.
1495 	 * If this happens just bail out.
1496 	 */
1497 	if (PageCompound(p) && compound_head(p) != orig_head) {
1498 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1499 		res = -EBUSY;
1500 		goto out;
1501 	}
1502 
1503 	/*
1504 	 * We use page flags to determine what action should be taken, but
1505 	 * the flags can be modified by the error containment action.  One
1506 	 * example is an mlocked page, where PG_mlocked is cleared by
1507 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1508 	 * correctly, we save a copy of the page flags at this time.
1509 	 */
1510 	page_flags = p->flags;
1511 
1512 	/*
1513 	 * unpoison always clear PG_hwpoison inside page lock
1514 	 */
1515 	if (!PageHWPoison(p)) {
1516 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1517 		num_poisoned_pages_dec();
1518 		unlock_page(p);
1519 		put_page(p);
1520 		return 0;
1521 	}
1522 	if (hwpoison_filter(p)) {
1523 		if (TestClearPageHWPoison(p))
1524 			num_poisoned_pages_dec();
1525 		unlock_page(p);
1526 		put_page(p);
1527 		return 0;
1528 	}
1529 
1530 	if (!PageTransTail(p) && !PageLRU(p))
1531 		goto identify_page_state;
1532 
1533 	/*
1534 	 * It's very difficult to mess with pages currently under IO
1535 	 * and in many cases impossible, so we just avoid it here.
1536 	 */
1537 	wait_on_page_writeback(p);
1538 
1539 	/*
1540 	 * Now take care of user space mappings.
1541 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1542 	 */
1543 	if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1544 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1545 		res = -EBUSY;
1546 		goto out;
1547 	}
1548 
1549 	/*
1550 	 * Torn down by someone else?
1551 	 */
1552 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1553 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1554 		res = -EBUSY;
1555 		goto out;
1556 	}
1557 
1558 identify_page_state:
1559 	res = identify_page_state(pfn, p, page_flags);
1560 out:
1561 	unlock_page(p);
1562 	return res;
1563 }
1564 EXPORT_SYMBOL_GPL(memory_failure);
1565 
1566 #define MEMORY_FAILURE_FIFO_ORDER	4
1567 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1568 
1569 struct memory_failure_entry {
1570 	unsigned long pfn;
1571 	int flags;
1572 };
1573 
1574 struct memory_failure_cpu {
1575 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1576 		      MEMORY_FAILURE_FIFO_SIZE);
1577 	spinlock_t lock;
1578 	struct work_struct work;
1579 };
1580 
1581 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1582 
1583 /**
1584  * memory_failure_queue - Schedule handling memory failure of a page.
1585  * @pfn: Page Number of the corrupted page
1586  * @flags: Flags for memory failure handling
1587  *
1588  * This function is called by the low level hardware error handler
1589  * when it detects hardware memory corruption of a page. It schedules
1590  * the recovering of error page, including dropping pages, killing
1591  * processes etc.
1592  *
1593  * The function is primarily of use for corruptions that
1594  * happen outside the current execution context (e.g. when
1595  * detected by a background scrubber)
1596  *
1597  * Can run in IRQ context.
1598  */
1599 void memory_failure_queue(unsigned long pfn, int flags)
1600 {
1601 	struct memory_failure_cpu *mf_cpu;
1602 	unsigned long proc_flags;
1603 	struct memory_failure_entry entry = {
1604 		.pfn =		pfn,
1605 		.flags =	flags,
1606 	};
1607 
1608 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1609 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1610 	if (kfifo_put(&mf_cpu->fifo, entry))
1611 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1612 	else
1613 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1614 		       pfn);
1615 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1616 	put_cpu_var(memory_failure_cpu);
1617 }
1618 EXPORT_SYMBOL_GPL(memory_failure_queue);
1619 
1620 static void memory_failure_work_func(struct work_struct *work)
1621 {
1622 	struct memory_failure_cpu *mf_cpu;
1623 	struct memory_failure_entry entry = { 0, };
1624 	unsigned long proc_flags;
1625 	int gotten;
1626 
1627 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1628 	for (;;) {
1629 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1630 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1631 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1632 		if (!gotten)
1633 			break;
1634 		if (entry.flags & MF_SOFT_OFFLINE)
1635 			soft_offline_page(entry.pfn, entry.flags);
1636 		else
1637 			memory_failure(entry.pfn, entry.flags);
1638 	}
1639 }
1640 
1641 /*
1642  * Process memory_failure work queued on the specified CPU.
1643  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1644  */
1645 void memory_failure_queue_kick(int cpu)
1646 {
1647 	struct memory_failure_cpu *mf_cpu;
1648 
1649 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1650 	cancel_work_sync(&mf_cpu->work);
1651 	memory_failure_work_func(&mf_cpu->work);
1652 }
1653 
1654 static int __init memory_failure_init(void)
1655 {
1656 	struct memory_failure_cpu *mf_cpu;
1657 	int cpu;
1658 
1659 	for_each_possible_cpu(cpu) {
1660 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1661 		spin_lock_init(&mf_cpu->lock);
1662 		INIT_KFIFO(mf_cpu->fifo);
1663 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1664 	}
1665 
1666 	return 0;
1667 }
1668 core_initcall(memory_failure_init);
1669 
1670 #define unpoison_pr_info(fmt, pfn, rs)			\
1671 ({							\
1672 	if (__ratelimit(rs))				\
1673 		pr_info(fmt, pfn);			\
1674 })
1675 
1676 /**
1677  * unpoison_memory - Unpoison a previously poisoned page
1678  * @pfn: Page number of the to be unpoisoned page
1679  *
1680  * Software-unpoison a page that has been poisoned by
1681  * memory_failure() earlier.
1682  *
1683  * This is only done on the software-level, so it only works
1684  * for linux injected failures, not real hardware failures
1685  *
1686  * Returns 0 for success, otherwise -errno.
1687  */
1688 int unpoison_memory(unsigned long pfn)
1689 {
1690 	struct page *page;
1691 	struct page *p;
1692 	int freeit = 0;
1693 	unsigned long flags = 0;
1694 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1695 					DEFAULT_RATELIMIT_BURST);
1696 
1697 	if (!pfn_valid(pfn))
1698 		return -ENXIO;
1699 
1700 	p = pfn_to_page(pfn);
1701 	page = compound_head(p);
1702 
1703 	if (!PageHWPoison(p)) {
1704 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1705 				 pfn, &unpoison_rs);
1706 		return 0;
1707 	}
1708 
1709 	if (page_count(page) > 1) {
1710 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1711 				 pfn, &unpoison_rs);
1712 		return 0;
1713 	}
1714 
1715 	if (page_mapped(page)) {
1716 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1717 				 pfn, &unpoison_rs);
1718 		return 0;
1719 	}
1720 
1721 	if (page_mapping(page)) {
1722 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1723 				 pfn, &unpoison_rs);
1724 		return 0;
1725 	}
1726 
1727 	/*
1728 	 * unpoison_memory() can encounter thp only when the thp is being
1729 	 * worked by memory_failure() and the page lock is not held yet.
1730 	 * In such case, we yield to memory_failure() and make unpoison fail.
1731 	 */
1732 	if (!PageHuge(page) && PageTransHuge(page)) {
1733 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1734 				 pfn, &unpoison_rs);
1735 		return 0;
1736 	}
1737 
1738 	if (!get_hwpoison_page(p, flags, 0)) {
1739 		if (TestClearPageHWPoison(p))
1740 			num_poisoned_pages_dec();
1741 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1742 				 pfn, &unpoison_rs);
1743 		return 0;
1744 	}
1745 
1746 	lock_page(page);
1747 	/*
1748 	 * This test is racy because PG_hwpoison is set outside of page lock.
1749 	 * That's acceptable because that won't trigger kernel panic. Instead,
1750 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1751 	 * the free buddy page pool.
1752 	 */
1753 	if (TestClearPageHWPoison(page)) {
1754 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1755 				 pfn, &unpoison_rs);
1756 		num_poisoned_pages_dec();
1757 		freeit = 1;
1758 	}
1759 	unlock_page(page);
1760 
1761 	put_page(page);
1762 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1763 		put_page(page);
1764 
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(unpoison_memory);
1768 
1769 static bool isolate_page(struct page *page, struct list_head *pagelist)
1770 {
1771 	bool isolated = false;
1772 	bool lru = PageLRU(page);
1773 
1774 	if (PageHuge(page)) {
1775 		isolated = isolate_huge_page(page, pagelist);
1776 	} else {
1777 		if (lru)
1778 			isolated = !isolate_lru_page(page);
1779 		else
1780 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1781 
1782 		if (isolated)
1783 			list_add(&page->lru, pagelist);
1784 	}
1785 
1786 	if (isolated && lru)
1787 		inc_node_page_state(page, NR_ISOLATED_ANON +
1788 				    page_is_file_lru(page));
1789 
1790 	/*
1791 	 * If we succeed to isolate the page, we grabbed another refcount on
1792 	 * the page, so we can safely drop the one we got from get_any_pages().
1793 	 * If we failed to isolate the page, it means that we cannot go further
1794 	 * and we will return an error, so drop the reference we got from
1795 	 * get_any_pages() as well.
1796 	 */
1797 	put_page(page);
1798 	return isolated;
1799 }
1800 
1801 /*
1802  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1803  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1804  * If the page is mapped, it migrates the contents over.
1805  */
1806 static int __soft_offline_page(struct page *page)
1807 {
1808 	int ret = 0;
1809 	unsigned long pfn = page_to_pfn(page);
1810 	struct page *hpage = compound_head(page);
1811 	char const *msg_page[] = {"page", "hugepage"};
1812 	bool huge = PageHuge(page);
1813 	LIST_HEAD(pagelist);
1814 	struct migration_target_control mtc = {
1815 		.nid = NUMA_NO_NODE,
1816 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1817 	};
1818 
1819 	/*
1820 	 * Check PageHWPoison again inside page lock because PageHWPoison
1821 	 * is set by memory_failure() outside page lock. Note that
1822 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1823 	 * so there's no race between soft_offline_page() and memory_failure().
1824 	 */
1825 	lock_page(page);
1826 	if (!PageHuge(page))
1827 		wait_on_page_writeback(page);
1828 	if (PageHWPoison(page)) {
1829 		unlock_page(page);
1830 		put_page(page);
1831 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1832 		return 0;
1833 	}
1834 
1835 	if (!PageHuge(page))
1836 		/*
1837 		 * Try to invalidate first. This should work for
1838 		 * non dirty unmapped page cache pages.
1839 		 */
1840 		ret = invalidate_inode_page(page);
1841 	unlock_page(page);
1842 
1843 	/*
1844 	 * RED-PEN would be better to keep it isolated here, but we
1845 	 * would need to fix isolation locking first.
1846 	 */
1847 	if (ret) {
1848 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1849 		page_handle_poison(page, false, true);
1850 		return 0;
1851 	}
1852 
1853 	if (isolate_page(hpage, &pagelist)) {
1854 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1855 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1856 		if (!ret) {
1857 			bool release = !huge;
1858 
1859 			if (!page_handle_poison(page, huge, release))
1860 				ret = -EBUSY;
1861 		} else {
1862 			if (!list_empty(&pagelist))
1863 				putback_movable_pages(&pagelist);
1864 
1865 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1866 				pfn, msg_page[huge], ret, page->flags, &page->flags);
1867 			if (ret > 0)
1868 				ret = -EBUSY;
1869 		}
1870 	} else {
1871 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1872 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1873 		ret = -EBUSY;
1874 	}
1875 	return ret;
1876 }
1877 
1878 static int soft_offline_in_use_page(struct page *page)
1879 {
1880 	struct page *hpage = compound_head(page);
1881 
1882 	if (!PageHuge(page) && PageTransHuge(hpage))
1883 		if (try_to_split_thp_page(page, "soft offline") < 0)
1884 			return -EBUSY;
1885 	return __soft_offline_page(page);
1886 }
1887 
1888 static int soft_offline_free_page(struct page *page)
1889 {
1890 	int rc = 0;
1891 
1892 	if (!page_handle_poison(page, true, false))
1893 		rc = -EBUSY;
1894 
1895 	return rc;
1896 }
1897 
1898 static void put_ref_page(struct page *page)
1899 {
1900 	if (page)
1901 		put_page(page);
1902 }
1903 
1904 /**
1905  * soft_offline_page - Soft offline a page.
1906  * @pfn: pfn to soft-offline
1907  * @flags: flags. Same as memory_failure().
1908  *
1909  * Returns 0 on success, otherwise negated errno.
1910  *
1911  * Soft offline a page, by migration or invalidation,
1912  * without killing anything. This is for the case when
1913  * a page is not corrupted yet (so it's still valid to access),
1914  * but has had a number of corrected errors and is better taken
1915  * out.
1916  *
1917  * The actual policy on when to do that is maintained by
1918  * user space.
1919  *
1920  * This should never impact any application or cause data loss,
1921  * however it might take some time.
1922  *
1923  * This is not a 100% solution for all memory, but tries to be
1924  * ``good enough'' for the majority of memory.
1925  */
1926 int soft_offline_page(unsigned long pfn, int flags)
1927 {
1928 	int ret;
1929 	bool try_again = true;
1930 	struct page *page, *ref_page = NULL;
1931 
1932 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1933 
1934 	if (!pfn_valid(pfn))
1935 		return -ENXIO;
1936 	if (flags & MF_COUNT_INCREASED)
1937 		ref_page = pfn_to_page(pfn);
1938 
1939 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1940 	page = pfn_to_online_page(pfn);
1941 	if (!page) {
1942 		put_ref_page(ref_page);
1943 		return -EIO;
1944 	}
1945 
1946 	if (PageHWPoison(page)) {
1947 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1948 		put_ref_page(ref_page);
1949 		return 0;
1950 	}
1951 
1952 retry:
1953 	get_online_mems();
1954 	ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
1955 	put_online_mems();
1956 
1957 	if (ret > 0) {
1958 		ret = soft_offline_in_use_page(page);
1959 	} else if (ret == 0) {
1960 		if (soft_offline_free_page(page) && try_again) {
1961 			try_again = false;
1962 			goto retry;
1963 		}
1964 	} else if (ret == -EIO) {
1965 		pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1966 			 __func__, pfn, page->flags, &page->flags);
1967 	}
1968 
1969 	return ret;
1970 }
1971