1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/page-isolation.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/kfifo.h> 60 #include <linux/ratelimit.h> 61 #include "internal.h" 62 #include "ras/ras_event.h" 63 64 int sysctl_memory_failure_early_kill __read_mostly = 0; 65 66 int sysctl_memory_failure_recovery __read_mostly = 1; 67 68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 69 70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 71 72 u32 hwpoison_filter_enable = 0; 73 u32 hwpoison_filter_dev_major = ~0U; 74 u32 hwpoison_filter_dev_minor = ~0U; 75 u64 hwpoison_filter_flags_mask; 76 u64 hwpoison_filter_flags_value; 77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 82 83 static int hwpoison_filter_dev(struct page *p) 84 { 85 struct address_space *mapping; 86 dev_t dev; 87 88 if (hwpoison_filter_dev_major == ~0U && 89 hwpoison_filter_dev_minor == ~0U) 90 return 0; 91 92 /* 93 * page_mapping() does not accept slab pages. 94 */ 95 if (PageSlab(p)) 96 return -EINVAL; 97 98 mapping = page_mapping(p); 99 if (mapping == NULL || mapping->host == NULL) 100 return -EINVAL; 101 102 dev = mapping->host->i_sb->s_dev; 103 if (hwpoison_filter_dev_major != ~0U && 104 hwpoison_filter_dev_major != MAJOR(dev)) 105 return -EINVAL; 106 if (hwpoison_filter_dev_minor != ~0U && 107 hwpoison_filter_dev_minor != MINOR(dev)) 108 return -EINVAL; 109 110 return 0; 111 } 112 113 static int hwpoison_filter_flags(struct page *p) 114 { 115 if (!hwpoison_filter_flags_mask) 116 return 0; 117 118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 119 hwpoison_filter_flags_value) 120 return 0; 121 else 122 return -EINVAL; 123 } 124 125 /* 126 * This allows stress tests to limit test scope to a collection of tasks 127 * by putting them under some memcg. This prevents killing unrelated/important 128 * processes such as /sbin/init. Note that the target task may share clean 129 * pages with init (eg. libc text), which is harmless. If the target task 130 * share _dirty_ pages with another task B, the test scheme must make sure B 131 * is also included in the memcg. At last, due to race conditions this filter 132 * can only guarantee that the page either belongs to the memcg tasks, or is 133 * a freed page. 134 */ 135 #ifdef CONFIG_MEMCG 136 u64 hwpoison_filter_memcg; 137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 138 static int hwpoison_filter_task(struct page *p) 139 { 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 144 return -EINVAL; 145 146 return 0; 147 } 148 #else 149 static int hwpoison_filter_task(struct page *p) { return 0; } 150 #endif 151 152 int hwpoison_filter(struct page *p) 153 { 154 if (!hwpoison_filter_enable) 155 return 0; 156 157 if (hwpoison_filter_dev(p)) 158 return -EINVAL; 159 160 if (hwpoison_filter_flags(p)) 161 return -EINVAL; 162 163 if (hwpoison_filter_task(p)) 164 return -EINVAL; 165 166 return 0; 167 } 168 #else 169 int hwpoison_filter(struct page *p) 170 { 171 return 0; 172 } 173 #endif 174 175 EXPORT_SYMBOL_GPL(hwpoison_filter); 176 177 /* 178 * Send all the processes who have the page mapped a signal. 179 * ``action optional'' if they are not immediately affected by the error 180 * ``action required'' if error happened in current execution context 181 */ 182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 183 unsigned long pfn, struct page *page, int flags) 184 { 185 struct siginfo si; 186 int ret; 187 188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 si.si_signo = SIGBUS; 191 si.si_errno = 0; 192 si.si_addr = (void *)addr; 193 #ifdef __ARCH_SI_TRAPNO 194 si.si_trapno = trapno; 195 #endif 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 197 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 199 si.si_code = BUS_MCEERR_AR; 200 ret = force_sig_info(SIGBUS, &si, current); 201 } else { 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully no one will do that? 207 */ 208 si.si_code = BUS_MCEERR_AO; 209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 210 } 211 if (ret < 0) 212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 213 t->comm, t->pid, ret); 214 return ret; 215 } 216 217 /* 218 * When a unknown page type is encountered drain as many buffers as possible 219 * in the hope to turn the page into a LRU or free page, which we can handle. 220 */ 221 void shake_page(struct page *p, int access) 222 { 223 if (!PageSlab(p)) { 224 lru_add_drain_all(); 225 if (PageLRU(p)) 226 return; 227 drain_all_pages(page_zone(p)); 228 if (PageLRU(p) || is_free_buddy_page(p)) 229 return; 230 } 231 232 /* 233 * Only call shrink_node_slabs here (which would also shrink 234 * other caches) if access is not potentially fatal. 235 */ 236 if (access) 237 drop_slab_node(page_to_nid(p)); 238 } 239 EXPORT_SYMBOL_GPL(shake_page); 240 241 /* 242 * Kill all processes that have a poisoned page mapped and then isolate 243 * the page. 244 * 245 * General strategy: 246 * Find all processes having the page mapped and kill them. 247 * But we keep a page reference around so that the page is not 248 * actually freed yet. 249 * Then stash the page away 250 * 251 * There's no convenient way to get back to mapped processes 252 * from the VMAs. So do a brute-force search over all 253 * running processes. 254 * 255 * Remember that machine checks are not common (or rather 256 * if they are common you have other problems), so this shouldn't 257 * be a performance issue. 258 * 259 * Also there are some races possible while we get from the 260 * error detection to actually handle it. 261 */ 262 263 struct to_kill { 264 struct list_head nd; 265 struct task_struct *tsk; 266 unsigned long addr; 267 char addr_valid; 268 }; 269 270 /* 271 * Failure handling: if we can't find or can't kill a process there's 272 * not much we can do. We just print a message and ignore otherwise. 273 */ 274 275 /* 276 * Schedule a process for later kill. 277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 278 * TBD would GFP_NOIO be enough? 279 */ 280 static void add_to_kill(struct task_struct *tsk, struct page *p, 281 struct vm_area_struct *vma, 282 struct list_head *to_kill, 283 struct to_kill **tkc) 284 { 285 struct to_kill *tk; 286 287 if (*tkc) { 288 tk = *tkc; 289 *tkc = NULL; 290 } else { 291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 292 if (!tk) { 293 pr_err("Memory failure: Out of memory while machine check handling\n"); 294 return; 295 } 296 } 297 tk->addr = page_address_in_vma(p, vma); 298 tk->addr_valid = 1; 299 300 /* 301 * In theory we don't have to kill when the page was 302 * munmaped. But it could be also a mremap. Since that's 303 * likely very rare kill anyways just out of paranoia, but use 304 * a SIGKILL because the error is not contained anymore. 305 */ 306 if (tk->addr == -EFAULT) { 307 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 308 page_to_pfn(p), tsk->comm); 309 tk->addr_valid = 0; 310 } 311 get_task_struct(tsk); 312 tk->tsk = tsk; 313 list_add_tail(&tk->nd, to_kill); 314 } 315 316 /* 317 * Kill the processes that have been collected earlier. 318 * 319 * Only do anything when DOIT is set, otherwise just free the list 320 * (this is used for clean pages which do not need killing) 321 * Also when FAIL is set do a force kill because something went 322 * wrong earlier. 323 */ 324 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 325 int fail, struct page *page, unsigned long pfn, 326 int flags) 327 { 328 struct to_kill *tk, *next; 329 330 list_for_each_entry_safe (tk, next, to_kill, nd) { 331 if (forcekill) { 332 /* 333 * In case something went wrong with munmapping 334 * make sure the process doesn't catch the 335 * signal and then access the memory. Just kill it. 336 */ 337 if (fail || tk->addr_valid == 0) { 338 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 339 pfn, tk->tsk->comm, tk->tsk->pid); 340 force_sig(SIGKILL, tk->tsk); 341 } 342 343 /* 344 * In theory the process could have mapped 345 * something else on the address in-between. We could 346 * check for that, but we need to tell the 347 * process anyways. 348 */ 349 else if (kill_proc(tk->tsk, tk->addr, trapno, 350 pfn, page, flags) < 0) 351 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 352 pfn, tk->tsk->comm, tk->tsk->pid); 353 } 354 put_task_struct(tk->tsk); 355 kfree(tk); 356 } 357 } 358 359 /* 360 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 361 * on behalf of the thread group. Return task_struct of the (first found) 362 * dedicated thread if found, and return NULL otherwise. 363 * 364 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 365 * have to call rcu_read_lock/unlock() in this function. 366 */ 367 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 368 { 369 struct task_struct *t; 370 371 for_each_thread(tsk, t) 372 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 373 return t; 374 return NULL; 375 } 376 377 /* 378 * Determine whether a given process is "early kill" process which expects 379 * to be signaled when some page under the process is hwpoisoned. 380 * Return task_struct of the dedicated thread (main thread unless explicitly 381 * specified) if the process is "early kill," and otherwise returns NULL. 382 */ 383 static struct task_struct *task_early_kill(struct task_struct *tsk, 384 int force_early) 385 { 386 struct task_struct *t; 387 if (!tsk->mm) 388 return NULL; 389 if (force_early) 390 return tsk; 391 t = find_early_kill_thread(tsk); 392 if (t) 393 return t; 394 if (sysctl_memory_failure_early_kill) 395 return tsk; 396 return NULL; 397 } 398 399 /* 400 * Collect processes when the error hit an anonymous page. 401 */ 402 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 403 struct to_kill **tkc, int force_early) 404 { 405 struct vm_area_struct *vma; 406 struct task_struct *tsk; 407 struct anon_vma *av; 408 pgoff_t pgoff; 409 410 av = page_lock_anon_vma_read(page); 411 if (av == NULL) /* Not actually mapped anymore */ 412 return; 413 414 pgoff = page_to_pgoff(page); 415 read_lock(&tasklist_lock); 416 for_each_process (tsk) { 417 struct anon_vma_chain *vmac; 418 struct task_struct *t = task_early_kill(tsk, force_early); 419 420 if (!t) 421 continue; 422 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 423 pgoff, pgoff) { 424 vma = vmac->vma; 425 if (!page_mapped_in_vma(page, vma)) 426 continue; 427 if (vma->vm_mm == t->mm) 428 add_to_kill(t, page, vma, to_kill, tkc); 429 } 430 } 431 read_unlock(&tasklist_lock); 432 page_unlock_anon_vma_read(av); 433 } 434 435 /* 436 * Collect processes when the error hit a file mapped page. 437 */ 438 static void collect_procs_file(struct page *page, struct list_head *to_kill, 439 struct to_kill **tkc, int force_early) 440 { 441 struct vm_area_struct *vma; 442 struct task_struct *tsk; 443 struct address_space *mapping = page->mapping; 444 445 i_mmap_lock_read(mapping); 446 read_lock(&tasklist_lock); 447 for_each_process(tsk) { 448 pgoff_t pgoff = page_to_pgoff(page); 449 struct task_struct *t = task_early_kill(tsk, force_early); 450 451 if (!t) 452 continue; 453 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 454 pgoff) { 455 /* 456 * Send early kill signal to tasks where a vma covers 457 * the page but the corrupted page is not necessarily 458 * mapped it in its pte. 459 * Assume applications who requested early kill want 460 * to be informed of all such data corruptions. 461 */ 462 if (vma->vm_mm == t->mm) 463 add_to_kill(t, page, vma, to_kill, tkc); 464 } 465 } 466 read_unlock(&tasklist_lock); 467 i_mmap_unlock_read(mapping); 468 } 469 470 /* 471 * Collect the processes who have the corrupted page mapped to kill. 472 * This is done in two steps for locking reasons. 473 * First preallocate one tokill structure outside the spin locks, 474 * so that we can kill at least one process reasonably reliable. 475 */ 476 static void collect_procs(struct page *page, struct list_head *tokill, 477 int force_early) 478 { 479 struct to_kill *tk; 480 481 if (!page->mapping) 482 return; 483 484 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 485 if (!tk) 486 return; 487 if (PageAnon(page)) 488 collect_procs_anon(page, tokill, &tk, force_early); 489 else 490 collect_procs_file(page, tokill, &tk, force_early); 491 kfree(tk); 492 } 493 494 static const char *action_name[] = { 495 [MF_IGNORED] = "Ignored", 496 [MF_FAILED] = "Failed", 497 [MF_DELAYED] = "Delayed", 498 [MF_RECOVERED] = "Recovered", 499 }; 500 501 static const char * const action_page_types[] = { 502 [MF_MSG_KERNEL] = "reserved kernel page", 503 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 504 [MF_MSG_SLAB] = "kernel slab page", 505 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 506 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 507 [MF_MSG_HUGE] = "huge page", 508 [MF_MSG_FREE_HUGE] = "free huge page", 509 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 510 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 511 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 512 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 513 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 514 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 515 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 516 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 517 [MF_MSG_CLEAN_LRU] = "clean LRU page", 518 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 519 [MF_MSG_BUDDY] = "free buddy page", 520 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 521 [MF_MSG_UNKNOWN] = "unknown page", 522 }; 523 524 /* 525 * XXX: It is possible that a page is isolated from LRU cache, 526 * and then kept in swap cache or failed to remove from page cache. 527 * The page count will stop it from being freed by unpoison. 528 * Stress tests should be aware of this memory leak problem. 529 */ 530 static int delete_from_lru_cache(struct page *p) 531 { 532 if (!isolate_lru_page(p)) { 533 /* 534 * Clear sensible page flags, so that the buddy system won't 535 * complain when the page is unpoison-and-freed. 536 */ 537 ClearPageActive(p); 538 ClearPageUnevictable(p); 539 /* 540 * drop the page count elevated by isolate_lru_page() 541 */ 542 put_page(p); 543 return 0; 544 } 545 return -EIO; 546 } 547 548 /* 549 * Error hit kernel page. 550 * Do nothing, try to be lucky and not touch this instead. For a few cases we 551 * could be more sophisticated. 552 */ 553 static int me_kernel(struct page *p, unsigned long pfn) 554 { 555 return MF_IGNORED; 556 } 557 558 /* 559 * Page in unknown state. Do nothing. 560 */ 561 static int me_unknown(struct page *p, unsigned long pfn) 562 { 563 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 564 return MF_FAILED; 565 } 566 567 /* 568 * Clean (or cleaned) page cache page. 569 */ 570 static int me_pagecache_clean(struct page *p, unsigned long pfn) 571 { 572 int err; 573 int ret = MF_FAILED; 574 struct address_space *mapping; 575 576 delete_from_lru_cache(p); 577 578 /* 579 * For anonymous pages we're done the only reference left 580 * should be the one m_f() holds. 581 */ 582 if (PageAnon(p)) 583 return MF_RECOVERED; 584 585 /* 586 * Now truncate the page in the page cache. This is really 587 * more like a "temporary hole punch" 588 * Don't do this for block devices when someone else 589 * has a reference, because it could be file system metadata 590 * and that's not safe to truncate. 591 */ 592 mapping = page_mapping(p); 593 if (!mapping) { 594 /* 595 * Page has been teared down in the meanwhile 596 */ 597 return MF_FAILED; 598 } 599 600 /* 601 * Truncation is a bit tricky. Enable it per file system for now. 602 * 603 * Open: to take i_mutex or not for this? Right now we don't. 604 */ 605 if (mapping->a_ops->error_remove_page) { 606 err = mapping->a_ops->error_remove_page(mapping, p); 607 if (err != 0) { 608 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 609 pfn, err); 610 } else if (page_has_private(p) && 611 !try_to_release_page(p, GFP_NOIO)) { 612 pr_info("Memory failure: %#lx: failed to release buffers\n", 613 pfn); 614 } else { 615 ret = MF_RECOVERED; 616 } 617 } else { 618 /* 619 * If the file system doesn't support it just invalidate 620 * This fails on dirty or anything with private pages 621 */ 622 if (invalidate_inode_page(p)) 623 ret = MF_RECOVERED; 624 else 625 pr_info("Memory failure: %#lx: Failed to invalidate\n", 626 pfn); 627 } 628 return ret; 629 } 630 631 /* 632 * Dirty pagecache page 633 * Issues: when the error hit a hole page the error is not properly 634 * propagated. 635 */ 636 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 637 { 638 struct address_space *mapping = page_mapping(p); 639 640 SetPageError(p); 641 /* TBD: print more information about the file. */ 642 if (mapping) { 643 /* 644 * IO error will be reported by write(), fsync(), etc. 645 * who check the mapping. 646 * This way the application knows that something went 647 * wrong with its dirty file data. 648 * 649 * There's one open issue: 650 * 651 * The EIO will be only reported on the next IO 652 * operation and then cleared through the IO map. 653 * Normally Linux has two mechanisms to pass IO error 654 * first through the AS_EIO flag in the address space 655 * and then through the PageError flag in the page. 656 * Since we drop pages on memory failure handling the 657 * only mechanism open to use is through AS_AIO. 658 * 659 * This has the disadvantage that it gets cleared on 660 * the first operation that returns an error, while 661 * the PageError bit is more sticky and only cleared 662 * when the page is reread or dropped. If an 663 * application assumes it will always get error on 664 * fsync, but does other operations on the fd before 665 * and the page is dropped between then the error 666 * will not be properly reported. 667 * 668 * This can already happen even without hwpoisoned 669 * pages: first on metadata IO errors (which only 670 * report through AS_EIO) or when the page is dropped 671 * at the wrong time. 672 * 673 * So right now we assume that the application DTRT on 674 * the first EIO, but we're not worse than other parts 675 * of the kernel. 676 */ 677 mapping_set_error(mapping, EIO); 678 } 679 680 return me_pagecache_clean(p, pfn); 681 } 682 683 /* 684 * Clean and dirty swap cache. 685 * 686 * Dirty swap cache page is tricky to handle. The page could live both in page 687 * cache and swap cache(ie. page is freshly swapped in). So it could be 688 * referenced concurrently by 2 types of PTEs: 689 * normal PTEs and swap PTEs. We try to handle them consistently by calling 690 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 691 * and then 692 * - clear dirty bit to prevent IO 693 * - remove from LRU 694 * - but keep in the swap cache, so that when we return to it on 695 * a later page fault, we know the application is accessing 696 * corrupted data and shall be killed (we installed simple 697 * interception code in do_swap_page to catch it). 698 * 699 * Clean swap cache pages can be directly isolated. A later page fault will 700 * bring in the known good data from disk. 701 */ 702 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 703 { 704 ClearPageDirty(p); 705 /* Trigger EIO in shmem: */ 706 ClearPageUptodate(p); 707 708 if (!delete_from_lru_cache(p)) 709 return MF_DELAYED; 710 else 711 return MF_FAILED; 712 } 713 714 static int me_swapcache_clean(struct page *p, unsigned long pfn) 715 { 716 delete_from_swap_cache(p); 717 718 if (!delete_from_lru_cache(p)) 719 return MF_RECOVERED; 720 else 721 return MF_FAILED; 722 } 723 724 /* 725 * Huge pages. Needs work. 726 * Issues: 727 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 728 * To narrow down kill region to one page, we need to break up pmd. 729 */ 730 static int me_huge_page(struct page *p, unsigned long pfn) 731 { 732 int res = 0; 733 struct page *hpage = compound_head(p); 734 735 if (!PageHuge(hpage)) 736 return MF_DELAYED; 737 738 /* 739 * We can safely recover from error on free or reserved (i.e. 740 * not in-use) hugepage by dequeuing it from freelist. 741 * To check whether a hugepage is in-use or not, we can't use 742 * page->lru because it can be used in other hugepage operations, 743 * such as __unmap_hugepage_range() and gather_surplus_pages(). 744 * So instead we use page_mapping() and PageAnon(). 745 */ 746 if (!(page_mapping(hpage) || PageAnon(hpage))) { 747 res = dequeue_hwpoisoned_huge_page(hpage); 748 if (!res) 749 return MF_RECOVERED; 750 } 751 return MF_DELAYED; 752 } 753 754 /* 755 * Various page states we can handle. 756 * 757 * A page state is defined by its current page->flags bits. 758 * The table matches them in order and calls the right handler. 759 * 760 * This is quite tricky because we can access page at any time 761 * in its live cycle, so all accesses have to be extremely careful. 762 * 763 * This is not complete. More states could be added. 764 * For any missing state don't attempt recovery. 765 */ 766 767 #define dirty (1UL << PG_dirty) 768 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 769 #define unevict (1UL << PG_unevictable) 770 #define mlock (1UL << PG_mlocked) 771 #define writeback (1UL << PG_writeback) 772 #define lru (1UL << PG_lru) 773 #define head (1UL << PG_head) 774 #define slab (1UL << PG_slab) 775 #define reserved (1UL << PG_reserved) 776 777 static struct page_state { 778 unsigned long mask; 779 unsigned long res; 780 enum mf_action_page_type type; 781 int (*action)(struct page *p, unsigned long pfn); 782 } error_states[] = { 783 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 784 /* 785 * free pages are specially detected outside this table: 786 * PG_buddy pages only make a small fraction of all free pages. 787 */ 788 789 /* 790 * Could in theory check if slab page is free or if we can drop 791 * currently unused objects without touching them. But just 792 * treat it as standard kernel for now. 793 */ 794 { slab, slab, MF_MSG_SLAB, me_kernel }, 795 796 { head, head, MF_MSG_HUGE, me_huge_page }, 797 798 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 799 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 800 801 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 802 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 803 804 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 805 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 806 807 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 808 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 809 810 /* 811 * Catchall entry: must be at end. 812 */ 813 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 814 }; 815 816 #undef dirty 817 #undef sc 818 #undef unevict 819 #undef mlock 820 #undef writeback 821 #undef lru 822 #undef head 823 #undef slab 824 #undef reserved 825 826 /* 827 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 828 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 829 */ 830 static void action_result(unsigned long pfn, enum mf_action_page_type type, 831 enum mf_result result) 832 { 833 trace_memory_failure_event(pfn, type, result); 834 835 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 836 pfn, action_page_types[type], action_name[result]); 837 } 838 839 static int page_action(struct page_state *ps, struct page *p, 840 unsigned long pfn) 841 { 842 int result; 843 int count; 844 845 result = ps->action(p, pfn); 846 847 count = page_count(p) - 1; 848 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 849 count--; 850 if (count != 0) { 851 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 852 pfn, action_page_types[ps->type], count); 853 result = MF_FAILED; 854 } 855 action_result(pfn, ps->type, result); 856 857 /* Could do more checks here if page looks ok */ 858 /* 859 * Could adjust zone counters here to correct for the missing page. 860 */ 861 862 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 863 } 864 865 /** 866 * get_hwpoison_page() - Get refcount for memory error handling: 867 * @page: raw error page (hit by memory error) 868 * 869 * Return: return 0 if failed to grab the refcount, otherwise true (some 870 * non-zero value.) 871 */ 872 int get_hwpoison_page(struct page *page) 873 { 874 struct page *head = compound_head(page); 875 876 if (!PageHuge(head) && PageTransHuge(head)) { 877 /* 878 * Non anonymous thp exists only in allocation/free time. We 879 * can't handle such a case correctly, so let's give it up. 880 * This should be better than triggering BUG_ON when kernel 881 * tries to touch the "partially handled" page. 882 */ 883 if (!PageAnon(head)) { 884 pr_err("Memory failure: %#lx: non anonymous thp\n", 885 page_to_pfn(page)); 886 return 0; 887 } 888 } 889 890 if (get_page_unless_zero(head)) { 891 if (head == compound_head(page)) 892 return 1; 893 894 pr_info("Memory failure: %#lx cannot catch tail\n", 895 page_to_pfn(page)); 896 put_page(head); 897 } 898 899 return 0; 900 } 901 EXPORT_SYMBOL_GPL(get_hwpoison_page); 902 903 /* 904 * Do all that is necessary to remove user space mappings. Unmap 905 * the pages and send SIGBUS to the processes if the data was dirty. 906 */ 907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 908 int trapno, int flags, struct page **hpagep) 909 { 910 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 911 struct address_space *mapping; 912 LIST_HEAD(tokill); 913 int ret; 914 int kill = 1, forcekill; 915 struct page *hpage = *hpagep; 916 917 /* 918 * Here we are interested only in user-mapped pages, so skip any 919 * other types of pages. 920 */ 921 if (PageReserved(p) || PageSlab(p)) 922 return SWAP_SUCCESS; 923 if (!(PageLRU(hpage) || PageHuge(p))) 924 return SWAP_SUCCESS; 925 926 /* 927 * This check implies we don't kill processes if their pages 928 * are in the swap cache early. Those are always late kills. 929 */ 930 if (!page_mapped(hpage)) 931 return SWAP_SUCCESS; 932 933 if (PageKsm(p)) { 934 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 935 return SWAP_FAIL; 936 } 937 938 if (PageSwapCache(p)) { 939 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 940 pfn); 941 ttu |= TTU_IGNORE_HWPOISON; 942 } 943 944 /* 945 * Propagate the dirty bit from PTEs to struct page first, because we 946 * need this to decide if we should kill or just drop the page. 947 * XXX: the dirty test could be racy: set_page_dirty() may not always 948 * be called inside page lock (it's recommended but not enforced). 949 */ 950 mapping = page_mapping(hpage); 951 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 952 mapping_cap_writeback_dirty(mapping)) { 953 if (page_mkclean(hpage)) { 954 SetPageDirty(hpage); 955 } else { 956 kill = 0; 957 ttu |= TTU_IGNORE_HWPOISON; 958 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 959 pfn); 960 } 961 } 962 963 /* 964 * First collect all the processes that have the page 965 * mapped in dirty form. This has to be done before try_to_unmap, 966 * because ttu takes the rmap data structures down. 967 * 968 * Error handling: We ignore errors here because 969 * there's nothing that can be done. 970 */ 971 if (kill) 972 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 973 974 ret = try_to_unmap(hpage, ttu); 975 if (ret != SWAP_SUCCESS) 976 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 977 pfn, page_mapcount(hpage)); 978 979 /* 980 * Now that the dirty bit has been propagated to the 981 * struct page and all unmaps done we can decide if 982 * killing is needed or not. Only kill when the page 983 * was dirty or the process is not restartable, 984 * otherwise the tokill list is merely 985 * freed. When there was a problem unmapping earlier 986 * use a more force-full uncatchable kill to prevent 987 * any accesses to the poisoned memory. 988 */ 989 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 990 kill_procs(&tokill, forcekill, trapno, 991 ret != SWAP_SUCCESS, p, pfn, flags); 992 993 return ret; 994 } 995 996 static void set_page_hwpoison_huge_page(struct page *hpage) 997 { 998 int i; 999 int nr_pages = 1 << compound_order(hpage); 1000 for (i = 0; i < nr_pages; i++) 1001 SetPageHWPoison(hpage + i); 1002 } 1003 1004 static void clear_page_hwpoison_huge_page(struct page *hpage) 1005 { 1006 int i; 1007 int nr_pages = 1 << compound_order(hpage); 1008 for (i = 0; i < nr_pages; i++) 1009 ClearPageHWPoison(hpage + i); 1010 } 1011 1012 /** 1013 * memory_failure - Handle memory failure of a page. 1014 * @pfn: Page Number of the corrupted page 1015 * @trapno: Trap number reported in the signal to user space. 1016 * @flags: fine tune action taken 1017 * 1018 * This function is called by the low level machine check code 1019 * of an architecture when it detects hardware memory corruption 1020 * of a page. It tries its best to recover, which includes 1021 * dropping pages, killing processes etc. 1022 * 1023 * The function is primarily of use for corruptions that 1024 * happen outside the current execution context (e.g. when 1025 * detected by a background scrubber) 1026 * 1027 * Must run in process context (e.g. a work queue) with interrupts 1028 * enabled and no spinlocks hold. 1029 */ 1030 int memory_failure(unsigned long pfn, int trapno, int flags) 1031 { 1032 struct page_state *ps; 1033 struct page *p; 1034 struct page *hpage; 1035 struct page *orig_head; 1036 int res; 1037 unsigned int nr_pages; 1038 unsigned long page_flags; 1039 1040 if (!sysctl_memory_failure_recovery) 1041 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1042 1043 if (!pfn_valid(pfn)) { 1044 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1045 pfn); 1046 return -ENXIO; 1047 } 1048 1049 p = pfn_to_page(pfn); 1050 orig_head = hpage = compound_head(p); 1051 if (TestSetPageHWPoison(p)) { 1052 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1053 pfn); 1054 return 0; 1055 } 1056 1057 /* 1058 * Currently errors on hugetlbfs pages are measured in hugepage units, 1059 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1060 * transparent hugepages, they are supposed to be split and error 1061 * measurement is done in normal page units. So nr_pages should be one 1062 * in this case. 1063 */ 1064 if (PageHuge(p)) 1065 nr_pages = 1 << compound_order(hpage); 1066 else /* normal page or thp */ 1067 nr_pages = 1; 1068 num_poisoned_pages_add(nr_pages); 1069 1070 /* 1071 * We need/can do nothing about count=0 pages. 1072 * 1) it's a free page, and therefore in safe hand: 1073 * prep_new_page() will be the gate keeper. 1074 * 2) it's a free hugepage, which is also safe: 1075 * an affected hugepage will be dequeued from hugepage freelist, 1076 * so there's no concern about reusing it ever after. 1077 * 3) it's part of a non-compound high order page. 1078 * Implies some kernel user: cannot stop them from 1079 * R/W the page; let's pray that the page has been 1080 * used and will be freed some time later. 1081 * In fact it's dangerous to directly bump up page count from 0, 1082 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1083 */ 1084 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1085 if (is_free_buddy_page(p)) { 1086 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1087 return 0; 1088 } else if (PageHuge(hpage)) { 1089 /* 1090 * Check "filter hit" and "race with other subpage." 1091 */ 1092 lock_page(hpage); 1093 if (PageHWPoison(hpage)) { 1094 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1095 || (p != hpage && TestSetPageHWPoison(hpage))) { 1096 num_poisoned_pages_sub(nr_pages); 1097 unlock_page(hpage); 1098 return 0; 1099 } 1100 } 1101 set_page_hwpoison_huge_page(hpage); 1102 res = dequeue_hwpoisoned_huge_page(hpage); 1103 action_result(pfn, MF_MSG_FREE_HUGE, 1104 res ? MF_IGNORED : MF_DELAYED); 1105 unlock_page(hpage); 1106 return res; 1107 } else { 1108 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1109 return -EBUSY; 1110 } 1111 } 1112 1113 if (!PageHuge(p) && PageTransHuge(hpage)) { 1114 lock_page(p); 1115 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1116 unlock_page(p); 1117 if (!PageAnon(p)) 1118 pr_err("Memory failure: %#lx: non anonymous thp\n", 1119 pfn); 1120 else 1121 pr_err("Memory failure: %#lx: thp split failed\n", 1122 pfn); 1123 if (TestClearPageHWPoison(p)) 1124 num_poisoned_pages_sub(nr_pages); 1125 put_hwpoison_page(p); 1126 return -EBUSY; 1127 } 1128 unlock_page(p); 1129 VM_BUG_ON_PAGE(!page_count(p), p); 1130 hpage = compound_head(p); 1131 } 1132 1133 /* 1134 * We ignore non-LRU pages for good reasons. 1135 * - PG_locked is only well defined for LRU pages and a few others 1136 * - to avoid races with __SetPageLocked() 1137 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1138 * The check (unnecessarily) ignores LRU pages being isolated and 1139 * walked by the page reclaim code, however that's not a big loss. 1140 */ 1141 if (!PageHuge(p)) { 1142 if (!PageLRU(p)) 1143 shake_page(p, 0); 1144 if (!PageLRU(p)) { 1145 /* 1146 * shake_page could have turned it free. 1147 */ 1148 if (is_free_buddy_page(p)) { 1149 if (flags & MF_COUNT_INCREASED) 1150 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1151 else 1152 action_result(pfn, MF_MSG_BUDDY_2ND, 1153 MF_DELAYED); 1154 return 0; 1155 } 1156 } 1157 } 1158 1159 lock_page(hpage); 1160 1161 /* 1162 * The page could have changed compound pages during the locking. 1163 * If this happens just bail out. 1164 */ 1165 if (PageCompound(p) && compound_head(p) != orig_head) { 1166 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1167 res = -EBUSY; 1168 goto out; 1169 } 1170 1171 /* 1172 * We use page flags to determine what action should be taken, but 1173 * the flags can be modified by the error containment action. One 1174 * example is an mlocked page, where PG_mlocked is cleared by 1175 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1176 * correctly, we save a copy of the page flags at this time. 1177 */ 1178 page_flags = p->flags; 1179 1180 /* 1181 * unpoison always clear PG_hwpoison inside page lock 1182 */ 1183 if (!PageHWPoison(p)) { 1184 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1185 num_poisoned_pages_sub(nr_pages); 1186 unlock_page(hpage); 1187 put_hwpoison_page(hpage); 1188 return 0; 1189 } 1190 if (hwpoison_filter(p)) { 1191 if (TestClearPageHWPoison(p)) 1192 num_poisoned_pages_sub(nr_pages); 1193 unlock_page(hpage); 1194 put_hwpoison_page(hpage); 1195 return 0; 1196 } 1197 1198 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1199 goto identify_page_state; 1200 1201 /* 1202 * For error on the tail page, we should set PG_hwpoison 1203 * on the head page to show that the hugepage is hwpoisoned 1204 */ 1205 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1206 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1207 unlock_page(hpage); 1208 put_hwpoison_page(hpage); 1209 return 0; 1210 } 1211 /* 1212 * Set PG_hwpoison on all pages in an error hugepage, 1213 * because containment is done in hugepage unit for now. 1214 * Since we have done TestSetPageHWPoison() for the head page with 1215 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1216 */ 1217 if (PageHuge(p)) 1218 set_page_hwpoison_huge_page(hpage); 1219 1220 /* 1221 * It's very difficult to mess with pages currently under IO 1222 * and in many cases impossible, so we just avoid it here. 1223 */ 1224 wait_on_page_writeback(p); 1225 1226 /* 1227 * Now take care of user space mappings. 1228 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1229 * 1230 * When the raw error page is thp tail page, hpage points to the raw 1231 * page after thp split. 1232 */ 1233 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1234 != SWAP_SUCCESS) { 1235 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1236 res = -EBUSY; 1237 goto out; 1238 } 1239 1240 /* 1241 * Torn down by someone else? 1242 */ 1243 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1244 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1245 res = -EBUSY; 1246 goto out; 1247 } 1248 1249 identify_page_state: 1250 res = -EBUSY; 1251 /* 1252 * The first check uses the current page flags which may not have any 1253 * relevant information. The second check with the saved page flagss is 1254 * carried out only if the first check can't determine the page status. 1255 */ 1256 for (ps = error_states;; ps++) 1257 if ((p->flags & ps->mask) == ps->res) 1258 break; 1259 1260 page_flags |= (p->flags & (1UL << PG_dirty)); 1261 1262 if (!ps->mask) 1263 for (ps = error_states;; ps++) 1264 if ((page_flags & ps->mask) == ps->res) 1265 break; 1266 res = page_action(ps, p, pfn); 1267 out: 1268 unlock_page(hpage); 1269 return res; 1270 } 1271 EXPORT_SYMBOL_GPL(memory_failure); 1272 1273 #define MEMORY_FAILURE_FIFO_ORDER 4 1274 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1275 1276 struct memory_failure_entry { 1277 unsigned long pfn; 1278 int trapno; 1279 int flags; 1280 }; 1281 1282 struct memory_failure_cpu { 1283 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1284 MEMORY_FAILURE_FIFO_SIZE); 1285 spinlock_t lock; 1286 struct work_struct work; 1287 }; 1288 1289 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1290 1291 /** 1292 * memory_failure_queue - Schedule handling memory failure of a page. 1293 * @pfn: Page Number of the corrupted page 1294 * @trapno: Trap number reported in the signal to user space. 1295 * @flags: Flags for memory failure handling 1296 * 1297 * This function is called by the low level hardware error handler 1298 * when it detects hardware memory corruption of a page. It schedules 1299 * the recovering of error page, including dropping pages, killing 1300 * processes etc. 1301 * 1302 * The function is primarily of use for corruptions that 1303 * happen outside the current execution context (e.g. when 1304 * detected by a background scrubber) 1305 * 1306 * Can run in IRQ context. 1307 */ 1308 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1309 { 1310 struct memory_failure_cpu *mf_cpu; 1311 unsigned long proc_flags; 1312 struct memory_failure_entry entry = { 1313 .pfn = pfn, 1314 .trapno = trapno, 1315 .flags = flags, 1316 }; 1317 1318 mf_cpu = &get_cpu_var(memory_failure_cpu); 1319 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1320 if (kfifo_put(&mf_cpu->fifo, entry)) 1321 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1322 else 1323 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1324 pfn); 1325 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1326 put_cpu_var(memory_failure_cpu); 1327 } 1328 EXPORT_SYMBOL_GPL(memory_failure_queue); 1329 1330 static void memory_failure_work_func(struct work_struct *work) 1331 { 1332 struct memory_failure_cpu *mf_cpu; 1333 struct memory_failure_entry entry = { 0, }; 1334 unsigned long proc_flags; 1335 int gotten; 1336 1337 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1338 for (;;) { 1339 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1340 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1341 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1342 if (!gotten) 1343 break; 1344 if (entry.flags & MF_SOFT_OFFLINE) 1345 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1346 else 1347 memory_failure(entry.pfn, entry.trapno, entry.flags); 1348 } 1349 } 1350 1351 static int __init memory_failure_init(void) 1352 { 1353 struct memory_failure_cpu *mf_cpu; 1354 int cpu; 1355 1356 for_each_possible_cpu(cpu) { 1357 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1358 spin_lock_init(&mf_cpu->lock); 1359 INIT_KFIFO(mf_cpu->fifo); 1360 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1361 } 1362 1363 return 0; 1364 } 1365 core_initcall(memory_failure_init); 1366 1367 #define unpoison_pr_info(fmt, pfn, rs) \ 1368 ({ \ 1369 if (__ratelimit(rs)) \ 1370 pr_info(fmt, pfn); \ 1371 }) 1372 1373 /** 1374 * unpoison_memory - Unpoison a previously poisoned page 1375 * @pfn: Page number of the to be unpoisoned page 1376 * 1377 * Software-unpoison a page that has been poisoned by 1378 * memory_failure() earlier. 1379 * 1380 * This is only done on the software-level, so it only works 1381 * for linux injected failures, not real hardware failures 1382 * 1383 * Returns 0 for success, otherwise -errno. 1384 */ 1385 int unpoison_memory(unsigned long pfn) 1386 { 1387 struct page *page; 1388 struct page *p; 1389 int freeit = 0; 1390 unsigned int nr_pages; 1391 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1392 DEFAULT_RATELIMIT_BURST); 1393 1394 if (!pfn_valid(pfn)) 1395 return -ENXIO; 1396 1397 p = pfn_to_page(pfn); 1398 page = compound_head(p); 1399 1400 if (!PageHWPoison(p)) { 1401 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1402 pfn, &unpoison_rs); 1403 return 0; 1404 } 1405 1406 if (page_count(page) > 1) { 1407 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1408 pfn, &unpoison_rs); 1409 return 0; 1410 } 1411 1412 if (page_mapped(page)) { 1413 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1414 pfn, &unpoison_rs); 1415 return 0; 1416 } 1417 1418 if (page_mapping(page)) { 1419 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1420 pfn, &unpoison_rs); 1421 return 0; 1422 } 1423 1424 /* 1425 * unpoison_memory() can encounter thp only when the thp is being 1426 * worked by memory_failure() and the page lock is not held yet. 1427 * In such case, we yield to memory_failure() and make unpoison fail. 1428 */ 1429 if (!PageHuge(page) && PageTransHuge(page)) { 1430 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1431 pfn, &unpoison_rs); 1432 return 0; 1433 } 1434 1435 nr_pages = 1 << compound_order(page); 1436 1437 if (!get_hwpoison_page(p)) { 1438 /* 1439 * Since HWPoisoned hugepage should have non-zero refcount, 1440 * race between memory failure and unpoison seems to happen. 1441 * In such case unpoison fails and memory failure runs 1442 * to the end. 1443 */ 1444 if (PageHuge(page)) { 1445 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n", 1446 pfn, &unpoison_rs); 1447 return 0; 1448 } 1449 if (TestClearPageHWPoison(p)) 1450 num_poisoned_pages_dec(); 1451 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1452 pfn, &unpoison_rs); 1453 return 0; 1454 } 1455 1456 lock_page(page); 1457 /* 1458 * This test is racy because PG_hwpoison is set outside of page lock. 1459 * That's acceptable because that won't trigger kernel panic. Instead, 1460 * the PG_hwpoison page will be caught and isolated on the entrance to 1461 * the free buddy page pool. 1462 */ 1463 if (TestClearPageHWPoison(page)) { 1464 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1465 pfn, &unpoison_rs); 1466 num_poisoned_pages_sub(nr_pages); 1467 freeit = 1; 1468 if (PageHuge(page)) 1469 clear_page_hwpoison_huge_page(page); 1470 } 1471 unlock_page(page); 1472 1473 put_hwpoison_page(page); 1474 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1475 put_hwpoison_page(page); 1476 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(unpoison_memory); 1480 1481 static struct page *new_page(struct page *p, unsigned long private, int **x) 1482 { 1483 int nid = page_to_nid(p); 1484 if (PageHuge(p)) 1485 return alloc_huge_page_node(page_hstate(compound_head(p)), 1486 nid); 1487 else 1488 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1489 } 1490 1491 /* 1492 * Safely get reference count of an arbitrary page. 1493 * Returns 0 for a free page, -EIO for a zero refcount page 1494 * that is not free, and 1 for any other page type. 1495 * For 1 the page is returned with increased page count, otherwise not. 1496 */ 1497 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1498 { 1499 int ret; 1500 1501 if (flags & MF_COUNT_INCREASED) 1502 return 1; 1503 1504 /* 1505 * When the target page is a free hugepage, just remove it 1506 * from free hugepage list. 1507 */ 1508 if (!get_hwpoison_page(p)) { 1509 if (PageHuge(p)) { 1510 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1511 ret = 0; 1512 } else if (is_free_buddy_page(p)) { 1513 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1514 ret = 0; 1515 } else { 1516 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1517 __func__, pfn, p->flags); 1518 ret = -EIO; 1519 } 1520 } else { 1521 /* Not a free page */ 1522 ret = 1; 1523 } 1524 return ret; 1525 } 1526 1527 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1528 { 1529 int ret = __get_any_page(page, pfn, flags); 1530 1531 if (ret == 1 && !PageHuge(page) && 1532 !PageLRU(page) && !__PageMovable(page)) { 1533 /* 1534 * Try to free it. 1535 */ 1536 put_hwpoison_page(page); 1537 shake_page(page, 1); 1538 1539 /* 1540 * Did it turn free? 1541 */ 1542 ret = __get_any_page(page, pfn, 0); 1543 if (ret == 1 && !PageLRU(page)) { 1544 /* Drop page reference which is from __get_any_page() */ 1545 put_hwpoison_page(page); 1546 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1547 pfn, page->flags); 1548 return -EIO; 1549 } 1550 } 1551 return ret; 1552 } 1553 1554 static int soft_offline_huge_page(struct page *page, int flags) 1555 { 1556 int ret; 1557 unsigned long pfn = page_to_pfn(page); 1558 struct page *hpage = compound_head(page); 1559 LIST_HEAD(pagelist); 1560 1561 /* 1562 * This double-check of PageHWPoison is to avoid the race with 1563 * memory_failure(). See also comment in __soft_offline_page(). 1564 */ 1565 lock_page(hpage); 1566 if (PageHWPoison(hpage)) { 1567 unlock_page(hpage); 1568 put_hwpoison_page(hpage); 1569 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1570 return -EBUSY; 1571 } 1572 unlock_page(hpage); 1573 1574 ret = isolate_huge_page(hpage, &pagelist); 1575 /* 1576 * get_any_page() and isolate_huge_page() takes a refcount each, 1577 * so need to drop one here. 1578 */ 1579 put_hwpoison_page(hpage); 1580 if (!ret) { 1581 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1582 return -EBUSY; 1583 } 1584 1585 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1586 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1587 if (ret) { 1588 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1589 pfn, ret, page->flags); 1590 /* 1591 * We know that soft_offline_huge_page() tries to migrate 1592 * only one hugepage pointed to by hpage, so we need not 1593 * run through the pagelist here. 1594 */ 1595 putback_active_hugepage(hpage); 1596 if (ret > 0) 1597 ret = -EIO; 1598 } else { 1599 /* overcommit hugetlb page will be freed to buddy */ 1600 if (PageHuge(page)) { 1601 set_page_hwpoison_huge_page(hpage); 1602 dequeue_hwpoisoned_huge_page(hpage); 1603 num_poisoned_pages_add(1 << compound_order(hpage)); 1604 } else { 1605 SetPageHWPoison(page); 1606 num_poisoned_pages_inc(); 1607 } 1608 } 1609 return ret; 1610 } 1611 1612 static int __soft_offline_page(struct page *page, int flags) 1613 { 1614 int ret; 1615 unsigned long pfn = page_to_pfn(page); 1616 1617 /* 1618 * Check PageHWPoison again inside page lock because PageHWPoison 1619 * is set by memory_failure() outside page lock. Note that 1620 * memory_failure() also double-checks PageHWPoison inside page lock, 1621 * so there's no race between soft_offline_page() and memory_failure(). 1622 */ 1623 lock_page(page); 1624 wait_on_page_writeback(page); 1625 if (PageHWPoison(page)) { 1626 unlock_page(page); 1627 put_hwpoison_page(page); 1628 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1629 return -EBUSY; 1630 } 1631 /* 1632 * Try to invalidate first. This should work for 1633 * non dirty unmapped page cache pages. 1634 */ 1635 ret = invalidate_inode_page(page); 1636 unlock_page(page); 1637 /* 1638 * RED-PEN would be better to keep it isolated here, but we 1639 * would need to fix isolation locking first. 1640 */ 1641 if (ret == 1) { 1642 put_hwpoison_page(page); 1643 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1644 SetPageHWPoison(page); 1645 num_poisoned_pages_inc(); 1646 return 0; 1647 } 1648 1649 /* 1650 * Simple invalidation didn't work. 1651 * Try to migrate to a new page instead. migrate.c 1652 * handles a large number of cases for us. 1653 */ 1654 if (PageLRU(page)) 1655 ret = isolate_lru_page(page); 1656 else 1657 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1658 /* 1659 * Drop page reference which is came from get_any_page() 1660 * successful isolate_lru_page() already took another one. 1661 */ 1662 put_hwpoison_page(page); 1663 if (!ret) { 1664 LIST_HEAD(pagelist); 1665 /* 1666 * After isolated lru page, the PageLRU will be cleared, 1667 * so use !__PageMovable instead for LRU page's mapping 1668 * cannot have PAGE_MAPPING_MOVABLE. 1669 */ 1670 if (!__PageMovable(page)) 1671 inc_node_page_state(page, NR_ISOLATED_ANON + 1672 page_is_file_cache(page)); 1673 list_add(&page->lru, &pagelist); 1674 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1675 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1676 if (ret) { 1677 if (!list_empty(&pagelist)) 1678 putback_movable_pages(&pagelist); 1679 1680 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1681 pfn, ret, page->flags); 1682 if (ret > 0) 1683 ret = -EIO; 1684 } 1685 } else { 1686 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1687 pfn, ret, page_count(page), page->flags); 1688 } 1689 return ret; 1690 } 1691 1692 static int soft_offline_in_use_page(struct page *page, int flags) 1693 { 1694 int ret; 1695 struct page *hpage = compound_head(page); 1696 1697 if (!PageHuge(page) && PageTransHuge(hpage)) { 1698 lock_page(hpage); 1699 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1700 unlock_page(hpage); 1701 if (!PageAnon(hpage)) 1702 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1703 else 1704 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1705 put_hwpoison_page(hpage); 1706 return -EBUSY; 1707 } 1708 unlock_page(hpage); 1709 get_hwpoison_page(page); 1710 put_hwpoison_page(hpage); 1711 } 1712 1713 if (PageHuge(page)) 1714 ret = soft_offline_huge_page(page, flags); 1715 else 1716 ret = __soft_offline_page(page, flags); 1717 1718 return ret; 1719 } 1720 1721 static void soft_offline_free_page(struct page *page) 1722 { 1723 if (PageHuge(page)) { 1724 struct page *hpage = compound_head(page); 1725 1726 set_page_hwpoison_huge_page(hpage); 1727 if (!dequeue_hwpoisoned_huge_page(hpage)) 1728 num_poisoned_pages_add(1 << compound_order(hpage)); 1729 } else { 1730 if (!TestSetPageHWPoison(page)) 1731 num_poisoned_pages_inc(); 1732 } 1733 } 1734 1735 /** 1736 * soft_offline_page - Soft offline a page. 1737 * @page: page to offline 1738 * @flags: flags. Same as memory_failure(). 1739 * 1740 * Returns 0 on success, otherwise negated errno. 1741 * 1742 * Soft offline a page, by migration or invalidation, 1743 * without killing anything. This is for the case when 1744 * a page is not corrupted yet (so it's still valid to access), 1745 * but has had a number of corrected errors and is better taken 1746 * out. 1747 * 1748 * The actual policy on when to do that is maintained by 1749 * user space. 1750 * 1751 * This should never impact any application or cause data loss, 1752 * however it might take some time. 1753 * 1754 * This is not a 100% solution for all memory, but tries to be 1755 * ``good enough'' for the majority of memory. 1756 */ 1757 int soft_offline_page(struct page *page, int flags) 1758 { 1759 int ret; 1760 unsigned long pfn = page_to_pfn(page); 1761 1762 if (PageHWPoison(page)) { 1763 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1764 if (flags & MF_COUNT_INCREASED) 1765 put_hwpoison_page(page); 1766 return -EBUSY; 1767 } 1768 1769 get_online_mems(); 1770 ret = get_any_page(page, pfn, flags); 1771 put_online_mems(); 1772 1773 if (ret > 0) 1774 ret = soft_offline_in_use_page(page, flags); 1775 else if (ret == 0) 1776 soft_offline_free_page(page); 1777 1778 return ret; 1779 } 1780