xref: /openbmc/linux/mm/memory-failure.c (revision 4f3db074)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, current);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages(page_zone(p));
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_node_slabs here (which would also shrink
243 	 * other caches) if access is not potentially fatal.
244 	 */
245 	if (access)
246 		drop_slab_node(page_to_nid(p));
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249 
250 /*
251  * Kill all processes that have a poisoned page mapped and then isolate
252  * the page.
253  *
254  * General strategy:
255  * Find all processes having the page mapped and kill them.
256  * But we keep a page reference around so that the page is not
257  * actually freed yet.
258  * Then stash the page away
259  *
260  * There's no convenient way to get back to mapped processes
261  * from the VMAs. So do a brute-force search over all
262  * running processes.
263  *
264  * Remember that machine checks are not common (or rather
265  * if they are common you have other problems), so this shouldn't
266  * be a performance issue.
267  *
268  * Also there are some races possible while we get from the
269  * error detection to actually handle it.
270  */
271 
272 struct to_kill {
273 	struct list_head nd;
274 	struct task_struct *tsk;
275 	unsigned long addr;
276 	char addr_valid;
277 };
278 
279 /*
280  * Failure handling: if we can't find or can't kill a process there's
281  * not much we can do.	We just print a message and ignore otherwise.
282  */
283 
284 /*
285  * Schedule a process for later kill.
286  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287  * TBD would GFP_NOIO be enough?
288  */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 		       struct vm_area_struct *vma,
291 		       struct list_head *to_kill,
292 		       struct to_kill **tkc)
293 {
294 	struct to_kill *tk;
295 
296 	if (*tkc) {
297 		tk = *tkc;
298 		*tkc = NULL;
299 	} else {
300 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 		if (!tk) {
302 			printk(KERN_ERR
303 		"MCE: Out of memory while machine check handling\n");
304 			return;
305 		}
306 	}
307 	tk->addr = page_address_in_vma(p, vma);
308 	tk->addr_valid = 1;
309 
310 	/*
311 	 * In theory we don't have to kill when the page was
312 	 * munmaped. But it could be also a mremap. Since that's
313 	 * likely very rare kill anyways just out of paranoia, but use
314 	 * a SIGKILL because the error is not contained anymore.
315 	 */
316 	if (tk->addr == -EFAULT) {
317 		pr_info("MCE: Unable to find user space address %lx in %s\n",
318 			page_to_pfn(p), tsk->comm);
319 		tk->addr_valid = 0;
320 	}
321 	get_task_struct(tsk);
322 	tk->tsk = tsk;
323 	list_add_tail(&tk->nd, to_kill);
324 }
325 
326 /*
327  * Kill the processes that have been collected earlier.
328  *
329  * Only do anything when DOIT is set, otherwise just free the list
330  * (this is used for clean pages which do not need killing)
331  * Also when FAIL is set do a force kill because something went
332  * wrong earlier.
333  */
334 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
335 			  int fail, struct page *page, unsigned long pfn,
336 			  int flags)
337 {
338 	struct to_kill *tk, *next;
339 
340 	list_for_each_entry_safe (tk, next, to_kill, nd) {
341 		if (forcekill) {
342 			/*
343 			 * In case something went wrong with munmapping
344 			 * make sure the process doesn't catch the
345 			 * signal and then access the memory. Just kill it.
346 			 */
347 			if (fail || tk->addr_valid == 0) {
348 				printk(KERN_ERR
349 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 					pfn, tk->tsk->comm, tk->tsk->pid);
351 				force_sig(SIGKILL, tk->tsk);
352 			}
353 
354 			/*
355 			 * In theory the process could have mapped
356 			 * something else on the address in-between. We could
357 			 * check for that, but we need to tell the
358 			 * process anyways.
359 			 */
360 			else if (kill_proc(tk->tsk, tk->addr, trapno,
361 					      pfn, page, flags) < 0)
362 				printk(KERN_ERR
363 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 		}
366 		put_task_struct(tk->tsk);
367 		kfree(tk);
368 	}
369 }
370 
371 /*
372  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373  * on behalf of the thread group. Return task_struct of the (first found)
374  * dedicated thread if found, and return NULL otherwise.
375  *
376  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377  * have to call rcu_read_lock/unlock() in this function.
378  */
379 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
380 {
381 	struct task_struct *t;
382 
383 	for_each_thread(tsk, t)
384 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
385 			return t;
386 	return NULL;
387 }
388 
389 /*
390  * Determine whether a given process is "early kill" process which expects
391  * to be signaled when some page under the process is hwpoisoned.
392  * Return task_struct of the dedicated thread (main thread unless explicitly
393  * specified) if the process is "early kill," and otherwise returns NULL.
394  */
395 static struct task_struct *task_early_kill(struct task_struct *tsk,
396 					   int force_early)
397 {
398 	struct task_struct *t;
399 	if (!tsk->mm)
400 		return NULL;
401 	if (force_early)
402 		return tsk;
403 	t = find_early_kill_thread(tsk);
404 	if (t)
405 		return t;
406 	if (sysctl_memory_failure_early_kill)
407 		return tsk;
408 	return NULL;
409 }
410 
411 /*
412  * Collect processes when the error hit an anonymous page.
413  */
414 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
415 			      struct to_kill **tkc, int force_early)
416 {
417 	struct vm_area_struct *vma;
418 	struct task_struct *tsk;
419 	struct anon_vma *av;
420 	pgoff_t pgoff;
421 
422 	av = page_lock_anon_vma_read(page);
423 	if (av == NULL)	/* Not actually mapped anymore */
424 		return;
425 
426 	pgoff = page_to_pgoff(page);
427 	read_lock(&tasklist_lock);
428 	for_each_process (tsk) {
429 		struct anon_vma_chain *vmac;
430 		struct task_struct *t = task_early_kill(tsk, force_early);
431 
432 		if (!t)
433 			continue;
434 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
435 					       pgoff, pgoff) {
436 			vma = vmac->vma;
437 			if (!page_mapped_in_vma(page, vma))
438 				continue;
439 			if (vma->vm_mm == t->mm)
440 				add_to_kill(t, page, vma, to_kill, tkc);
441 		}
442 	}
443 	read_unlock(&tasklist_lock);
444 	page_unlock_anon_vma_read(av);
445 }
446 
447 /*
448  * Collect processes when the error hit a file mapped page.
449  */
450 static void collect_procs_file(struct page *page, struct list_head *to_kill,
451 			      struct to_kill **tkc, int force_early)
452 {
453 	struct vm_area_struct *vma;
454 	struct task_struct *tsk;
455 	struct address_space *mapping = page->mapping;
456 
457 	i_mmap_lock_read(mapping);
458 	read_lock(&tasklist_lock);
459 	for_each_process(tsk) {
460 		pgoff_t pgoff = page_to_pgoff(page);
461 		struct task_struct *t = task_early_kill(tsk, force_early);
462 
463 		if (!t)
464 			continue;
465 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
466 				      pgoff) {
467 			/*
468 			 * Send early kill signal to tasks where a vma covers
469 			 * the page but the corrupted page is not necessarily
470 			 * mapped it in its pte.
471 			 * Assume applications who requested early kill want
472 			 * to be informed of all such data corruptions.
473 			 */
474 			if (vma->vm_mm == t->mm)
475 				add_to_kill(t, page, vma, to_kill, tkc);
476 		}
477 	}
478 	read_unlock(&tasklist_lock);
479 	i_mmap_unlock_read(mapping);
480 }
481 
482 /*
483  * Collect the processes who have the corrupted page mapped to kill.
484  * This is done in two steps for locking reasons.
485  * First preallocate one tokill structure outside the spin locks,
486  * so that we can kill at least one process reasonably reliable.
487  */
488 static void collect_procs(struct page *page, struct list_head *tokill,
489 				int force_early)
490 {
491 	struct to_kill *tk;
492 
493 	if (!page->mapping)
494 		return;
495 
496 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
497 	if (!tk)
498 		return;
499 	if (PageAnon(page))
500 		collect_procs_anon(page, tokill, &tk, force_early);
501 	else
502 		collect_procs_file(page, tokill, &tk, force_early);
503 	kfree(tk);
504 }
505 
506 /*
507  * Error handlers for various types of pages.
508  */
509 
510 enum outcome {
511 	IGNORED,	/* Error: cannot be handled */
512 	FAILED,		/* Error: handling failed */
513 	DELAYED,	/* Will be handled later */
514 	RECOVERED,	/* Successfully recovered */
515 };
516 
517 static const char *action_name[] = {
518 	[IGNORED] = "Ignored",
519 	[FAILED] = "Failed",
520 	[DELAYED] = "Delayed",
521 	[RECOVERED] = "Recovered",
522 };
523 
524 enum action_page_type {
525 	MSG_KERNEL,
526 	MSG_KERNEL_HIGH_ORDER,
527 	MSG_SLAB,
528 	MSG_DIFFERENT_COMPOUND,
529 	MSG_POISONED_HUGE,
530 	MSG_HUGE,
531 	MSG_FREE_HUGE,
532 	MSG_UNMAP_FAILED,
533 	MSG_DIRTY_SWAPCACHE,
534 	MSG_CLEAN_SWAPCACHE,
535 	MSG_DIRTY_MLOCKED_LRU,
536 	MSG_CLEAN_MLOCKED_LRU,
537 	MSG_DIRTY_UNEVICTABLE_LRU,
538 	MSG_CLEAN_UNEVICTABLE_LRU,
539 	MSG_DIRTY_LRU,
540 	MSG_CLEAN_LRU,
541 	MSG_TRUNCATED_LRU,
542 	MSG_BUDDY,
543 	MSG_BUDDY_2ND,
544 	MSG_UNKNOWN,
545 };
546 
547 static const char * const action_page_types[] = {
548 	[MSG_KERNEL]			= "reserved kernel page",
549 	[MSG_KERNEL_HIGH_ORDER]		= "high-order kernel page",
550 	[MSG_SLAB]			= "kernel slab page",
551 	[MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
552 	[MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
553 	[MSG_HUGE]			= "huge page",
554 	[MSG_FREE_HUGE]			= "free huge page",
555 	[MSG_UNMAP_FAILED]		= "unmapping failed page",
556 	[MSG_DIRTY_SWAPCACHE]		= "dirty swapcache page",
557 	[MSG_CLEAN_SWAPCACHE]		= "clean swapcache page",
558 	[MSG_DIRTY_MLOCKED_LRU]		= "dirty mlocked LRU page",
559 	[MSG_CLEAN_MLOCKED_LRU]		= "clean mlocked LRU page",
560 	[MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
561 	[MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
562 	[MSG_DIRTY_LRU]			= "dirty LRU page",
563 	[MSG_CLEAN_LRU]			= "clean LRU page",
564 	[MSG_TRUNCATED_LRU]		= "already truncated LRU page",
565 	[MSG_BUDDY]			= "free buddy page",
566 	[MSG_BUDDY_2ND]			= "free buddy page (2nd try)",
567 	[MSG_UNKNOWN]			= "unknown page",
568 };
569 
570 /*
571  * XXX: It is possible that a page is isolated from LRU cache,
572  * and then kept in swap cache or failed to remove from page cache.
573  * The page count will stop it from being freed by unpoison.
574  * Stress tests should be aware of this memory leak problem.
575  */
576 static int delete_from_lru_cache(struct page *p)
577 {
578 	if (!isolate_lru_page(p)) {
579 		/*
580 		 * Clear sensible page flags, so that the buddy system won't
581 		 * complain when the page is unpoison-and-freed.
582 		 */
583 		ClearPageActive(p);
584 		ClearPageUnevictable(p);
585 		/*
586 		 * drop the page count elevated by isolate_lru_page()
587 		 */
588 		page_cache_release(p);
589 		return 0;
590 	}
591 	return -EIO;
592 }
593 
594 /*
595  * Error hit kernel page.
596  * Do nothing, try to be lucky and not touch this instead. For a few cases we
597  * could be more sophisticated.
598  */
599 static int me_kernel(struct page *p, unsigned long pfn)
600 {
601 	return IGNORED;
602 }
603 
604 /*
605  * Page in unknown state. Do nothing.
606  */
607 static int me_unknown(struct page *p, unsigned long pfn)
608 {
609 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
610 	return FAILED;
611 }
612 
613 /*
614  * Clean (or cleaned) page cache page.
615  */
616 static int me_pagecache_clean(struct page *p, unsigned long pfn)
617 {
618 	int err;
619 	int ret = FAILED;
620 	struct address_space *mapping;
621 
622 	delete_from_lru_cache(p);
623 
624 	/*
625 	 * For anonymous pages we're done the only reference left
626 	 * should be the one m_f() holds.
627 	 */
628 	if (PageAnon(p))
629 		return RECOVERED;
630 
631 	/*
632 	 * Now truncate the page in the page cache. This is really
633 	 * more like a "temporary hole punch"
634 	 * Don't do this for block devices when someone else
635 	 * has a reference, because it could be file system metadata
636 	 * and that's not safe to truncate.
637 	 */
638 	mapping = page_mapping(p);
639 	if (!mapping) {
640 		/*
641 		 * Page has been teared down in the meanwhile
642 		 */
643 		return FAILED;
644 	}
645 
646 	/*
647 	 * Truncation is a bit tricky. Enable it per file system for now.
648 	 *
649 	 * Open: to take i_mutex or not for this? Right now we don't.
650 	 */
651 	if (mapping->a_ops->error_remove_page) {
652 		err = mapping->a_ops->error_remove_page(mapping, p);
653 		if (err != 0) {
654 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
655 					pfn, err);
656 		} else if (page_has_private(p) &&
657 				!try_to_release_page(p, GFP_NOIO)) {
658 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
659 		} else {
660 			ret = RECOVERED;
661 		}
662 	} else {
663 		/*
664 		 * If the file system doesn't support it just invalidate
665 		 * This fails on dirty or anything with private pages
666 		 */
667 		if (invalidate_inode_page(p))
668 			ret = RECOVERED;
669 		else
670 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
671 				pfn);
672 	}
673 	return ret;
674 }
675 
676 /*
677  * Dirty pagecache page
678  * Issues: when the error hit a hole page the error is not properly
679  * propagated.
680  */
681 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
682 {
683 	struct address_space *mapping = page_mapping(p);
684 
685 	SetPageError(p);
686 	/* TBD: print more information about the file. */
687 	if (mapping) {
688 		/*
689 		 * IO error will be reported by write(), fsync(), etc.
690 		 * who check the mapping.
691 		 * This way the application knows that something went
692 		 * wrong with its dirty file data.
693 		 *
694 		 * There's one open issue:
695 		 *
696 		 * The EIO will be only reported on the next IO
697 		 * operation and then cleared through the IO map.
698 		 * Normally Linux has two mechanisms to pass IO error
699 		 * first through the AS_EIO flag in the address space
700 		 * and then through the PageError flag in the page.
701 		 * Since we drop pages on memory failure handling the
702 		 * only mechanism open to use is through AS_AIO.
703 		 *
704 		 * This has the disadvantage that it gets cleared on
705 		 * the first operation that returns an error, while
706 		 * the PageError bit is more sticky and only cleared
707 		 * when the page is reread or dropped.  If an
708 		 * application assumes it will always get error on
709 		 * fsync, but does other operations on the fd before
710 		 * and the page is dropped between then the error
711 		 * will not be properly reported.
712 		 *
713 		 * This can already happen even without hwpoisoned
714 		 * pages: first on metadata IO errors (which only
715 		 * report through AS_EIO) or when the page is dropped
716 		 * at the wrong time.
717 		 *
718 		 * So right now we assume that the application DTRT on
719 		 * the first EIO, but we're not worse than other parts
720 		 * of the kernel.
721 		 */
722 		mapping_set_error(mapping, EIO);
723 	}
724 
725 	return me_pagecache_clean(p, pfn);
726 }
727 
728 /*
729  * Clean and dirty swap cache.
730  *
731  * Dirty swap cache page is tricky to handle. The page could live both in page
732  * cache and swap cache(ie. page is freshly swapped in). So it could be
733  * referenced concurrently by 2 types of PTEs:
734  * normal PTEs and swap PTEs. We try to handle them consistently by calling
735  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
736  * and then
737  *      - clear dirty bit to prevent IO
738  *      - remove from LRU
739  *      - but keep in the swap cache, so that when we return to it on
740  *        a later page fault, we know the application is accessing
741  *        corrupted data and shall be killed (we installed simple
742  *        interception code in do_swap_page to catch it).
743  *
744  * Clean swap cache pages can be directly isolated. A later page fault will
745  * bring in the known good data from disk.
746  */
747 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
748 {
749 	ClearPageDirty(p);
750 	/* Trigger EIO in shmem: */
751 	ClearPageUptodate(p);
752 
753 	if (!delete_from_lru_cache(p))
754 		return DELAYED;
755 	else
756 		return FAILED;
757 }
758 
759 static int me_swapcache_clean(struct page *p, unsigned long pfn)
760 {
761 	delete_from_swap_cache(p);
762 
763 	if (!delete_from_lru_cache(p))
764 		return RECOVERED;
765 	else
766 		return FAILED;
767 }
768 
769 /*
770  * Huge pages. Needs work.
771  * Issues:
772  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
773  *   To narrow down kill region to one page, we need to break up pmd.
774  */
775 static int me_huge_page(struct page *p, unsigned long pfn)
776 {
777 	int res = 0;
778 	struct page *hpage = compound_head(p);
779 	/*
780 	 * We can safely recover from error on free or reserved (i.e.
781 	 * not in-use) hugepage by dequeuing it from freelist.
782 	 * To check whether a hugepage is in-use or not, we can't use
783 	 * page->lru because it can be used in other hugepage operations,
784 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
785 	 * So instead we use page_mapping() and PageAnon().
786 	 * We assume that this function is called with page lock held,
787 	 * so there is no race between isolation and mapping/unmapping.
788 	 */
789 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
790 		res = dequeue_hwpoisoned_huge_page(hpage);
791 		if (!res)
792 			return RECOVERED;
793 	}
794 	return DELAYED;
795 }
796 
797 /*
798  * Various page states we can handle.
799  *
800  * A page state is defined by its current page->flags bits.
801  * The table matches them in order and calls the right handler.
802  *
803  * This is quite tricky because we can access page at any time
804  * in its live cycle, so all accesses have to be extremely careful.
805  *
806  * This is not complete. More states could be added.
807  * For any missing state don't attempt recovery.
808  */
809 
810 #define dirty		(1UL << PG_dirty)
811 #define sc		(1UL << PG_swapcache)
812 #define unevict		(1UL << PG_unevictable)
813 #define mlock		(1UL << PG_mlocked)
814 #define writeback	(1UL << PG_writeback)
815 #define lru		(1UL << PG_lru)
816 #define swapbacked	(1UL << PG_swapbacked)
817 #define head		(1UL << PG_head)
818 #define tail		(1UL << PG_tail)
819 #define compound	(1UL << PG_compound)
820 #define slab		(1UL << PG_slab)
821 #define reserved	(1UL << PG_reserved)
822 
823 static struct page_state {
824 	unsigned long mask;
825 	unsigned long res;
826 	enum action_page_type type;
827 	int (*action)(struct page *p, unsigned long pfn);
828 } error_states[] = {
829 	{ reserved,	reserved,	MSG_KERNEL,	me_kernel },
830 	/*
831 	 * free pages are specially detected outside this table:
832 	 * PG_buddy pages only make a small fraction of all free pages.
833 	 */
834 
835 	/*
836 	 * Could in theory check if slab page is free or if we can drop
837 	 * currently unused objects without touching them. But just
838 	 * treat it as standard kernel for now.
839 	 */
840 	{ slab,		slab,		MSG_SLAB,	me_kernel },
841 
842 #ifdef CONFIG_PAGEFLAGS_EXTENDED
843 	{ head,		head,		MSG_HUGE,		me_huge_page },
844 	{ tail,		tail,		MSG_HUGE,		me_huge_page },
845 #else
846 	{ compound,	compound,	MSG_HUGE,		me_huge_page },
847 #endif
848 
849 	{ sc|dirty,	sc|dirty,	MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
850 	{ sc|dirty,	sc,		MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
851 
852 	{ mlock|dirty,	mlock|dirty,	MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
853 	{ mlock|dirty,	mlock,		MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
854 
855 	{ unevict|dirty, unevict|dirty,	MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
856 	{ unevict|dirty, unevict,	MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
857 
858 	{ lru|dirty,	lru|dirty,	MSG_DIRTY_LRU,	me_pagecache_dirty },
859 	{ lru|dirty,	lru,		MSG_CLEAN_LRU,	me_pagecache_clean },
860 
861 	/*
862 	 * Catchall entry: must be at end.
863 	 */
864 	{ 0,		0,		MSG_UNKNOWN,	me_unknown },
865 };
866 
867 #undef dirty
868 #undef sc
869 #undef unevict
870 #undef mlock
871 #undef writeback
872 #undef lru
873 #undef swapbacked
874 #undef head
875 #undef tail
876 #undef compound
877 #undef slab
878 #undef reserved
879 
880 /*
881  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
883  */
884 static void action_result(unsigned long pfn, enum action_page_type type, int result)
885 {
886 	pr_err("MCE %#lx: recovery action for %s: %s\n",
887 		pfn, action_page_types[type], action_name[result]);
888 }
889 
890 static int page_action(struct page_state *ps, struct page *p,
891 			unsigned long pfn)
892 {
893 	int result;
894 	int count;
895 
896 	result = ps->action(p, pfn);
897 
898 	count = page_count(p) - 1;
899 	if (ps->action == me_swapcache_dirty && result == DELAYED)
900 		count--;
901 	if (count != 0) {
902 		printk(KERN_ERR
903 		       "MCE %#lx: %s still referenced by %d users\n",
904 		       pfn, action_page_types[ps->type], count);
905 		result = FAILED;
906 	}
907 	action_result(pfn, ps->type, result);
908 
909 	/* Could do more checks here if page looks ok */
910 	/*
911 	 * Could adjust zone counters here to correct for the missing page.
912 	 */
913 
914 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
915 }
916 
917 /*
918  * Do all that is necessary to remove user space mappings. Unmap
919  * the pages and send SIGBUS to the processes if the data was dirty.
920  */
921 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
922 				  int trapno, int flags, struct page **hpagep)
923 {
924 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
925 	struct address_space *mapping;
926 	LIST_HEAD(tokill);
927 	int ret;
928 	int kill = 1, forcekill;
929 	struct page *hpage = *hpagep;
930 	struct page *ppage;
931 
932 	/*
933 	 * Here we are interested only in user-mapped pages, so skip any
934 	 * other types of pages.
935 	 */
936 	if (PageReserved(p) || PageSlab(p))
937 		return SWAP_SUCCESS;
938 	if (!(PageLRU(hpage) || PageHuge(p)))
939 		return SWAP_SUCCESS;
940 
941 	/*
942 	 * This check implies we don't kill processes if their pages
943 	 * are in the swap cache early. Those are always late kills.
944 	 */
945 	if (!page_mapped(hpage))
946 		return SWAP_SUCCESS;
947 
948 	if (PageKsm(p)) {
949 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
950 		return SWAP_FAIL;
951 	}
952 
953 	if (PageSwapCache(p)) {
954 		printk(KERN_ERR
955 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
956 		ttu |= TTU_IGNORE_HWPOISON;
957 	}
958 
959 	/*
960 	 * Propagate the dirty bit from PTEs to struct page first, because we
961 	 * need this to decide if we should kill or just drop the page.
962 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
963 	 * be called inside page lock (it's recommended but not enforced).
964 	 */
965 	mapping = page_mapping(hpage);
966 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
967 	    mapping_cap_writeback_dirty(mapping)) {
968 		if (page_mkclean(hpage)) {
969 			SetPageDirty(hpage);
970 		} else {
971 			kill = 0;
972 			ttu |= TTU_IGNORE_HWPOISON;
973 			printk(KERN_INFO
974 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
975 				pfn);
976 		}
977 	}
978 
979 	/*
980 	 * ppage: poisoned page
981 	 *   if p is regular page(4k page)
982 	 *        ppage == real poisoned page;
983 	 *   else p is hugetlb or THP, ppage == head page.
984 	 */
985 	ppage = hpage;
986 
987 	if (PageTransHuge(hpage)) {
988 		/*
989 		 * Verify that this isn't a hugetlbfs head page, the check for
990 		 * PageAnon is just for avoid tripping a split_huge_page
991 		 * internal debug check, as split_huge_page refuses to deal with
992 		 * anything that isn't an anon page. PageAnon can't go away fro
993 		 * under us because we hold a refcount on the hpage, without a
994 		 * refcount on the hpage. split_huge_page can't be safely called
995 		 * in the first place, having a refcount on the tail isn't
996 		 * enough * to be safe.
997 		 */
998 		if (!PageHuge(hpage) && PageAnon(hpage)) {
999 			if (unlikely(split_huge_page(hpage))) {
1000 				/*
1001 				 * FIXME: if splitting THP is failed, it is
1002 				 * better to stop the following operation rather
1003 				 * than causing panic by unmapping. System might
1004 				 * survive if the page is freed later.
1005 				 */
1006 				printk(KERN_INFO
1007 					"MCE %#lx: failed to split THP\n", pfn);
1008 
1009 				BUG_ON(!PageHWPoison(p));
1010 				return SWAP_FAIL;
1011 			}
1012 			/*
1013 			 * We pinned the head page for hwpoison handling,
1014 			 * now we split the thp and we are interested in
1015 			 * the hwpoisoned raw page, so move the refcount
1016 			 * to it. Similarly, page lock is shifted.
1017 			 */
1018 			if (hpage != p) {
1019 				if (!(flags & MF_COUNT_INCREASED)) {
1020 					put_page(hpage);
1021 					get_page(p);
1022 				}
1023 				lock_page(p);
1024 				unlock_page(hpage);
1025 				*hpagep = p;
1026 			}
1027 			/* THP is split, so ppage should be the real poisoned page. */
1028 			ppage = p;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * First collect all the processes that have the page
1034 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1035 	 * because ttu takes the rmap data structures down.
1036 	 *
1037 	 * Error handling: We ignore errors here because
1038 	 * there's nothing that can be done.
1039 	 */
1040 	if (kill)
1041 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1042 
1043 	ret = try_to_unmap(ppage, ttu);
1044 	if (ret != SWAP_SUCCESS)
1045 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1046 				pfn, page_mapcount(ppage));
1047 
1048 	/*
1049 	 * Now that the dirty bit has been propagated to the
1050 	 * struct page and all unmaps done we can decide if
1051 	 * killing is needed or not.  Only kill when the page
1052 	 * was dirty or the process is not restartable,
1053 	 * otherwise the tokill list is merely
1054 	 * freed.  When there was a problem unmapping earlier
1055 	 * use a more force-full uncatchable kill to prevent
1056 	 * any accesses to the poisoned memory.
1057 	 */
1058 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1059 	kill_procs(&tokill, forcekill, trapno,
1060 		      ret != SWAP_SUCCESS, p, pfn, flags);
1061 
1062 	return ret;
1063 }
1064 
1065 static void set_page_hwpoison_huge_page(struct page *hpage)
1066 {
1067 	int i;
1068 	int nr_pages = 1 << compound_order(hpage);
1069 	for (i = 0; i < nr_pages; i++)
1070 		SetPageHWPoison(hpage + i);
1071 }
1072 
1073 static void clear_page_hwpoison_huge_page(struct page *hpage)
1074 {
1075 	int i;
1076 	int nr_pages = 1 << compound_order(hpage);
1077 	for (i = 0; i < nr_pages; i++)
1078 		ClearPageHWPoison(hpage + i);
1079 }
1080 
1081 /**
1082  * memory_failure - Handle memory failure of a page.
1083  * @pfn: Page Number of the corrupted page
1084  * @trapno: Trap number reported in the signal to user space.
1085  * @flags: fine tune action taken
1086  *
1087  * This function is called by the low level machine check code
1088  * of an architecture when it detects hardware memory corruption
1089  * of a page. It tries its best to recover, which includes
1090  * dropping pages, killing processes etc.
1091  *
1092  * The function is primarily of use for corruptions that
1093  * happen outside the current execution context (e.g. when
1094  * detected by a background scrubber)
1095  *
1096  * Must run in process context (e.g. a work queue) with interrupts
1097  * enabled and no spinlocks hold.
1098  */
1099 int memory_failure(unsigned long pfn, int trapno, int flags)
1100 {
1101 	struct page_state *ps;
1102 	struct page *p;
1103 	struct page *hpage;
1104 	int res;
1105 	unsigned int nr_pages;
1106 	unsigned long page_flags;
1107 
1108 	if (!sysctl_memory_failure_recovery)
1109 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1110 
1111 	if (!pfn_valid(pfn)) {
1112 		printk(KERN_ERR
1113 		       "MCE %#lx: memory outside kernel control\n",
1114 		       pfn);
1115 		return -ENXIO;
1116 	}
1117 
1118 	p = pfn_to_page(pfn);
1119 	hpage = compound_head(p);
1120 	if (TestSetPageHWPoison(p)) {
1121 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1122 		return 0;
1123 	}
1124 
1125 	/*
1126 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1127 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1128 	 * transparent hugepages, they are supposed to be split and error
1129 	 * measurement is done in normal page units.  So nr_pages should be one
1130 	 * in this case.
1131 	 */
1132 	if (PageHuge(p))
1133 		nr_pages = 1 << compound_order(hpage);
1134 	else /* normal page or thp */
1135 		nr_pages = 1;
1136 	atomic_long_add(nr_pages, &num_poisoned_pages);
1137 
1138 	/*
1139 	 * We need/can do nothing about count=0 pages.
1140 	 * 1) it's a free page, and therefore in safe hand:
1141 	 *    prep_new_page() will be the gate keeper.
1142 	 * 2) it's a free hugepage, which is also safe:
1143 	 *    an affected hugepage will be dequeued from hugepage freelist,
1144 	 *    so there's no concern about reusing it ever after.
1145 	 * 3) it's part of a non-compound high order page.
1146 	 *    Implies some kernel user: cannot stop them from
1147 	 *    R/W the page; let's pray that the page has been
1148 	 *    used and will be freed some time later.
1149 	 * In fact it's dangerous to directly bump up page count from 0,
1150 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1151 	 */
1152 	if (!(flags & MF_COUNT_INCREASED) &&
1153 		!get_page_unless_zero(hpage)) {
1154 		if (is_free_buddy_page(p)) {
1155 			action_result(pfn, MSG_BUDDY, DELAYED);
1156 			return 0;
1157 		} else if (PageHuge(hpage)) {
1158 			/*
1159 			 * Check "filter hit" and "race with other subpage."
1160 			 */
1161 			lock_page(hpage);
1162 			if (PageHWPoison(hpage)) {
1163 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1164 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1165 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1166 					unlock_page(hpage);
1167 					return 0;
1168 				}
1169 			}
1170 			set_page_hwpoison_huge_page(hpage);
1171 			res = dequeue_hwpoisoned_huge_page(hpage);
1172 			action_result(pfn, MSG_FREE_HUGE,
1173 				      res ? IGNORED : DELAYED);
1174 			unlock_page(hpage);
1175 			return res;
1176 		} else {
1177 			action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
1178 			return -EBUSY;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * We ignore non-LRU pages for good reasons.
1184 	 * - PG_locked is only well defined for LRU pages and a few others
1185 	 * - to avoid races with __set_page_locked()
1186 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1187 	 * The check (unnecessarily) ignores LRU pages being isolated and
1188 	 * walked by the page reclaim code, however that's not a big loss.
1189 	 */
1190 	if (!PageHuge(p) && !PageTransTail(p)) {
1191 		if (!PageLRU(p))
1192 			shake_page(p, 0);
1193 		if (!PageLRU(p)) {
1194 			/*
1195 			 * shake_page could have turned it free.
1196 			 */
1197 			if (is_free_buddy_page(p)) {
1198 				if (flags & MF_COUNT_INCREASED)
1199 					action_result(pfn, MSG_BUDDY, DELAYED);
1200 				else
1201 					action_result(pfn, MSG_BUDDY_2ND,
1202 						      DELAYED);
1203 				return 0;
1204 			}
1205 		}
1206 	}
1207 
1208 	lock_page(hpage);
1209 
1210 	/*
1211 	 * The page could have changed compound pages during the locking.
1212 	 * If this happens just bail out.
1213 	 */
1214 	if (compound_head(p) != hpage) {
1215 		action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
1216 		res = -EBUSY;
1217 		goto out;
1218 	}
1219 
1220 	/*
1221 	 * We use page flags to determine what action should be taken, but
1222 	 * the flags can be modified by the error containment action.  One
1223 	 * example is an mlocked page, where PG_mlocked is cleared by
1224 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1225 	 * correctly, we save a copy of the page flags at this time.
1226 	 */
1227 	page_flags = p->flags;
1228 
1229 	/*
1230 	 * unpoison always clear PG_hwpoison inside page lock
1231 	 */
1232 	if (!PageHWPoison(p)) {
1233 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1234 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1235 		put_page(hpage);
1236 		res = 0;
1237 		goto out;
1238 	}
1239 	if (hwpoison_filter(p)) {
1240 		if (TestClearPageHWPoison(p))
1241 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1242 		unlock_page(hpage);
1243 		put_page(hpage);
1244 		return 0;
1245 	}
1246 
1247 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1248 		goto identify_page_state;
1249 
1250 	/*
1251 	 * For error on the tail page, we should set PG_hwpoison
1252 	 * on the head page to show that the hugepage is hwpoisoned
1253 	 */
1254 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1255 		action_result(pfn, MSG_POISONED_HUGE, IGNORED);
1256 		unlock_page(hpage);
1257 		put_page(hpage);
1258 		return 0;
1259 	}
1260 	/*
1261 	 * Set PG_hwpoison on all pages in an error hugepage,
1262 	 * because containment is done in hugepage unit for now.
1263 	 * Since we have done TestSetPageHWPoison() for the head page with
1264 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1265 	 */
1266 	if (PageHuge(p))
1267 		set_page_hwpoison_huge_page(hpage);
1268 
1269 	/*
1270 	 * It's very difficult to mess with pages currently under IO
1271 	 * and in many cases impossible, so we just avoid it here.
1272 	 */
1273 	wait_on_page_writeback(p);
1274 
1275 	/*
1276 	 * Now take care of user space mappings.
1277 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1278 	 *
1279 	 * When the raw error page is thp tail page, hpage points to the raw
1280 	 * page after thp split.
1281 	 */
1282 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1283 	    != SWAP_SUCCESS) {
1284 		action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
1285 		res = -EBUSY;
1286 		goto out;
1287 	}
1288 
1289 	/*
1290 	 * Torn down by someone else?
1291 	 */
1292 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1293 		action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
1294 		res = -EBUSY;
1295 		goto out;
1296 	}
1297 
1298 identify_page_state:
1299 	res = -EBUSY;
1300 	/*
1301 	 * The first check uses the current page flags which may not have any
1302 	 * relevant information. The second check with the saved page flagss is
1303 	 * carried out only if the first check can't determine the page status.
1304 	 */
1305 	for (ps = error_states;; ps++)
1306 		if ((p->flags & ps->mask) == ps->res)
1307 			break;
1308 
1309 	page_flags |= (p->flags & (1UL << PG_dirty));
1310 
1311 	if (!ps->mask)
1312 		for (ps = error_states;; ps++)
1313 			if ((page_flags & ps->mask) == ps->res)
1314 				break;
1315 	res = page_action(ps, p, pfn);
1316 out:
1317 	unlock_page(hpage);
1318 	return res;
1319 }
1320 EXPORT_SYMBOL_GPL(memory_failure);
1321 
1322 #define MEMORY_FAILURE_FIFO_ORDER	4
1323 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1324 
1325 struct memory_failure_entry {
1326 	unsigned long pfn;
1327 	int trapno;
1328 	int flags;
1329 };
1330 
1331 struct memory_failure_cpu {
1332 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1333 		      MEMORY_FAILURE_FIFO_SIZE);
1334 	spinlock_t lock;
1335 	struct work_struct work;
1336 };
1337 
1338 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1339 
1340 /**
1341  * memory_failure_queue - Schedule handling memory failure of a page.
1342  * @pfn: Page Number of the corrupted page
1343  * @trapno: Trap number reported in the signal to user space.
1344  * @flags: Flags for memory failure handling
1345  *
1346  * This function is called by the low level hardware error handler
1347  * when it detects hardware memory corruption of a page. It schedules
1348  * the recovering of error page, including dropping pages, killing
1349  * processes etc.
1350  *
1351  * The function is primarily of use for corruptions that
1352  * happen outside the current execution context (e.g. when
1353  * detected by a background scrubber)
1354  *
1355  * Can run in IRQ context.
1356  */
1357 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1358 {
1359 	struct memory_failure_cpu *mf_cpu;
1360 	unsigned long proc_flags;
1361 	struct memory_failure_entry entry = {
1362 		.pfn =		pfn,
1363 		.trapno =	trapno,
1364 		.flags =	flags,
1365 	};
1366 
1367 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1368 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1369 	if (kfifo_put(&mf_cpu->fifo, entry))
1370 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1371 	else
1372 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1373 		       pfn);
1374 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1375 	put_cpu_var(memory_failure_cpu);
1376 }
1377 EXPORT_SYMBOL_GPL(memory_failure_queue);
1378 
1379 static void memory_failure_work_func(struct work_struct *work)
1380 {
1381 	struct memory_failure_cpu *mf_cpu;
1382 	struct memory_failure_entry entry = { 0, };
1383 	unsigned long proc_flags;
1384 	int gotten;
1385 
1386 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1387 	for (;;) {
1388 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1389 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1390 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1391 		if (!gotten)
1392 			break;
1393 		if (entry.flags & MF_SOFT_OFFLINE)
1394 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1395 		else
1396 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1397 	}
1398 }
1399 
1400 static int __init memory_failure_init(void)
1401 {
1402 	struct memory_failure_cpu *mf_cpu;
1403 	int cpu;
1404 
1405 	for_each_possible_cpu(cpu) {
1406 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1407 		spin_lock_init(&mf_cpu->lock);
1408 		INIT_KFIFO(mf_cpu->fifo);
1409 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1410 	}
1411 
1412 	return 0;
1413 }
1414 core_initcall(memory_failure_init);
1415 
1416 /**
1417  * unpoison_memory - Unpoison a previously poisoned page
1418  * @pfn: Page number of the to be unpoisoned page
1419  *
1420  * Software-unpoison a page that has been poisoned by
1421  * memory_failure() earlier.
1422  *
1423  * This is only done on the software-level, so it only works
1424  * for linux injected failures, not real hardware failures
1425  *
1426  * Returns 0 for success, otherwise -errno.
1427  */
1428 int unpoison_memory(unsigned long pfn)
1429 {
1430 	struct page *page;
1431 	struct page *p;
1432 	int freeit = 0;
1433 	unsigned int nr_pages;
1434 
1435 	if (!pfn_valid(pfn))
1436 		return -ENXIO;
1437 
1438 	p = pfn_to_page(pfn);
1439 	page = compound_head(p);
1440 
1441 	if (!PageHWPoison(p)) {
1442 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1443 		return 0;
1444 	}
1445 
1446 	/*
1447 	 * unpoison_memory() can encounter thp only when the thp is being
1448 	 * worked by memory_failure() and the page lock is not held yet.
1449 	 * In such case, we yield to memory_failure() and make unpoison fail.
1450 	 */
1451 	if (!PageHuge(page) && PageTransHuge(page)) {
1452 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1453 			return 0;
1454 	}
1455 
1456 	nr_pages = 1 << compound_order(page);
1457 
1458 	if (!get_page_unless_zero(page)) {
1459 		/*
1460 		 * Since HWPoisoned hugepage should have non-zero refcount,
1461 		 * race between memory failure and unpoison seems to happen.
1462 		 * In such case unpoison fails and memory failure runs
1463 		 * to the end.
1464 		 */
1465 		if (PageHuge(page)) {
1466 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1467 			return 0;
1468 		}
1469 		if (TestClearPageHWPoison(p))
1470 			atomic_long_dec(&num_poisoned_pages);
1471 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1472 		return 0;
1473 	}
1474 
1475 	lock_page(page);
1476 	/*
1477 	 * This test is racy because PG_hwpoison is set outside of page lock.
1478 	 * That's acceptable because that won't trigger kernel panic. Instead,
1479 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1480 	 * the free buddy page pool.
1481 	 */
1482 	if (TestClearPageHWPoison(page)) {
1483 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1484 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1485 		freeit = 1;
1486 		if (PageHuge(page))
1487 			clear_page_hwpoison_huge_page(page);
1488 	}
1489 	unlock_page(page);
1490 
1491 	put_page(page);
1492 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1493 		put_page(page);
1494 
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL(unpoison_memory);
1498 
1499 static struct page *new_page(struct page *p, unsigned long private, int **x)
1500 {
1501 	int nid = page_to_nid(p);
1502 	if (PageHuge(p))
1503 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1504 						   nid);
1505 	else
1506 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1507 }
1508 
1509 /*
1510  * Safely get reference count of an arbitrary page.
1511  * Returns 0 for a free page, -EIO for a zero refcount page
1512  * that is not free, and 1 for any other page type.
1513  * For 1 the page is returned with increased page count, otherwise not.
1514  */
1515 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1516 {
1517 	int ret;
1518 
1519 	if (flags & MF_COUNT_INCREASED)
1520 		return 1;
1521 
1522 	/*
1523 	 * When the target page is a free hugepage, just remove it
1524 	 * from free hugepage list.
1525 	 */
1526 	if (!get_page_unless_zero(compound_head(p))) {
1527 		if (PageHuge(p)) {
1528 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1529 			ret = 0;
1530 		} else if (is_free_buddy_page(p)) {
1531 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1532 			ret = 0;
1533 		} else {
1534 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1535 				__func__, pfn, p->flags);
1536 			ret = -EIO;
1537 		}
1538 	} else {
1539 		/* Not a free page */
1540 		ret = 1;
1541 	}
1542 	return ret;
1543 }
1544 
1545 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1546 {
1547 	int ret = __get_any_page(page, pfn, flags);
1548 
1549 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1550 		/*
1551 		 * Try to free it.
1552 		 */
1553 		put_page(page);
1554 		shake_page(page, 1);
1555 
1556 		/*
1557 		 * Did it turn free?
1558 		 */
1559 		ret = __get_any_page(page, pfn, 0);
1560 		if (!PageLRU(page)) {
1561 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1562 				pfn, page->flags);
1563 			return -EIO;
1564 		}
1565 	}
1566 	return ret;
1567 }
1568 
1569 static int soft_offline_huge_page(struct page *page, int flags)
1570 {
1571 	int ret;
1572 	unsigned long pfn = page_to_pfn(page);
1573 	struct page *hpage = compound_head(page);
1574 	LIST_HEAD(pagelist);
1575 
1576 	/*
1577 	 * This double-check of PageHWPoison is to avoid the race with
1578 	 * memory_failure(). See also comment in __soft_offline_page().
1579 	 */
1580 	lock_page(hpage);
1581 	if (PageHWPoison(hpage)) {
1582 		unlock_page(hpage);
1583 		put_page(hpage);
1584 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1585 		return -EBUSY;
1586 	}
1587 	unlock_page(hpage);
1588 
1589 	ret = isolate_huge_page(hpage, &pagelist);
1590 	if (ret) {
1591 		/*
1592 		 * get_any_page() and isolate_huge_page() takes a refcount each,
1593 		 * so need to drop one here.
1594 		 */
1595 		put_page(hpage);
1596 	} else {
1597 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1598 		return -EBUSY;
1599 	}
1600 
1601 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1602 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1603 	if (ret) {
1604 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1605 			pfn, ret, page->flags);
1606 		/*
1607 		 * We know that soft_offline_huge_page() tries to migrate
1608 		 * only one hugepage pointed to by hpage, so we need not
1609 		 * run through the pagelist here.
1610 		 */
1611 		putback_active_hugepage(hpage);
1612 		if (ret > 0)
1613 			ret = -EIO;
1614 	} else {
1615 		/* overcommit hugetlb page will be freed to buddy */
1616 		if (PageHuge(page)) {
1617 			set_page_hwpoison_huge_page(hpage);
1618 			dequeue_hwpoisoned_huge_page(hpage);
1619 			atomic_long_add(1 << compound_order(hpage),
1620 					&num_poisoned_pages);
1621 		} else {
1622 			SetPageHWPoison(page);
1623 			atomic_long_inc(&num_poisoned_pages);
1624 		}
1625 	}
1626 	return ret;
1627 }
1628 
1629 static int __soft_offline_page(struct page *page, int flags)
1630 {
1631 	int ret;
1632 	unsigned long pfn = page_to_pfn(page);
1633 
1634 	/*
1635 	 * Check PageHWPoison again inside page lock because PageHWPoison
1636 	 * is set by memory_failure() outside page lock. Note that
1637 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1638 	 * so there's no race between soft_offline_page() and memory_failure().
1639 	 */
1640 	lock_page(page);
1641 	wait_on_page_writeback(page);
1642 	if (PageHWPoison(page)) {
1643 		unlock_page(page);
1644 		put_page(page);
1645 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1646 		return -EBUSY;
1647 	}
1648 	/*
1649 	 * Try to invalidate first. This should work for
1650 	 * non dirty unmapped page cache pages.
1651 	 */
1652 	ret = invalidate_inode_page(page);
1653 	unlock_page(page);
1654 	/*
1655 	 * RED-PEN would be better to keep it isolated here, but we
1656 	 * would need to fix isolation locking first.
1657 	 */
1658 	if (ret == 1) {
1659 		put_page(page);
1660 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1661 		SetPageHWPoison(page);
1662 		atomic_long_inc(&num_poisoned_pages);
1663 		return 0;
1664 	}
1665 
1666 	/*
1667 	 * Simple invalidation didn't work.
1668 	 * Try to migrate to a new page instead. migrate.c
1669 	 * handles a large number of cases for us.
1670 	 */
1671 	ret = isolate_lru_page(page);
1672 	/*
1673 	 * Drop page reference which is came from get_any_page()
1674 	 * successful isolate_lru_page() already took another one.
1675 	 */
1676 	put_page(page);
1677 	if (!ret) {
1678 		LIST_HEAD(pagelist);
1679 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1680 					page_is_file_cache(page));
1681 		list_add(&page->lru, &pagelist);
1682 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1683 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1684 		if (ret) {
1685 			if (!list_empty(&pagelist)) {
1686 				list_del(&page->lru);
1687 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1688 						page_is_file_cache(page));
1689 				putback_lru_page(page);
1690 			}
1691 
1692 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1693 				pfn, ret, page->flags);
1694 			if (ret > 0)
1695 				ret = -EIO;
1696 		} else {
1697 			/*
1698 			 * After page migration succeeds, the source page can
1699 			 * be trapped in pagevec and actual freeing is delayed.
1700 			 * Freeing code works differently based on PG_hwpoison,
1701 			 * so there's a race. We need to make sure that the
1702 			 * source page should be freed back to buddy before
1703 			 * setting PG_hwpoison.
1704 			 */
1705 			if (!is_free_buddy_page(page))
1706 				drain_all_pages(page_zone(page));
1707 			SetPageHWPoison(page);
1708 			if (!is_free_buddy_page(page))
1709 				pr_info("soft offline: %#lx: page leaked\n",
1710 					pfn);
1711 			atomic_long_inc(&num_poisoned_pages);
1712 		}
1713 	} else {
1714 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1715 			pfn, ret, page_count(page), page->flags);
1716 	}
1717 	return ret;
1718 }
1719 
1720 /**
1721  * soft_offline_page - Soft offline a page.
1722  * @page: page to offline
1723  * @flags: flags. Same as memory_failure().
1724  *
1725  * Returns 0 on success, otherwise negated errno.
1726  *
1727  * Soft offline a page, by migration or invalidation,
1728  * without killing anything. This is for the case when
1729  * a page is not corrupted yet (so it's still valid to access),
1730  * but has had a number of corrected errors and is better taken
1731  * out.
1732  *
1733  * The actual policy on when to do that is maintained by
1734  * user space.
1735  *
1736  * This should never impact any application or cause data loss,
1737  * however it might take some time.
1738  *
1739  * This is not a 100% solution for all memory, but tries to be
1740  * ``good enough'' for the majority of memory.
1741  */
1742 int soft_offline_page(struct page *page, int flags)
1743 {
1744 	int ret;
1745 	unsigned long pfn = page_to_pfn(page);
1746 	struct page *hpage = compound_head(page);
1747 
1748 	if (PageHWPoison(page)) {
1749 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1750 		return -EBUSY;
1751 	}
1752 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1753 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1754 			pr_info("soft offline: %#lx: failed to split THP\n",
1755 				pfn);
1756 			return -EBUSY;
1757 		}
1758 	}
1759 
1760 	get_online_mems();
1761 
1762 	/*
1763 	 * Isolate the page, so that it doesn't get reallocated if it
1764 	 * was free. This flag should be kept set until the source page
1765 	 * is freed and PG_hwpoison on it is set.
1766 	 */
1767 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1768 		set_migratetype_isolate(page, true);
1769 
1770 	ret = get_any_page(page, pfn, flags);
1771 	put_online_mems();
1772 	if (ret > 0) { /* for in-use pages */
1773 		if (PageHuge(page))
1774 			ret = soft_offline_huge_page(page, flags);
1775 		else
1776 			ret = __soft_offline_page(page, flags);
1777 	} else if (ret == 0) { /* for free pages */
1778 		if (PageHuge(page)) {
1779 			set_page_hwpoison_huge_page(hpage);
1780 			dequeue_hwpoisoned_huge_page(hpage);
1781 			atomic_long_add(1 << compound_order(hpage),
1782 					&num_poisoned_pages);
1783 		} else {
1784 			SetPageHWPoison(page);
1785 			atomic_long_inc(&num_poisoned_pages);
1786 		}
1787 	}
1788 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1789 	return ret;
1790 }
1791