1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 short addr_lsb; 185 int ret; 186 187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 188 pfn, t->comm, t->pid); 189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 190 191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, 193 addr_lsb, current); 194 } else { 195 /* 196 * Don't use force here, it's convenient if the signal 197 * can be temporarily blocked. 198 * This could cause a loop when the user sets SIGBUS 199 * to SIG_IGN, but hopefully no one will do that? 200 */ 201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr, 202 addr_lsb, t); /* synchronous? */ 203 } 204 if (ret < 0) 205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 206 t->comm, t->pid, ret); 207 return ret; 208 } 209 210 /* 211 * When a unknown page type is encountered drain as many buffers as possible 212 * in the hope to turn the page into a LRU or free page, which we can handle. 213 */ 214 void shake_page(struct page *p, int access) 215 { 216 if (PageHuge(p)) 217 return; 218 219 if (!PageSlab(p)) { 220 lru_add_drain_all(); 221 if (PageLRU(p)) 222 return; 223 drain_all_pages(page_zone(p)); 224 if (PageLRU(p) || is_free_buddy_page(p)) 225 return; 226 } 227 228 /* 229 * Only call shrink_node_slabs here (which would also shrink 230 * other caches) if access is not potentially fatal. 231 */ 232 if (access) 233 drop_slab_node(page_to_nid(p)); 234 } 235 EXPORT_SYMBOL_GPL(shake_page); 236 237 /* 238 * Kill all processes that have a poisoned page mapped and then isolate 239 * the page. 240 * 241 * General strategy: 242 * Find all processes having the page mapped and kill them. 243 * But we keep a page reference around so that the page is not 244 * actually freed yet. 245 * Then stash the page away 246 * 247 * There's no convenient way to get back to mapped processes 248 * from the VMAs. So do a brute-force search over all 249 * running processes. 250 * 251 * Remember that machine checks are not common (or rather 252 * if they are common you have other problems), so this shouldn't 253 * be a performance issue. 254 * 255 * Also there are some races possible while we get from the 256 * error detection to actually handle it. 257 */ 258 259 struct to_kill { 260 struct list_head nd; 261 struct task_struct *tsk; 262 unsigned long addr; 263 char addr_valid; 264 }; 265 266 /* 267 * Failure handling: if we can't find or can't kill a process there's 268 * not much we can do. We just print a message and ignore otherwise. 269 */ 270 271 /* 272 * Schedule a process for later kill. 273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 274 * TBD would GFP_NOIO be enough? 275 */ 276 static void add_to_kill(struct task_struct *tsk, struct page *p, 277 struct vm_area_struct *vma, 278 struct list_head *to_kill, 279 struct to_kill **tkc) 280 { 281 struct to_kill *tk; 282 283 if (*tkc) { 284 tk = *tkc; 285 *tkc = NULL; 286 } else { 287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 288 if (!tk) { 289 pr_err("Memory failure: Out of memory while machine check handling\n"); 290 return; 291 } 292 } 293 tk->addr = page_address_in_vma(p, vma); 294 tk->addr_valid = 1; 295 296 /* 297 * In theory we don't have to kill when the page was 298 * munmaped. But it could be also a mremap. Since that's 299 * likely very rare kill anyways just out of paranoia, but use 300 * a SIGKILL because the error is not contained anymore. 301 */ 302 if (tk->addr == -EFAULT) { 303 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 304 page_to_pfn(p), tsk->comm); 305 tk->addr_valid = 0; 306 } 307 get_task_struct(tsk); 308 tk->tsk = tsk; 309 list_add_tail(&tk->nd, to_kill); 310 } 311 312 /* 313 * Kill the processes that have been collected earlier. 314 * 315 * Only do anything when DOIT is set, otherwise just free the list 316 * (this is used for clean pages which do not need killing) 317 * Also when FAIL is set do a force kill because something went 318 * wrong earlier. 319 */ 320 static void kill_procs(struct list_head *to_kill, int forcekill, 321 bool fail, struct page *page, unsigned long pfn, 322 int flags) 323 { 324 struct to_kill *tk, *next; 325 326 list_for_each_entry_safe (tk, next, to_kill, nd) { 327 if (forcekill) { 328 /* 329 * In case something went wrong with munmapping 330 * make sure the process doesn't catch the 331 * signal and then access the memory. Just kill it. 332 */ 333 if (fail || tk->addr_valid == 0) { 334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 335 pfn, tk->tsk->comm, tk->tsk->pid); 336 force_sig(SIGKILL, tk->tsk); 337 } 338 339 /* 340 * In theory the process could have mapped 341 * something else on the address in-between. We could 342 * check for that, but we need to tell the 343 * process anyways. 344 */ 345 else if (kill_proc(tk->tsk, tk->addr, 346 pfn, page, flags) < 0) 347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 348 pfn, tk->tsk->comm, tk->tsk->pid); 349 } 350 put_task_struct(tk->tsk); 351 kfree(tk); 352 } 353 } 354 355 /* 356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 357 * on behalf of the thread group. Return task_struct of the (first found) 358 * dedicated thread if found, and return NULL otherwise. 359 * 360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 361 * have to call rcu_read_lock/unlock() in this function. 362 */ 363 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 364 { 365 struct task_struct *t; 366 367 for_each_thread(tsk, t) 368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 369 return t; 370 return NULL; 371 } 372 373 /* 374 * Determine whether a given process is "early kill" process which expects 375 * to be signaled when some page under the process is hwpoisoned. 376 * Return task_struct of the dedicated thread (main thread unless explicitly 377 * specified) if the process is "early kill," and otherwise returns NULL. 378 */ 379 static struct task_struct *task_early_kill(struct task_struct *tsk, 380 int force_early) 381 { 382 struct task_struct *t; 383 if (!tsk->mm) 384 return NULL; 385 if (force_early) 386 return tsk; 387 t = find_early_kill_thread(tsk); 388 if (t) 389 return t; 390 if (sysctl_memory_failure_early_kill) 391 return tsk; 392 return NULL; 393 } 394 395 /* 396 * Collect processes when the error hit an anonymous page. 397 */ 398 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 399 struct to_kill **tkc, int force_early) 400 { 401 struct vm_area_struct *vma; 402 struct task_struct *tsk; 403 struct anon_vma *av; 404 pgoff_t pgoff; 405 406 av = page_lock_anon_vma_read(page); 407 if (av == NULL) /* Not actually mapped anymore */ 408 return; 409 410 pgoff = page_to_pgoff(page); 411 read_lock(&tasklist_lock); 412 for_each_process (tsk) { 413 struct anon_vma_chain *vmac; 414 struct task_struct *t = task_early_kill(tsk, force_early); 415 416 if (!t) 417 continue; 418 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 419 pgoff, pgoff) { 420 vma = vmac->vma; 421 if (!page_mapped_in_vma(page, vma)) 422 continue; 423 if (vma->vm_mm == t->mm) 424 add_to_kill(t, page, vma, to_kill, tkc); 425 } 426 } 427 read_unlock(&tasklist_lock); 428 page_unlock_anon_vma_read(av); 429 } 430 431 /* 432 * Collect processes when the error hit a file mapped page. 433 */ 434 static void collect_procs_file(struct page *page, struct list_head *to_kill, 435 struct to_kill **tkc, int force_early) 436 { 437 struct vm_area_struct *vma; 438 struct task_struct *tsk; 439 struct address_space *mapping = page->mapping; 440 441 i_mmap_lock_read(mapping); 442 read_lock(&tasklist_lock); 443 for_each_process(tsk) { 444 pgoff_t pgoff = page_to_pgoff(page); 445 struct task_struct *t = task_early_kill(tsk, force_early); 446 447 if (!t) 448 continue; 449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 450 pgoff) { 451 /* 452 * Send early kill signal to tasks where a vma covers 453 * the page but the corrupted page is not necessarily 454 * mapped it in its pte. 455 * Assume applications who requested early kill want 456 * to be informed of all such data corruptions. 457 */ 458 if (vma->vm_mm == t->mm) 459 add_to_kill(t, page, vma, to_kill, tkc); 460 } 461 } 462 read_unlock(&tasklist_lock); 463 i_mmap_unlock_read(mapping); 464 } 465 466 /* 467 * Collect the processes who have the corrupted page mapped to kill. 468 * This is done in two steps for locking reasons. 469 * First preallocate one tokill structure outside the spin locks, 470 * so that we can kill at least one process reasonably reliable. 471 */ 472 static void collect_procs(struct page *page, struct list_head *tokill, 473 int force_early) 474 { 475 struct to_kill *tk; 476 477 if (!page->mapping) 478 return; 479 480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 481 if (!tk) 482 return; 483 if (PageAnon(page)) 484 collect_procs_anon(page, tokill, &tk, force_early); 485 else 486 collect_procs_file(page, tokill, &tk, force_early); 487 kfree(tk); 488 } 489 490 static const char *action_name[] = { 491 [MF_IGNORED] = "Ignored", 492 [MF_FAILED] = "Failed", 493 [MF_DELAYED] = "Delayed", 494 [MF_RECOVERED] = "Recovered", 495 }; 496 497 static const char * const action_page_types[] = { 498 [MF_MSG_KERNEL] = "reserved kernel page", 499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 500 [MF_MSG_SLAB] = "kernel slab page", 501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 503 [MF_MSG_HUGE] = "huge page", 504 [MF_MSG_FREE_HUGE] = "free huge page", 505 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 506 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 507 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 508 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 509 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 510 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 511 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 512 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 513 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 514 [MF_MSG_CLEAN_LRU] = "clean LRU page", 515 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 516 [MF_MSG_BUDDY] = "free buddy page", 517 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 518 [MF_MSG_UNKNOWN] = "unknown page", 519 }; 520 521 /* 522 * XXX: It is possible that a page is isolated from LRU cache, 523 * and then kept in swap cache or failed to remove from page cache. 524 * The page count will stop it from being freed by unpoison. 525 * Stress tests should be aware of this memory leak problem. 526 */ 527 static int delete_from_lru_cache(struct page *p) 528 { 529 if (!isolate_lru_page(p)) { 530 /* 531 * Clear sensible page flags, so that the buddy system won't 532 * complain when the page is unpoison-and-freed. 533 */ 534 ClearPageActive(p); 535 ClearPageUnevictable(p); 536 537 /* 538 * Poisoned page might never drop its ref count to 0 so we have 539 * to uncharge it manually from its memcg. 540 */ 541 mem_cgroup_uncharge(p); 542 543 /* 544 * drop the page count elevated by isolate_lru_page() 545 */ 546 put_page(p); 547 return 0; 548 } 549 return -EIO; 550 } 551 552 static int truncate_error_page(struct page *p, unsigned long pfn, 553 struct address_space *mapping) 554 { 555 int ret = MF_FAILED; 556 557 if (mapping->a_ops->error_remove_page) { 558 int err = mapping->a_ops->error_remove_page(mapping, p); 559 560 if (err != 0) { 561 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 562 pfn, err); 563 } else if (page_has_private(p) && 564 !try_to_release_page(p, GFP_NOIO)) { 565 pr_info("Memory failure: %#lx: failed to release buffers\n", 566 pfn); 567 } else { 568 ret = MF_RECOVERED; 569 } 570 } else { 571 /* 572 * If the file system doesn't support it just invalidate 573 * This fails on dirty or anything with private pages 574 */ 575 if (invalidate_inode_page(p)) 576 ret = MF_RECOVERED; 577 else 578 pr_info("Memory failure: %#lx: Failed to invalidate\n", 579 pfn); 580 } 581 582 return ret; 583 } 584 585 /* 586 * Error hit kernel page. 587 * Do nothing, try to be lucky and not touch this instead. For a few cases we 588 * could be more sophisticated. 589 */ 590 static int me_kernel(struct page *p, unsigned long pfn) 591 { 592 return MF_IGNORED; 593 } 594 595 /* 596 * Page in unknown state. Do nothing. 597 */ 598 static int me_unknown(struct page *p, unsigned long pfn) 599 { 600 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 601 return MF_FAILED; 602 } 603 604 /* 605 * Clean (or cleaned) page cache page. 606 */ 607 static int me_pagecache_clean(struct page *p, unsigned long pfn) 608 { 609 struct address_space *mapping; 610 611 delete_from_lru_cache(p); 612 613 /* 614 * For anonymous pages we're done the only reference left 615 * should be the one m_f() holds. 616 */ 617 if (PageAnon(p)) 618 return MF_RECOVERED; 619 620 /* 621 * Now truncate the page in the page cache. This is really 622 * more like a "temporary hole punch" 623 * Don't do this for block devices when someone else 624 * has a reference, because it could be file system metadata 625 * and that's not safe to truncate. 626 */ 627 mapping = page_mapping(p); 628 if (!mapping) { 629 /* 630 * Page has been teared down in the meanwhile 631 */ 632 return MF_FAILED; 633 } 634 635 /* 636 * Truncation is a bit tricky. Enable it per file system for now. 637 * 638 * Open: to take i_mutex or not for this? Right now we don't. 639 */ 640 return truncate_error_page(p, pfn, mapping); 641 } 642 643 /* 644 * Dirty pagecache page 645 * Issues: when the error hit a hole page the error is not properly 646 * propagated. 647 */ 648 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 649 { 650 struct address_space *mapping = page_mapping(p); 651 652 SetPageError(p); 653 /* TBD: print more information about the file. */ 654 if (mapping) { 655 /* 656 * IO error will be reported by write(), fsync(), etc. 657 * who check the mapping. 658 * This way the application knows that something went 659 * wrong with its dirty file data. 660 * 661 * There's one open issue: 662 * 663 * The EIO will be only reported on the next IO 664 * operation and then cleared through the IO map. 665 * Normally Linux has two mechanisms to pass IO error 666 * first through the AS_EIO flag in the address space 667 * and then through the PageError flag in the page. 668 * Since we drop pages on memory failure handling the 669 * only mechanism open to use is through AS_AIO. 670 * 671 * This has the disadvantage that it gets cleared on 672 * the first operation that returns an error, while 673 * the PageError bit is more sticky and only cleared 674 * when the page is reread or dropped. If an 675 * application assumes it will always get error on 676 * fsync, but does other operations on the fd before 677 * and the page is dropped between then the error 678 * will not be properly reported. 679 * 680 * This can already happen even without hwpoisoned 681 * pages: first on metadata IO errors (which only 682 * report through AS_EIO) or when the page is dropped 683 * at the wrong time. 684 * 685 * So right now we assume that the application DTRT on 686 * the first EIO, but we're not worse than other parts 687 * of the kernel. 688 */ 689 mapping_set_error(mapping, -EIO); 690 } 691 692 return me_pagecache_clean(p, pfn); 693 } 694 695 /* 696 * Clean and dirty swap cache. 697 * 698 * Dirty swap cache page is tricky to handle. The page could live both in page 699 * cache and swap cache(ie. page is freshly swapped in). So it could be 700 * referenced concurrently by 2 types of PTEs: 701 * normal PTEs and swap PTEs. We try to handle them consistently by calling 702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 703 * and then 704 * - clear dirty bit to prevent IO 705 * - remove from LRU 706 * - but keep in the swap cache, so that when we return to it on 707 * a later page fault, we know the application is accessing 708 * corrupted data and shall be killed (we installed simple 709 * interception code in do_swap_page to catch it). 710 * 711 * Clean swap cache pages can be directly isolated. A later page fault will 712 * bring in the known good data from disk. 713 */ 714 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 715 { 716 ClearPageDirty(p); 717 /* Trigger EIO in shmem: */ 718 ClearPageUptodate(p); 719 720 if (!delete_from_lru_cache(p)) 721 return MF_DELAYED; 722 else 723 return MF_FAILED; 724 } 725 726 static int me_swapcache_clean(struct page *p, unsigned long pfn) 727 { 728 delete_from_swap_cache(p); 729 730 if (!delete_from_lru_cache(p)) 731 return MF_RECOVERED; 732 else 733 return MF_FAILED; 734 } 735 736 /* 737 * Huge pages. Needs work. 738 * Issues: 739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 740 * To narrow down kill region to one page, we need to break up pmd. 741 */ 742 static int me_huge_page(struct page *p, unsigned long pfn) 743 { 744 int res = 0; 745 struct page *hpage = compound_head(p); 746 struct address_space *mapping; 747 748 if (!PageHuge(hpage)) 749 return MF_DELAYED; 750 751 mapping = page_mapping(hpage); 752 if (mapping) { 753 res = truncate_error_page(hpage, pfn, mapping); 754 } else { 755 unlock_page(hpage); 756 /* 757 * migration entry prevents later access on error anonymous 758 * hugepage, so we can free and dissolve it into buddy to 759 * save healthy subpages. 760 */ 761 if (PageAnon(hpage)) 762 put_page(hpage); 763 dissolve_free_huge_page(p); 764 res = MF_RECOVERED; 765 lock_page(hpage); 766 } 767 768 return res; 769 } 770 771 /* 772 * Various page states we can handle. 773 * 774 * A page state is defined by its current page->flags bits. 775 * The table matches them in order and calls the right handler. 776 * 777 * This is quite tricky because we can access page at any time 778 * in its live cycle, so all accesses have to be extremely careful. 779 * 780 * This is not complete. More states could be added. 781 * For any missing state don't attempt recovery. 782 */ 783 784 #define dirty (1UL << PG_dirty) 785 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 786 #define unevict (1UL << PG_unevictable) 787 #define mlock (1UL << PG_mlocked) 788 #define writeback (1UL << PG_writeback) 789 #define lru (1UL << PG_lru) 790 #define head (1UL << PG_head) 791 #define slab (1UL << PG_slab) 792 #define reserved (1UL << PG_reserved) 793 794 static struct page_state { 795 unsigned long mask; 796 unsigned long res; 797 enum mf_action_page_type type; 798 int (*action)(struct page *p, unsigned long pfn); 799 } error_states[] = { 800 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 801 /* 802 * free pages are specially detected outside this table: 803 * PG_buddy pages only make a small fraction of all free pages. 804 */ 805 806 /* 807 * Could in theory check if slab page is free or if we can drop 808 * currently unused objects without touching them. But just 809 * treat it as standard kernel for now. 810 */ 811 { slab, slab, MF_MSG_SLAB, me_kernel }, 812 813 { head, head, MF_MSG_HUGE, me_huge_page }, 814 815 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 816 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 817 818 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 819 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 820 821 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 822 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 823 824 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 825 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 826 827 /* 828 * Catchall entry: must be at end. 829 */ 830 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 831 }; 832 833 #undef dirty 834 #undef sc 835 #undef unevict 836 #undef mlock 837 #undef writeback 838 #undef lru 839 #undef head 840 #undef slab 841 #undef reserved 842 843 /* 844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 845 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 846 */ 847 static void action_result(unsigned long pfn, enum mf_action_page_type type, 848 enum mf_result result) 849 { 850 trace_memory_failure_event(pfn, type, result); 851 852 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 853 pfn, action_page_types[type], action_name[result]); 854 } 855 856 static int page_action(struct page_state *ps, struct page *p, 857 unsigned long pfn) 858 { 859 int result; 860 int count; 861 862 result = ps->action(p, pfn); 863 864 count = page_count(p) - 1; 865 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 866 count--; 867 if (count > 0) { 868 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 869 pfn, action_page_types[ps->type], count); 870 result = MF_FAILED; 871 } 872 action_result(pfn, ps->type, result); 873 874 /* Could do more checks here if page looks ok */ 875 /* 876 * Could adjust zone counters here to correct for the missing page. 877 */ 878 879 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 880 } 881 882 /** 883 * get_hwpoison_page() - Get refcount for memory error handling: 884 * @page: raw error page (hit by memory error) 885 * 886 * Return: return 0 if failed to grab the refcount, otherwise true (some 887 * non-zero value.) 888 */ 889 int get_hwpoison_page(struct page *page) 890 { 891 struct page *head = compound_head(page); 892 893 if (!PageHuge(head) && PageTransHuge(head)) { 894 /* 895 * Non anonymous thp exists only in allocation/free time. We 896 * can't handle such a case correctly, so let's give it up. 897 * This should be better than triggering BUG_ON when kernel 898 * tries to touch the "partially handled" page. 899 */ 900 if (!PageAnon(head)) { 901 pr_err("Memory failure: %#lx: non anonymous thp\n", 902 page_to_pfn(page)); 903 return 0; 904 } 905 } 906 907 if (get_page_unless_zero(head)) { 908 if (head == compound_head(page)) 909 return 1; 910 911 pr_info("Memory failure: %#lx cannot catch tail\n", 912 page_to_pfn(page)); 913 put_page(head); 914 } 915 916 return 0; 917 } 918 EXPORT_SYMBOL_GPL(get_hwpoison_page); 919 920 /* 921 * Do all that is necessary to remove user space mappings. Unmap 922 * the pages and send SIGBUS to the processes if the data was dirty. 923 */ 924 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 925 int flags, struct page **hpagep) 926 { 927 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 928 struct address_space *mapping; 929 LIST_HEAD(tokill); 930 bool unmap_success; 931 int kill = 1, forcekill; 932 struct page *hpage = *hpagep; 933 bool mlocked = PageMlocked(hpage); 934 935 /* 936 * Here we are interested only in user-mapped pages, so skip any 937 * other types of pages. 938 */ 939 if (PageReserved(p) || PageSlab(p)) 940 return true; 941 if (!(PageLRU(hpage) || PageHuge(p))) 942 return true; 943 944 /* 945 * This check implies we don't kill processes if their pages 946 * are in the swap cache early. Those are always late kills. 947 */ 948 if (!page_mapped(hpage)) 949 return true; 950 951 if (PageKsm(p)) { 952 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 953 return false; 954 } 955 956 if (PageSwapCache(p)) { 957 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 958 pfn); 959 ttu |= TTU_IGNORE_HWPOISON; 960 } 961 962 /* 963 * Propagate the dirty bit from PTEs to struct page first, because we 964 * need this to decide if we should kill or just drop the page. 965 * XXX: the dirty test could be racy: set_page_dirty() may not always 966 * be called inside page lock (it's recommended but not enforced). 967 */ 968 mapping = page_mapping(hpage); 969 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 970 mapping_cap_writeback_dirty(mapping)) { 971 if (page_mkclean(hpage)) { 972 SetPageDirty(hpage); 973 } else { 974 kill = 0; 975 ttu |= TTU_IGNORE_HWPOISON; 976 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 977 pfn); 978 } 979 } 980 981 /* 982 * First collect all the processes that have the page 983 * mapped in dirty form. This has to be done before try_to_unmap, 984 * because ttu takes the rmap data structures down. 985 * 986 * Error handling: We ignore errors here because 987 * there's nothing that can be done. 988 */ 989 if (kill) 990 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 991 992 unmap_success = try_to_unmap(hpage, ttu); 993 if (!unmap_success) 994 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 995 pfn, page_mapcount(hpage)); 996 997 /* 998 * try_to_unmap() might put mlocked page in lru cache, so call 999 * shake_page() again to ensure that it's flushed. 1000 */ 1001 if (mlocked) 1002 shake_page(hpage, 0); 1003 1004 /* 1005 * Now that the dirty bit has been propagated to the 1006 * struct page and all unmaps done we can decide if 1007 * killing is needed or not. Only kill when the page 1008 * was dirty or the process is not restartable, 1009 * otherwise the tokill list is merely 1010 * freed. When there was a problem unmapping earlier 1011 * use a more force-full uncatchable kill to prevent 1012 * any accesses to the poisoned memory. 1013 */ 1014 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1015 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags); 1016 1017 return unmap_success; 1018 } 1019 1020 static int identify_page_state(unsigned long pfn, struct page *p, 1021 unsigned long page_flags) 1022 { 1023 struct page_state *ps; 1024 1025 /* 1026 * The first check uses the current page flags which may not have any 1027 * relevant information. The second check with the saved page flags is 1028 * carried out only if the first check can't determine the page status. 1029 */ 1030 for (ps = error_states;; ps++) 1031 if ((p->flags & ps->mask) == ps->res) 1032 break; 1033 1034 page_flags |= (p->flags & (1UL << PG_dirty)); 1035 1036 if (!ps->mask) 1037 for (ps = error_states;; ps++) 1038 if ((page_flags & ps->mask) == ps->res) 1039 break; 1040 return page_action(ps, p, pfn); 1041 } 1042 1043 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1044 { 1045 struct page *p = pfn_to_page(pfn); 1046 struct page *head = compound_head(p); 1047 int res; 1048 unsigned long page_flags; 1049 1050 if (TestSetPageHWPoison(head)) { 1051 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1052 pfn); 1053 return 0; 1054 } 1055 1056 num_poisoned_pages_inc(); 1057 1058 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1059 /* 1060 * Check "filter hit" and "race with other subpage." 1061 */ 1062 lock_page(head); 1063 if (PageHWPoison(head)) { 1064 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1065 || (p != head && TestSetPageHWPoison(head))) { 1066 num_poisoned_pages_dec(); 1067 unlock_page(head); 1068 return 0; 1069 } 1070 } 1071 unlock_page(head); 1072 dissolve_free_huge_page(p); 1073 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1074 return 0; 1075 } 1076 1077 lock_page(head); 1078 page_flags = head->flags; 1079 1080 if (!PageHWPoison(head)) { 1081 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1082 num_poisoned_pages_dec(); 1083 unlock_page(head); 1084 put_hwpoison_page(head); 1085 return 0; 1086 } 1087 1088 /* 1089 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1090 * simply disable it. In order to make it work properly, we need 1091 * make sure that: 1092 * - conversion of a pud that maps an error hugetlb into hwpoison 1093 * entry properly works, and 1094 * - other mm code walking over page table is aware of pud-aligned 1095 * hwpoison entries. 1096 */ 1097 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1098 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1099 res = -EBUSY; 1100 goto out; 1101 } 1102 1103 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1104 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1105 res = -EBUSY; 1106 goto out; 1107 } 1108 1109 res = identify_page_state(pfn, p, page_flags); 1110 out: 1111 unlock_page(head); 1112 return res; 1113 } 1114 1115 /** 1116 * memory_failure - Handle memory failure of a page. 1117 * @pfn: Page Number of the corrupted page 1118 * @flags: fine tune action taken 1119 * 1120 * This function is called by the low level machine check code 1121 * of an architecture when it detects hardware memory corruption 1122 * of a page. It tries its best to recover, which includes 1123 * dropping pages, killing processes etc. 1124 * 1125 * The function is primarily of use for corruptions that 1126 * happen outside the current execution context (e.g. when 1127 * detected by a background scrubber) 1128 * 1129 * Must run in process context (e.g. a work queue) with interrupts 1130 * enabled and no spinlocks hold. 1131 */ 1132 int memory_failure(unsigned long pfn, int flags) 1133 { 1134 struct page *p; 1135 struct page *hpage; 1136 struct page *orig_head; 1137 int res; 1138 unsigned long page_flags; 1139 1140 if (!sysctl_memory_failure_recovery) 1141 panic("Memory failure on page %lx", pfn); 1142 1143 if (!pfn_valid(pfn)) { 1144 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1145 pfn); 1146 return -ENXIO; 1147 } 1148 1149 p = pfn_to_page(pfn); 1150 if (PageHuge(p)) 1151 return memory_failure_hugetlb(pfn, flags); 1152 if (TestSetPageHWPoison(p)) { 1153 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1154 pfn); 1155 return 0; 1156 } 1157 1158 orig_head = hpage = compound_head(p); 1159 num_poisoned_pages_inc(); 1160 1161 /* 1162 * We need/can do nothing about count=0 pages. 1163 * 1) it's a free page, and therefore in safe hand: 1164 * prep_new_page() will be the gate keeper. 1165 * 2) it's part of a non-compound high order page. 1166 * Implies some kernel user: cannot stop them from 1167 * R/W the page; let's pray that the page has been 1168 * used and will be freed some time later. 1169 * In fact it's dangerous to directly bump up page count from 0, 1170 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1171 */ 1172 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1173 if (is_free_buddy_page(p)) { 1174 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1175 return 0; 1176 } else { 1177 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1178 return -EBUSY; 1179 } 1180 } 1181 1182 if (PageTransHuge(hpage)) { 1183 lock_page(p); 1184 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1185 unlock_page(p); 1186 if (!PageAnon(p)) 1187 pr_err("Memory failure: %#lx: non anonymous thp\n", 1188 pfn); 1189 else 1190 pr_err("Memory failure: %#lx: thp split failed\n", 1191 pfn); 1192 if (TestClearPageHWPoison(p)) 1193 num_poisoned_pages_dec(); 1194 put_hwpoison_page(p); 1195 return -EBUSY; 1196 } 1197 unlock_page(p); 1198 VM_BUG_ON_PAGE(!page_count(p), p); 1199 hpage = compound_head(p); 1200 } 1201 1202 /* 1203 * We ignore non-LRU pages for good reasons. 1204 * - PG_locked is only well defined for LRU pages and a few others 1205 * - to avoid races with __SetPageLocked() 1206 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1207 * The check (unnecessarily) ignores LRU pages being isolated and 1208 * walked by the page reclaim code, however that's not a big loss. 1209 */ 1210 shake_page(p, 0); 1211 /* shake_page could have turned it free. */ 1212 if (!PageLRU(p) && is_free_buddy_page(p)) { 1213 if (flags & MF_COUNT_INCREASED) 1214 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1215 else 1216 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1217 return 0; 1218 } 1219 1220 lock_page(p); 1221 1222 /* 1223 * The page could have changed compound pages during the locking. 1224 * If this happens just bail out. 1225 */ 1226 if (PageCompound(p) && compound_head(p) != orig_head) { 1227 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1228 res = -EBUSY; 1229 goto out; 1230 } 1231 1232 /* 1233 * We use page flags to determine what action should be taken, but 1234 * the flags can be modified by the error containment action. One 1235 * example is an mlocked page, where PG_mlocked is cleared by 1236 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1237 * correctly, we save a copy of the page flags at this time. 1238 */ 1239 if (PageHuge(p)) 1240 page_flags = hpage->flags; 1241 else 1242 page_flags = p->flags; 1243 1244 /* 1245 * unpoison always clear PG_hwpoison inside page lock 1246 */ 1247 if (!PageHWPoison(p)) { 1248 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1249 num_poisoned_pages_dec(); 1250 unlock_page(p); 1251 put_hwpoison_page(p); 1252 return 0; 1253 } 1254 if (hwpoison_filter(p)) { 1255 if (TestClearPageHWPoison(p)) 1256 num_poisoned_pages_dec(); 1257 unlock_page(p); 1258 put_hwpoison_page(p); 1259 return 0; 1260 } 1261 1262 if (!PageTransTail(p) && !PageLRU(p)) 1263 goto identify_page_state; 1264 1265 /* 1266 * It's very difficult to mess with pages currently under IO 1267 * and in many cases impossible, so we just avoid it here. 1268 */ 1269 wait_on_page_writeback(p); 1270 1271 /* 1272 * Now take care of user space mappings. 1273 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1274 * 1275 * When the raw error page is thp tail page, hpage points to the raw 1276 * page after thp split. 1277 */ 1278 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1279 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1280 res = -EBUSY; 1281 goto out; 1282 } 1283 1284 /* 1285 * Torn down by someone else? 1286 */ 1287 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1288 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1289 res = -EBUSY; 1290 goto out; 1291 } 1292 1293 identify_page_state: 1294 res = identify_page_state(pfn, p, page_flags); 1295 out: 1296 unlock_page(p); 1297 return res; 1298 } 1299 EXPORT_SYMBOL_GPL(memory_failure); 1300 1301 #define MEMORY_FAILURE_FIFO_ORDER 4 1302 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1303 1304 struct memory_failure_entry { 1305 unsigned long pfn; 1306 int flags; 1307 }; 1308 1309 struct memory_failure_cpu { 1310 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1311 MEMORY_FAILURE_FIFO_SIZE); 1312 spinlock_t lock; 1313 struct work_struct work; 1314 }; 1315 1316 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1317 1318 /** 1319 * memory_failure_queue - Schedule handling memory failure of a page. 1320 * @pfn: Page Number of the corrupted page 1321 * @flags: Flags for memory failure handling 1322 * 1323 * This function is called by the low level hardware error handler 1324 * when it detects hardware memory corruption of a page. It schedules 1325 * the recovering of error page, including dropping pages, killing 1326 * processes etc. 1327 * 1328 * The function is primarily of use for corruptions that 1329 * happen outside the current execution context (e.g. when 1330 * detected by a background scrubber) 1331 * 1332 * Can run in IRQ context. 1333 */ 1334 void memory_failure_queue(unsigned long pfn, int flags) 1335 { 1336 struct memory_failure_cpu *mf_cpu; 1337 unsigned long proc_flags; 1338 struct memory_failure_entry entry = { 1339 .pfn = pfn, 1340 .flags = flags, 1341 }; 1342 1343 mf_cpu = &get_cpu_var(memory_failure_cpu); 1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1345 if (kfifo_put(&mf_cpu->fifo, entry)) 1346 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1347 else 1348 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1349 pfn); 1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1351 put_cpu_var(memory_failure_cpu); 1352 } 1353 EXPORT_SYMBOL_GPL(memory_failure_queue); 1354 1355 static void memory_failure_work_func(struct work_struct *work) 1356 { 1357 struct memory_failure_cpu *mf_cpu; 1358 struct memory_failure_entry entry = { 0, }; 1359 unsigned long proc_flags; 1360 int gotten; 1361 1362 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1363 for (;;) { 1364 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1365 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1366 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1367 if (!gotten) 1368 break; 1369 if (entry.flags & MF_SOFT_OFFLINE) 1370 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1371 else 1372 memory_failure(entry.pfn, entry.flags); 1373 } 1374 } 1375 1376 static int __init memory_failure_init(void) 1377 { 1378 struct memory_failure_cpu *mf_cpu; 1379 int cpu; 1380 1381 for_each_possible_cpu(cpu) { 1382 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1383 spin_lock_init(&mf_cpu->lock); 1384 INIT_KFIFO(mf_cpu->fifo); 1385 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1386 } 1387 1388 return 0; 1389 } 1390 core_initcall(memory_failure_init); 1391 1392 #define unpoison_pr_info(fmt, pfn, rs) \ 1393 ({ \ 1394 if (__ratelimit(rs)) \ 1395 pr_info(fmt, pfn); \ 1396 }) 1397 1398 /** 1399 * unpoison_memory - Unpoison a previously poisoned page 1400 * @pfn: Page number of the to be unpoisoned page 1401 * 1402 * Software-unpoison a page that has been poisoned by 1403 * memory_failure() earlier. 1404 * 1405 * This is only done on the software-level, so it only works 1406 * for linux injected failures, not real hardware failures 1407 * 1408 * Returns 0 for success, otherwise -errno. 1409 */ 1410 int unpoison_memory(unsigned long pfn) 1411 { 1412 struct page *page; 1413 struct page *p; 1414 int freeit = 0; 1415 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1416 DEFAULT_RATELIMIT_BURST); 1417 1418 if (!pfn_valid(pfn)) 1419 return -ENXIO; 1420 1421 p = pfn_to_page(pfn); 1422 page = compound_head(p); 1423 1424 if (!PageHWPoison(p)) { 1425 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1426 pfn, &unpoison_rs); 1427 return 0; 1428 } 1429 1430 if (page_count(page) > 1) { 1431 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1432 pfn, &unpoison_rs); 1433 return 0; 1434 } 1435 1436 if (page_mapped(page)) { 1437 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1438 pfn, &unpoison_rs); 1439 return 0; 1440 } 1441 1442 if (page_mapping(page)) { 1443 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1444 pfn, &unpoison_rs); 1445 return 0; 1446 } 1447 1448 /* 1449 * unpoison_memory() can encounter thp only when the thp is being 1450 * worked by memory_failure() and the page lock is not held yet. 1451 * In such case, we yield to memory_failure() and make unpoison fail. 1452 */ 1453 if (!PageHuge(page) && PageTransHuge(page)) { 1454 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1455 pfn, &unpoison_rs); 1456 return 0; 1457 } 1458 1459 if (!get_hwpoison_page(p)) { 1460 if (TestClearPageHWPoison(p)) 1461 num_poisoned_pages_dec(); 1462 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1463 pfn, &unpoison_rs); 1464 return 0; 1465 } 1466 1467 lock_page(page); 1468 /* 1469 * This test is racy because PG_hwpoison is set outside of page lock. 1470 * That's acceptable because that won't trigger kernel panic. Instead, 1471 * the PG_hwpoison page will be caught and isolated on the entrance to 1472 * the free buddy page pool. 1473 */ 1474 if (TestClearPageHWPoison(page)) { 1475 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1476 pfn, &unpoison_rs); 1477 num_poisoned_pages_dec(); 1478 freeit = 1; 1479 } 1480 unlock_page(page); 1481 1482 put_hwpoison_page(page); 1483 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1484 put_hwpoison_page(page); 1485 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(unpoison_memory); 1489 1490 static struct page *new_page(struct page *p, unsigned long private) 1491 { 1492 int nid = page_to_nid(p); 1493 1494 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1495 } 1496 1497 /* 1498 * Safely get reference count of an arbitrary page. 1499 * Returns 0 for a free page, -EIO for a zero refcount page 1500 * that is not free, and 1 for any other page type. 1501 * For 1 the page is returned with increased page count, otherwise not. 1502 */ 1503 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1504 { 1505 int ret; 1506 1507 if (flags & MF_COUNT_INCREASED) 1508 return 1; 1509 1510 /* 1511 * When the target page is a free hugepage, just remove it 1512 * from free hugepage list. 1513 */ 1514 if (!get_hwpoison_page(p)) { 1515 if (PageHuge(p)) { 1516 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1517 ret = 0; 1518 } else if (is_free_buddy_page(p)) { 1519 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1520 ret = 0; 1521 } else { 1522 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1523 __func__, pfn, p->flags); 1524 ret = -EIO; 1525 } 1526 } else { 1527 /* Not a free page */ 1528 ret = 1; 1529 } 1530 return ret; 1531 } 1532 1533 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1534 { 1535 int ret = __get_any_page(page, pfn, flags); 1536 1537 if (ret == 1 && !PageHuge(page) && 1538 !PageLRU(page) && !__PageMovable(page)) { 1539 /* 1540 * Try to free it. 1541 */ 1542 put_hwpoison_page(page); 1543 shake_page(page, 1); 1544 1545 /* 1546 * Did it turn free? 1547 */ 1548 ret = __get_any_page(page, pfn, 0); 1549 if (ret == 1 && !PageLRU(page)) { 1550 /* Drop page reference which is from __get_any_page() */ 1551 put_hwpoison_page(page); 1552 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1553 pfn, page->flags, &page->flags); 1554 return -EIO; 1555 } 1556 } 1557 return ret; 1558 } 1559 1560 static int soft_offline_huge_page(struct page *page, int flags) 1561 { 1562 int ret; 1563 unsigned long pfn = page_to_pfn(page); 1564 struct page *hpage = compound_head(page); 1565 LIST_HEAD(pagelist); 1566 1567 /* 1568 * This double-check of PageHWPoison is to avoid the race with 1569 * memory_failure(). See also comment in __soft_offline_page(). 1570 */ 1571 lock_page(hpage); 1572 if (PageHWPoison(hpage)) { 1573 unlock_page(hpage); 1574 put_hwpoison_page(hpage); 1575 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1576 return -EBUSY; 1577 } 1578 unlock_page(hpage); 1579 1580 ret = isolate_huge_page(hpage, &pagelist); 1581 /* 1582 * get_any_page() and isolate_huge_page() takes a refcount each, 1583 * so need to drop one here. 1584 */ 1585 put_hwpoison_page(hpage); 1586 if (!ret) { 1587 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1588 return -EBUSY; 1589 } 1590 1591 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1592 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1593 if (ret) { 1594 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1595 pfn, ret, page->flags, &page->flags); 1596 if (!list_empty(&pagelist)) 1597 putback_movable_pages(&pagelist); 1598 if (ret > 0) 1599 ret = -EIO; 1600 } else { 1601 if (PageHuge(page)) 1602 dissolve_free_huge_page(page); 1603 } 1604 return ret; 1605 } 1606 1607 static int __soft_offline_page(struct page *page, int flags) 1608 { 1609 int ret; 1610 unsigned long pfn = page_to_pfn(page); 1611 1612 /* 1613 * Check PageHWPoison again inside page lock because PageHWPoison 1614 * is set by memory_failure() outside page lock. Note that 1615 * memory_failure() also double-checks PageHWPoison inside page lock, 1616 * so there's no race between soft_offline_page() and memory_failure(). 1617 */ 1618 lock_page(page); 1619 wait_on_page_writeback(page); 1620 if (PageHWPoison(page)) { 1621 unlock_page(page); 1622 put_hwpoison_page(page); 1623 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1624 return -EBUSY; 1625 } 1626 /* 1627 * Try to invalidate first. This should work for 1628 * non dirty unmapped page cache pages. 1629 */ 1630 ret = invalidate_inode_page(page); 1631 unlock_page(page); 1632 /* 1633 * RED-PEN would be better to keep it isolated here, but we 1634 * would need to fix isolation locking first. 1635 */ 1636 if (ret == 1) { 1637 put_hwpoison_page(page); 1638 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1639 SetPageHWPoison(page); 1640 num_poisoned_pages_inc(); 1641 return 0; 1642 } 1643 1644 /* 1645 * Simple invalidation didn't work. 1646 * Try to migrate to a new page instead. migrate.c 1647 * handles a large number of cases for us. 1648 */ 1649 if (PageLRU(page)) 1650 ret = isolate_lru_page(page); 1651 else 1652 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1653 /* 1654 * Drop page reference which is came from get_any_page() 1655 * successful isolate_lru_page() already took another one. 1656 */ 1657 put_hwpoison_page(page); 1658 if (!ret) { 1659 LIST_HEAD(pagelist); 1660 /* 1661 * After isolated lru page, the PageLRU will be cleared, 1662 * so use !__PageMovable instead for LRU page's mapping 1663 * cannot have PAGE_MAPPING_MOVABLE. 1664 */ 1665 if (!__PageMovable(page)) 1666 inc_node_page_state(page, NR_ISOLATED_ANON + 1667 page_is_file_cache(page)); 1668 list_add(&page->lru, &pagelist); 1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1670 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1671 if (ret) { 1672 if (!list_empty(&pagelist)) 1673 putback_movable_pages(&pagelist); 1674 1675 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1676 pfn, ret, page->flags, &page->flags); 1677 if (ret > 0) 1678 ret = -EIO; 1679 } 1680 } else { 1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1682 pfn, ret, page_count(page), page->flags, &page->flags); 1683 } 1684 return ret; 1685 } 1686 1687 static int soft_offline_in_use_page(struct page *page, int flags) 1688 { 1689 int ret; 1690 struct page *hpage = compound_head(page); 1691 1692 if (!PageHuge(page) && PageTransHuge(hpage)) { 1693 lock_page(hpage); 1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1695 unlock_page(hpage); 1696 if (!PageAnon(hpage)) 1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1698 else 1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1700 put_hwpoison_page(hpage); 1701 return -EBUSY; 1702 } 1703 unlock_page(hpage); 1704 get_hwpoison_page(page); 1705 put_hwpoison_page(hpage); 1706 } 1707 1708 if (PageHuge(page)) 1709 ret = soft_offline_huge_page(page, flags); 1710 else 1711 ret = __soft_offline_page(page, flags); 1712 1713 return ret; 1714 } 1715 1716 static void soft_offline_free_page(struct page *page) 1717 { 1718 struct page *head = compound_head(page); 1719 1720 if (!TestSetPageHWPoison(head)) { 1721 num_poisoned_pages_inc(); 1722 if (PageHuge(head)) 1723 dissolve_free_huge_page(page); 1724 } 1725 } 1726 1727 /** 1728 * soft_offline_page - Soft offline a page. 1729 * @page: page to offline 1730 * @flags: flags. Same as memory_failure(). 1731 * 1732 * Returns 0 on success, otherwise negated errno. 1733 * 1734 * Soft offline a page, by migration or invalidation, 1735 * without killing anything. This is for the case when 1736 * a page is not corrupted yet (so it's still valid to access), 1737 * but has had a number of corrected errors and is better taken 1738 * out. 1739 * 1740 * The actual policy on when to do that is maintained by 1741 * user space. 1742 * 1743 * This should never impact any application or cause data loss, 1744 * however it might take some time. 1745 * 1746 * This is not a 100% solution for all memory, but tries to be 1747 * ``good enough'' for the majority of memory. 1748 */ 1749 int soft_offline_page(struct page *page, int flags) 1750 { 1751 int ret; 1752 unsigned long pfn = page_to_pfn(page); 1753 1754 if (PageHWPoison(page)) { 1755 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1756 if (flags & MF_COUNT_INCREASED) 1757 put_hwpoison_page(page); 1758 return -EBUSY; 1759 } 1760 1761 get_online_mems(); 1762 ret = get_any_page(page, pfn, flags); 1763 put_online_mems(); 1764 1765 if (ret > 0) 1766 ret = soft_offline_in_use_page(page, flags); 1767 else if (ret == 0) 1768 soft_offline_free_page(page); 1769 1770 return ret; 1771 } 1772