xref: /openbmc/linux/mm/memory-failure.c (revision 48ca54e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "swap.h"
63 #include "internal.h"
64 #include "ras/ras_event.h"
65 
66 int sysctl_memory_failure_early_kill __read_mostly = 0;
67 
68 int sysctl_memory_failure_recovery __read_mostly = 1;
69 
70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
71 
72 static bool __page_handle_poison(struct page *page)
73 {
74 	int ret;
75 
76 	zone_pcp_disable(page_zone(page));
77 	ret = dissolve_free_huge_page(page);
78 	if (!ret)
79 		ret = take_page_off_buddy(page);
80 	zone_pcp_enable(page_zone(page));
81 
82 	return ret > 0;
83 }
84 
85 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
86 {
87 	if (hugepage_or_freepage) {
88 		/*
89 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
90 		 * returns 0 for non-hugetlb pages as well.
91 		 */
92 		if (!__page_handle_poison(page))
93 			/*
94 			 * We could fail to take off the target page from buddy
95 			 * for example due to racy page allocation, but that's
96 			 * acceptable because soft-offlined page is not broken
97 			 * and if someone really want to use it, they should
98 			 * take it.
99 			 */
100 			return false;
101 	}
102 
103 	SetPageHWPoison(page);
104 	if (release)
105 		put_page(page);
106 	page_ref_inc(page);
107 	num_poisoned_pages_inc();
108 
109 	return true;
110 }
111 
112 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
113 
114 u32 hwpoison_filter_enable = 0;
115 u32 hwpoison_filter_dev_major = ~0U;
116 u32 hwpoison_filter_dev_minor = ~0U;
117 u64 hwpoison_filter_flags_mask;
118 u64 hwpoison_filter_flags_value;
119 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
121 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
123 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
124 
125 static int hwpoison_filter_dev(struct page *p)
126 {
127 	struct address_space *mapping;
128 	dev_t dev;
129 
130 	if (hwpoison_filter_dev_major == ~0U &&
131 	    hwpoison_filter_dev_minor == ~0U)
132 		return 0;
133 
134 	mapping = page_mapping(p);
135 	if (mapping == NULL || mapping->host == NULL)
136 		return -EINVAL;
137 
138 	dev = mapping->host->i_sb->s_dev;
139 	if (hwpoison_filter_dev_major != ~0U &&
140 	    hwpoison_filter_dev_major != MAJOR(dev))
141 		return -EINVAL;
142 	if (hwpoison_filter_dev_minor != ~0U &&
143 	    hwpoison_filter_dev_minor != MINOR(dev))
144 		return -EINVAL;
145 
146 	return 0;
147 }
148 
149 static int hwpoison_filter_flags(struct page *p)
150 {
151 	if (!hwpoison_filter_flags_mask)
152 		return 0;
153 
154 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
155 				    hwpoison_filter_flags_value)
156 		return 0;
157 	else
158 		return -EINVAL;
159 }
160 
161 /*
162  * This allows stress tests to limit test scope to a collection of tasks
163  * by putting them under some memcg. This prevents killing unrelated/important
164  * processes such as /sbin/init. Note that the target task may share clean
165  * pages with init (eg. libc text), which is harmless. If the target task
166  * share _dirty_ pages with another task B, the test scheme must make sure B
167  * is also included in the memcg. At last, due to race conditions this filter
168  * can only guarantee that the page either belongs to the memcg tasks, or is
169  * a freed page.
170  */
171 #ifdef CONFIG_MEMCG
172 u64 hwpoison_filter_memcg;
173 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
174 static int hwpoison_filter_task(struct page *p)
175 {
176 	if (!hwpoison_filter_memcg)
177 		return 0;
178 
179 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
180 		return -EINVAL;
181 
182 	return 0;
183 }
184 #else
185 static int hwpoison_filter_task(struct page *p) { return 0; }
186 #endif
187 
188 int hwpoison_filter(struct page *p)
189 {
190 	if (!hwpoison_filter_enable)
191 		return 0;
192 
193 	if (hwpoison_filter_dev(p))
194 		return -EINVAL;
195 
196 	if (hwpoison_filter_flags(p))
197 		return -EINVAL;
198 
199 	if (hwpoison_filter_task(p))
200 		return -EINVAL;
201 
202 	return 0;
203 }
204 #else
205 int hwpoison_filter(struct page *p)
206 {
207 	return 0;
208 }
209 #endif
210 
211 EXPORT_SYMBOL_GPL(hwpoison_filter);
212 
213 /*
214  * Kill all processes that have a poisoned page mapped and then isolate
215  * the page.
216  *
217  * General strategy:
218  * Find all processes having the page mapped and kill them.
219  * But we keep a page reference around so that the page is not
220  * actually freed yet.
221  * Then stash the page away
222  *
223  * There's no convenient way to get back to mapped processes
224  * from the VMAs. So do a brute-force search over all
225  * running processes.
226  *
227  * Remember that machine checks are not common (or rather
228  * if they are common you have other problems), so this shouldn't
229  * be a performance issue.
230  *
231  * Also there are some races possible while we get from the
232  * error detection to actually handle it.
233  */
234 
235 struct to_kill {
236 	struct list_head nd;
237 	struct task_struct *tsk;
238 	unsigned long addr;
239 	short size_shift;
240 };
241 
242 /*
243  * Send all the processes who have the page mapped a signal.
244  * ``action optional'' if they are not immediately affected by the error
245  * ``action required'' if error happened in current execution context
246  */
247 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
248 {
249 	struct task_struct *t = tk->tsk;
250 	short addr_lsb = tk->size_shift;
251 	int ret = 0;
252 
253 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
254 			pfn, t->comm, t->pid);
255 
256 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
257 		ret = force_sig_mceerr(BUS_MCEERR_AR,
258 				 (void __user *)tk->addr, addr_lsb);
259 	else
260 		/*
261 		 * Signal other processes sharing the page if they have
262 		 * PF_MCE_EARLY set.
263 		 * Don't use force here, it's convenient if the signal
264 		 * can be temporarily blocked.
265 		 * This could cause a loop when the user sets SIGBUS
266 		 * to SIG_IGN, but hopefully no one will do that?
267 		 */
268 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
269 				      addr_lsb, t);  /* synchronous? */
270 	if (ret < 0)
271 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
272 			t->comm, t->pid, ret);
273 	return ret;
274 }
275 
276 /*
277  * Unknown page type encountered. Try to check whether it can turn PageLRU by
278  * lru_add_drain_all.
279  */
280 void shake_page(struct page *p)
281 {
282 	if (PageHuge(p))
283 		return;
284 
285 	if (!PageSlab(p)) {
286 		lru_add_drain_all();
287 		if (PageLRU(p) || is_free_buddy_page(p))
288 			return;
289 	}
290 
291 	/*
292 	 * TODO: Could shrink slab caches here if a lightweight range-based
293 	 * shrinker will be available.
294 	 */
295 }
296 EXPORT_SYMBOL_GPL(shake_page);
297 
298 static unsigned long dev_pagemap_mapping_shift(struct page *page,
299 		struct vm_area_struct *vma)
300 {
301 	unsigned long address = vma_address(page, vma);
302 	unsigned long ret = 0;
303 	pgd_t *pgd;
304 	p4d_t *p4d;
305 	pud_t *pud;
306 	pmd_t *pmd;
307 	pte_t *pte;
308 
309 	VM_BUG_ON_VMA(address == -EFAULT, vma);
310 	pgd = pgd_offset(vma->vm_mm, address);
311 	if (!pgd_present(*pgd))
312 		return 0;
313 	p4d = p4d_offset(pgd, address);
314 	if (!p4d_present(*p4d))
315 		return 0;
316 	pud = pud_offset(p4d, address);
317 	if (!pud_present(*pud))
318 		return 0;
319 	if (pud_devmap(*pud))
320 		return PUD_SHIFT;
321 	pmd = pmd_offset(pud, address);
322 	if (!pmd_present(*pmd))
323 		return 0;
324 	if (pmd_devmap(*pmd))
325 		return PMD_SHIFT;
326 	pte = pte_offset_map(pmd, address);
327 	if (pte_present(*pte) && pte_devmap(*pte))
328 		ret = PAGE_SHIFT;
329 	pte_unmap(pte);
330 	return ret;
331 }
332 
333 /*
334  * Failure handling: if we can't find or can't kill a process there's
335  * not much we can do.	We just print a message and ignore otherwise.
336  */
337 
338 /*
339  * Schedule a process for later kill.
340  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
341  */
342 static void add_to_kill(struct task_struct *tsk, struct page *p,
343 		       struct vm_area_struct *vma,
344 		       struct list_head *to_kill)
345 {
346 	struct to_kill *tk;
347 
348 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
349 	if (!tk) {
350 		pr_err("Memory failure: Out of memory while machine check handling\n");
351 		return;
352 	}
353 
354 	tk->addr = page_address_in_vma(p, vma);
355 	if (is_zone_device_page(p))
356 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
357 	else
358 		tk->size_shift = page_shift(compound_head(p));
359 
360 	/*
361 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
362 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
363 	 * so "tk->size_shift == 0" effectively checks no mapping on
364 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
365 	 * to a process' address space, it's possible not all N VMAs
366 	 * contain mappings for the page, but at least one VMA does.
367 	 * Only deliver SIGBUS with payload derived from the VMA that
368 	 * has a mapping for the page.
369 	 */
370 	if (tk->addr == -EFAULT) {
371 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
372 			page_to_pfn(p), tsk->comm);
373 	} else if (tk->size_shift == 0) {
374 		kfree(tk);
375 		return;
376 	}
377 
378 	get_task_struct(tsk);
379 	tk->tsk = tsk;
380 	list_add_tail(&tk->nd, to_kill);
381 }
382 
383 /*
384  * Kill the processes that have been collected earlier.
385  *
386  * Only do anything when FORCEKILL is set, otherwise just free the
387  * list (this is used for clean pages which do not need killing)
388  * Also when FAIL is set do a force kill because something went
389  * wrong earlier.
390  */
391 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
392 		unsigned long pfn, int flags)
393 {
394 	struct to_kill *tk, *next;
395 
396 	list_for_each_entry_safe (tk, next, to_kill, nd) {
397 		if (forcekill) {
398 			/*
399 			 * In case something went wrong with munmapping
400 			 * make sure the process doesn't catch the
401 			 * signal and then access the memory. Just kill it.
402 			 */
403 			if (fail || tk->addr == -EFAULT) {
404 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
405 				       pfn, tk->tsk->comm, tk->tsk->pid);
406 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
407 						 tk->tsk, PIDTYPE_PID);
408 			}
409 
410 			/*
411 			 * In theory the process could have mapped
412 			 * something else on the address in-between. We could
413 			 * check for that, but we need to tell the
414 			 * process anyways.
415 			 */
416 			else if (kill_proc(tk, pfn, flags) < 0)
417 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
418 				       pfn, tk->tsk->comm, tk->tsk->pid);
419 		}
420 		put_task_struct(tk->tsk);
421 		kfree(tk);
422 	}
423 }
424 
425 /*
426  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
427  * on behalf of the thread group. Return task_struct of the (first found)
428  * dedicated thread if found, and return NULL otherwise.
429  *
430  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
431  * have to call rcu_read_lock/unlock() in this function.
432  */
433 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
434 {
435 	struct task_struct *t;
436 
437 	for_each_thread(tsk, t) {
438 		if (t->flags & PF_MCE_PROCESS) {
439 			if (t->flags & PF_MCE_EARLY)
440 				return t;
441 		} else {
442 			if (sysctl_memory_failure_early_kill)
443 				return t;
444 		}
445 	}
446 	return NULL;
447 }
448 
449 /*
450  * Determine whether a given process is "early kill" process which expects
451  * to be signaled when some page under the process is hwpoisoned.
452  * Return task_struct of the dedicated thread (main thread unless explicitly
453  * specified) if the process is "early kill" and otherwise returns NULL.
454  *
455  * Note that the above is true for Action Optional case. For Action Required
456  * case, it's only meaningful to the current thread which need to be signaled
457  * with SIGBUS, this error is Action Optional for other non current
458  * processes sharing the same error page,if the process is "early kill", the
459  * task_struct of the dedicated thread will also be returned.
460  */
461 static struct task_struct *task_early_kill(struct task_struct *tsk,
462 					   int force_early)
463 {
464 	if (!tsk->mm)
465 		return NULL;
466 	/*
467 	 * Comparing ->mm here because current task might represent
468 	 * a subthread, while tsk always points to the main thread.
469 	 */
470 	if (force_early && tsk->mm == current->mm)
471 		return current;
472 
473 	return find_early_kill_thread(tsk);
474 }
475 
476 /*
477  * Collect processes when the error hit an anonymous page.
478  */
479 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
480 				int force_early)
481 {
482 	struct folio *folio = page_folio(page);
483 	struct vm_area_struct *vma;
484 	struct task_struct *tsk;
485 	struct anon_vma *av;
486 	pgoff_t pgoff;
487 
488 	av = folio_lock_anon_vma_read(folio, NULL);
489 	if (av == NULL)	/* Not actually mapped anymore */
490 		return;
491 
492 	pgoff = page_to_pgoff(page);
493 	read_lock(&tasklist_lock);
494 	for_each_process (tsk) {
495 		struct anon_vma_chain *vmac;
496 		struct task_struct *t = task_early_kill(tsk, force_early);
497 
498 		if (!t)
499 			continue;
500 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
501 					       pgoff, pgoff) {
502 			vma = vmac->vma;
503 			if (!page_mapped_in_vma(page, vma))
504 				continue;
505 			if (vma->vm_mm == t->mm)
506 				add_to_kill(t, page, vma, to_kill);
507 		}
508 	}
509 	read_unlock(&tasklist_lock);
510 	page_unlock_anon_vma_read(av);
511 }
512 
513 /*
514  * Collect processes when the error hit a file mapped page.
515  */
516 static void collect_procs_file(struct page *page, struct list_head *to_kill,
517 				int force_early)
518 {
519 	struct vm_area_struct *vma;
520 	struct task_struct *tsk;
521 	struct address_space *mapping = page->mapping;
522 	pgoff_t pgoff;
523 
524 	i_mmap_lock_read(mapping);
525 	read_lock(&tasklist_lock);
526 	pgoff = page_to_pgoff(page);
527 	for_each_process(tsk) {
528 		struct task_struct *t = task_early_kill(tsk, force_early);
529 
530 		if (!t)
531 			continue;
532 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
533 				      pgoff) {
534 			/*
535 			 * Send early kill signal to tasks where a vma covers
536 			 * the page but the corrupted page is not necessarily
537 			 * mapped it in its pte.
538 			 * Assume applications who requested early kill want
539 			 * to be informed of all such data corruptions.
540 			 */
541 			if (vma->vm_mm == t->mm)
542 				add_to_kill(t, page, vma, to_kill);
543 		}
544 	}
545 	read_unlock(&tasklist_lock);
546 	i_mmap_unlock_read(mapping);
547 }
548 
549 /*
550  * Collect the processes who have the corrupted page mapped to kill.
551  */
552 static void collect_procs(struct page *page, struct list_head *tokill,
553 				int force_early)
554 {
555 	if (!page->mapping)
556 		return;
557 
558 	if (PageAnon(page))
559 		collect_procs_anon(page, tokill, force_early);
560 	else
561 		collect_procs_file(page, tokill, force_early);
562 }
563 
564 struct hwp_walk {
565 	struct to_kill tk;
566 	unsigned long pfn;
567 	int flags;
568 };
569 
570 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
571 {
572 	tk->addr = addr;
573 	tk->size_shift = shift;
574 }
575 
576 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
577 				unsigned long poisoned_pfn, struct to_kill *tk)
578 {
579 	unsigned long pfn = 0;
580 
581 	if (pte_present(pte)) {
582 		pfn = pte_pfn(pte);
583 	} else {
584 		swp_entry_t swp = pte_to_swp_entry(pte);
585 
586 		if (is_hwpoison_entry(swp))
587 			pfn = hwpoison_entry_to_pfn(swp);
588 	}
589 
590 	if (!pfn || pfn != poisoned_pfn)
591 		return 0;
592 
593 	set_to_kill(tk, addr, shift);
594 	return 1;
595 }
596 
597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
598 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
599 				      struct hwp_walk *hwp)
600 {
601 	pmd_t pmd = *pmdp;
602 	unsigned long pfn;
603 	unsigned long hwpoison_vaddr;
604 
605 	if (!pmd_present(pmd))
606 		return 0;
607 	pfn = pmd_pfn(pmd);
608 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
609 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
610 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
611 		return 1;
612 	}
613 	return 0;
614 }
615 #else
616 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
617 				      struct hwp_walk *hwp)
618 {
619 	return 0;
620 }
621 #endif
622 
623 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
624 			      unsigned long end, struct mm_walk *walk)
625 {
626 	struct hwp_walk *hwp = walk->private;
627 	int ret = 0;
628 	pte_t *ptep, *mapped_pte;
629 	spinlock_t *ptl;
630 
631 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
632 	if (ptl) {
633 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
634 		spin_unlock(ptl);
635 		goto out;
636 	}
637 
638 	if (pmd_trans_unstable(pmdp))
639 		goto out;
640 
641 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
642 						addr, &ptl);
643 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
644 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
645 					     hwp->pfn, &hwp->tk);
646 		if (ret == 1)
647 			break;
648 	}
649 	pte_unmap_unlock(mapped_pte, ptl);
650 out:
651 	cond_resched();
652 	return ret;
653 }
654 
655 #ifdef CONFIG_HUGETLB_PAGE
656 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
657 			    unsigned long addr, unsigned long end,
658 			    struct mm_walk *walk)
659 {
660 	struct hwp_walk *hwp = walk->private;
661 	pte_t pte = huge_ptep_get(ptep);
662 	struct hstate *h = hstate_vma(walk->vma);
663 
664 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
665 				      hwp->pfn, &hwp->tk);
666 }
667 #else
668 #define hwpoison_hugetlb_range	NULL
669 #endif
670 
671 static const struct mm_walk_ops hwp_walk_ops = {
672 	.pmd_entry = hwpoison_pte_range,
673 	.hugetlb_entry = hwpoison_hugetlb_range,
674 };
675 
676 /*
677  * Sends SIGBUS to the current process with error info.
678  *
679  * This function is intended to handle "Action Required" MCEs on already
680  * hardware poisoned pages. They could happen, for example, when
681  * memory_failure() failed to unmap the error page at the first call, or
682  * when multiple local machine checks happened on different CPUs.
683  *
684  * MCE handler currently has no easy access to the error virtual address,
685  * so this function walks page table to find it. The returned virtual address
686  * is proper in most cases, but it could be wrong when the application
687  * process has multiple entries mapping the error page.
688  */
689 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
690 				  int flags)
691 {
692 	int ret;
693 	struct hwp_walk priv = {
694 		.pfn = pfn,
695 	};
696 	priv.tk.tsk = p;
697 
698 	mmap_read_lock(p->mm);
699 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
700 			      (void *)&priv);
701 	if (ret == 1 && priv.tk.addr)
702 		kill_proc(&priv.tk, pfn, flags);
703 	else
704 		ret = 0;
705 	mmap_read_unlock(p->mm);
706 	return ret > 0 ? -EHWPOISON : -EFAULT;
707 }
708 
709 static const char *action_name[] = {
710 	[MF_IGNORED] = "Ignored",
711 	[MF_FAILED] = "Failed",
712 	[MF_DELAYED] = "Delayed",
713 	[MF_RECOVERED] = "Recovered",
714 };
715 
716 static const char * const action_page_types[] = {
717 	[MF_MSG_KERNEL]			= "reserved kernel page",
718 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
719 	[MF_MSG_SLAB]			= "kernel slab page",
720 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
721 	[MF_MSG_HUGE]			= "huge page",
722 	[MF_MSG_FREE_HUGE]		= "free huge page",
723 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
724 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
725 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
726 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
727 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
728 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
729 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
730 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
731 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
732 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
733 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
734 	[MF_MSG_BUDDY]			= "free buddy page",
735 	[MF_MSG_DAX]			= "dax page",
736 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
737 	[MF_MSG_UNKNOWN]		= "unknown page",
738 };
739 
740 /*
741  * XXX: It is possible that a page is isolated from LRU cache,
742  * and then kept in swap cache or failed to remove from page cache.
743  * The page count will stop it from being freed by unpoison.
744  * Stress tests should be aware of this memory leak problem.
745  */
746 static int delete_from_lru_cache(struct page *p)
747 {
748 	if (!isolate_lru_page(p)) {
749 		/*
750 		 * Clear sensible page flags, so that the buddy system won't
751 		 * complain when the page is unpoison-and-freed.
752 		 */
753 		ClearPageActive(p);
754 		ClearPageUnevictable(p);
755 
756 		/*
757 		 * Poisoned page might never drop its ref count to 0 so we have
758 		 * to uncharge it manually from its memcg.
759 		 */
760 		mem_cgroup_uncharge(page_folio(p));
761 
762 		/*
763 		 * drop the page count elevated by isolate_lru_page()
764 		 */
765 		put_page(p);
766 		return 0;
767 	}
768 	return -EIO;
769 }
770 
771 static int truncate_error_page(struct page *p, unsigned long pfn,
772 				struct address_space *mapping)
773 {
774 	int ret = MF_FAILED;
775 
776 	if (mapping->a_ops->error_remove_page) {
777 		int err = mapping->a_ops->error_remove_page(mapping, p);
778 
779 		if (err != 0) {
780 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
781 				pfn, err);
782 		} else if (page_has_private(p) &&
783 			   !try_to_release_page(p, GFP_NOIO)) {
784 			pr_info("Memory failure: %#lx: failed to release buffers\n",
785 				pfn);
786 		} else {
787 			ret = MF_RECOVERED;
788 		}
789 	} else {
790 		/*
791 		 * If the file system doesn't support it just invalidate
792 		 * This fails on dirty or anything with private pages
793 		 */
794 		if (invalidate_inode_page(p))
795 			ret = MF_RECOVERED;
796 		else
797 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
798 				pfn);
799 	}
800 
801 	return ret;
802 }
803 
804 struct page_state {
805 	unsigned long mask;
806 	unsigned long res;
807 	enum mf_action_page_type type;
808 
809 	/* Callback ->action() has to unlock the relevant page inside it. */
810 	int (*action)(struct page_state *ps, struct page *p);
811 };
812 
813 /*
814  * Return true if page is still referenced by others, otherwise return
815  * false.
816  *
817  * The extra_pins is true when one extra refcount is expected.
818  */
819 static bool has_extra_refcount(struct page_state *ps, struct page *p,
820 			       bool extra_pins)
821 {
822 	int count = page_count(p) - 1;
823 
824 	if (extra_pins)
825 		count -= 1;
826 
827 	if (count > 0) {
828 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
829 		       page_to_pfn(p), action_page_types[ps->type], count);
830 		return true;
831 	}
832 
833 	return false;
834 }
835 
836 /*
837  * Error hit kernel page.
838  * Do nothing, try to be lucky and not touch this instead. For a few cases we
839  * could be more sophisticated.
840  */
841 static int me_kernel(struct page_state *ps, struct page *p)
842 {
843 	unlock_page(p);
844 	return MF_IGNORED;
845 }
846 
847 /*
848  * Page in unknown state. Do nothing.
849  */
850 static int me_unknown(struct page_state *ps, struct page *p)
851 {
852 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
853 	unlock_page(p);
854 	return MF_FAILED;
855 }
856 
857 /*
858  * Clean (or cleaned) page cache page.
859  */
860 static int me_pagecache_clean(struct page_state *ps, struct page *p)
861 {
862 	int ret;
863 	struct address_space *mapping;
864 	bool extra_pins;
865 
866 	delete_from_lru_cache(p);
867 
868 	/*
869 	 * For anonymous pages we're done the only reference left
870 	 * should be the one m_f() holds.
871 	 */
872 	if (PageAnon(p)) {
873 		ret = MF_RECOVERED;
874 		goto out;
875 	}
876 
877 	/*
878 	 * Now truncate the page in the page cache. This is really
879 	 * more like a "temporary hole punch"
880 	 * Don't do this for block devices when someone else
881 	 * has a reference, because it could be file system metadata
882 	 * and that's not safe to truncate.
883 	 */
884 	mapping = page_mapping(p);
885 	if (!mapping) {
886 		/*
887 		 * Page has been teared down in the meanwhile
888 		 */
889 		ret = MF_FAILED;
890 		goto out;
891 	}
892 
893 	/*
894 	 * The shmem page is kept in page cache instead of truncating
895 	 * so is expected to have an extra refcount after error-handling.
896 	 */
897 	extra_pins = shmem_mapping(mapping);
898 
899 	/*
900 	 * Truncation is a bit tricky. Enable it per file system for now.
901 	 *
902 	 * Open: to take i_rwsem or not for this? Right now we don't.
903 	 */
904 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
905 	if (has_extra_refcount(ps, p, extra_pins))
906 		ret = MF_FAILED;
907 
908 out:
909 	unlock_page(p);
910 
911 	return ret;
912 }
913 
914 /*
915  * Dirty pagecache page
916  * Issues: when the error hit a hole page the error is not properly
917  * propagated.
918  */
919 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
920 {
921 	struct address_space *mapping = page_mapping(p);
922 
923 	SetPageError(p);
924 	/* TBD: print more information about the file. */
925 	if (mapping) {
926 		/*
927 		 * IO error will be reported by write(), fsync(), etc.
928 		 * who check the mapping.
929 		 * This way the application knows that something went
930 		 * wrong with its dirty file data.
931 		 *
932 		 * There's one open issue:
933 		 *
934 		 * The EIO will be only reported on the next IO
935 		 * operation and then cleared through the IO map.
936 		 * Normally Linux has two mechanisms to pass IO error
937 		 * first through the AS_EIO flag in the address space
938 		 * and then through the PageError flag in the page.
939 		 * Since we drop pages on memory failure handling the
940 		 * only mechanism open to use is through AS_AIO.
941 		 *
942 		 * This has the disadvantage that it gets cleared on
943 		 * the first operation that returns an error, while
944 		 * the PageError bit is more sticky and only cleared
945 		 * when the page is reread or dropped.  If an
946 		 * application assumes it will always get error on
947 		 * fsync, but does other operations on the fd before
948 		 * and the page is dropped between then the error
949 		 * will not be properly reported.
950 		 *
951 		 * This can already happen even without hwpoisoned
952 		 * pages: first on metadata IO errors (which only
953 		 * report through AS_EIO) or when the page is dropped
954 		 * at the wrong time.
955 		 *
956 		 * So right now we assume that the application DTRT on
957 		 * the first EIO, but we're not worse than other parts
958 		 * of the kernel.
959 		 */
960 		mapping_set_error(mapping, -EIO);
961 	}
962 
963 	return me_pagecache_clean(ps, p);
964 }
965 
966 /*
967  * Clean and dirty swap cache.
968  *
969  * Dirty swap cache page is tricky to handle. The page could live both in page
970  * cache and swap cache(ie. page is freshly swapped in). So it could be
971  * referenced concurrently by 2 types of PTEs:
972  * normal PTEs and swap PTEs. We try to handle them consistently by calling
973  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
974  * and then
975  *      - clear dirty bit to prevent IO
976  *      - remove from LRU
977  *      - but keep in the swap cache, so that when we return to it on
978  *        a later page fault, we know the application is accessing
979  *        corrupted data and shall be killed (we installed simple
980  *        interception code in do_swap_page to catch it).
981  *
982  * Clean swap cache pages can be directly isolated. A later page fault will
983  * bring in the known good data from disk.
984  */
985 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
986 {
987 	int ret;
988 	bool extra_pins = false;
989 
990 	ClearPageDirty(p);
991 	/* Trigger EIO in shmem: */
992 	ClearPageUptodate(p);
993 
994 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
995 	unlock_page(p);
996 
997 	if (ret == MF_DELAYED)
998 		extra_pins = true;
999 
1000 	if (has_extra_refcount(ps, p, extra_pins))
1001 		ret = MF_FAILED;
1002 
1003 	return ret;
1004 }
1005 
1006 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1007 {
1008 	int ret;
1009 
1010 	delete_from_swap_cache(p);
1011 
1012 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1013 	unlock_page(p);
1014 
1015 	if (has_extra_refcount(ps, p, false))
1016 		ret = MF_FAILED;
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  * Huge pages. Needs work.
1023  * Issues:
1024  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1025  *   To narrow down kill region to one page, we need to break up pmd.
1026  */
1027 static int me_huge_page(struct page_state *ps, struct page *p)
1028 {
1029 	int res;
1030 	struct page *hpage = compound_head(p);
1031 	struct address_space *mapping;
1032 
1033 	if (!PageHuge(hpage))
1034 		return MF_DELAYED;
1035 
1036 	mapping = page_mapping(hpage);
1037 	if (mapping) {
1038 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1039 		unlock_page(hpage);
1040 	} else {
1041 		res = MF_FAILED;
1042 		unlock_page(hpage);
1043 		/*
1044 		 * migration entry prevents later access on error hugepage,
1045 		 * so we can free and dissolve it into buddy to save healthy
1046 		 * subpages.
1047 		 */
1048 		put_page(hpage);
1049 		if (__page_handle_poison(p)) {
1050 			page_ref_inc(p);
1051 			res = MF_RECOVERED;
1052 		}
1053 	}
1054 
1055 	if (has_extra_refcount(ps, p, false))
1056 		res = MF_FAILED;
1057 
1058 	return res;
1059 }
1060 
1061 /*
1062  * Various page states we can handle.
1063  *
1064  * A page state is defined by its current page->flags bits.
1065  * The table matches them in order and calls the right handler.
1066  *
1067  * This is quite tricky because we can access page at any time
1068  * in its live cycle, so all accesses have to be extremely careful.
1069  *
1070  * This is not complete. More states could be added.
1071  * For any missing state don't attempt recovery.
1072  */
1073 
1074 #define dirty		(1UL << PG_dirty)
1075 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1076 #define unevict		(1UL << PG_unevictable)
1077 #define mlock		(1UL << PG_mlocked)
1078 #define lru		(1UL << PG_lru)
1079 #define head		(1UL << PG_head)
1080 #define slab		(1UL << PG_slab)
1081 #define reserved	(1UL << PG_reserved)
1082 
1083 static struct page_state error_states[] = {
1084 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1085 	/*
1086 	 * free pages are specially detected outside this table:
1087 	 * PG_buddy pages only make a small fraction of all free pages.
1088 	 */
1089 
1090 	/*
1091 	 * Could in theory check if slab page is free or if we can drop
1092 	 * currently unused objects without touching them. But just
1093 	 * treat it as standard kernel for now.
1094 	 */
1095 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1096 
1097 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1098 
1099 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1100 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1101 
1102 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1103 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1104 
1105 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1106 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1107 
1108 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1109 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1110 
1111 	/*
1112 	 * Catchall entry: must be at end.
1113 	 */
1114 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1115 };
1116 
1117 #undef dirty
1118 #undef sc
1119 #undef unevict
1120 #undef mlock
1121 #undef lru
1122 #undef head
1123 #undef slab
1124 #undef reserved
1125 
1126 /*
1127  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1128  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1129  */
1130 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1131 			  enum mf_result result)
1132 {
1133 	trace_memory_failure_event(pfn, type, result);
1134 
1135 	num_poisoned_pages_inc();
1136 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1137 		pfn, action_page_types[type], action_name[result]);
1138 }
1139 
1140 static int page_action(struct page_state *ps, struct page *p,
1141 			unsigned long pfn)
1142 {
1143 	int result;
1144 
1145 	/* page p should be unlocked after returning from ps->action().  */
1146 	result = ps->action(ps, p);
1147 
1148 	action_result(pfn, ps->type, result);
1149 
1150 	/* Could do more checks here if page looks ok */
1151 	/*
1152 	 * Could adjust zone counters here to correct for the missing page.
1153 	 */
1154 
1155 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1156 }
1157 
1158 static inline bool PageHWPoisonTakenOff(struct page *page)
1159 {
1160 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1161 }
1162 
1163 void SetPageHWPoisonTakenOff(struct page *page)
1164 {
1165 	set_page_private(page, MAGIC_HWPOISON);
1166 }
1167 
1168 void ClearPageHWPoisonTakenOff(struct page *page)
1169 {
1170 	if (PageHWPoison(page))
1171 		set_page_private(page, 0);
1172 }
1173 
1174 /*
1175  * Return true if a page type of a given page is supported by hwpoison
1176  * mechanism (while handling could fail), otherwise false.  This function
1177  * does not return true for hugetlb or device memory pages, so it's assumed
1178  * to be called only in the context where we never have such pages.
1179  */
1180 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1181 {
1182 	/* Soft offline could migrate non-LRU movable pages */
1183 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1184 		return true;
1185 
1186 	return PageLRU(page) || is_free_buddy_page(page);
1187 }
1188 
1189 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1190 {
1191 	struct page *head = compound_head(page);
1192 	int ret = 0;
1193 	bool hugetlb = false;
1194 
1195 	ret = get_hwpoison_huge_page(head, &hugetlb);
1196 	if (hugetlb)
1197 		return ret;
1198 
1199 	/*
1200 	 * This check prevents from calling get_hwpoison_unless_zero()
1201 	 * for any unsupported type of page in order to reduce the risk of
1202 	 * unexpected races caused by taking a page refcount.
1203 	 */
1204 	if (!HWPoisonHandlable(head, flags))
1205 		return -EBUSY;
1206 
1207 	if (get_page_unless_zero(head)) {
1208 		if (head == compound_head(page))
1209 			return 1;
1210 
1211 		pr_info("Memory failure: %#lx cannot catch tail\n",
1212 			page_to_pfn(page));
1213 		put_page(head);
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 static int get_any_page(struct page *p, unsigned long flags)
1220 {
1221 	int ret = 0, pass = 0;
1222 	bool count_increased = false;
1223 
1224 	if (flags & MF_COUNT_INCREASED)
1225 		count_increased = true;
1226 
1227 try_again:
1228 	if (!count_increased) {
1229 		ret = __get_hwpoison_page(p, flags);
1230 		if (!ret) {
1231 			if (page_count(p)) {
1232 				/* We raced with an allocation, retry. */
1233 				if (pass++ < 3)
1234 					goto try_again;
1235 				ret = -EBUSY;
1236 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1237 				/* We raced with put_page, retry. */
1238 				if (pass++ < 3)
1239 					goto try_again;
1240 				ret = -EIO;
1241 			}
1242 			goto out;
1243 		} else if (ret == -EBUSY) {
1244 			/*
1245 			 * We raced with (possibly temporary) unhandlable
1246 			 * page, retry.
1247 			 */
1248 			if (pass++ < 3) {
1249 				shake_page(p);
1250 				goto try_again;
1251 			}
1252 			ret = -EIO;
1253 			goto out;
1254 		}
1255 	}
1256 
1257 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1258 		ret = 1;
1259 	} else {
1260 		/*
1261 		 * A page we cannot handle. Check whether we can turn
1262 		 * it into something we can handle.
1263 		 */
1264 		if (pass++ < 3) {
1265 			put_page(p);
1266 			shake_page(p);
1267 			count_increased = false;
1268 			goto try_again;
1269 		}
1270 		put_page(p);
1271 		ret = -EIO;
1272 	}
1273 out:
1274 	if (ret == -EIO)
1275 		pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1276 
1277 	return ret;
1278 }
1279 
1280 static int __get_unpoison_page(struct page *page)
1281 {
1282 	struct page *head = compound_head(page);
1283 	int ret = 0;
1284 	bool hugetlb = false;
1285 
1286 	ret = get_hwpoison_huge_page(head, &hugetlb);
1287 	if (hugetlb)
1288 		return ret;
1289 
1290 	/*
1291 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1292 	 * but also isolated from buddy freelist, so need to identify the
1293 	 * state and have to cancel both operations to unpoison.
1294 	 */
1295 	if (PageHWPoisonTakenOff(page))
1296 		return -EHWPOISON;
1297 
1298 	return get_page_unless_zero(page) ? 1 : 0;
1299 }
1300 
1301 /**
1302  * get_hwpoison_page() - Get refcount for memory error handling
1303  * @p:		Raw error page (hit by memory error)
1304  * @flags:	Flags controlling behavior of error handling
1305  *
1306  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1307  * error on it, after checking that the error page is in a well-defined state
1308  * (defined as a page-type we can successfully handle the memory error on it,
1309  * such as LRU page and hugetlb page).
1310  *
1311  * Memory error handling could be triggered at any time on any type of page,
1312  * so it's prone to race with typical memory management lifecycle (like
1313  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1314  * extra care for the error page's state (as done in __get_hwpoison_page()),
1315  * and has some retry logic in get_any_page().
1316  *
1317  * When called from unpoison_memory(), the caller should already ensure that
1318  * the given page has PG_hwpoison. So it's never reused for other page
1319  * allocations, and __get_unpoison_page() never races with them.
1320  *
1321  * Return: 0 on failure,
1322  *         1 on success for in-use pages in a well-defined state,
1323  *         -EIO for pages on which we can not handle memory errors,
1324  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1325  *         operations like allocation and free,
1326  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1327  */
1328 static int get_hwpoison_page(struct page *p, unsigned long flags)
1329 {
1330 	int ret;
1331 
1332 	zone_pcp_disable(page_zone(p));
1333 	if (flags & MF_UNPOISON)
1334 		ret = __get_unpoison_page(p);
1335 	else
1336 		ret = get_any_page(p, flags);
1337 	zone_pcp_enable(page_zone(p));
1338 
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Do all that is necessary to remove user space mappings. Unmap
1344  * the pages and send SIGBUS to the processes if the data was dirty.
1345  */
1346 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1347 				  int flags, struct page *hpage)
1348 {
1349 	struct folio *folio = page_folio(hpage);
1350 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1351 	struct address_space *mapping;
1352 	LIST_HEAD(tokill);
1353 	bool unmap_success;
1354 	int kill = 1, forcekill;
1355 	bool mlocked = PageMlocked(hpage);
1356 
1357 	/*
1358 	 * Here we are interested only in user-mapped pages, so skip any
1359 	 * other types of pages.
1360 	 */
1361 	if (PageReserved(p) || PageSlab(p))
1362 		return true;
1363 	if (!(PageLRU(hpage) || PageHuge(p)))
1364 		return true;
1365 
1366 	/*
1367 	 * This check implies we don't kill processes if their pages
1368 	 * are in the swap cache early. Those are always late kills.
1369 	 */
1370 	if (!page_mapped(hpage))
1371 		return true;
1372 
1373 	if (PageKsm(p)) {
1374 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1375 		return false;
1376 	}
1377 
1378 	if (PageSwapCache(p)) {
1379 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1380 			pfn);
1381 		ttu |= TTU_IGNORE_HWPOISON;
1382 	}
1383 
1384 	/*
1385 	 * Propagate the dirty bit from PTEs to struct page first, because we
1386 	 * need this to decide if we should kill or just drop the page.
1387 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 	 * be called inside page lock (it's recommended but not enforced).
1389 	 */
1390 	mapping = page_mapping(hpage);
1391 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1392 	    mapping_can_writeback(mapping)) {
1393 		if (page_mkclean(hpage)) {
1394 			SetPageDirty(hpage);
1395 		} else {
1396 			kill = 0;
1397 			ttu |= TTU_IGNORE_HWPOISON;
1398 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1399 				pfn);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * First collect all the processes that have the page
1405 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1406 	 * because ttu takes the rmap data structures down.
1407 	 *
1408 	 * Error handling: We ignore errors here because
1409 	 * there's nothing that can be done.
1410 	 */
1411 	if (kill)
1412 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1413 
1414 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1415 		/*
1416 		 * For hugetlb pages in shared mappings, try_to_unmap
1417 		 * could potentially call huge_pmd_unshare.  Because of
1418 		 * this, take semaphore in write mode here and set
1419 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1420 		 * at this higher level.
1421 		 */
1422 		mapping = hugetlb_page_mapping_lock_write(hpage);
1423 		if (mapping) {
1424 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1425 			i_mmap_unlock_write(mapping);
1426 		} else
1427 			pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1428 	} else {
1429 		try_to_unmap(folio, ttu);
1430 	}
1431 
1432 	unmap_success = !page_mapped(hpage);
1433 	if (!unmap_success)
1434 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1435 		       pfn, page_mapcount(hpage));
1436 
1437 	/*
1438 	 * try_to_unmap() might put mlocked page in lru cache, so call
1439 	 * shake_page() again to ensure that it's flushed.
1440 	 */
1441 	if (mlocked)
1442 		shake_page(hpage);
1443 
1444 	/*
1445 	 * Now that the dirty bit has been propagated to the
1446 	 * struct page and all unmaps done we can decide if
1447 	 * killing is needed or not.  Only kill when the page
1448 	 * was dirty or the process is not restartable,
1449 	 * otherwise the tokill list is merely
1450 	 * freed.  When there was a problem unmapping earlier
1451 	 * use a more force-full uncatchable kill to prevent
1452 	 * any accesses to the poisoned memory.
1453 	 */
1454 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1455 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1456 
1457 	return unmap_success;
1458 }
1459 
1460 static int identify_page_state(unsigned long pfn, struct page *p,
1461 				unsigned long page_flags)
1462 {
1463 	struct page_state *ps;
1464 
1465 	/*
1466 	 * The first check uses the current page flags which may not have any
1467 	 * relevant information. The second check with the saved page flags is
1468 	 * carried out only if the first check can't determine the page status.
1469 	 */
1470 	for (ps = error_states;; ps++)
1471 		if ((p->flags & ps->mask) == ps->res)
1472 			break;
1473 
1474 	page_flags |= (p->flags & (1UL << PG_dirty));
1475 
1476 	if (!ps->mask)
1477 		for (ps = error_states;; ps++)
1478 			if ((page_flags & ps->mask) == ps->res)
1479 				break;
1480 	return page_action(ps, p, pfn);
1481 }
1482 
1483 static int try_to_split_thp_page(struct page *page, const char *msg)
1484 {
1485 	lock_page(page);
1486 	if (unlikely(split_huge_page(page))) {
1487 		unsigned long pfn = page_to_pfn(page);
1488 
1489 		unlock_page(page);
1490 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1491 		put_page(page);
1492 		return -EBUSY;
1493 	}
1494 	unlock_page(page);
1495 
1496 	return 0;
1497 }
1498 
1499 /*
1500  * Called from hugetlb code with hugetlb_lock held.
1501  *
1502  * Return values:
1503  *   0             - free hugepage
1504  *   1             - in-use hugepage
1505  *   2             - not a hugepage
1506  *   -EBUSY        - the hugepage is busy (try to retry)
1507  *   -EHWPOISON    - the hugepage is already hwpoisoned
1508  */
1509 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1510 {
1511 	struct page *page = pfn_to_page(pfn);
1512 	struct page *head = compound_head(page);
1513 	int ret = 2;	/* fallback to normal page handling */
1514 	bool count_increased = false;
1515 
1516 	if (!PageHeadHuge(head))
1517 		goto out;
1518 
1519 	if (flags & MF_COUNT_INCREASED) {
1520 		ret = 1;
1521 		count_increased = true;
1522 	} else if (HPageFreed(head)) {
1523 		ret = 0;
1524 	} else if (HPageMigratable(head)) {
1525 		ret = get_page_unless_zero(head);
1526 		if (ret)
1527 			count_increased = true;
1528 	} else {
1529 		ret = -EBUSY;
1530 		goto out;
1531 	}
1532 
1533 	if (TestSetPageHWPoison(head)) {
1534 		ret = -EHWPOISON;
1535 		goto out;
1536 	}
1537 
1538 	return ret;
1539 out:
1540 	if (count_increased)
1541 		put_page(head);
1542 	return ret;
1543 }
1544 
1545 #ifdef CONFIG_HUGETLB_PAGE
1546 /*
1547  * Taking refcount of hugetlb pages needs extra care about race conditions
1548  * with basic operations like hugepage allocation/free/demotion.
1549  * So some of prechecks for hwpoison (pinning, and testing/setting
1550  * PageHWPoison) should be done in single hugetlb_lock range.
1551  */
1552 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1553 {
1554 	int res;
1555 	struct page *p = pfn_to_page(pfn);
1556 	struct page *head;
1557 	unsigned long page_flags;
1558 	bool retry = true;
1559 
1560 	*hugetlb = 1;
1561 retry:
1562 	res = get_huge_page_for_hwpoison(pfn, flags);
1563 	if (res == 2) { /* fallback to normal page handling */
1564 		*hugetlb = 0;
1565 		return 0;
1566 	} else if (res == -EHWPOISON) {
1567 		pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1568 		if (flags & MF_ACTION_REQUIRED) {
1569 			head = compound_head(p);
1570 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1571 		}
1572 		return res;
1573 	} else if (res == -EBUSY) {
1574 		if (retry) {
1575 			retry = false;
1576 			goto retry;
1577 		}
1578 		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1579 		return res;
1580 	}
1581 
1582 	head = compound_head(p);
1583 	lock_page(head);
1584 
1585 	if (hwpoison_filter(p)) {
1586 		ClearPageHWPoison(head);
1587 		res = -EOPNOTSUPP;
1588 		goto out;
1589 	}
1590 
1591 	/*
1592 	 * Handling free hugepage.  The possible race with hugepage allocation
1593 	 * or demotion can be prevented by PageHWPoison flag.
1594 	 */
1595 	if (res == 0) {
1596 		unlock_page(head);
1597 		res = MF_FAILED;
1598 		if (__page_handle_poison(p)) {
1599 			page_ref_inc(p);
1600 			res = MF_RECOVERED;
1601 		}
1602 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1603 		return res == MF_RECOVERED ? 0 : -EBUSY;
1604 	}
1605 
1606 	page_flags = head->flags;
1607 
1608 	/*
1609 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1610 	 * simply disable it. In order to make it work properly, we need
1611 	 * make sure that:
1612 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1613 	 *    entry properly works, and
1614 	 *  - other mm code walking over page table is aware of pud-aligned
1615 	 *    hwpoison entries.
1616 	 */
1617 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1618 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1619 		res = -EBUSY;
1620 		goto out;
1621 	}
1622 
1623 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1624 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1625 		res = -EBUSY;
1626 		goto out;
1627 	}
1628 
1629 	return identify_page_state(pfn, p, page_flags);
1630 out:
1631 	unlock_page(head);
1632 	return res;
1633 }
1634 #else
1635 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1636 {
1637 	return 0;
1638 }
1639 #endif
1640 
1641 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1642 		struct dev_pagemap *pgmap)
1643 {
1644 	struct page *page = pfn_to_page(pfn);
1645 	unsigned long size = 0;
1646 	struct to_kill *tk;
1647 	LIST_HEAD(tokill);
1648 	int rc = -EBUSY;
1649 	loff_t start;
1650 	dax_entry_t cookie;
1651 
1652 	if (flags & MF_COUNT_INCREASED)
1653 		/*
1654 		 * Drop the extra refcount in case we come from madvise().
1655 		 */
1656 		put_page(page);
1657 
1658 	/* device metadata space is not recoverable */
1659 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1660 		rc = -ENXIO;
1661 		goto out;
1662 	}
1663 
1664 	/*
1665 	 * Pages instantiated by device-dax (not filesystem-dax)
1666 	 * may be compound pages.
1667 	 */
1668 	page = compound_head(page);
1669 
1670 	/*
1671 	 * Prevent the inode from being freed while we are interrogating
1672 	 * the address_space, typically this would be handled by
1673 	 * lock_page(), but dax pages do not use the page lock. This
1674 	 * also prevents changes to the mapping of this pfn until
1675 	 * poison signaling is complete.
1676 	 */
1677 	cookie = dax_lock_page(page);
1678 	if (!cookie)
1679 		goto out;
1680 
1681 	if (hwpoison_filter(page)) {
1682 		rc = -EOPNOTSUPP;
1683 		goto unlock;
1684 	}
1685 
1686 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1687 		/*
1688 		 * TODO: Handle HMM pages which may need coordination
1689 		 * with device-side memory.
1690 		 */
1691 		goto unlock;
1692 	}
1693 
1694 	/*
1695 	 * Use this flag as an indication that the dax page has been
1696 	 * remapped UC to prevent speculative consumption of poison.
1697 	 */
1698 	SetPageHWPoison(page);
1699 
1700 	/*
1701 	 * Unlike System-RAM there is no possibility to swap in a
1702 	 * different physical page at a given virtual address, so all
1703 	 * userspace consumption of ZONE_DEVICE memory necessitates
1704 	 * SIGBUS (i.e. MF_MUST_KILL)
1705 	 */
1706 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1707 	collect_procs(page, &tokill, true);
1708 
1709 	list_for_each_entry(tk, &tokill, nd)
1710 		if (tk->size_shift)
1711 			size = max(size, 1UL << tk->size_shift);
1712 	if (size) {
1713 		/*
1714 		 * Unmap the largest mapping to avoid breaking up
1715 		 * device-dax mappings which are constant size. The
1716 		 * actual size of the mapping being torn down is
1717 		 * communicated in siginfo, see kill_proc()
1718 		 */
1719 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1720 		unmap_mapping_range(page->mapping, start, size, 0);
1721 	}
1722 	kill_procs(&tokill, true, false, pfn, flags);
1723 	rc = 0;
1724 unlock:
1725 	dax_unlock_page(page, cookie);
1726 out:
1727 	/* drop pgmap ref acquired in caller */
1728 	put_dev_pagemap(pgmap);
1729 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1730 	return rc;
1731 }
1732 
1733 static DEFINE_MUTEX(mf_mutex);
1734 
1735 /**
1736  * memory_failure - Handle memory failure of a page.
1737  * @pfn: Page Number of the corrupted page
1738  * @flags: fine tune action taken
1739  *
1740  * This function is called by the low level machine check code
1741  * of an architecture when it detects hardware memory corruption
1742  * of a page. It tries its best to recover, which includes
1743  * dropping pages, killing processes etc.
1744  *
1745  * The function is primarily of use for corruptions that
1746  * happen outside the current execution context (e.g. when
1747  * detected by a background scrubber)
1748  *
1749  * Must run in process context (e.g. a work queue) with interrupts
1750  * enabled and no spinlocks hold.
1751  *
1752  * Return: 0 for successfully handled the memory error,
1753  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1754  *         < 0(except -EOPNOTSUPP) on failure.
1755  */
1756 int memory_failure(unsigned long pfn, int flags)
1757 {
1758 	struct page *p;
1759 	struct page *hpage;
1760 	struct dev_pagemap *pgmap;
1761 	int res = 0;
1762 	unsigned long page_flags;
1763 	bool retry = true;
1764 	int hugetlb = 0;
1765 
1766 	if (!sysctl_memory_failure_recovery)
1767 		panic("Memory failure on page %lx", pfn);
1768 
1769 	mutex_lock(&mf_mutex);
1770 
1771 	p = pfn_to_online_page(pfn);
1772 	if (!p) {
1773 		res = arch_memory_failure(pfn, flags);
1774 		if (res == 0)
1775 			goto unlock_mutex;
1776 
1777 		if (pfn_valid(pfn)) {
1778 			pgmap = get_dev_pagemap(pfn, NULL);
1779 			if (pgmap) {
1780 				res = memory_failure_dev_pagemap(pfn, flags,
1781 								 pgmap);
1782 				goto unlock_mutex;
1783 			}
1784 		}
1785 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1786 			pfn);
1787 		res = -ENXIO;
1788 		goto unlock_mutex;
1789 	}
1790 
1791 try_again:
1792 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1793 	if (hugetlb)
1794 		goto unlock_mutex;
1795 
1796 	if (TestSetPageHWPoison(p)) {
1797 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1798 			pfn);
1799 		res = -EHWPOISON;
1800 		if (flags & MF_ACTION_REQUIRED)
1801 			res = kill_accessing_process(current, pfn, flags);
1802 		if (flags & MF_COUNT_INCREASED)
1803 			put_page(p);
1804 		goto unlock_mutex;
1805 	}
1806 
1807 	hpage = compound_head(p);
1808 
1809 	/*
1810 	 * We need/can do nothing about count=0 pages.
1811 	 * 1) it's a free page, and therefore in safe hand:
1812 	 *    prep_new_page() will be the gate keeper.
1813 	 * 2) it's part of a non-compound high order page.
1814 	 *    Implies some kernel user: cannot stop them from
1815 	 *    R/W the page; let's pray that the page has been
1816 	 *    used and will be freed some time later.
1817 	 * In fact it's dangerous to directly bump up page count from 0,
1818 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1819 	 */
1820 	if (!(flags & MF_COUNT_INCREASED)) {
1821 		res = get_hwpoison_page(p, flags);
1822 		if (!res) {
1823 			if (is_free_buddy_page(p)) {
1824 				if (take_page_off_buddy(p)) {
1825 					page_ref_inc(p);
1826 					res = MF_RECOVERED;
1827 				} else {
1828 					/* We lost the race, try again */
1829 					if (retry) {
1830 						ClearPageHWPoison(p);
1831 						retry = false;
1832 						goto try_again;
1833 					}
1834 					res = MF_FAILED;
1835 				}
1836 				action_result(pfn, MF_MSG_BUDDY, res);
1837 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1838 			} else {
1839 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1840 				res = -EBUSY;
1841 			}
1842 			goto unlock_mutex;
1843 		} else if (res < 0) {
1844 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1845 			res = -EBUSY;
1846 			goto unlock_mutex;
1847 		}
1848 	}
1849 
1850 	if (PageTransHuge(hpage)) {
1851 		/*
1852 		 * The flag must be set after the refcount is bumped
1853 		 * otherwise it may race with THP split.
1854 		 * And the flag can't be set in get_hwpoison_page() since
1855 		 * it is called by soft offline too and it is just called
1856 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1857 		 * place.
1858 		 *
1859 		 * Don't need care about the above error handling paths for
1860 		 * get_hwpoison_page() since they handle either free page
1861 		 * or unhandlable page.  The refcount is bumped iff the
1862 		 * page is a valid handlable page.
1863 		 */
1864 		SetPageHasHWPoisoned(hpage);
1865 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1866 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1867 			res = -EBUSY;
1868 			goto unlock_mutex;
1869 		}
1870 		VM_BUG_ON_PAGE(!page_count(p), p);
1871 	}
1872 
1873 	/*
1874 	 * We ignore non-LRU pages for good reasons.
1875 	 * - PG_locked is only well defined for LRU pages and a few others
1876 	 * - to avoid races with __SetPageLocked()
1877 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1878 	 * The check (unnecessarily) ignores LRU pages being isolated and
1879 	 * walked by the page reclaim code, however that's not a big loss.
1880 	 */
1881 	shake_page(p);
1882 
1883 	lock_page(p);
1884 
1885 	/*
1886 	 * We're only intended to deal with the non-Compound page here.
1887 	 * However, the page could have changed compound pages due to
1888 	 * race window. If this happens, we could try again to hopefully
1889 	 * handle the page next round.
1890 	 */
1891 	if (PageCompound(p)) {
1892 		if (retry) {
1893 			ClearPageHWPoison(p);
1894 			unlock_page(p);
1895 			put_page(p);
1896 			flags &= ~MF_COUNT_INCREASED;
1897 			retry = false;
1898 			goto try_again;
1899 		}
1900 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1901 		res = -EBUSY;
1902 		goto unlock_page;
1903 	}
1904 
1905 	/*
1906 	 * We use page flags to determine what action should be taken, but
1907 	 * the flags can be modified by the error containment action.  One
1908 	 * example is an mlocked page, where PG_mlocked is cleared by
1909 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1910 	 * correctly, we save a copy of the page flags at this time.
1911 	 */
1912 	page_flags = p->flags;
1913 
1914 	if (hwpoison_filter(p)) {
1915 		TestClearPageHWPoison(p);
1916 		unlock_page(p);
1917 		put_page(p);
1918 		res = -EOPNOTSUPP;
1919 		goto unlock_mutex;
1920 	}
1921 
1922 	/*
1923 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1924 	 * page_lock. We need wait writeback completion for this page or it
1925 	 * may trigger vfs BUG while evict inode.
1926 	 */
1927 	if (!PageLRU(p) && !PageWriteback(p))
1928 		goto identify_page_state;
1929 
1930 	/*
1931 	 * It's very difficult to mess with pages currently under IO
1932 	 * and in many cases impossible, so we just avoid it here.
1933 	 */
1934 	wait_on_page_writeback(p);
1935 
1936 	/*
1937 	 * Now take care of user space mappings.
1938 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1939 	 */
1940 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1941 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1942 		res = -EBUSY;
1943 		goto unlock_page;
1944 	}
1945 
1946 	/*
1947 	 * Torn down by someone else?
1948 	 */
1949 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1950 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1951 		res = -EBUSY;
1952 		goto unlock_page;
1953 	}
1954 
1955 identify_page_state:
1956 	res = identify_page_state(pfn, p, page_flags);
1957 	mutex_unlock(&mf_mutex);
1958 	return res;
1959 unlock_page:
1960 	unlock_page(p);
1961 unlock_mutex:
1962 	mutex_unlock(&mf_mutex);
1963 	return res;
1964 }
1965 EXPORT_SYMBOL_GPL(memory_failure);
1966 
1967 #define MEMORY_FAILURE_FIFO_ORDER	4
1968 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1969 
1970 struct memory_failure_entry {
1971 	unsigned long pfn;
1972 	int flags;
1973 };
1974 
1975 struct memory_failure_cpu {
1976 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1977 		      MEMORY_FAILURE_FIFO_SIZE);
1978 	spinlock_t lock;
1979 	struct work_struct work;
1980 };
1981 
1982 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1983 
1984 /**
1985  * memory_failure_queue - Schedule handling memory failure of a page.
1986  * @pfn: Page Number of the corrupted page
1987  * @flags: Flags for memory failure handling
1988  *
1989  * This function is called by the low level hardware error handler
1990  * when it detects hardware memory corruption of a page. It schedules
1991  * the recovering of error page, including dropping pages, killing
1992  * processes etc.
1993  *
1994  * The function is primarily of use for corruptions that
1995  * happen outside the current execution context (e.g. when
1996  * detected by a background scrubber)
1997  *
1998  * Can run in IRQ context.
1999  */
2000 void memory_failure_queue(unsigned long pfn, int flags)
2001 {
2002 	struct memory_failure_cpu *mf_cpu;
2003 	unsigned long proc_flags;
2004 	struct memory_failure_entry entry = {
2005 		.pfn =		pfn,
2006 		.flags =	flags,
2007 	};
2008 
2009 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2010 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2011 	if (kfifo_put(&mf_cpu->fifo, entry))
2012 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2013 	else
2014 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2015 		       pfn);
2016 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2017 	put_cpu_var(memory_failure_cpu);
2018 }
2019 EXPORT_SYMBOL_GPL(memory_failure_queue);
2020 
2021 static void memory_failure_work_func(struct work_struct *work)
2022 {
2023 	struct memory_failure_cpu *mf_cpu;
2024 	struct memory_failure_entry entry = { 0, };
2025 	unsigned long proc_flags;
2026 	int gotten;
2027 
2028 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2029 	for (;;) {
2030 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2031 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2032 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2033 		if (!gotten)
2034 			break;
2035 		if (entry.flags & MF_SOFT_OFFLINE)
2036 			soft_offline_page(entry.pfn, entry.flags);
2037 		else
2038 			memory_failure(entry.pfn, entry.flags);
2039 	}
2040 }
2041 
2042 /*
2043  * Process memory_failure work queued on the specified CPU.
2044  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2045  */
2046 void memory_failure_queue_kick(int cpu)
2047 {
2048 	struct memory_failure_cpu *mf_cpu;
2049 
2050 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2051 	cancel_work_sync(&mf_cpu->work);
2052 	memory_failure_work_func(&mf_cpu->work);
2053 }
2054 
2055 static int __init memory_failure_init(void)
2056 {
2057 	struct memory_failure_cpu *mf_cpu;
2058 	int cpu;
2059 
2060 	for_each_possible_cpu(cpu) {
2061 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2062 		spin_lock_init(&mf_cpu->lock);
2063 		INIT_KFIFO(mf_cpu->fifo);
2064 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2065 	}
2066 
2067 	return 0;
2068 }
2069 core_initcall(memory_failure_init);
2070 
2071 #define unpoison_pr_info(fmt, pfn, rs)			\
2072 ({							\
2073 	if (__ratelimit(rs))				\
2074 		pr_info(fmt, pfn);			\
2075 })
2076 
2077 /**
2078  * unpoison_memory - Unpoison a previously poisoned page
2079  * @pfn: Page number of the to be unpoisoned page
2080  *
2081  * Software-unpoison a page that has been poisoned by
2082  * memory_failure() earlier.
2083  *
2084  * This is only done on the software-level, so it only works
2085  * for linux injected failures, not real hardware failures
2086  *
2087  * Returns 0 for success, otherwise -errno.
2088  */
2089 int unpoison_memory(unsigned long pfn)
2090 {
2091 	struct page *page;
2092 	struct page *p;
2093 	int ret = -EBUSY;
2094 	int freeit = 0;
2095 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2096 					DEFAULT_RATELIMIT_BURST);
2097 
2098 	if (!pfn_valid(pfn))
2099 		return -ENXIO;
2100 
2101 	p = pfn_to_page(pfn);
2102 	page = compound_head(p);
2103 
2104 	mutex_lock(&mf_mutex);
2105 
2106 	if (!PageHWPoison(p)) {
2107 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2108 				 pfn, &unpoison_rs);
2109 		goto unlock_mutex;
2110 	}
2111 
2112 	if (page_count(page) > 1) {
2113 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2114 				 pfn, &unpoison_rs);
2115 		goto unlock_mutex;
2116 	}
2117 
2118 	if (page_mapped(page)) {
2119 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2120 				 pfn, &unpoison_rs);
2121 		goto unlock_mutex;
2122 	}
2123 
2124 	if (page_mapping(page)) {
2125 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2126 				 pfn, &unpoison_rs);
2127 		goto unlock_mutex;
2128 	}
2129 
2130 	if (PageSlab(page) || PageTable(page))
2131 		goto unlock_mutex;
2132 
2133 	ret = get_hwpoison_page(p, MF_UNPOISON);
2134 	if (!ret) {
2135 		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2136 	} else if (ret < 0) {
2137 		if (ret == -EHWPOISON) {
2138 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2139 		} else
2140 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2141 					 pfn, &unpoison_rs);
2142 	} else {
2143 		freeit = !!TestClearPageHWPoison(p);
2144 
2145 		put_page(page);
2146 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2147 			put_page(page);
2148 			ret = 0;
2149 		}
2150 	}
2151 
2152 unlock_mutex:
2153 	mutex_unlock(&mf_mutex);
2154 	if (!ret || freeit) {
2155 		num_poisoned_pages_dec();
2156 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2157 				 page_to_pfn(p), &unpoison_rs);
2158 	}
2159 	return ret;
2160 }
2161 EXPORT_SYMBOL(unpoison_memory);
2162 
2163 static bool isolate_page(struct page *page, struct list_head *pagelist)
2164 {
2165 	bool isolated = false;
2166 	bool lru = PageLRU(page);
2167 
2168 	if (PageHuge(page)) {
2169 		isolated = isolate_huge_page(page, pagelist);
2170 	} else {
2171 		if (lru)
2172 			isolated = !isolate_lru_page(page);
2173 		else
2174 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2175 
2176 		if (isolated)
2177 			list_add(&page->lru, pagelist);
2178 	}
2179 
2180 	if (isolated && lru)
2181 		inc_node_page_state(page, NR_ISOLATED_ANON +
2182 				    page_is_file_lru(page));
2183 
2184 	/*
2185 	 * If we succeed to isolate the page, we grabbed another refcount on
2186 	 * the page, so we can safely drop the one we got from get_any_pages().
2187 	 * If we failed to isolate the page, it means that we cannot go further
2188 	 * and we will return an error, so drop the reference we got from
2189 	 * get_any_pages() as well.
2190 	 */
2191 	put_page(page);
2192 	return isolated;
2193 }
2194 
2195 /*
2196  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2197  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2198  * If the page is mapped, it migrates the contents over.
2199  */
2200 static int __soft_offline_page(struct page *page)
2201 {
2202 	long ret = 0;
2203 	unsigned long pfn = page_to_pfn(page);
2204 	struct page *hpage = compound_head(page);
2205 	char const *msg_page[] = {"page", "hugepage"};
2206 	bool huge = PageHuge(page);
2207 	LIST_HEAD(pagelist);
2208 	struct migration_target_control mtc = {
2209 		.nid = NUMA_NO_NODE,
2210 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2211 	};
2212 
2213 	lock_page(page);
2214 	if (!PageHuge(page))
2215 		wait_on_page_writeback(page);
2216 	if (PageHWPoison(page)) {
2217 		unlock_page(page);
2218 		put_page(page);
2219 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2220 		return 0;
2221 	}
2222 
2223 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2224 		/*
2225 		 * Try to invalidate first. This should work for
2226 		 * non dirty unmapped page cache pages.
2227 		 */
2228 		ret = invalidate_inode_page(page);
2229 	unlock_page(page);
2230 
2231 	if (ret) {
2232 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2233 		page_handle_poison(page, false, true);
2234 		return 0;
2235 	}
2236 
2237 	if (isolate_page(hpage, &pagelist)) {
2238 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2239 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2240 		if (!ret) {
2241 			bool release = !huge;
2242 
2243 			if (!page_handle_poison(page, huge, release))
2244 				ret = -EBUSY;
2245 		} else {
2246 			if (!list_empty(&pagelist))
2247 				putback_movable_pages(&pagelist);
2248 
2249 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2250 				pfn, msg_page[huge], ret, &page->flags);
2251 			if (ret > 0)
2252 				ret = -EBUSY;
2253 		}
2254 	} else {
2255 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2256 			pfn, msg_page[huge], page_count(page), &page->flags);
2257 		ret = -EBUSY;
2258 	}
2259 	return ret;
2260 }
2261 
2262 static int soft_offline_in_use_page(struct page *page)
2263 {
2264 	struct page *hpage = compound_head(page);
2265 
2266 	if (!PageHuge(page) && PageTransHuge(hpage))
2267 		if (try_to_split_thp_page(page, "soft offline") < 0)
2268 			return -EBUSY;
2269 	return __soft_offline_page(page);
2270 }
2271 
2272 static int soft_offline_free_page(struct page *page)
2273 {
2274 	int rc = 0;
2275 
2276 	if (!page_handle_poison(page, true, false))
2277 		rc = -EBUSY;
2278 
2279 	return rc;
2280 }
2281 
2282 static void put_ref_page(struct page *page)
2283 {
2284 	if (page)
2285 		put_page(page);
2286 }
2287 
2288 /**
2289  * soft_offline_page - Soft offline a page.
2290  * @pfn: pfn to soft-offline
2291  * @flags: flags. Same as memory_failure().
2292  *
2293  * Returns 0 on success
2294  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2295  *         < 0 otherwise negated errno.
2296  *
2297  * Soft offline a page, by migration or invalidation,
2298  * without killing anything. This is for the case when
2299  * a page is not corrupted yet (so it's still valid to access),
2300  * but has had a number of corrected errors and is better taken
2301  * out.
2302  *
2303  * The actual policy on when to do that is maintained by
2304  * user space.
2305  *
2306  * This should never impact any application or cause data loss,
2307  * however it might take some time.
2308  *
2309  * This is not a 100% solution for all memory, but tries to be
2310  * ``good enough'' for the majority of memory.
2311  */
2312 int soft_offline_page(unsigned long pfn, int flags)
2313 {
2314 	int ret;
2315 	bool try_again = true;
2316 	struct page *page, *ref_page = NULL;
2317 
2318 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2319 
2320 	if (!pfn_valid(pfn))
2321 		return -ENXIO;
2322 	if (flags & MF_COUNT_INCREASED)
2323 		ref_page = pfn_to_page(pfn);
2324 
2325 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2326 	page = pfn_to_online_page(pfn);
2327 	if (!page) {
2328 		put_ref_page(ref_page);
2329 		return -EIO;
2330 	}
2331 
2332 	mutex_lock(&mf_mutex);
2333 
2334 	if (PageHWPoison(page)) {
2335 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2336 		put_ref_page(ref_page);
2337 		mutex_unlock(&mf_mutex);
2338 		return 0;
2339 	}
2340 
2341 retry:
2342 	get_online_mems();
2343 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2344 	put_online_mems();
2345 
2346 	if (hwpoison_filter(page)) {
2347 		if (ret > 0)
2348 			put_page(page);
2349 		else
2350 			put_ref_page(ref_page);
2351 
2352 		mutex_unlock(&mf_mutex);
2353 		return -EOPNOTSUPP;
2354 	}
2355 
2356 	if (ret > 0) {
2357 		ret = soft_offline_in_use_page(page);
2358 	} else if (ret == 0) {
2359 		if (soft_offline_free_page(page) && try_again) {
2360 			try_again = false;
2361 			flags &= ~MF_COUNT_INCREASED;
2362 			goto retry;
2363 		}
2364 	}
2365 
2366 	mutex_unlock(&mf_mutex);
2367 
2368 	return ret;
2369 }
2370 
2371 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2372 {
2373 	int i;
2374 
2375 	/*
2376 	 * A further optimization is to have per section refcounted
2377 	 * num_poisoned_pages.  But that would need more space per memmap, so
2378 	 * for now just do a quick global check to speed up this routine in the
2379 	 * absence of bad pages.
2380 	 */
2381 	if (atomic_long_read(&num_poisoned_pages) == 0)
2382 		return;
2383 
2384 	for (i = 0; i < nr_pages; i++) {
2385 		if (PageHWPoison(&memmap[i])) {
2386 			num_poisoned_pages_dec();
2387 			ClearPageHWPoison(&memmap[i]);
2388 		}
2389 	}
2390 }
2391