1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/page-isolation.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include "internal.h" 56 57 int sysctl_memory_failure_early_kill __read_mostly = 0; 58 59 int sysctl_memory_failure_recovery __read_mostly = 1; 60 61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 62 63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 64 65 u32 hwpoison_filter_enable = 0; 66 u32 hwpoison_filter_dev_major = ~0U; 67 u32 hwpoison_filter_dev_minor = ~0U; 68 u64 hwpoison_filter_flags_mask; 69 u64 hwpoison_filter_flags_value; 70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 75 76 static int hwpoison_filter_dev(struct page *p) 77 { 78 struct address_space *mapping; 79 dev_t dev; 80 81 if (hwpoison_filter_dev_major == ~0U && 82 hwpoison_filter_dev_minor == ~0U) 83 return 0; 84 85 /* 86 * page_mapping() does not accept slab pages. 87 */ 88 if (PageSlab(p)) 89 return -EINVAL; 90 91 mapping = page_mapping(p); 92 if (mapping == NULL || mapping->host == NULL) 93 return -EINVAL; 94 95 dev = mapping->host->i_sb->s_dev; 96 if (hwpoison_filter_dev_major != ~0U && 97 hwpoison_filter_dev_major != MAJOR(dev)) 98 return -EINVAL; 99 if (hwpoison_filter_dev_minor != ~0U && 100 hwpoison_filter_dev_minor != MINOR(dev)) 101 return -EINVAL; 102 103 return 0; 104 } 105 106 static int hwpoison_filter_flags(struct page *p) 107 { 108 if (!hwpoison_filter_flags_mask) 109 return 0; 110 111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 112 hwpoison_filter_flags_value) 113 return 0; 114 else 115 return -EINVAL; 116 } 117 118 /* 119 * This allows stress tests to limit test scope to a collection of tasks 120 * by putting them under some memcg. This prevents killing unrelated/important 121 * processes such as /sbin/init. Note that the target task may share clean 122 * pages with init (eg. libc text), which is harmless. If the target task 123 * share _dirty_ pages with another task B, the test scheme must make sure B 124 * is also included in the memcg. At last, due to race conditions this filter 125 * can only guarantee that the page either belongs to the memcg tasks, or is 126 * a freed page. 127 */ 128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 129 u64 hwpoison_filter_memcg; 130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 131 static int hwpoison_filter_task(struct page *p) 132 { 133 struct mem_cgroup *mem; 134 struct cgroup_subsys_state *css; 135 unsigned long ino; 136 137 if (!hwpoison_filter_memcg) 138 return 0; 139 140 mem = try_get_mem_cgroup_from_page(p); 141 if (!mem) 142 return -EINVAL; 143 144 css = mem_cgroup_css(mem); 145 /* root_mem_cgroup has NULL dentries */ 146 if (!css->cgroup->dentry) 147 return -EINVAL; 148 149 ino = css->cgroup->dentry->d_inode->i_ino; 150 css_put(css); 151 152 if (ino != hwpoison_filter_memcg) 153 return -EINVAL; 154 155 return 0; 156 } 157 #else 158 static int hwpoison_filter_task(struct page *p) { return 0; } 159 #endif 160 161 int hwpoison_filter(struct page *p) 162 { 163 if (!hwpoison_filter_enable) 164 return 0; 165 166 if (hwpoison_filter_dev(p)) 167 return -EINVAL; 168 169 if (hwpoison_filter_flags(p)) 170 return -EINVAL; 171 172 if (hwpoison_filter_task(p)) 173 return -EINVAL; 174 175 return 0; 176 } 177 #else 178 int hwpoison_filter(struct page *p) 179 { 180 return 0; 181 } 182 #endif 183 184 EXPORT_SYMBOL_GPL(hwpoison_filter); 185 186 /* 187 * Send all the processes who have the page mapped an ``action optional'' 188 * signal. 189 */ 190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 191 unsigned long pfn, struct page *page) 192 { 193 struct siginfo si; 194 int ret; 195 196 printk(KERN_ERR 197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 198 pfn, t->comm, t->pid); 199 si.si_signo = SIGBUS; 200 si.si_errno = 0; 201 si.si_code = BUS_MCEERR_AO; 202 si.si_addr = (void *)addr; 203 #ifdef __ARCH_SI_TRAPNO 204 si.si_trapno = trapno; 205 #endif 206 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; 207 /* 208 * Don't use force here, it's convenient if the signal 209 * can be temporarily blocked. 210 * This could cause a loop when the user sets SIGBUS 211 * to SIG_IGN, but hopefully noone will do that? 212 */ 213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 214 if (ret < 0) 215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 216 t->comm, t->pid, ret); 217 return ret; 218 } 219 220 /* 221 * When a unknown page type is encountered drain as many buffers as possible 222 * in the hope to turn the page into a LRU or free page, which we can handle. 223 */ 224 void shake_page(struct page *p, int access) 225 { 226 if (!PageSlab(p)) { 227 lru_add_drain_all(); 228 if (PageLRU(p)) 229 return; 230 drain_all_pages(); 231 if (PageLRU(p) || is_free_buddy_page(p)) 232 return; 233 } 234 235 /* 236 * Only call shrink_slab here (which would also shrink other caches) if 237 * access is not potentially fatal. 238 */ 239 if (access) { 240 int nr; 241 do { 242 nr = shrink_slab(1000, GFP_KERNEL, 1000); 243 if (page_count(p) == 1) 244 break; 245 } while (nr > 10); 246 } 247 } 248 EXPORT_SYMBOL_GPL(shake_page); 249 250 /* 251 * Kill all processes that have a poisoned page mapped and then isolate 252 * the page. 253 * 254 * General strategy: 255 * Find all processes having the page mapped and kill them. 256 * But we keep a page reference around so that the page is not 257 * actually freed yet. 258 * Then stash the page away 259 * 260 * There's no convenient way to get back to mapped processes 261 * from the VMAs. So do a brute-force search over all 262 * running processes. 263 * 264 * Remember that machine checks are not common (or rather 265 * if they are common you have other problems), so this shouldn't 266 * be a performance issue. 267 * 268 * Also there are some races possible while we get from the 269 * error detection to actually handle it. 270 */ 271 272 struct to_kill { 273 struct list_head nd; 274 struct task_struct *tsk; 275 unsigned long addr; 276 char addr_valid; 277 }; 278 279 /* 280 * Failure handling: if we can't find or can't kill a process there's 281 * not much we can do. We just print a message and ignore otherwise. 282 */ 283 284 /* 285 * Schedule a process for later kill. 286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 287 * TBD would GFP_NOIO be enough? 288 */ 289 static void add_to_kill(struct task_struct *tsk, struct page *p, 290 struct vm_area_struct *vma, 291 struct list_head *to_kill, 292 struct to_kill **tkc) 293 { 294 struct to_kill *tk; 295 296 if (*tkc) { 297 tk = *tkc; 298 *tkc = NULL; 299 } else { 300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 301 if (!tk) { 302 printk(KERN_ERR 303 "MCE: Out of memory while machine check handling\n"); 304 return; 305 } 306 } 307 tk->addr = page_address_in_vma(p, vma); 308 tk->addr_valid = 1; 309 310 /* 311 * In theory we don't have to kill when the page was 312 * munmaped. But it could be also a mremap. Since that's 313 * likely very rare kill anyways just out of paranoia, but use 314 * a SIGKILL because the error is not contained anymore. 315 */ 316 if (tk->addr == -EFAULT) { 317 pr_info("MCE: Unable to find user space address %lx in %s\n", 318 page_to_pfn(p), tsk->comm); 319 tk->addr_valid = 0; 320 } 321 get_task_struct(tsk); 322 tk->tsk = tsk; 323 list_add_tail(&tk->nd, to_kill); 324 } 325 326 /* 327 * Kill the processes that have been collected earlier. 328 * 329 * Only do anything when DOIT is set, otherwise just free the list 330 * (this is used for clean pages which do not need killing) 331 * Also when FAIL is set do a force kill because something went 332 * wrong earlier. 333 */ 334 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 335 int fail, struct page *page, unsigned long pfn) 336 { 337 struct to_kill *tk, *next; 338 339 list_for_each_entry_safe (tk, next, to_kill, nd) { 340 if (doit) { 341 /* 342 * In case something went wrong with munmapping 343 * make sure the process doesn't catch the 344 * signal and then access the memory. Just kill it. 345 */ 346 if (fail || tk->addr_valid == 0) { 347 printk(KERN_ERR 348 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 349 pfn, tk->tsk->comm, tk->tsk->pid); 350 force_sig(SIGKILL, tk->tsk); 351 } 352 353 /* 354 * In theory the process could have mapped 355 * something else on the address in-between. We could 356 * check for that, but we need to tell the 357 * process anyways. 358 */ 359 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 360 pfn, page) < 0) 361 printk(KERN_ERR 362 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 363 pfn, tk->tsk->comm, tk->tsk->pid); 364 } 365 put_task_struct(tk->tsk); 366 kfree(tk); 367 } 368 } 369 370 static int task_early_kill(struct task_struct *tsk) 371 { 372 if (!tsk->mm) 373 return 0; 374 if (tsk->flags & PF_MCE_PROCESS) 375 return !!(tsk->flags & PF_MCE_EARLY); 376 return sysctl_memory_failure_early_kill; 377 } 378 379 /* 380 * Collect processes when the error hit an anonymous page. 381 */ 382 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 383 struct to_kill **tkc) 384 { 385 struct vm_area_struct *vma; 386 struct task_struct *tsk; 387 struct anon_vma *av; 388 389 read_lock(&tasklist_lock); 390 av = page_lock_anon_vma(page); 391 if (av == NULL) /* Not actually mapped anymore */ 392 goto out; 393 for_each_process (tsk) { 394 struct anon_vma_chain *vmac; 395 396 if (!task_early_kill(tsk)) 397 continue; 398 list_for_each_entry(vmac, &av->head, same_anon_vma) { 399 vma = vmac->vma; 400 if (!page_mapped_in_vma(page, vma)) 401 continue; 402 if (vma->vm_mm == tsk->mm) 403 add_to_kill(tsk, page, vma, to_kill, tkc); 404 } 405 } 406 page_unlock_anon_vma(av); 407 out: 408 read_unlock(&tasklist_lock); 409 } 410 411 /* 412 * Collect processes when the error hit a file mapped page. 413 */ 414 static void collect_procs_file(struct page *page, struct list_head *to_kill, 415 struct to_kill **tkc) 416 { 417 struct vm_area_struct *vma; 418 struct task_struct *tsk; 419 struct prio_tree_iter iter; 420 struct address_space *mapping = page->mapping; 421 422 /* 423 * A note on the locking order between the two locks. 424 * We don't rely on this particular order. 425 * If you have some other code that needs a different order 426 * feel free to switch them around. Or add a reverse link 427 * from mm_struct to task_struct, then this could be all 428 * done without taking tasklist_lock and looping over all tasks. 429 */ 430 431 read_lock(&tasklist_lock); 432 spin_lock(&mapping->i_mmap_lock); 433 for_each_process(tsk) { 434 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 435 436 if (!task_early_kill(tsk)) 437 continue; 438 439 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 440 pgoff) { 441 /* 442 * Send early kill signal to tasks where a vma covers 443 * the page but the corrupted page is not necessarily 444 * mapped it in its pte. 445 * Assume applications who requested early kill want 446 * to be informed of all such data corruptions. 447 */ 448 if (vma->vm_mm == tsk->mm) 449 add_to_kill(tsk, page, vma, to_kill, tkc); 450 } 451 } 452 spin_unlock(&mapping->i_mmap_lock); 453 read_unlock(&tasklist_lock); 454 } 455 456 /* 457 * Collect the processes who have the corrupted page mapped to kill. 458 * This is done in two steps for locking reasons. 459 * First preallocate one tokill structure outside the spin locks, 460 * so that we can kill at least one process reasonably reliable. 461 */ 462 static void collect_procs(struct page *page, struct list_head *tokill) 463 { 464 struct to_kill *tk; 465 466 if (!page->mapping) 467 return; 468 469 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 470 if (!tk) 471 return; 472 if (PageAnon(page)) 473 collect_procs_anon(page, tokill, &tk); 474 else 475 collect_procs_file(page, tokill, &tk); 476 kfree(tk); 477 } 478 479 /* 480 * Error handlers for various types of pages. 481 */ 482 483 enum outcome { 484 IGNORED, /* Error: cannot be handled */ 485 FAILED, /* Error: handling failed */ 486 DELAYED, /* Will be handled later */ 487 RECOVERED, /* Successfully recovered */ 488 }; 489 490 static const char *action_name[] = { 491 [IGNORED] = "Ignored", 492 [FAILED] = "Failed", 493 [DELAYED] = "Delayed", 494 [RECOVERED] = "Recovered", 495 }; 496 497 /* 498 * XXX: It is possible that a page is isolated from LRU cache, 499 * and then kept in swap cache or failed to remove from page cache. 500 * The page count will stop it from being freed by unpoison. 501 * Stress tests should be aware of this memory leak problem. 502 */ 503 static int delete_from_lru_cache(struct page *p) 504 { 505 if (!isolate_lru_page(p)) { 506 /* 507 * Clear sensible page flags, so that the buddy system won't 508 * complain when the page is unpoison-and-freed. 509 */ 510 ClearPageActive(p); 511 ClearPageUnevictable(p); 512 /* 513 * drop the page count elevated by isolate_lru_page() 514 */ 515 page_cache_release(p); 516 return 0; 517 } 518 return -EIO; 519 } 520 521 /* 522 * Error hit kernel page. 523 * Do nothing, try to be lucky and not touch this instead. For a few cases we 524 * could be more sophisticated. 525 */ 526 static int me_kernel(struct page *p, unsigned long pfn) 527 { 528 return IGNORED; 529 } 530 531 /* 532 * Page in unknown state. Do nothing. 533 */ 534 static int me_unknown(struct page *p, unsigned long pfn) 535 { 536 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 537 return FAILED; 538 } 539 540 /* 541 * Clean (or cleaned) page cache page. 542 */ 543 static int me_pagecache_clean(struct page *p, unsigned long pfn) 544 { 545 int err; 546 int ret = FAILED; 547 struct address_space *mapping; 548 549 delete_from_lru_cache(p); 550 551 /* 552 * For anonymous pages we're done the only reference left 553 * should be the one m_f() holds. 554 */ 555 if (PageAnon(p)) 556 return RECOVERED; 557 558 /* 559 * Now truncate the page in the page cache. This is really 560 * more like a "temporary hole punch" 561 * Don't do this for block devices when someone else 562 * has a reference, because it could be file system metadata 563 * and that's not safe to truncate. 564 */ 565 mapping = page_mapping(p); 566 if (!mapping) { 567 /* 568 * Page has been teared down in the meanwhile 569 */ 570 return FAILED; 571 } 572 573 /* 574 * Truncation is a bit tricky. Enable it per file system for now. 575 * 576 * Open: to take i_mutex or not for this? Right now we don't. 577 */ 578 if (mapping->a_ops->error_remove_page) { 579 err = mapping->a_ops->error_remove_page(mapping, p); 580 if (err != 0) { 581 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 582 pfn, err); 583 } else if (page_has_private(p) && 584 !try_to_release_page(p, GFP_NOIO)) { 585 pr_info("MCE %#lx: failed to release buffers\n", pfn); 586 } else { 587 ret = RECOVERED; 588 } 589 } else { 590 /* 591 * If the file system doesn't support it just invalidate 592 * This fails on dirty or anything with private pages 593 */ 594 if (invalidate_inode_page(p)) 595 ret = RECOVERED; 596 else 597 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 598 pfn); 599 } 600 return ret; 601 } 602 603 /* 604 * Dirty cache page page 605 * Issues: when the error hit a hole page the error is not properly 606 * propagated. 607 */ 608 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 609 { 610 struct address_space *mapping = page_mapping(p); 611 612 SetPageError(p); 613 /* TBD: print more information about the file. */ 614 if (mapping) { 615 /* 616 * IO error will be reported by write(), fsync(), etc. 617 * who check the mapping. 618 * This way the application knows that something went 619 * wrong with its dirty file data. 620 * 621 * There's one open issue: 622 * 623 * The EIO will be only reported on the next IO 624 * operation and then cleared through the IO map. 625 * Normally Linux has two mechanisms to pass IO error 626 * first through the AS_EIO flag in the address space 627 * and then through the PageError flag in the page. 628 * Since we drop pages on memory failure handling the 629 * only mechanism open to use is through AS_AIO. 630 * 631 * This has the disadvantage that it gets cleared on 632 * the first operation that returns an error, while 633 * the PageError bit is more sticky and only cleared 634 * when the page is reread or dropped. If an 635 * application assumes it will always get error on 636 * fsync, but does other operations on the fd before 637 * and the page is dropped inbetween then the error 638 * will not be properly reported. 639 * 640 * This can already happen even without hwpoisoned 641 * pages: first on metadata IO errors (which only 642 * report through AS_EIO) or when the page is dropped 643 * at the wrong time. 644 * 645 * So right now we assume that the application DTRT on 646 * the first EIO, but we're not worse than other parts 647 * of the kernel. 648 */ 649 mapping_set_error(mapping, EIO); 650 } 651 652 return me_pagecache_clean(p, pfn); 653 } 654 655 /* 656 * Clean and dirty swap cache. 657 * 658 * Dirty swap cache page is tricky to handle. The page could live both in page 659 * cache and swap cache(ie. page is freshly swapped in). So it could be 660 * referenced concurrently by 2 types of PTEs: 661 * normal PTEs and swap PTEs. We try to handle them consistently by calling 662 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 663 * and then 664 * - clear dirty bit to prevent IO 665 * - remove from LRU 666 * - but keep in the swap cache, so that when we return to it on 667 * a later page fault, we know the application is accessing 668 * corrupted data and shall be killed (we installed simple 669 * interception code in do_swap_page to catch it). 670 * 671 * Clean swap cache pages can be directly isolated. A later page fault will 672 * bring in the known good data from disk. 673 */ 674 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 675 { 676 ClearPageDirty(p); 677 /* Trigger EIO in shmem: */ 678 ClearPageUptodate(p); 679 680 if (!delete_from_lru_cache(p)) 681 return DELAYED; 682 else 683 return FAILED; 684 } 685 686 static int me_swapcache_clean(struct page *p, unsigned long pfn) 687 { 688 delete_from_swap_cache(p); 689 690 if (!delete_from_lru_cache(p)) 691 return RECOVERED; 692 else 693 return FAILED; 694 } 695 696 /* 697 * Huge pages. Needs work. 698 * Issues: 699 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 700 * To narrow down kill region to one page, we need to break up pmd. 701 */ 702 static int me_huge_page(struct page *p, unsigned long pfn) 703 { 704 int res = 0; 705 struct page *hpage = compound_head(p); 706 /* 707 * We can safely recover from error on free or reserved (i.e. 708 * not in-use) hugepage by dequeuing it from freelist. 709 * To check whether a hugepage is in-use or not, we can't use 710 * page->lru because it can be used in other hugepage operations, 711 * such as __unmap_hugepage_range() and gather_surplus_pages(). 712 * So instead we use page_mapping() and PageAnon(). 713 * We assume that this function is called with page lock held, 714 * so there is no race between isolation and mapping/unmapping. 715 */ 716 if (!(page_mapping(hpage) || PageAnon(hpage))) { 717 res = dequeue_hwpoisoned_huge_page(hpage); 718 if (!res) 719 return RECOVERED; 720 } 721 return DELAYED; 722 } 723 724 /* 725 * Various page states we can handle. 726 * 727 * A page state is defined by its current page->flags bits. 728 * The table matches them in order and calls the right handler. 729 * 730 * This is quite tricky because we can access page at any time 731 * in its live cycle, so all accesses have to be extremly careful. 732 * 733 * This is not complete. More states could be added. 734 * For any missing state don't attempt recovery. 735 */ 736 737 #define dirty (1UL << PG_dirty) 738 #define sc (1UL << PG_swapcache) 739 #define unevict (1UL << PG_unevictable) 740 #define mlock (1UL << PG_mlocked) 741 #define writeback (1UL << PG_writeback) 742 #define lru (1UL << PG_lru) 743 #define swapbacked (1UL << PG_swapbacked) 744 #define head (1UL << PG_head) 745 #define tail (1UL << PG_tail) 746 #define compound (1UL << PG_compound) 747 #define slab (1UL << PG_slab) 748 #define reserved (1UL << PG_reserved) 749 750 static struct page_state { 751 unsigned long mask; 752 unsigned long res; 753 char *msg; 754 int (*action)(struct page *p, unsigned long pfn); 755 } error_states[] = { 756 { reserved, reserved, "reserved kernel", me_kernel }, 757 /* 758 * free pages are specially detected outside this table: 759 * PG_buddy pages only make a small fraction of all free pages. 760 */ 761 762 /* 763 * Could in theory check if slab page is free or if we can drop 764 * currently unused objects without touching them. But just 765 * treat it as standard kernel for now. 766 */ 767 { slab, slab, "kernel slab", me_kernel }, 768 769 #ifdef CONFIG_PAGEFLAGS_EXTENDED 770 { head, head, "huge", me_huge_page }, 771 { tail, tail, "huge", me_huge_page }, 772 #else 773 { compound, compound, "huge", me_huge_page }, 774 #endif 775 776 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 777 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 778 779 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 780 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 781 782 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 783 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 784 785 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 786 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 787 788 /* 789 * Catchall entry: must be at end. 790 */ 791 { 0, 0, "unknown page state", me_unknown }, 792 }; 793 794 #undef dirty 795 #undef sc 796 #undef unevict 797 #undef mlock 798 #undef writeback 799 #undef lru 800 #undef swapbacked 801 #undef head 802 #undef tail 803 #undef compound 804 #undef slab 805 #undef reserved 806 807 static void action_result(unsigned long pfn, char *msg, int result) 808 { 809 struct page *page = pfn_to_page(pfn); 810 811 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 812 pfn, 813 PageDirty(page) ? "dirty " : "", 814 msg, action_name[result]); 815 } 816 817 static int page_action(struct page_state *ps, struct page *p, 818 unsigned long pfn) 819 { 820 int result; 821 int count; 822 823 result = ps->action(p, pfn); 824 action_result(pfn, ps->msg, result); 825 826 count = page_count(p) - 1; 827 if (ps->action == me_swapcache_dirty && result == DELAYED) 828 count--; 829 if (count != 0) { 830 printk(KERN_ERR 831 "MCE %#lx: %s page still referenced by %d users\n", 832 pfn, ps->msg, count); 833 result = FAILED; 834 } 835 836 /* Could do more checks here if page looks ok */ 837 /* 838 * Could adjust zone counters here to correct for the missing page. 839 */ 840 841 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 842 } 843 844 /* 845 * Do all that is necessary to remove user space mappings. Unmap 846 * the pages and send SIGBUS to the processes if the data was dirty. 847 */ 848 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 849 int trapno) 850 { 851 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 852 struct address_space *mapping; 853 LIST_HEAD(tokill); 854 int ret; 855 int kill = 1; 856 struct page *hpage = compound_head(p); 857 struct page *ppage; 858 859 if (PageReserved(p) || PageSlab(p)) 860 return SWAP_SUCCESS; 861 862 /* 863 * This check implies we don't kill processes if their pages 864 * are in the swap cache early. Those are always late kills. 865 */ 866 if (!page_mapped(hpage)) 867 return SWAP_SUCCESS; 868 869 if (PageKsm(p)) 870 return SWAP_FAIL; 871 872 if (PageSwapCache(p)) { 873 printk(KERN_ERR 874 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 875 ttu |= TTU_IGNORE_HWPOISON; 876 } 877 878 /* 879 * Propagate the dirty bit from PTEs to struct page first, because we 880 * need this to decide if we should kill or just drop the page. 881 * XXX: the dirty test could be racy: set_page_dirty() may not always 882 * be called inside page lock (it's recommended but not enforced). 883 */ 884 mapping = page_mapping(hpage); 885 if (!PageDirty(hpage) && mapping && 886 mapping_cap_writeback_dirty(mapping)) { 887 if (page_mkclean(hpage)) { 888 SetPageDirty(hpage); 889 } else { 890 kill = 0; 891 ttu |= TTU_IGNORE_HWPOISON; 892 printk(KERN_INFO 893 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 894 pfn); 895 } 896 } 897 898 /* 899 * ppage: poisoned page 900 * if p is regular page(4k page) 901 * ppage == real poisoned page; 902 * else p is hugetlb or THP, ppage == head page. 903 */ 904 ppage = hpage; 905 906 if (PageTransHuge(hpage)) { 907 /* 908 * Verify that this isn't a hugetlbfs head page, the check for 909 * PageAnon is just for avoid tripping a split_huge_page 910 * internal debug check, as split_huge_page refuses to deal with 911 * anything that isn't an anon page. PageAnon can't go away fro 912 * under us because we hold a refcount on the hpage, without a 913 * refcount on the hpage. split_huge_page can't be safely called 914 * in the first place, having a refcount on the tail isn't 915 * enough * to be safe. 916 */ 917 if (!PageHuge(hpage) && PageAnon(hpage)) { 918 if (unlikely(split_huge_page(hpage))) { 919 /* 920 * FIXME: if splitting THP is failed, it is 921 * better to stop the following operation rather 922 * than causing panic by unmapping. System might 923 * survive if the page is freed later. 924 */ 925 printk(KERN_INFO 926 "MCE %#lx: failed to split THP\n", pfn); 927 928 BUG_ON(!PageHWPoison(p)); 929 return SWAP_FAIL; 930 } 931 /* THP is split, so ppage should be the real poisoned page. */ 932 ppage = p; 933 } 934 } 935 936 /* 937 * First collect all the processes that have the page 938 * mapped in dirty form. This has to be done before try_to_unmap, 939 * because ttu takes the rmap data structures down. 940 * 941 * Error handling: We ignore errors here because 942 * there's nothing that can be done. 943 */ 944 if (kill) 945 collect_procs(ppage, &tokill); 946 947 if (hpage != ppage) 948 lock_page_nosync(ppage); 949 950 ret = try_to_unmap(ppage, ttu); 951 if (ret != SWAP_SUCCESS) 952 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 953 pfn, page_mapcount(ppage)); 954 955 if (hpage != ppage) 956 unlock_page(ppage); 957 958 /* 959 * Now that the dirty bit has been propagated to the 960 * struct page and all unmaps done we can decide if 961 * killing is needed or not. Only kill when the page 962 * was dirty, otherwise the tokill list is merely 963 * freed. When there was a problem unmapping earlier 964 * use a more force-full uncatchable kill to prevent 965 * any accesses to the poisoned memory. 966 */ 967 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno, 968 ret != SWAP_SUCCESS, p, pfn); 969 970 return ret; 971 } 972 973 static void set_page_hwpoison_huge_page(struct page *hpage) 974 { 975 int i; 976 int nr_pages = 1 << compound_trans_order(hpage); 977 for (i = 0; i < nr_pages; i++) 978 SetPageHWPoison(hpage + i); 979 } 980 981 static void clear_page_hwpoison_huge_page(struct page *hpage) 982 { 983 int i; 984 int nr_pages = 1 << compound_trans_order(hpage); 985 for (i = 0; i < nr_pages; i++) 986 ClearPageHWPoison(hpage + i); 987 } 988 989 int __memory_failure(unsigned long pfn, int trapno, int flags) 990 { 991 struct page_state *ps; 992 struct page *p; 993 struct page *hpage; 994 int res; 995 unsigned int nr_pages; 996 997 if (!sysctl_memory_failure_recovery) 998 panic("Memory failure from trap %d on page %lx", trapno, pfn); 999 1000 if (!pfn_valid(pfn)) { 1001 printk(KERN_ERR 1002 "MCE %#lx: memory outside kernel control\n", 1003 pfn); 1004 return -ENXIO; 1005 } 1006 1007 p = pfn_to_page(pfn); 1008 hpage = compound_head(p); 1009 if (TestSetPageHWPoison(p)) { 1010 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1011 return 0; 1012 } 1013 1014 nr_pages = 1 << compound_trans_order(hpage); 1015 atomic_long_add(nr_pages, &mce_bad_pages); 1016 1017 /* 1018 * We need/can do nothing about count=0 pages. 1019 * 1) it's a free page, and therefore in safe hand: 1020 * prep_new_page() will be the gate keeper. 1021 * 2) it's a free hugepage, which is also safe: 1022 * an affected hugepage will be dequeued from hugepage freelist, 1023 * so there's no concern about reusing it ever after. 1024 * 3) it's part of a non-compound high order page. 1025 * Implies some kernel user: cannot stop them from 1026 * R/W the page; let's pray that the page has been 1027 * used and will be freed some time later. 1028 * In fact it's dangerous to directly bump up page count from 0, 1029 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1030 */ 1031 if (!(flags & MF_COUNT_INCREASED) && 1032 !get_page_unless_zero(hpage)) { 1033 if (is_free_buddy_page(p)) { 1034 action_result(pfn, "free buddy", DELAYED); 1035 return 0; 1036 } else if (PageHuge(hpage)) { 1037 /* 1038 * Check "just unpoisoned", "filter hit", and 1039 * "race with other subpage." 1040 */ 1041 lock_page_nosync(hpage); 1042 if (!PageHWPoison(hpage) 1043 || (hwpoison_filter(p) && TestClearPageHWPoison(p)) 1044 || (p != hpage && TestSetPageHWPoison(hpage))) { 1045 atomic_long_sub(nr_pages, &mce_bad_pages); 1046 return 0; 1047 } 1048 set_page_hwpoison_huge_page(hpage); 1049 res = dequeue_hwpoisoned_huge_page(hpage); 1050 action_result(pfn, "free huge", 1051 res ? IGNORED : DELAYED); 1052 unlock_page(hpage); 1053 return res; 1054 } else { 1055 action_result(pfn, "high order kernel", IGNORED); 1056 return -EBUSY; 1057 } 1058 } 1059 1060 /* 1061 * We ignore non-LRU pages for good reasons. 1062 * - PG_locked is only well defined for LRU pages and a few others 1063 * - to avoid races with __set_page_locked() 1064 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1065 * The check (unnecessarily) ignores LRU pages being isolated and 1066 * walked by the page reclaim code, however that's not a big loss. 1067 */ 1068 if (!PageHuge(p) && !PageTransCompound(p)) { 1069 if (!PageLRU(p)) 1070 shake_page(p, 0); 1071 if (!PageLRU(p)) { 1072 /* 1073 * shake_page could have turned it free. 1074 */ 1075 if (is_free_buddy_page(p)) { 1076 action_result(pfn, "free buddy, 2nd try", 1077 DELAYED); 1078 return 0; 1079 } 1080 action_result(pfn, "non LRU", IGNORED); 1081 put_page(p); 1082 return -EBUSY; 1083 } 1084 } 1085 1086 /* 1087 * Lock the page and wait for writeback to finish. 1088 * It's very difficult to mess with pages currently under IO 1089 * and in many cases impossible, so we just avoid it here. 1090 */ 1091 lock_page_nosync(hpage); 1092 1093 /* 1094 * unpoison always clear PG_hwpoison inside page lock 1095 */ 1096 if (!PageHWPoison(p)) { 1097 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1098 res = 0; 1099 goto out; 1100 } 1101 if (hwpoison_filter(p)) { 1102 if (TestClearPageHWPoison(p)) 1103 atomic_long_sub(nr_pages, &mce_bad_pages); 1104 unlock_page(hpage); 1105 put_page(hpage); 1106 return 0; 1107 } 1108 1109 /* 1110 * For error on the tail page, we should set PG_hwpoison 1111 * on the head page to show that the hugepage is hwpoisoned 1112 */ 1113 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1114 action_result(pfn, "hugepage already hardware poisoned", 1115 IGNORED); 1116 unlock_page(hpage); 1117 put_page(hpage); 1118 return 0; 1119 } 1120 /* 1121 * Set PG_hwpoison on all pages in an error hugepage, 1122 * because containment is done in hugepage unit for now. 1123 * Since we have done TestSetPageHWPoison() for the head page with 1124 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1125 */ 1126 if (PageHuge(p)) 1127 set_page_hwpoison_huge_page(hpage); 1128 1129 wait_on_page_writeback(p); 1130 1131 /* 1132 * Now take care of user space mappings. 1133 * Abort on fail: __remove_from_page_cache() assumes unmapped page. 1134 */ 1135 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1136 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1137 res = -EBUSY; 1138 goto out; 1139 } 1140 1141 /* 1142 * Torn down by someone else? 1143 */ 1144 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1145 action_result(pfn, "already truncated LRU", IGNORED); 1146 res = -EBUSY; 1147 goto out; 1148 } 1149 1150 res = -EBUSY; 1151 for (ps = error_states;; ps++) { 1152 if ((p->flags & ps->mask) == ps->res) { 1153 res = page_action(ps, p, pfn); 1154 break; 1155 } 1156 } 1157 out: 1158 unlock_page(hpage); 1159 return res; 1160 } 1161 EXPORT_SYMBOL_GPL(__memory_failure); 1162 1163 /** 1164 * memory_failure - Handle memory failure of a page. 1165 * @pfn: Page Number of the corrupted page 1166 * @trapno: Trap number reported in the signal to user space. 1167 * 1168 * This function is called by the low level machine check code 1169 * of an architecture when it detects hardware memory corruption 1170 * of a page. It tries its best to recover, which includes 1171 * dropping pages, killing processes etc. 1172 * 1173 * The function is primarily of use for corruptions that 1174 * happen outside the current execution context (e.g. when 1175 * detected by a background scrubber) 1176 * 1177 * Must run in process context (e.g. a work queue) with interrupts 1178 * enabled and no spinlocks hold. 1179 */ 1180 void memory_failure(unsigned long pfn, int trapno) 1181 { 1182 __memory_failure(pfn, trapno, 0); 1183 } 1184 1185 /** 1186 * unpoison_memory - Unpoison a previously poisoned page 1187 * @pfn: Page number of the to be unpoisoned page 1188 * 1189 * Software-unpoison a page that has been poisoned by 1190 * memory_failure() earlier. 1191 * 1192 * This is only done on the software-level, so it only works 1193 * for linux injected failures, not real hardware failures 1194 * 1195 * Returns 0 for success, otherwise -errno. 1196 */ 1197 int unpoison_memory(unsigned long pfn) 1198 { 1199 struct page *page; 1200 struct page *p; 1201 int freeit = 0; 1202 unsigned int nr_pages; 1203 1204 if (!pfn_valid(pfn)) 1205 return -ENXIO; 1206 1207 p = pfn_to_page(pfn); 1208 page = compound_head(p); 1209 1210 if (!PageHWPoison(p)) { 1211 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1212 return 0; 1213 } 1214 1215 nr_pages = 1 << compound_trans_order(page); 1216 1217 if (!get_page_unless_zero(page)) { 1218 /* 1219 * Since HWPoisoned hugepage should have non-zero refcount, 1220 * race between memory failure and unpoison seems to happen. 1221 * In such case unpoison fails and memory failure runs 1222 * to the end. 1223 */ 1224 if (PageHuge(page)) { 1225 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1226 return 0; 1227 } 1228 if (TestClearPageHWPoison(p)) 1229 atomic_long_sub(nr_pages, &mce_bad_pages); 1230 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1231 return 0; 1232 } 1233 1234 lock_page_nosync(page); 1235 /* 1236 * This test is racy because PG_hwpoison is set outside of page lock. 1237 * That's acceptable because that won't trigger kernel panic. Instead, 1238 * the PG_hwpoison page will be caught and isolated on the entrance to 1239 * the free buddy page pool. 1240 */ 1241 if (TestClearPageHWPoison(page)) { 1242 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1243 atomic_long_sub(nr_pages, &mce_bad_pages); 1244 freeit = 1; 1245 if (PageHuge(page)) 1246 clear_page_hwpoison_huge_page(page); 1247 } 1248 unlock_page(page); 1249 1250 put_page(page); 1251 if (freeit) 1252 put_page(page); 1253 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(unpoison_memory); 1257 1258 static struct page *new_page(struct page *p, unsigned long private, int **x) 1259 { 1260 int nid = page_to_nid(p); 1261 if (PageHuge(p)) 1262 return alloc_huge_page_node(page_hstate(compound_head(p)), 1263 nid); 1264 else 1265 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1266 } 1267 1268 /* 1269 * Safely get reference count of an arbitrary page. 1270 * Returns 0 for a free page, -EIO for a zero refcount page 1271 * that is not free, and 1 for any other page type. 1272 * For 1 the page is returned with increased page count, otherwise not. 1273 */ 1274 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1275 { 1276 int ret; 1277 1278 if (flags & MF_COUNT_INCREASED) 1279 return 1; 1280 1281 /* 1282 * The lock_memory_hotplug prevents a race with memory hotplug. 1283 * This is a big hammer, a better would be nicer. 1284 */ 1285 lock_memory_hotplug(); 1286 1287 /* 1288 * Isolate the page, so that it doesn't get reallocated if it 1289 * was free. 1290 */ 1291 set_migratetype_isolate(p); 1292 /* 1293 * When the target page is a free hugepage, just remove it 1294 * from free hugepage list. 1295 */ 1296 if (!get_page_unless_zero(compound_head(p))) { 1297 if (PageHuge(p)) { 1298 pr_info("get_any_page: %#lx free huge page\n", pfn); 1299 ret = dequeue_hwpoisoned_huge_page(compound_head(p)); 1300 } else if (is_free_buddy_page(p)) { 1301 pr_info("get_any_page: %#lx free buddy page\n", pfn); 1302 /* Set hwpoison bit while page is still isolated */ 1303 SetPageHWPoison(p); 1304 ret = 0; 1305 } else { 1306 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1307 pfn, p->flags); 1308 ret = -EIO; 1309 } 1310 } else { 1311 /* Not a free page */ 1312 ret = 1; 1313 } 1314 unset_migratetype_isolate(p); 1315 unlock_memory_hotplug(); 1316 return ret; 1317 } 1318 1319 static int soft_offline_huge_page(struct page *page, int flags) 1320 { 1321 int ret; 1322 unsigned long pfn = page_to_pfn(page); 1323 struct page *hpage = compound_head(page); 1324 LIST_HEAD(pagelist); 1325 1326 ret = get_any_page(page, pfn, flags); 1327 if (ret < 0) 1328 return ret; 1329 if (ret == 0) 1330 goto done; 1331 1332 if (PageHWPoison(hpage)) { 1333 put_page(hpage); 1334 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); 1335 return -EBUSY; 1336 } 1337 1338 /* Keep page count to indicate a given hugepage is isolated. */ 1339 1340 list_add(&hpage->lru, &pagelist); 1341 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0, 1342 true); 1343 if (ret) { 1344 struct page *page1, *page2; 1345 list_for_each_entry_safe(page1, page2, &pagelist, lru) 1346 put_page(page1); 1347 1348 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1349 pfn, ret, page->flags); 1350 if (ret > 0) 1351 ret = -EIO; 1352 return ret; 1353 } 1354 done: 1355 if (!PageHWPoison(hpage)) 1356 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages); 1357 set_page_hwpoison_huge_page(hpage); 1358 dequeue_hwpoisoned_huge_page(hpage); 1359 /* keep elevated page count for bad page */ 1360 return ret; 1361 } 1362 1363 /** 1364 * soft_offline_page - Soft offline a page. 1365 * @page: page to offline 1366 * @flags: flags. Same as memory_failure(). 1367 * 1368 * Returns 0 on success, otherwise negated errno. 1369 * 1370 * Soft offline a page, by migration or invalidation, 1371 * without killing anything. This is for the case when 1372 * a page is not corrupted yet (so it's still valid to access), 1373 * but has had a number of corrected errors and is better taken 1374 * out. 1375 * 1376 * The actual policy on when to do that is maintained by 1377 * user space. 1378 * 1379 * This should never impact any application or cause data loss, 1380 * however it might take some time. 1381 * 1382 * This is not a 100% solution for all memory, but tries to be 1383 * ``good enough'' for the majority of memory. 1384 */ 1385 int soft_offline_page(struct page *page, int flags) 1386 { 1387 int ret; 1388 unsigned long pfn = page_to_pfn(page); 1389 1390 if (PageHuge(page)) 1391 return soft_offline_huge_page(page, flags); 1392 1393 ret = get_any_page(page, pfn, flags); 1394 if (ret < 0) 1395 return ret; 1396 if (ret == 0) 1397 goto done; 1398 1399 /* 1400 * Page cache page we can handle? 1401 */ 1402 if (!PageLRU(page)) { 1403 /* 1404 * Try to free it. 1405 */ 1406 put_page(page); 1407 shake_page(page, 1); 1408 1409 /* 1410 * Did it turn free? 1411 */ 1412 ret = get_any_page(page, pfn, 0); 1413 if (ret < 0) 1414 return ret; 1415 if (ret == 0) 1416 goto done; 1417 } 1418 if (!PageLRU(page)) { 1419 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1420 pfn, page->flags); 1421 return -EIO; 1422 } 1423 1424 lock_page(page); 1425 wait_on_page_writeback(page); 1426 1427 /* 1428 * Synchronized using the page lock with memory_failure() 1429 */ 1430 if (PageHWPoison(page)) { 1431 unlock_page(page); 1432 put_page(page); 1433 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1434 return -EBUSY; 1435 } 1436 1437 /* 1438 * Try to invalidate first. This should work for 1439 * non dirty unmapped page cache pages. 1440 */ 1441 ret = invalidate_inode_page(page); 1442 unlock_page(page); 1443 1444 /* 1445 * Drop count because page migration doesn't like raised 1446 * counts. The page could get re-allocated, but if it becomes 1447 * LRU the isolation will just fail. 1448 * RED-PEN would be better to keep it isolated here, but we 1449 * would need to fix isolation locking first. 1450 */ 1451 put_page(page); 1452 if (ret == 1) { 1453 ret = 0; 1454 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1455 goto done; 1456 } 1457 1458 /* 1459 * Simple invalidation didn't work. 1460 * Try to migrate to a new page instead. migrate.c 1461 * handles a large number of cases for us. 1462 */ 1463 ret = isolate_lru_page(page); 1464 if (!ret) { 1465 LIST_HEAD(pagelist); 1466 1467 list_add(&page->lru, &pagelist); 1468 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 1469 0, true); 1470 if (ret) { 1471 putback_lru_pages(&pagelist); 1472 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1473 pfn, ret, page->flags); 1474 if (ret > 0) 1475 ret = -EIO; 1476 } 1477 } else { 1478 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1479 pfn, ret, page_count(page), page->flags); 1480 } 1481 if (ret) 1482 return ret; 1483 1484 done: 1485 atomic_long_add(1, &mce_bad_pages); 1486 SetPageHWPoison(page); 1487 /* keep elevated page count for bad page */ 1488 return ret; 1489 } 1490 1491 /* 1492 * The caller must hold current->mm->mmap_sem in read mode. 1493 */ 1494 int is_hwpoison_address(unsigned long addr) 1495 { 1496 pgd_t *pgdp; 1497 pud_t pud, *pudp; 1498 pmd_t pmd, *pmdp; 1499 pte_t pte, *ptep; 1500 swp_entry_t entry; 1501 1502 pgdp = pgd_offset(current->mm, addr); 1503 if (!pgd_present(*pgdp)) 1504 return 0; 1505 pudp = pud_offset(pgdp, addr); 1506 pud = *pudp; 1507 if (!pud_present(pud) || pud_large(pud)) 1508 return 0; 1509 pmdp = pmd_offset(pudp, addr); 1510 pmd = *pmdp; 1511 if (!pmd_present(pmd) || pmd_large(pmd)) 1512 return 0; 1513 ptep = pte_offset_map(pmdp, addr); 1514 pte = *ptep; 1515 pte_unmap(ptep); 1516 if (!is_swap_pte(pte)) 1517 return 0; 1518 entry = pte_to_swp_entry(pte); 1519 return is_hwpoison_entry(entry); 1520 } 1521 EXPORT_SYMBOL_GPL(is_hwpoison_address); 1522