1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 static bool __page_handle_poison(struct page *page) 72 { 73 int ret; 74 75 zone_pcp_disable(page_zone(page)); 76 ret = dissolve_free_huge_page(page); 77 if (!ret) 78 ret = take_page_off_buddy(page); 79 zone_pcp_enable(page_zone(page)); 80 81 return ret > 0; 82 } 83 84 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 85 { 86 if (hugepage_or_freepage) { 87 /* 88 * Doing this check for free pages is also fine since dissolve_free_huge_page 89 * returns 0 for non-hugetlb pages as well. 90 */ 91 if (!__page_handle_poison(page)) 92 /* 93 * We could fail to take off the target page from buddy 94 * for example due to racy page allocation, but that's 95 * acceptable because soft-offlined page is not broken 96 * and if someone really want to use it, they should 97 * take it. 98 */ 99 return false; 100 } 101 102 SetPageHWPoison(page); 103 if (release) 104 put_page(page); 105 page_ref_inc(page); 106 num_poisoned_pages_inc(); 107 108 return true; 109 } 110 111 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 112 113 u32 hwpoison_filter_enable = 0; 114 u32 hwpoison_filter_dev_major = ~0U; 115 u32 hwpoison_filter_dev_minor = ~0U; 116 u64 hwpoison_filter_flags_mask; 117 u64 hwpoison_filter_flags_value; 118 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 123 124 static int hwpoison_filter_dev(struct page *p) 125 { 126 struct address_space *mapping; 127 dev_t dev; 128 129 if (hwpoison_filter_dev_major == ~0U && 130 hwpoison_filter_dev_minor == ~0U) 131 return 0; 132 133 mapping = page_mapping(p); 134 if (mapping == NULL || mapping->host == NULL) 135 return -EINVAL; 136 137 dev = mapping->host->i_sb->s_dev; 138 if (hwpoison_filter_dev_major != ~0U && 139 hwpoison_filter_dev_major != MAJOR(dev)) 140 return -EINVAL; 141 if (hwpoison_filter_dev_minor != ~0U && 142 hwpoison_filter_dev_minor != MINOR(dev)) 143 return -EINVAL; 144 145 return 0; 146 } 147 148 static int hwpoison_filter_flags(struct page *p) 149 { 150 if (!hwpoison_filter_flags_mask) 151 return 0; 152 153 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 154 hwpoison_filter_flags_value) 155 return 0; 156 else 157 return -EINVAL; 158 } 159 160 /* 161 * This allows stress tests to limit test scope to a collection of tasks 162 * by putting them under some memcg. This prevents killing unrelated/important 163 * processes such as /sbin/init. Note that the target task may share clean 164 * pages with init (eg. libc text), which is harmless. If the target task 165 * share _dirty_ pages with another task B, the test scheme must make sure B 166 * is also included in the memcg. At last, due to race conditions this filter 167 * can only guarantee that the page either belongs to the memcg tasks, or is 168 * a freed page. 169 */ 170 #ifdef CONFIG_MEMCG 171 u64 hwpoison_filter_memcg; 172 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 173 static int hwpoison_filter_task(struct page *p) 174 { 175 if (!hwpoison_filter_memcg) 176 return 0; 177 178 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 179 return -EINVAL; 180 181 return 0; 182 } 183 #else 184 static int hwpoison_filter_task(struct page *p) { return 0; } 185 #endif 186 187 int hwpoison_filter(struct page *p) 188 { 189 if (!hwpoison_filter_enable) 190 return 0; 191 192 if (hwpoison_filter_dev(p)) 193 return -EINVAL; 194 195 if (hwpoison_filter_flags(p)) 196 return -EINVAL; 197 198 if (hwpoison_filter_task(p)) 199 return -EINVAL; 200 201 return 0; 202 } 203 #else 204 int hwpoison_filter(struct page *p) 205 { 206 return 0; 207 } 208 #endif 209 210 EXPORT_SYMBOL_GPL(hwpoison_filter); 211 212 /* 213 * Kill all processes that have a poisoned page mapped and then isolate 214 * the page. 215 * 216 * General strategy: 217 * Find all processes having the page mapped and kill them. 218 * But we keep a page reference around so that the page is not 219 * actually freed yet. 220 * Then stash the page away 221 * 222 * There's no convenient way to get back to mapped processes 223 * from the VMAs. So do a brute-force search over all 224 * running processes. 225 * 226 * Remember that machine checks are not common (or rather 227 * if they are common you have other problems), so this shouldn't 228 * be a performance issue. 229 * 230 * Also there are some races possible while we get from the 231 * error detection to actually handle it. 232 */ 233 234 struct to_kill { 235 struct list_head nd; 236 struct task_struct *tsk; 237 unsigned long addr; 238 short size_shift; 239 }; 240 241 /* 242 * Send all the processes who have the page mapped a signal. 243 * ``action optional'' if they are not immediately affected by the error 244 * ``action required'' if error happened in current execution context 245 */ 246 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 247 { 248 struct task_struct *t = tk->tsk; 249 short addr_lsb = tk->size_shift; 250 int ret = 0; 251 252 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 253 pfn, t->comm, t->pid); 254 255 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 256 ret = force_sig_mceerr(BUS_MCEERR_AR, 257 (void __user *)tk->addr, addr_lsb); 258 else 259 /* 260 * Signal other processes sharing the page if they have 261 * PF_MCE_EARLY set. 262 * Don't use force here, it's convenient if the signal 263 * can be temporarily blocked. 264 * This could cause a loop when the user sets SIGBUS 265 * to SIG_IGN, but hopefully no one will do that? 266 */ 267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 268 addr_lsb, t); /* synchronous? */ 269 if (ret < 0) 270 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 271 t->comm, t->pid, ret); 272 return ret; 273 } 274 275 /* 276 * Unknown page type encountered. Try to check whether it can turn PageLRU by 277 * lru_add_drain_all. 278 */ 279 void shake_page(struct page *p) 280 { 281 if (PageHuge(p)) 282 return; 283 284 if (!PageSlab(p)) { 285 lru_add_drain_all(); 286 if (PageLRU(p) || is_free_buddy_page(p)) 287 return; 288 } 289 290 /* 291 * TODO: Could shrink slab caches here if a lightweight range-based 292 * shrinker will be available. 293 */ 294 } 295 EXPORT_SYMBOL_GPL(shake_page); 296 297 static unsigned long dev_pagemap_mapping_shift(struct page *page, 298 struct vm_area_struct *vma) 299 { 300 unsigned long address = vma_address(page, vma); 301 unsigned long ret = 0; 302 pgd_t *pgd; 303 p4d_t *p4d; 304 pud_t *pud; 305 pmd_t *pmd; 306 pte_t *pte; 307 308 VM_BUG_ON_VMA(address == -EFAULT, vma); 309 pgd = pgd_offset(vma->vm_mm, address); 310 if (!pgd_present(*pgd)) 311 return 0; 312 p4d = p4d_offset(pgd, address); 313 if (!p4d_present(*p4d)) 314 return 0; 315 pud = pud_offset(p4d, address); 316 if (!pud_present(*pud)) 317 return 0; 318 if (pud_devmap(*pud)) 319 return PUD_SHIFT; 320 pmd = pmd_offset(pud, address); 321 if (!pmd_present(*pmd)) 322 return 0; 323 if (pmd_devmap(*pmd)) 324 return PMD_SHIFT; 325 pte = pte_offset_map(pmd, address); 326 if (pte_present(*pte) && pte_devmap(*pte)) 327 ret = PAGE_SHIFT; 328 pte_unmap(pte); 329 return ret; 330 } 331 332 /* 333 * Failure handling: if we can't find or can't kill a process there's 334 * not much we can do. We just print a message and ignore otherwise. 335 */ 336 337 /* 338 * Schedule a process for later kill. 339 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 340 */ 341 static void add_to_kill(struct task_struct *tsk, struct page *p, 342 struct vm_area_struct *vma, 343 struct list_head *to_kill) 344 { 345 struct to_kill *tk; 346 347 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 348 if (!tk) { 349 pr_err("Memory failure: Out of memory while machine check handling\n"); 350 return; 351 } 352 353 tk->addr = page_address_in_vma(p, vma); 354 if (is_zone_device_page(p)) 355 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 356 else 357 tk->size_shift = page_shift(compound_head(p)); 358 359 /* 360 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 361 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 362 * so "tk->size_shift == 0" effectively checks no mapping on 363 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 364 * to a process' address space, it's possible not all N VMAs 365 * contain mappings for the page, but at least one VMA does. 366 * Only deliver SIGBUS with payload derived from the VMA that 367 * has a mapping for the page. 368 */ 369 if (tk->addr == -EFAULT) { 370 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 371 page_to_pfn(p), tsk->comm); 372 } else if (tk->size_shift == 0) { 373 kfree(tk); 374 return; 375 } 376 377 get_task_struct(tsk); 378 tk->tsk = tsk; 379 list_add_tail(&tk->nd, to_kill); 380 } 381 382 /* 383 * Kill the processes that have been collected earlier. 384 * 385 * Only do anything when FORCEKILL is set, otherwise just free the 386 * list (this is used for clean pages which do not need killing) 387 * Also when FAIL is set do a force kill because something went 388 * wrong earlier. 389 */ 390 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 391 unsigned long pfn, int flags) 392 { 393 struct to_kill *tk, *next; 394 395 list_for_each_entry_safe (tk, next, to_kill, nd) { 396 if (forcekill) { 397 /* 398 * In case something went wrong with munmapping 399 * make sure the process doesn't catch the 400 * signal and then access the memory. Just kill it. 401 */ 402 if (fail || tk->addr == -EFAULT) { 403 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 404 pfn, tk->tsk->comm, tk->tsk->pid); 405 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 406 tk->tsk, PIDTYPE_PID); 407 } 408 409 /* 410 * In theory the process could have mapped 411 * something else on the address in-between. We could 412 * check for that, but we need to tell the 413 * process anyways. 414 */ 415 else if (kill_proc(tk, pfn, flags) < 0) 416 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 417 pfn, tk->tsk->comm, tk->tsk->pid); 418 } 419 put_task_struct(tk->tsk); 420 kfree(tk); 421 } 422 } 423 424 /* 425 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 426 * on behalf of the thread group. Return task_struct of the (first found) 427 * dedicated thread if found, and return NULL otherwise. 428 * 429 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 430 * have to call rcu_read_lock/unlock() in this function. 431 */ 432 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 433 { 434 struct task_struct *t; 435 436 for_each_thread(tsk, t) { 437 if (t->flags & PF_MCE_PROCESS) { 438 if (t->flags & PF_MCE_EARLY) 439 return t; 440 } else { 441 if (sysctl_memory_failure_early_kill) 442 return t; 443 } 444 } 445 return NULL; 446 } 447 448 /* 449 * Determine whether a given process is "early kill" process which expects 450 * to be signaled when some page under the process is hwpoisoned. 451 * Return task_struct of the dedicated thread (main thread unless explicitly 452 * specified) if the process is "early kill" and otherwise returns NULL. 453 * 454 * Note that the above is true for Action Optional case. For Action Required 455 * case, it's only meaningful to the current thread which need to be signaled 456 * with SIGBUS, this error is Action Optional for other non current 457 * processes sharing the same error page,if the process is "early kill", the 458 * task_struct of the dedicated thread will also be returned. 459 */ 460 static struct task_struct *task_early_kill(struct task_struct *tsk, 461 int force_early) 462 { 463 if (!tsk->mm) 464 return NULL; 465 /* 466 * Comparing ->mm here because current task might represent 467 * a subthread, while tsk always points to the main thread. 468 */ 469 if (force_early && tsk->mm == current->mm) 470 return current; 471 472 return find_early_kill_thread(tsk); 473 } 474 475 /* 476 * Collect processes when the error hit an anonymous page. 477 */ 478 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 479 int force_early) 480 { 481 struct folio *folio = page_folio(page); 482 struct vm_area_struct *vma; 483 struct task_struct *tsk; 484 struct anon_vma *av; 485 pgoff_t pgoff; 486 487 av = folio_lock_anon_vma_read(folio); 488 if (av == NULL) /* Not actually mapped anymore */ 489 return; 490 491 pgoff = page_to_pgoff(page); 492 read_lock(&tasklist_lock); 493 for_each_process (tsk) { 494 struct anon_vma_chain *vmac; 495 struct task_struct *t = task_early_kill(tsk, force_early); 496 497 if (!t) 498 continue; 499 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 500 pgoff, pgoff) { 501 vma = vmac->vma; 502 if (!page_mapped_in_vma(page, vma)) 503 continue; 504 if (vma->vm_mm == t->mm) 505 add_to_kill(t, page, vma, to_kill); 506 } 507 } 508 read_unlock(&tasklist_lock); 509 page_unlock_anon_vma_read(av); 510 } 511 512 /* 513 * Collect processes when the error hit a file mapped page. 514 */ 515 static void collect_procs_file(struct page *page, struct list_head *to_kill, 516 int force_early) 517 { 518 struct vm_area_struct *vma; 519 struct task_struct *tsk; 520 struct address_space *mapping = page->mapping; 521 pgoff_t pgoff; 522 523 i_mmap_lock_read(mapping); 524 read_lock(&tasklist_lock); 525 pgoff = page_to_pgoff(page); 526 for_each_process(tsk) { 527 struct task_struct *t = task_early_kill(tsk, force_early); 528 529 if (!t) 530 continue; 531 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 532 pgoff) { 533 /* 534 * Send early kill signal to tasks where a vma covers 535 * the page but the corrupted page is not necessarily 536 * mapped it in its pte. 537 * Assume applications who requested early kill want 538 * to be informed of all such data corruptions. 539 */ 540 if (vma->vm_mm == t->mm) 541 add_to_kill(t, page, vma, to_kill); 542 } 543 } 544 read_unlock(&tasklist_lock); 545 i_mmap_unlock_read(mapping); 546 } 547 548 /* 549 * Collect the processes who have the corrupted page mapped to kill. 550 */ 551 static void collect_procs(struct page *page, struct list_head *tokill, 552 int force_early) 553 { 554 if (!page->mapping) 555 return; 556 557 if (PageAnon(page)) 558 collect_procs_anon(page, tokill, force_early); 559 else 560 collect_procs_file(page, tokill, force_early); 561 } 562 563 struct hwp_walk { 564 struct to_kill tk; 565 unsigned long pfn; 566 int flags; 567 }; 568 569 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 570 { 571 tk->addr = addr; 572 tk->size_shift = shift; 573 } 574 575 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 576 unsigned long poisoned_pfn, struct to_kill *tk) 577 { 578 unsigned long pfn = 0; 579 580 if (pte_present(pte)) { 581 pfn = pte_pfn(pte); 582 } else { 583 swp_entry_t swp = pte_to_swp_entry(pte); 584 585 if (is_hwpoison_entry(swp)) 586 pfn = hwpoison_entry_to_pfn(swp); 587 } 588 589 if (!pfn || pfn != poisoned_pfn) 590 return 0; 591 592 set_to_kill(tk, addr, shift); 593 return 1; 594 } 595 596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 597 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 598 struct hwp_walk *hwp) 599 { 600 pmd_t pmd = *pmdp; 601 unsigned long pfn; 602 unsigned long hwpoison_vaddr; 603 604 if (!pmd_present(pmd)) 605 return 0; 606 pfn = pmd_pfn(pmd); 607 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 608 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 609 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 610 return 1; 611 } 612 return 0; 613 } 614 #else 615 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 616 struct hwp_walk *hwp) 617 { 618 return 0; 619 } 620 #endif 621 622 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 623 unsigned long end, struct mm_walk *walk) 624 { 625 struct hwp_walk *hwp = walk->private; 626 int ret = 0; 627 pte_t *ptep, *mapped_pte; 628 spinlock_t *ptl; 629 630 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 631 if (ptl) { 632 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 633 spin_unlock(ptl); 634 goto out; 635 } 636 637 if (pmd_trans_unstable(pmdp)) 638 goto out; 639 640 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 641 addr, &ptl); 642 for (; addr != end; ptep++, addr += PAGE_SIZE) { 643 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 644 hwp->pfn, &hwp->tk); 645 if (ret == 1) 646 break; 647 } 648 pte_unmap_unlock(mapped_pte, ptl); 649 out: 650 cond_resched(); 651 return ret; 652 } 653 654 #ifdef CONFIG_HUGETLB_PAGE 655 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 656 unsigned long addr, unsigned long end, 657 struct mm_walk *walk) 658 { 659 struct hwp_walk *hwp = walk->private; 660 pte_t pte = huge_ptep_get(ptep); 661 struct hstate *h = hstate_vma(walk->vma); 662 663 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 664 hwp->pfn, &hwp->tk); 665 } 666 #else 667 #define hwpoison_hugetlb_range NULL 668 #endif 669 670 static const struct mm_walk_ops hwp_walk_ops = { 671 .pmd_entry = hwpoison_pte_range, 672 .hugetlb_entry = hwpoison_hugetlb_range, 673 }; 674 675 /* 676 * Sends SIGBUS to the current process with error info. 677 * 678 * This function is intended to handle "Action Required" MCEs on already 679 * hardware poisoned pages. They could happen, for example, when 680 * memory_failure() failed to unmap the error page at the first call, or 681 * when multiple local machine checks happened on different CPUs. 682 * 683 * MCE handler currently has no easy access to the error virtual address, 684 * so this function walks page table to find it. The returned virtual address 685 * is proper in most cases, but it could be wrong when the application 686 * process has multiple entries mapping the error page. 687 */ 688 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 689 int flags) 690 { 691 int ret; 692 struct hwp_walk priv = { 693 .pfn = pfn, 694 }; 695 priv.tk.tsk = p; 696 697 mmap_read_lock(p->mm); 698 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 699 (void *)&priv); 700 if (ret == 1 && priv.tk.addr) 701 kill_proc(&priv.tk, pfn, flags); 702 else 703 ret = 0; 704 mmap_read_unlock(p->mm); 705 return ret > 0 ? -EHWPOISON : -EFAULT; 706 } 707 708 static const char *action_name[] = { 709 [MF_IGNORED] = "Ignored", 710 [MF_FAILED] = "Failed", 711 [MF_DELAYED] = "Delayed", 712 [MF_RECOVERED] = "Recovered", 713 }; 714 715 static const char * const action_page_types[] = { 716 [MF_MSG_KERNEL] = "reserved kernel page", 717 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 718 [MF_MSG_SLAB] = "kernel slab page", 719 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 720 [MF_MSG_HUGE] = "huge page", 721 [MF_MSG_FREE_HUGE] = "free huge page", 722 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 723 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 724 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 725 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 726 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 727 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 728 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 729 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 730 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 731 [MF_MSG_CLEAN_LRU] = "clean LRU page", 732 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 733 [MF_MSG_BUDDY] = "free buddy page", 734 [MF_MSG_DAX] = "dax page", 735 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 736 [MF_MSG_UNKNOWN] = "unknown page", 737 }; 738 739 /* 740 * XXX: It is possible that a page is isolated from LRU cache, 741 * and then kept in swap cache or failed to remove from page cache. 742 * The page count will stop it from being freed by unpoison. 743 * Stress tests should be aware of this memory leak problem. 744 */ 745 static int delete_from_lru_cache(struct page *p) 746 { 747 if (!isolate_lru_page(p)) { 748 /* 749 * Clear sensible page flags, so that the buddy system won't 750 * complain when the page is unpoison-and-freed. 751 */ 752 ClearPageActive(p); 753 ClearPageUnevictable(p); 754 755 /* 756 * Poisoned page might never drop its ref count to 0 so we have 757 * to uncharge it manually from its memcg. 758 */ 759 mem_cgroup_uncharge(page_folio(p)); 760 761 /* 762 * drop the page count elevated by isolate_lru_page() 763 */ 764 put_page(p); 765 return 0; 766 } 767 return -EIO; 768 } 769 770 static int truncate_error_page(struct page *p, unsigned long pfn, 771 struct address_space *mapping) 772 { 773 int ret = MF_FAILED; 774 775 if (mapping->a_ops->error_remove_page) { 776 int err = mapping->a_ops->error_remove_page(mapping, p); 777 778 if (err != 0) { 779 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 780 pfn, err); 781 } else if (page_has_private(p) && 782 !try_to_release_page(p, GFP_NOIO)) { 783 pr_info("Memory failure: %#lx: failed to release buffers\n", 784 pfn); 785 } else { 786 ret = MF_RECOVERED; 787 } 788 } else { 789 /* 790 * If the file system doesn't support it just invalidate 791 * This fails on dirty or anything with private pages 792 */ 793 if (invalidate_inode_page(p)) 794 ret = MF_RECOVERED; 795 else 796 pr_info("Memory failure: %#lx: Failed to invalidate\n", 797 pfn); 798 } 799 800 return ret; 801 } 802 803 struct page_state { 804 unsigned long mask; 805 unsigned long res; 806 enum mf_action_page_type type; 807 808 /* Callback ->action() has to unlock the relevant page inside it. */ 809 int (*action)(struct page_state *ps, struct page *p); 810 }; 811 812 /* 813 * Return true if page is still referenced by others, otherwise return 814 * false. 815 * 816 * The extra_pins is true when one extra refcount is expected. 817 */ 818 static bool has_extra_refcount(struct page_state *ps, struct page *p, 819 bool extra_pins) 820 { 821 int count = page_count(p) - 1; 822 823 if (extra_pins) 824 count -= 1; 825 826 if (count > 0) { 827 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 828 page_to_pfn(p), action_page_types[ps->type], count); 829 return true; 830 } 831 832 return false; 833 } 834 835 /* 836 * Error hit kernel page. 837 * Do nothing, try to be lucky and not touch this instead. For a few cases we 838 * could be more sophisticated. 839 */ 840 static int me_kernel(struct page_state *ps, struct page *p) 841 { 842 unlock_page(p); 843 return MF_IGNORED; 844 } 845 846 /* 847 * Page in unknown state. Do nothing. 848 */ 849 static int me_unknown(struct page_state *ps, struct page *p) 850 { 851 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 852 unlock_page(p); 853 return MF_FAILED; 854 } 855 856 /* 857 * Clean (or cleaned) page cache page. 858 */ 859 static int me_pagecache_clean(struct page_state *ps, struct page *p) 860 { 861 int ret; 862 struct address_space *mapping; 863 bool extra_pins; 864 865 delete_from_lru_cache(p); 866 867 /* 868 * For anonymous pages we're done the only reference left 869 * should be the one m_f() holds. 870 */ 871 if (PageAnon(p)) { 872 ret = MF_RECOVERED; 873 goto out; 874 } 875 876 /* 877 * Now truncate the page in the page cache. This is really 878 * more like a "temporary hole punch" 879 * Don't do this for block devices when someone else 880 * has a reference, because it could be file system metadata 881 * and that's not safe to truncate. 882 */ 883 mapping = page_mapping(p); 884 if (!mapping) { 885 /* 886 * Page has been teared down in the meanwhile 887 */ 888 ret = MF_FAILED; 889 goto out; 890 } 891 892 /* 893 * The shmem page is kept in page cache instead of truncating 894 * so is expected to have an extra refcount after error-handling. 895 */ 896 extra_pins = shmem_mapping(mapping); 897 898 /* 899 * Truncation is a bit tricky. Enable it per file system for now. 900 * 901 * Open: to take i_rwsem or not for this? Right now we don't. 902 */ 903 ret = truncate_error_page(p, page_to_pfn(p), mapping); 904 if (has_extra_refcount(ps, p, extra_pins)) 905 ret = MF_FAILED; 906 907 out: 908 unlock_page(p); 909 910 return ret; 911 } 912 913 /* 914 * Dirty pagecache page 915 * Issues: when the error hit a hole page the error is not properly 916 * propagated. 917 */ 918 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 919 { 920 struct address_space *mapping = page_mapping(p); 921 922 SetPageError(p); 923 /* TBD: print more information about the file. */ 924 if (mapping) { 925 /* 926 * IO error will be reported by write(), fsync(), etc. 927 * who check the mapping. 928 * This way the application knows that something went 929 * wrong with its dirty file data. 930 * 931 * There's one open issue: 932 * 933 * The EIO will be only reported on the next IO 934 * operation and then cleared through the IO map. 935 * Normally Linux has two mechanisms to pass IO error 936 * first through the AS_EIO flag in the address space 937 * and then through the PageError flag in the page. 938 * Since we drop pages on memory failure handling the 939 * only mechanism open to use is through AS_AIO. 940 * 941 * This has the disadvantage that it gets cleared on 942 * the first operation that returns an error, while 943 * the PageError bit is more sticky and only cleared 944 * when the page is reread or dropped. If an 945 * application assumes it will always get error on 946 * fsync, but does other operations on the fd before 947 * and the page is dropped between then the error 948 * will not be properly reported. 949 * 950 * This can already happen even without hwpoisoned 951 * pages: first on metadata IO errors (which only 952 * report through AS_EIO) or when the page is dropped 953 * at the wrong time. 954 * 955 * So right now we assume that the application DTRT on 956 * the first EIO, but we're not worse than other parts 957 * of the kernel. 958 */ 959 mapping_set_error(mapping, -EIO); 960 } 961 962 return me_pagecache_clean(ps, p); 963 } 964 965 /* 966 * Clean and dirty swap cache. 967 * 968 * Dirty swap cache page is tricky to handle. The page could live both in page 969 * cache and swap cache(ie. page is freshly swapped in). So it could be 970 * referenced concurrently by 2 types of PTEs: 971 * normal PTEs and swap PTEs. We try to handle them consistently by calling 972 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 973 * and then 974 * - clear dirty bit to prevent IO 975 * - remove from LRU 976 * - but keep in the swap cache, so that when we return to it on 977 * a later page fault, we know the application is accessing 978 * corrupted data and shall be killed (we installed simple 979 * interception code in do_swap_page to catch it). 980 * 981 * Clean swap cache pages can be directly isolated. A later page fault will 982 * bring in the known good data from disk. 983 */ 984 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 985 { 986 int ret; 987 bool extra_pins = false; 988 989 ClearPageDirty(p); 990 /* Trigger EIO in shmem: */ 991 ClearPageUptodate(p); 992 993 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 994 unlock_page(p); 995 996 if (ret == MF_DELAYED) 997 extra_pins = true; 998 999 if (has_extra_refcount(ps, p, extra_pins)) 1000 ret = MF_FAILED; 1001 1002 return ret; 1003 } 1004 1005 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1006 { 1007 int ret; 1008 1009 delete_from_swap_cache(p); 1010 1011 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1012 unlock_page(p); 1013 1014 if (has_extra_refcount(ps, p, false)) 1015 ret = MF_FAILED; 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * Huge pages. Needs work. 1022 * Issues: 1023 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1024 * To narrow down kill region to one page, we need to break up pmd. 1025 */ 1026 static int me_huge_page(struct page_state *ps, struct page *p) 1027 { 1028 int res; 1029 struct page *hpage = compound_head(p); 1030 struct address_space *mapping; 1031 1032 if (!PageHuge(hpage)) 1033 return MF_DELAYED; 1034 1035 mapping = page_mapping(hpage); 1036 if (mapping) { 1037 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1038 unlock_page(hpage); 1039 } else { 1040 res = MF_FAILED; 1041 unlock_page(hpage); 1042 /* 1043 * migration entry prevents later access on error hugepage, 1044 * so we can free and dissolve it into buddy to save healthy 1045 * subpages. 1046 */ 1047 put_page(hpage); 1048 if (__page_handle_poison(p)) { 1049 page_ref_inc(p); 1050 res = MF_RECOVERED; 1051 } 1052 } 1053 1054 if (has_extra_refcount(ps, p, false)) 1055 res = MF_FAILED; 1056 1057 return res; 1058 } 1059 1060 /* 1061 * Various page states we can handle. 1062 * 1063 * A page state is defined by its current page->flags bits. 1064 * The table matches them in order and calls the right handler. 1065 * 1066 * This is quite tricky because we can access page at any time 1067 * in its live cycle, so all accesses have to be extremely careful. 1068 * 1069 * This is not complete. More states could be added. 1070 * For any missing state don't attempt recovery. 1071 */ 1072 1073 #define dirty (1UL << PG_dirty) 1074 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1075 #define unevict (1UL << PG_unevictable) 1076 #define mlock (1UL << PG_mlocked) 1077 #define lru (1UL << PG_lru) 1078 #define head (1UL << PG_head) 1079 #define slab (1UL << PG_slab) 1080 #define reserved (1UL << PG_reserved) 1081 1082 static struct page_state error_states[] = { 1083 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1084 /* 1085 * free pages are specially detected outside this table: 1086 * PG_buddy pages only make a small fraction of all free pages. 1087 */ 1088 1089 /* 1090 * Could in theory check if slab page is free or if we can drop 1091 * currently unused objects without touching them. But just 1092 * treat it as standard kernel for now. 1093 */ 1094 { slab, slab, MF_MSG_SLAB, me_kernel }, 1095 1096 { head, head, MF_MSG_HUGE, me_huge_page }, 1097 1098 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1099 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1100 1101 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1102 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1103 1104 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1105 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1106 1107 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1108 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1109 1110 /* 1111 * Catchall entry: must be at end. 1112 */ 1113 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1114 }; 1115 1116 #undef dirty 1117 #undef sc 1118 #undef unevict 1119 #undef mlock 1120 #undef lru 1121 #undef head 1122 #undef slab 1123 #undef reserved 1124 1125 /* 1126 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1127 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1128 */ 1129 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1130 enum mf_result result) 1131 { 1132 trace_memory_failure_event(pfn, type, result); 1133 1134 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1135 pfn, action_page_types[type], action_name[result]); 1136 } 1137 1138 static int page_action(struct page_state *ps, struct page *p, 1139 unsigned long pfn) 1140 { 1141 int result; 1142 1143 /* page p should be unlocked after returning from ps->action(). */ 1144 result = ps->action(ps, p); 1145 1146 action_result(pfn, ps->type, result); 1147 1148 /* Could do more checks here if page looks ok */ 1149 /* 1150 * Could adjust zone counters here to correct for the missing page. 1151 */ 1152 1153 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1154 } 1155 1156 static inline bool PageHWPoisonTakenOff(struct page *page) 1157 { 1158 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1159 } 1160 1161 void SetPageHWPoisonTakenOff(struct page *page) 1162 { 1163 set_page_private(page, MAGIC_HWPOISON); 1164 } 1165 1166 void ClearPageHWPoisonTakenOff(struct page *page) 1167 { 1168 if (PageHWPoison(page)) 1169 set_page_private(page, 0); 1170 } 1171 1172 /* 1173 * Return true if a page type of a given page is supported by hwpoison 1174 * mechanism (while handling could fail), otherwise false. This function 1175 * does not return true for hugetlb or device memory pages, so it's assumed 1176 * to be called only in the context where we never have such pages. 1177 */ 1178 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1179 { 1180 /* Soft offline could migrate non-LRU movable pages */ 1181 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1182 return true; 1183 1184 return PageLRU(page) || is_free_buddy_page(page); 1185 } 1186 1187 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1188 { 1189 struct page *head = compound_head(page); 1190 int ret = 0; 1191 bool hugetlb = false; 1192 1193 ret = get_hwpoison_huge_page(head, &hugetlb); 1194 if (hugetlb) 1195 return ret; 1196 1197 /* 1198 * This check prevents from calling get_hwpoison_unless_zero() 1199 * for any unsupported type of page in order to reduce the risk of 1200 * unexpected races caused by taking a page refcount. 1201 */ 1202 if (!HWPoisonHandlable(head, flags)) 1203 return -EBUSY; 1204 1205 if (get_page_unless_zero(head)) { 1206 if (head == compound_head(page)) 1207 return 1; 1208 1209 pr_info("Memory failure: %#lx cannot catch tail\n", 1210 page_to_pfn(page)); 1211 put_page(head); 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int get_any_page(struct page *p, unsigned long flags) 1218 { 1219 int ret = 0, pass = 0; 1220 bool count_increased = false; 1221 1222 if (flags & MF_COUNT_INCREASED) 1223 count_increased = true; 1224 1225 try_again: 1226 if (!count_increased) { 1227 ret = __get_hwpoison_page(p, flags); 1228 if (!ret) { 1229 if (page_count(p)) { 1230 /* We raced with an allocation, retry. */ 1231 if (pass++ < 3) 1232 goto try_again; 1233 ret = -EBUSY; 1234 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1235 /* We raced with put_page, retry. */ 1236 if (pass++ < 3) 1237 goto try_again; 1238 ret = -EIO; 1239 } 1240 goto out; 1241 } else if (ret == -EBUSY) { 1242 /* 1243 * We raced with (possibly temporary) unhandlable 1244 * page, retry. 1245 */ 1246 if (pass++ < 3) { 1247 shake_page(p); 1248 goto try_again; 1249 } 1250 ret = -EIO; 1251 goto out; 1252 } 1253 } 1254 1255 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1256 ret = 1; 1257 } else { 1258 /* 1259 * A page we cannot handle. Check whether we can turn 1260 * it into something we can handle. 1261 */ 1262 if (pass++ < 3) { 1263 put_page(p); 1264 shake_page(p); 1265 count_increased = false; 1266 goto try_again; 1267 } 1268 put_page(p); 1269 ret = -EIO; 1270 } 1271 out: 1272 if (ret == -EIO) 1273 dump_page(p, "hwpoison: unhandlable page"); 1274 1275 return ret; 1276 } 1277 1278 static int __get_unpoison_page(struct page *page) 1279 { 1280 struct page *head = compound_head(page); 1281 int ret = 0; 1282 bool hugetlb = false; 1283 1284 ret = get_hwpoison_huge_page(head, &hugetlb); 1285 if (hugetlb) 1286 return ret; 1287 1288 /* 1289 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1290 * but also isolated from buddy freelist, so need to identify the 1291 * state and have to cancel both operations to unpoison. 1292 */ 1293 if (PageHWPoisonTakenOff(page)) 1294 return -EHWPOISON; 1295 1296 return get_page_unless_zero(page) ? 1 : 0; 1297 } 1298 1299 /** 1300 * get_hwpoison_page() - Get refcount for memory error handling 1301 * @p: Raw error page (hit by memory error) 1302 * @flags: Flags controlling behavior of error handling 1303 * 1304 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1305 * error on it, after checking that the error page is in a well-defined state 1306 * (defined as a page-type we can successfully handle the memory error on it, 1307 * such as LRU page and hugetlb page). 1308 * 1309 * Memory error handling could be triggered at any time on any type of page, 1310 * so it's prone to race with typical memory management lifecycle (like 1311 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1312 * extra care for the error page's state (as done in __get_hwpoison_page()), 1313 * and has some retry logic in get_any_page(). 1314 * 1315 * When called from unpoison_memory(), the caller should already ensure that 1316 * the given page has PG_hwpoison. So it's never reused for other page 1317 * allocations, and __get_unpoison_page() never races with them. 1318 * 1319 * Return: 0 on failure, 1320 * 1 on success for in-use pages in a well-defined state, 1321 * -EIO for pages on which we can not handle memory errors, 1322 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1323 * operations like allocation and free, 1324 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1325 */ 1326 static int get_hwpoison_page(struct page *p, unsigned long flags) 1327 { 1328 int ret; 1329 1330 zone_pcp_disable(page_zone(p)); 1331 if (flags & MF_UNPOISON) 1332 ret = __get_unpoison_page(p); 1333 else 1334 ret = get_any_page(p, flags); 1335 zone_pcp_enable(page_zone(p)); 1336 1337 return ret; 1338 } 1339 1340 /* 1341 * Do all that is necessary to remove user space mappings. Unmap 1342 * the pages and send SIGBUS to the processes if the data was dirty. 1343 */ 1344 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1345 int flags, struct page *hpage) 1346 { 1347 struct folio *folio = page_folio(hpage); 1348 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1349 struct address_space *mapping; 1350 LIST_HEAD(tokill); 1351 bool unmap_success; 1352 int kill = 1, forcekill; 1353 bool mlocked = PageMlocked(hpage); 1354 1355 /* 1356 * Here we are interested only in user-mapped pages, so skip any 1357 * other types of pages. 1358 */ 1359 if (PageReserved(p) || PageSlab(p)) 1360 return true; 1361 if (!(PageLRU(hpage) || PageHuge(p))) 1362 return true; 1363 1364 /* 1365 * This check implies we don't kill processes if their pages 1366 * are in the swap cache early. Those are always late kills. 1367 */ 1368 if (!page_mapped(hpage)) 1369 return true; 1370 1371 if (PageKsm(p)) { 1372 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1373 return false; 1374 } 1375 1376 if (PageSwapCache(p)) { 1377 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1378 pfn); 1379 ttu |= TTU_IGNORE_HWPOISON; 1380 } 1381 1382 /* 1383 * Propagate the dirty bit from PTEs to struct page first, because we 1384 * need this to decide if we should kill or just drop the page. 1385 * XXX: the dirty test could be racy: set_page_dirty() may not always 1386 * be called inside page lock (it's recommended but not enforced). 1387 */ 1388 mapping = page_mapping(hpage); 1389 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1390 mapping_can_writeback(mapping)) { 1391 if (page_mkclean(hpage)) { 1392 SetPageDirty(hpage); 1393 } else { 1394 kill = 0; 1395 ttu |= TTU_IGNORE_HWPOISON; 1396 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1397 pfn); 1398 } 1399 } 1400 1401 /* 1402 * First collect all the processes that have the page 1403 * mapped in dirty form. This has to be done before try_to_unmap, 1404 * because ttu takes the rmap data structures down. 1405 * 1406 * Error handling: We ignore errors here because 1407 * there's nothing that can be done. 1408 */ 1409 if (kill) 1410 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1411 1412 if (PageHuge(hpage) && !PageAnon(hpage)) { 1413 /* 1414 * For hugetlb pages in shared mappings, try_to_unmap 1415 * could potentially call huge_pmd_unshare. Because of 1416 * this, take semaphore in write mode here and set 1417 * TTU_RMAP_LOCKED to indicate we have taken the lock 1418 * at this higher level. 1419 */ 1420 mapping = hugetlb_page_mapping_lock_write(hpage); 1421 if (mapping) { 1422 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1423 i_mmap_unlock_write(mapping); 1424 } else 1425 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1426 } else { 1427 try_to_unmap(folio, ttu); 1428 } 1429 1430 unmap_success = !page_mapped(hpage); 1431 if (!unmap_success) 1432 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1433 pfn, page_mapcount(hpage)); 1434 1435 /* 1436 * try_to_unmap() might put mlocked page in lru cache, so call 1437 * shake_page() again to ensure that it's flushed. 1438 */ 1439 if (mlocked) 1440 shake_page(hpage); 1441 1442 /* 1443 * Now that the dirty bit has been propagated to the 1444 * struct page and all unmaps done we can decide if 1445 * killing is needed or not. Only kill when the page 1446 * was dirty or the process is not restartable, 1447 * otherwise the tokill list is merely 1448 * freed. When there was a problem unmapping earlier 1449 * use a more force-full uncatchable kill to prevent 1450 * any accesses to the poisoned memory. 1451 */ 1452 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1453 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1454 1455 return unmap_success; 1456 } 1457 1458 static int identify_page_state(unsigned long pfn, struct page *p, 1459 unsigned long page_flags) 1460 { 1461 struct page_state *ps; 1462 1463 /* 1464 * The first check uses the current page flags which may not have any 1465 * relevant information. The second check with the saved page flags is 1466 * carried out only if the first check can't determine the page status. 1467 */ 1468 for (ps = error_states;; ps++) 1469 if ((p->flags & ps->mask) == ps->res) 1470 break; 1471 1472 page_flags |= (p->flags & (1UL << PG_dirty)); 1473 1474 if (!ps->mask) 1475 for (ps = error_states;; ps++) 1476 if ((page_flags & ps->mask) == ps->res) 1477 break; 1478 return page_action(ps, p, pfn); 1479 } 1480 1481 static int try_to_split_thp_page(struct page *page, const char *msg) 1482 { 1483 lock_page(page); 1484 if (unlikely(split_huge_page(page))) { 1485 unsigned long pfn = page_to_pfn(page); 1486 1487 unlock_page(page); 1488 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1489 put_page(page); 1490 return -EBUSY; 1491 } 1492 unlock_page(page); 1493 1494 return 0; 1495 } 1496 1497 /* 1498 * Called from hugetlb code with hugetlb_lock held. 1499 * 1500 * Return values: 1501 * 0 - free hugepage 1502 * 1 - in-use hugepage 1503 * 2 - not a hugepage 1504 * -EBUSY - the hugepage is busy (try to retry) 1505 * -EHWPOISON - the hugepage is already hwpoisoned 1506 */ 1507 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1508 { 1509 struct page *page = pfn_to_page(pfn); 1510 struct page *head = compound_head(page); 1511 int ret = 2; /* fallback to normal page handling */ 1512 bool count_increased = false; 1513 1514 if (!PageHeadHuge(head)) 1515 goto out; 1516 1517 if (flags & MF_COUNT_INCREASED) { 1518 ret = 1; 1519 count_increased = true; 1520 } else if (HPageFreed(head)) { 1521 ret = 0; 1522 } else if (HPageMigratable(head)) { 1523 ret = get_page_unless_zero(head); 1524 if (ret) 1525 count_increased = true; 1526 } else { 1527 ret = -EBUSY; 1528 goto out; 1529 } 1530 1531 if (TestSetPageHWPoison(head)) { 1532 ret = -EHWPOISON; 1533 goto out; 1534 } 1535 1536 return ret; 1537 out: 1538 if (count_increased) 1539 put_page(head); 1540 return ret; 1541 } 1542 1543 #ifdef CONFIG_HUGETLB_PAGE 1544 /* 1545 * Taking refcount of hugetlb pages needs extra care about race conditions 1546 * with basic operations like hugepage allocation/free/demotion. 1547 * So some of prechecks for hwpoison (pinning, and testing/setting 1548 * PageHWPoison) should be done in single hugetlb_lock range. 1549 */ 1550 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1551 { 1552 int res; 1553 struct page *p = pfn_to_page(pfn); 1554 struct page *head; 1555 unsigned long page_flags; 1556 bool retry = true; 1557 1558 *hugetlb = 1; 1559 retry: 1560 res = get_huge_page_for_hwpoison(pfn, flags); 1561 if (res == 2) { /* fallback to normal page handling */ 1562 *hugetlb = 0; 1563 return 0; 1564 } else if (res == -EHWPOISON) { 1565 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); 1566 if (flags & MF_ACTION_REQUIRED) { 1567 head = compound_head(p); 1568 res = kill_accessing_process(current, page_to_pfn(head), flags); 1569 } 1570 return res; 1571 } else if (res == -EBUSY) { 1572 if (retry) { 1573 retry = false; 1574 goto retry; 1575 } 1576 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1577 return res; 1578 } 1579 1580 head = compound_head(p); 1581 lock_page(head); 1582 1583 if (hwpoison_filter(p)) { 1584 ClearPageHWPoison(head); 1585 res = -EOPNOTSUPP; 1586 goto out; 1587 } 1588 1589 num_poisoned_pages_inc(); 1590 1591 /* 1592 * Handling free hugepage. The possible race with hugepage allocation 1593 * or demotion can be prevented by PageHWPoison flag. 1594 */ 1595 if (res == 0) { 1596 unlock_page(head); 1597 res = MF_FAILED; 1598 if (__page_handle_poison(p)) { 1599 page_ref_inc(p); 1600 res = MF_RECOVERED; 1601 } 1602 action_result(pfn, MF_MSG_FREE_HUGE, res); 1603 return res == MF_RECOVERED ? 0 : -EBUSY; 1604 } 1605 1606 page_flags = head->flags; 1607 1608 /* 1609 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1610 * simply disable it. In order to make it work properly, we need 1611 * make sure that: 1612 * - conversion of a pud that maps an error hugetlb into hwpoison 1613 * entry properly works, and 1614 * - other mm code walking over page table is aware of pud-aligned 1615 * hwpoison entries. 1616 */ 1617 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1618 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1619 res = -EBUSY; 1620 goto out; 1621 } 1622 1623 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1624 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1625 res = -EBUSY; 1626 goto out; 1627 } 1628 1629 return identify_page_state(pfn, p, page_flags); 1630 out: 1631 unlock_page(head); 1632 return res; 1633 } 1634 #else 1635 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1636 { 1637 return 0; 1638 } 1639 #endif 1640 1641 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1642 struct dev_pagemap *pgmap) 1643 { 1644 struct page *page = pfn_to_page(pfn); 1645 unsigned long size = 0; 1646 struct to_kill *tk; 1647 LIST_HEAD(tokill); 1648 int rc = -EBUSY; 1649 loff_t start; 1650 dax_entry_t cookie; 1651 1652 if (flags & MF_COUNT_INCREASED) 1653 /* 1654 * Drop the extra refcount in case we come from madvise(). 1655 */ 1656 put_page(page); 1657 1658 /* device metadata space is not recoverable */ 1659 if (!pgmap_pfn_valid(pgmap, pfn)) { 1660 rc = -ENXIO; 1661 goto out; 1662 } 1663 1664 /* 1665 * Pages instantiated by device-dax (not filesystem-dax) 1666 * may be compound pages. 1667 */ 1668 page = compound_head(page); 1669 1670 /* 1671 * Prevent the inode from being freed while we are interrogating 1672 * the address_space, typically this would be handled by 1673 * lock_page(), but dax pages do not use the page lock. This 1674 * also prevents changes to the mapping of this pfn until 1675 * poison signaling is complete. 1676 */ 1677 cookie = dax_lock_page(page); 1678 if (!cookie) 1679 goto out; 1680 1681 if (hwpoison_filter(page)) { 1682 rc = -EOPNOTSUPP; 1683 goto unlock; 1684 } 1685 1686 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1687 /* 1688 * TODO: Handle HMM pages which may need coordination 1689 * with device-side memory. 1690 */ 1691 goto unlock; 1692 } 1693 1694 /* 1695 * Use this flag as an indication that the dax page has been 1696 * remapped UC to prevent speculative consumption of poison. 1697 */ 1698 SetPageHWPoison(page); 1699 1700 /* 1701 * Unlike System-RAM there is no possibility to swap in a 1702 * different physical page at a given virtual address, so all 1703 * userspace consumption of ZONE_DEVICE memory necessitates 1704 * SIGBUS (i.e. MF_MUST_KILL) 1705 */ 1706 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1707 collect_procs(page, &tokill, true); 1708 1709 list_for_each_entry(tk, &tokill, nd) 1710 if (tk->size_shift) 1711 size = max(size, 1UL << tk->size_shift); 1712 if (size) { 1713 /* 1714 * Unmap the largest mapping to avoid breaking up 1715 * device-dax mappings which are constant size. The 1716 * actual size of the mapping being torn down is 1717 * communicated in siginfo, see kill_proc() 1718 */ 1719 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1720 unmap_mapping_range(page->mapping, start, size, 0); 1721 } 1722 kill_procs(&tokill, true, false, pfn, flags); 1723 rc = 0; 1724 unlock: 1725 dax_unlock_page(page, cookie); 1726 out: 1727 /* drop pgmap ref acquired in caller */ 1728 put_dev_pagemap(pgmap); 1729 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1730 return rc; 1731 } 1732 1733 static DEFINE_MUTEX(mf_mutex); 1734 1735 /** 1736 * memory_failure - Handle memory failure of a page. 1737 * @pfn: Page Number of the corrupted page 1738 * @flags: fine tune action taken 1739 * 1740 * This function is called by the low level machine check code 1741 * of an architecture when it detects hardware memory corruption 1742 * of a page. It tries its best to recover, which includes 1743 * dropping pages, killing processes etc. 1744 * 1745 * The function is primarily of use for corruptions that 1746 * happen outside the current execution context (e.g. when 1747 * detected by a background scrubber) 1748 * 1749 * Must run in process context (e.g. a work queue) with interrupts 1750 * enabled and no spinlocks hold. 1751 * 1752 * Return: 0 for successfully handled the memory error, 1753 * -EOPNOTSUPP for memory_filter() filtered the error event, 1754 * < 0(except -EOPNOTSUPP) on failure. 1755 */ 1756 int memory_failure(unsigned long pfn, int flags) 1757 { 1758 struct page *p; 1759 struct page *hpage; 1760 struct dev_pagemap *pgmap; 1761 int res = 0; 1762 unsigned long page_flags; 1763 bool retry = true; 1764 int hugetlb = 0; 1765 1766 if (!sysctl_memory_failure_recovery) 1767 panic("Memory failure on page %lx", pfn); 1768 1769 mutex_lock(&mf_mutex); 1770 1771 p = pfn_to_online_page(pfn); 1772 if (!p) { 1773 res = arch_memory_failure(pfn, flags); 1774 if (res == 0) 1775 goto unlock_mutex; 1776 1777 if (pfn_valid(pfn)) { 1778 pgmap = get_dev_pagemap(pfn, NULL); 1779 if (pgmap) { 1780 res = memory_failure_dev_pagemap(pfn, flags, 1781 pgmap); 1782 goto unlock_mutex; 1783 } 1784 } 1785 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1786 pfn); 1787 res = -ENXIO; 1788 goto unlock_mutex; 1789 } 1790 1791 try_again: 1792 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 1793 if (hugetlb) 1794 goto unlock_mutex; 1795 1796 if (TestSetPageHWPoison(p)) { 1797 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1798 pfn); 1799 res = -EHWPOISON; 1800 if (flags & MF_ACTION_REQUIRED) 1801 res = kill_accessing_process(current, pfn, flags); 1802 if (flags & MF_COUNT_INCREASED) 1803 put_page(p); 1804 goto unlock_mutex; 1805 } 1806 1807 hpage = compound_head(p); 1808 num_poisoned_pages_inc(); 1809 1810 /* 1811 * We need/can do nothing about count=0 pages. 1812 * 1) it's a free page, and therefore in safe hand: 1813 * prep_new_page() will be the gate keeper. 1814 * 2) it's part of a non-compound high order page. 1815 * Implies some kernel user: cannot stop them from 1816 * R/W the page; let's pray that the page has been 1817 * used and will be freed some time later. 1818 * In fact it's dangerous to directly bump up page count from 0, 1819 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1820 */ 1821 if (!(flags & MF_COUNT_INCREASED)) { 1822 res = get_hwpoison_page(p, flags); 1823 if (!res) { 1824 if (is_free_buddy_page(p)) { 1825 if (take_page_off_buddy(p)) { 1826 page_ref_inc(p); 1827 res = MF_RECOVERED; 1828 } else { 1829 /* We lost the race, try again */ 1830 if (retry) { 1831 ClearPageHWPoison(p); 1832 num_poisoned_pages_dec(); 1833 retry = false; 1834 goto try_again; 1835 } 1836 res = MF_FAILED; 1837 } 1838 action_result(pfn, MF_MSG_BUDDY, res); 1839 res = res == MF_RECOVERED ? 0 : -EBUSY; 1840 } else { 1841 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1842 res = -EBUSY; 1843 } 1844 goto unlock_mutex; 1845 } else if (res < 0) { 1846 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1847 res = -EBUSY; 1848 goto unlock_mutex; 1849 } 1850 } 1851 1852 if (PageTransHuge(hpage)) { 1853 /* 1854 * Bail out before SetPageHasHWPoisoned() if hpage is 1855 * huge_zero_page, although PG_has_hwpoisoned is not 1856 * checked in set_huge_zero_page(). 1857 * 1858 * TODO: Handle memory failure of huge_zero_page thoroughly. 1859 */ 1860 if (is_huge_zero_page(hpage)) { 1861 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1862 res = -EBUSY; 1863 goto unlock_mutex; 1864 } 1865 1866 /* 1867 * The flag must be set after the refcount is bumped 1868 * otherwise it may race with THP split. 1869 * And the flag can't be set in get_hwpoison_page() since 1870 * it is called by soft offline too and it is just called 1871 * for !MF_COUNT_INCREASE. So here seems to be the best 1872 * place. 1873 * 1874 * Don't need care about the above error handling paths for 1875 * get_hwpoison_page() since they handle either free page 1876 * or unhandlable page. The refcount is bumped iff the 1877 * page is a valid handlable page. 1878 */ 1879 SetPageHasHWPoisoned(hpage); 1880 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1881 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1882 res = -EBUSY; 1883 goto unlock_mutex; 1884 } 1885 VM_BUG_ON_PAGE(!page_count(p), p); 1886 } 1887 1888 /* 1889 * We ignore non-LRU pages for good reasons. 1890 * - PG_locked is only well defined for LRU pages and a few others 1891 * - to avoid races with __SetPageLocked() 1892 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1893 * The check (unnecessarily) ignores LRU pages being isolated and 1894 * walked by the page reclaim code, however that's not a big loss. 1895 */ 1896 shake_page(p); 1897 1898 lock_page(p); 1899 1900 /* 1901 * We're only intended to deal with the non-Compound page here. 1902 * However, the page could have changed compound pages due to 1903 * race window. If this happens, we could try again to hopefully 1904 * handle the page next round. 1905 */ 1906 if (PageCompound(p)) { 1907 if (retry) { 1908 if (TestClearPageHWPoison(p)) 1909 num_poisoned_pages_dec(); 1910 unlock_page(p); 1911 put_page(p); 1912 flags &= ~MF_COUNT_INCREASED; 1913 retry = false; 1914 goto try_again; 1915 } 1916 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1917 res = -EBUSY; 1918 goto unlock_page; 1919 } 1920 1921 /* 1922 * We use page flags to determine what action should be taken, but 1923 * the flags can be modified by the error containment action. One 1924 * example is an mlocked page, where PG_mlocked is cleared by 1925 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1926 * correctly, we save a copy of the page flags at this time. 1927 */ 1928 page_flags = p->flags; 1929 1930 if (hwpoison_filter(p)) { 1931 if (TestClearPageHWPoison(p)) 1932 num_poisoned_pages_dec(); 1933 unlock_page(p); 1934 put_page(p); 1935 res = -EOPNOTSUPP; 1936 goto unlock_mutex; 1937 } 1938 1939 /* 1940 * __munlock_pagevec may clear a writeback page's LRU flag without 1941 * page_lock. We need wait writeback completion for this page or it 1942 * may trigger vfs BUG while evict inode. 1943 */ 1944 if (!PageLRU(p) && !PageWriteback(p)) 1945 goto identify_page_state; 1946 1947 /* 1948 * It's very difficult to mess with pages currently under IO 1949 * and in many cases impossible, so we just avoid it here. 1950 */ 1951 wait_on_page_writeback(p); 1952 1953 /* 1954 * Now take care of user space mappings. 1955 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1956 */ 1957 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1958 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1959 res = -EBUSY; 1960 goto unlock_page; 1961 } 1962 1963 /* 1964 * Torn down by someone else? 1965 */ 1966 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1967 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1968 res = -EBUSY; 1969 goto unlock_page; 1970 } 1971 1972 identify_page_state: 1973 res = identify_page_state(pfn, p, page_flags); 1974 mutex_unlock(&mf_mutex); 1975 return res; 1976 unlock_page: 1977 unlock_page(p); 1978 unlock_mutex: 1979 mutex_unlock(&mf_mutex); 1980 return res; 1981 } 1982 EXPORT_SYMBOL_GPL(memory_failure); 1983 1984 #define MEMORY_FAILURE_FIFO_ORDER 4 1985 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1986 1987 struct memory_failure_entry { 1988 unsigned long pfn; 1989 int flags; 1990 }; 1991 1992 struct memory_failure_cpu { 1993 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1994 MEMORY_FAILURE_FIFO_SIZE); 1995 spinlock_t lock; 1996 struct work_struct work; 1997 }; 1998 1999 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2000 2001 /** 2002 * memory_failure_queue - Schedule handling memory failure of a page. 2003 * @pfn: Page Number of the corrupted page 2004 * @flags: Flags for memory failure handling 2005 * 2006 * This function is called by the low level hardware error handler 2007 * when it detects hardware memory corruption of a page. It schedules 2008 * the recovering of error page, including dropping pages, killing 2009 * processes etc. 2010 * 2011 * The function is primarily of use for corruptions that 2012 * happen outside the current execution context (e.g. when 2013 * detected by a background scrubber) 2014 * 2015 * Can run in IRQ context. 2016 */ 2017 void memory_failure_queue(unsigned long pfn, int flags) 2018 { 2019 struct memory_failure_cpu *mf_cpu; 2020 unsigned long proc_flags; 2021 struct memory_failure_entry entry = { 2022 .pfn = pfn, 2023 .flags = flags, 2024 }; 2025 2026 mf_cpu = &get_cpu_var(memory_failure_cpu); 2027 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2028 if (kfifo_put(&mf_cpu->fifo, entry)) 2029 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2030 else 2031 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 2032 pfn); 2033 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2034 put_cpu_var(memory_failure_cpu); 2035 } 2036 EXPORT_SYMBOL_GPL(memory_failure_queue); 2037 2038 static void memory_failure_work_func(struct work_struct *work) 2039 { 2040 struct memory_failure_cpu *mf_cpu; 2041 struct memory_failure_entry entry = { 0, }; 2042 unsigned long proc_flags; 2043 int gotten; 2044 2045 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2046 for (;;) { 2047 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2048 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2049 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2050 if (!gotten) 2051 break; 2052 if (entry.flags & MF_SOFT_OFFLINE) 2053 soft_offline_page(entry.pfn, entry.flags); 2054 else 2055 memory_failure(entry.pfn, entry.flags); 2056 } 2057 } 2058 2059 /* 2060 * Process memory_failure work queued on the specified CPU. 2061 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2062 */ 2063 void memory_failure_queue_kick(int cpu) 2064 { 2065 struct memory_failure_cpu *mf_cpu; 2066 2067 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2068 cancel_work_sync(&mf_cpu->work); 2069 memory_failure_work_func(&mf_cpu->work); 2070 } 2071 2072 static int __init memory_failure_init(void) 2073 { 2074 struct memory_failure_cpu *mf_cpu; 2075 int cpu; 2076 2077 for_each_possible_cpu(cpu) { 2078 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2079 spin_lock_init(&mf_cpu->lock); 2080 INIT_KFIFO(mf_cpu->fifo); 2081 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2082 } 2083 2084 return 0; 2085 } 2086 core_initcall(memory_failure_init); 2087 2088 #define unpoison_pr_info(fmt, pfn, rs) \ 2089 ({ \ 2090 if (__ratelimit(rs)) \ 2091 pr_info(fmt, pfn); \ 2092 }) 2093 2094 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p) 2095 { 2096 if (TestClearPageHWPoison(p)) { 2097 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2098 page_to_pfn(p), rs); 2099 num_poisoned_pages_dec(); 2100 return 1; 2101 } 2102 return 0; 2103 } 2104 2105 static inline int unpoison_taken_off_page(struct ratelimit_state *rs, 2106 struct page *p) 2107 { 2108 if (put_page_back_buddy(p)) { 2109 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2110 page_to_pfn(p), rs); 2111 return 0; 2112 } 2113 return -EBUSY; 2114 } 2115 2116 /** 2117 * unpoison_memory - Unpoison a previously poisoned page 2118 * @pfn: Page number of the to be unpoisoned page 2119 * 2120 * Software-unpoison a page that has been poisoned by 2121 * memory_failure() earlier. 2122 * 2123 * This is only done on the software-level, so it only works 2124 * for linux injected failures, not real hardware failures 2125 * 2126 * Returns 0 for success, otherwise -errno. 2127 */ 2128 int unpoison_memory(unsigned long pfn) 2129 { 2130 struct page *page; 2131 struct page *p; 2132 int ret = -EBUSY; 2133 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2134 DEFAULT_RATELIMIT_BURST); 2135 2136 if (!pfn_valid(pfn)) 2137 return -ENXIO; 2138 2139 p = pfn_to_page(pfn); 2140 page = compound_head(p); 2141 2142 mutex_lock(&mf_mutex); 2143 2144 if (!PageHWPoison(p)) { 2145 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2146 pfn, &unpoison_rs); 2147 goto unlock_mutex; 2148 } 2149 2150 if (page_count(page) > 1) { 2151 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2152 pfn, &unpoison_rs); 2153 goto unlock_mutex; 2154 } 2155 2156 if (page_mapped(page)) { 2157 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2158 pfn, &unpoison_rs); 2159 goto unlock_mutex; 2160 } 2161 2162 if (page_mapping(page)) { 2163 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2164 pfn, &unpoison_rs); 2165 goto unlock_mutex; 2166 } 2167 2168 if (PageSlab(page) || PageTable(page)) 2169 goto unlock_mutex; 2170 2171 ret = get_hwpoison_page(p, MF_UNPOISON); 2172 if (!ret) { 2173 if (clear_page_hwpoison(&unpoison_rs, page)) 2174 ret = 0; 2175 else 2176 ret = -EBUSY; 2177 } else if (ret < 0) { 2178 if (ret == -EHWPOISON) { 2179 ret = unpoison_taken_off_page(&unpoison_rs, p); 2180 } else 2181 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2182 pfn, &unpoison_rs); 2183 } else { 2184 int freeit = clear_page_hwpoison(&unpoison_rs, p); 2185 2186 put_page(page); 2187 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2188 put_page(page); 2189 ret = 0; 2190 } 2191 } 2192 2193 unlock_mutex: 2194 mutex_unlock(&mf_mutex); 2195 return ret; 2196 } 2197 EXPORT_SYMBOL(unpoison_memory); 2198 2199 static bool isolate_page(struct page *page, struct list_head *pagelist) 2200 { 2201 bool isolated = false; 2202 bool lru = PageLRU(page); 2203 2204 if (PageHuge(page)) { 2205 isolated = isolate_huge_page(page, pagelist); 2206 } else { 2207 if (lru) 2208 isolated = !isolate_lru_page(page); 2209 else 2210 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2211 2212 if (isolated) 2213 list_add(&page->lru, pagelist); 2214 } 2215 2216 if (isolated && lru) 2217 inc_node_page_state(page, NR_ISOLATED_ANON + 2218 page_is_file_lru(page)); 2219 2220 /* 2221 * If we succeed to isolate the page, we grabbed another refcount on 2222 * the page, so we can safely drop the one we got from get_any_pages(). 2223 * If we failed to isolate the page, it means that we cannot go further 2224 * and we will return an error, so drop the reference we got from 2225 * get_any_pages() as well. 2226 */ 2227 put_page(page); 2228 return isolated; 2229 } 2230 2231 /* 2232 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2233 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2234 * If the page is mapped, it migrates the contents over. 2235 */ 2236 static int __soft_offline_page(struct page *page) 2237 { 2238 long ret = 0; 2239 unsigned long pfn = page_to_pfn(page); 2240 struct page *hpage = compound_head(page); 2241 char const *msg_page[] = {"page", "hugepage"}; 2242 bool huge = PageHuge(page); 2243 LIST_HEAD(pagelist); 2244 struct migration_target_control mtc = { 2245 .nid = NUMA_NO_NODE, 2246 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2247 }; 2248 2249 lock_page(page); 2250 if (!PageHuge(page)) 2251 wait_on_page_writeback(page); 2252 if (PageHWPoison(page)) { 2253 unlock_page(page); 2254 put_page(page); 2255 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2256 return 0; 2257 } 2258 2259 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2260 /* 2261 * Try to invalidate first. This should work for 2262 * non dirty unmapped page cache pages. 2263 */ 2264 ret = invalidate_inode_page(page); 2265 unlock_page(page); 2266 2267 if (ret) { 2268 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2269 page_handle_poison(page, false, true); 2270 return 0; 2271 } 2272 2273 if (isolate_page(hpage, &pagelist)) { 2274 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2275 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2276 if (!ret) { 2277 bool release = !huge; 2278 2279 if (!page_handle_poison(page, huge, release)) 2280 ret = -EBUSY; 2281 } else { 2282 if (!list_empty(&pagelist)) 2283 putback_movable_pages(&pagelist); 2284 2285 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2286 pfn, msg_page[huge], ret, &page->flags); 2287 if (ret > 0) 2288 ret = -EBUSY; 2289 } 2290 } else { 2291 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2292 pfn, msg_page[huge], page_count(page), &page->flags); 2293 ret = -EBUSY; 2294 } 2295 return ret; 2296 } 2297 2298 static int soft_offline_in_use_page(struct page *page) 2299 { 2300 struct page *hpage = compound_head(page); 2301 2302 if (!PageHuge(page) && PageTransHuge(hpage)) 2303 if (try_to_split_thp_page(page, "soft offline") < 0) 2304 return -EBUSY; 2305 return __soft_offline_page(page); 2306 } 2307 2308 static int soft_offline_free_page(struct page *page) 2309 { 2310 int rc = 0; 2311 2312 if (!page_handle_poison(page, true, false)) 2313 rc = -EBUSY; 2314 2315 return rc; 2316 } 2317 2318 static void put_ref_page(struct page *page) 2319 { 2320 if (page) 2321 put_page(page); 2322 } 2323 2324 /** 2325 * soft_offline_page - Soft offline a page. 2326 * @pfn: pfn to soft-offline 2327 * @flags: flags. Same as memory_failure(). 2328 * 2329 * Returns 0 on success, otherwise negated errno. 2330 * 2331 * Soft offline a page, by migration or invalidation, 2332 * without killing anything. This is for the case when 2333 * a page is not corrupted yet (so it's still valid to access), 2334 * but has had a number of corrected errors and is better taken 2335 * out. 2336 * 2337 * The actual policy on when to do that is maintained by 2338 * user space. 2339 * 2340 * This should never impact any application or cause data loss, 2341 * however it might take some time. 2342 * 2343 * This is not a 100% solution for all memory, but tries to be 2344 * ``good enough'' for the majority of memory. 2345 */ 2346 int soft_offline_page(unsigned long pfn, int flags) 2347 { 2348 int ret; 2349 bool try_again = true; 2350 struct page *page, *ref_page = NULL; 2351 2352 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2353 2354 if (!pfn_valid(pfn)) 2355 return -ENXIO; 2356 if (flags & MF_COUNT_INCREASED) 2357 ref_page = pfn_to_page(pfn); 2358 2359 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2360 page = pfn_to_online_page(pfn); 2361 if (!page) { 2362 put_ref_page(ref_page); 2363 return -EIO; 2364 } 2365 2366 mutex_lock(&mf_mutex); 2367 2368 if (PageHWPoison(page)) { 2369 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2370 put_ref_page(ref_page); 2371 mutex_unlock(&mf_mutex); 2372 return 0; 2373 } 2374 2375 retry: 2376 get_online_mems(); 2377 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2378 put_online_mems(); 2379 2380 if (ret > 0) { 2381 ret = soft_offline_in_use_page(page); 2382 } else if (ret == 0) { 2383 if (soft_offline_free_page(page) && try_again) { 2384 try_again = false; 2385 flags &= ~MF_COUNT_INCREASED; 2386 goto retry; 2387 } 2388 } 2389 2390 mutex_unlock(&mf_mutex); 2391 2392 return ret; 2393 } 2394