xref: /openbmc/linux/mm/memory-failure.c (revision 42c06a0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 	{ }
145 };
146 
147 /*
148  * Return values:
149  *   1:   the page is dissolved (if needed) and taken off from buddy,
150  *   0:   the page is dissolved (if needed) and not taken off from buddy,
151  *   < 0: failed to dissolve.
152  */
153 static int __page_handle_poison(struct page *page)
154 {
155 	int ret;
156 
157 	zone_pcp_disable(page_zone(page));
158 	ret = dissolve_free_huge_page(page);
159 	if (!ret)
160 		ret = take_page_off_buddy(page);
161 	zone_pcp_enable(page_zone(page));
162 
163 	return ret;
164 }
165 
166 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
167 {
168 	if (hugepage_or_freepage) {
169 		/*
170 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 		 * returns 0 for non-hugetlb pages as well.
172 		 */
173 		if (__page_handle_poison(page) <= 0)
174 			/*
175 			 * We could fail to take off the target page from buddy
176 			 * for example due to racy page allocation, but that's
177 			 * acceptable because soft-offlined page is not broken
178 			 * and if someone really want to use it, they should
179 			 * take it.
180 			 */
181 			return false;
182 	}
183 
184 	SetPageHWPoison(page);
185 	if (release)
186 		put_page(page);
187 	page_ref_inc(page);
188 	num_poisoned_pages_inc(page_to_pfn(page));
189 
190 	return true;
191 }
192 
193 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
194 
195 u32 hwpoison_filter_enable = 0;
196 u32 hwpoison_filter_dev_major = ~0U;
197 u32 hwpoison_filter_dev_minor = ~0U;
198 u64 hwpoison_filter_flags_mask;
199 u64 hwpoison_filter_flags_value;
200 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
201 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
205 
206 static int hwpoison_filter_dev(struct page *p)
207 {
208 	struct address_space *mapping;
209 	dev_t dev;
210 
211 	if (hwpoison_filter_dev_major == ~0U &&
212 	    hwpoison_filter_dev_minor == ~0U)
213 		return 0;
214 
215 	mapping = page_mapping(p);
216 	if (mapping == NULL || mapping->host == NULL)
217 		return -EINVAL;
218 
219 	dev = mapping->host->i_sb->s_dev;
220 	if (hwpoison_filter_dev_major != ~0U &&
221 	    hwpoison_filter_dev_major != MAJOR(dev))
222 		return -EINVAL;
223 	if (hwpoison_filter_dev_minor != ~0U &&
224 	    hwpoison_filter_dev_minor != MINOR(dev))
225 		return -EINVAL;
226 
227 	return 0;
228 }
229 
230 static int hwpoison_filter_flags(struct page *p)
231 {
232 	if (!hwpoison_filter_flags_mask)
233 		return 0;
234 
235 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 				    hwpoison_filter_flags_value)
237 		return 0;
238 	else
239 		return -EINVAL;
240 }
241 
242 /*
243  * This allows stress tests to limit test scope to a collection of tasks
244  * by putting them under some memcg. This prevents killing unrelated/important
245  * processes such as /sbin/init. Note that the target task may share clean
246  * pages with init (eg. libc text), which is harmless. If the target task
247  * share _dirty_ pages with another task B, the test scheme must make sure B
248  * is also included in the memcg. At last, due to race conditions this filter
249  * can only guarantee that the page either belongs to the memcg tasks, or is
250  * a freed page.
251  */
252 #ifdef CONFIG_MEMCG
253 u64 hwpoison_filter_memcg;
254 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
255 static int hwpoison_filter_task(struct page *p)
256 {
257 	if (!hwpoison_filter_memcg)
258 		return 0;
259 
260 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
261 		return -EINVAL;
262 
263 	return 0;
264 }
265 #else
266 static int hwpoison_filter_task(struct page *p) { return 0; }
267 #endif
268 
269 int hwpoison_filter(struct page *p)
270 {
271 	if (!hwpoison_filter_enable)
272 		return 0;
273 
274 	if (hwpoison_filter_dev(p))
275 		return -EINVAL;
276 
277 	if (hwpoison_filter_flags(p))
278 		return -EINVAL;
279 
280 	if (hwpoison_filter_task(p))
281 		return -EINVAL;
282 
283 	return 0;
284 }
285 #else
286 int hwpoison_filter(struct page *p)
287 {
288 	return 0;
289 }
290 #endif
291 
292 EXPORT_SYMBOL_GPL(hwpoison_filter);
293 
294 /*
295  * Kill all processes that have a poisoned page mapped and then isolate
296  * the page.
297  *
298  * General strategy:
299  * Find all processes having the page mapped and kill them.
300  * But we keep a page reference around so that the page is not
301  * actually freed yet.
302  * Then stash the page away
303  *
304  * There's no convenient way to get back to mapped processes
305  * from the VMAs. So do a brute-force search over all
306  * running processes.
307  *
308  * Remember that machine checks are not common (or rather
309  * if they are common you have other problems), so this shouldn't
310  * be a performance issue.
311  *
312  * Also there are some races possible while we get from the
313  * error detection to actually handle it.
314  */
315 
316 struct to_kill {
317 	struct list_head nd;
318 	struct task_struct *tsk;
319 	unsigned long addr;
320 	short size_shift;
321 };
322 
323 /*
324  * Send all the processes who have the page mapped a signal.
325  * ``action optional'' if they are not immediately affected by the error
326  * ``action required'' if error happened in current execution context
327  */
328 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
329 {
330 	struct task_struct *t = tk->tsk;
331 	short addr_lsb = tk->size_shift;
332 	int ret = 0;
333 
334 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
335 			pfn, t->comm, t->pid);
336 
337 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 		ret = force_sig_mceerr(BUS_MCEERR_AR,
339 				 (void __user *)tk->addr, addr_lsb);
340 	else
341 		/*
342 		 * Signal other processes sharing the page if they have
343 		 * PF_MCE_EARLY set.
344 		 * Don't use force here, it's convenient if the signal
345 		 * can be temporarily blocked.
346 		 * This could cause a loop when the user sets SIGBUS
347 		 * to SIG_IGN, but hopefully no one will do that?
348 		 */
349 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
350 				      addr_lsb, t);
351 	if (ret < 0)
352 		pr_info("Error sending signal to %s:%d: %d\n",
353 			t->comm, t->pid, ret);
354 	return ret;
355 }
356 
357 /*
358  * Unknown page type encountered. Try to check whether it can turn PageLRU by
359  * lru_add_drain_all.
360  */
361 void shake_page(struct page *p)
362 {
363 	if (PageHuge(p))
364 		return;
365 	/*
366 	 * TODO: Could shrink slab caches here if a lightweight range-based
367 	 * shrinker will be available.
368 	 */
369 	if (PageSlab(p))
370 		return;
371 
372 	lru_add_drain_all();
373 }
374 EXPORT_SYMBOL_GPL(shake_page);
375 
376 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 		unsigned long address)
378 {
379 	unsigned long ret = 0;
380 	pgd_t *pgd;
381 	p4d_t *p4d;
382 	pud_t *pud;
383 	pmd_t *pmd;
384 	pte_t *pte;
385 	pte_t ptent;
386 
387 	VM_BUG_ON_VMA(address == -EFAULT, vma);
388 	pgd = pgd_offset(vma->vm_mm, address);
389 	if (!pgd_present(*pgd))
390 		return 0;
391 	p4d = p4d_offset(pgd, address);
392 	if (!p4d_present(*p4d))
393 		return 0;
394 	pud = pud_offset(p4d, address);
395 	if (!pud_present(*pud))
396 		return 0;
397 	if (pud_devmap(*pud))
398 		return PUD_SHIFT;
399 	pmd = pmd_offset(pud, address);
400 	if (!pmd_present(*pmd))
401 		return 0;
402 	if (pmd_devmap(*pmd))
403 		return PMD_SHIFT;
404 	pte = pte_offset_map(pmd, address);
405 	if (!pte)
406 		return 0;
407 	ptent = ptep_get(pte);
408 	if (pte_present(ptent) && pte_devmap(ptent))
409 		ret = PAGE_SHIFT;
410 	pte_unmap(pte);
411 	return ret;
412 }
413 
414 /*
415  * Failure handling: if we can't find or can't kill a process there's
416  * not much we can do.	We just print a message and ignore otherwise.
417  */
418 
419 #define FSDAX_INVALID_PGOFF ULONG_MAX
420 
421 /*
422  * Schedule a process for later kill.
423  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
424  *
425  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426  * filesystem with a memory failure handler has claimed the
427  * memory_failure event. In all other cases, page->index and
428  * page->mapping are sufficient for mapping the page back to its
429  * corresponding user virtual address.
430  */
431 static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 			  struct vm_area_struct *vma, struct list_head *to_kill,
433 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
434 {
435 	struct to_kill *tk;
436 
437 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 	if (!tk) {
439 		pr_err("Out of memory while machine check handling\n");
440 		return;
441 	}
442 
443 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
444 	if (is_zone_device_page(p)) {
445 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
446 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 	} else
449 		tk->size_shift = page_shift(compound_head(p));
450 
451 	/*
452 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 	 * so "tk->size_shift == 0" effectively checks no mapping on
455 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 	 * to a process' address space, it's possible not all N VMAs
457 	 * contain mappings for the page, but at least one VMA does.
458 	 * Only deliver SIGBUS with payload derived from the VMA that
459 	 * has a mapping for the page.
460 	 */
461 	if (tk->addr == -EFAULT) {
462 		pr_info("Unable to find user space address %lx in %s\n",
463 			page_to_pfn(p), tsk->comm);
464 	} else if (tk->size_shift == 0) {
465 		kfree(tk);
466 		return;
467 	}
468 
469 	get_task_struct(tsk);
470 	tk->tsk = tsk;
471 	list_add_tail(&tk->nd, to_kill);
472 }
473 
474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 				  struct vm_area_struct *vma,
476 				  struct list_head *to_kill)
477 {
478 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479 }
480 
481 #ifdef CONFIG_KSM
482 static bool task_in_to_kill_list(struct list_head *to_kill,
483 				 struct task_struct *tsk)
484 {
485 	struct to_kill *tk, *next;
486 
487 	list_for_each_entry_safe(tk, next, to_kill, nd) {
488 		if (tk->tsk == tsk)
489 			return true;
490 	}
491 
492 	return false;
493 }
494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 		     struct vm_area_struct *vma, struct list_head *to_kill,
496 		     unsigned long ksm_addr)
497 {
498 	if (!task_in_to_kill_list(to_kill, tsk))
499 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500 }
501 #endif
502 /*
503  * Kill the processes that have been collected earlier.
504  *
505  * Only do anything when FORCEKILL is set, otherwise just free the
506  * list (this is used for clean pages which do not need killing)
507  * Also when FAIL is set do a force kill because something went
508  * wrong earlier.
509  */
510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 		unsigned long pfn, int flags)
512 {
513 	struct to_kill *tk, *next;
514 
515 	list_for_each_entry_safe(tk, next, to_kill, nd) {
516 		if (forcekill) {
517 			/*
518 			 * In case something went wrong with munmapping
519 			 * make sure the process doesn't catch the
520 			 * signal and then access the memory. Just kill it.
521 			 */
522 			if (fail || tk->addr == -EFAULT) {
523 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
524 				       pfn, tk->tsk->comm, tk->tsk->pid);
525 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 						 tk->tsk, PIDTYPE_PID);
527 			}
528 
529 			/*
530 			 * In theory the process could have mapped
531 			 * something else on the address in-between. We could
532 			 * check for that, but we need to tell the
533 			 * process anyways.
534 			 */
535 			else if (kill_proc(tk, pfn, flags) < 0)
536 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
537 				       pfn, tk->tsk->comm, tk->tsk->pid);
538 		}
539 		list_del(&tk->nd);
540 		put_task_struct(tk->tsk);
541 		kfree(tk);
542 	}
543 }
544 
545 /*
546  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547  * on behalf of the thread group. Return task_struct of the (first found)
548  * dedicated thread if found, and return NULL otherwise.
549  *
550  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
551  * have to call rcu_read_lock/unlock() in this function.
552  */
553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
554 {
555 	struct task_struct *t;
556 
557 	for_each_thread(tsk, t) {
558 		if (t->flags & PF_MCE_PROCESS) {
559 			if (t->flags & PF_MCE_EARLY)
560 				return t;
561 		} else {
562 			if (sysctl_memory_failure_early_kill)
563 				return t;
564 		}
565 	}
566 	return NULL;
567 }
568 
569 /*
570  * Determine whether a given process is "early kill" process which expects
571  * to be signaled when some page under the process is hwpoisoned.
572  * Return task_struct of the dedicated thread (main thread unless explicitly
573  * specified) if the process is "early kill" and otherwise returns NULL.
574  *
575  * Note that the above is true for Action Optional case. For Action Required
576  * case, it's only meaningful to the current thread which need to be signaled
577  * with SIGBUS, this error is Action Optional for other non current
578  * processes sharing the same error page,if the process is "early kill", the
579  * task_struct of the dedicated thread will also be returned.
580  */
581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
582 {
583 	if (!tsk->mm)
584 		return NULL;
585 	/*
586 	 * Comparing ->mm here because current task might represent
587 	 * a subthread, while tsk always points to the main thread.
588 	 */
589 	if (force_early && tsk->mm == current->mm)
590 		return current;
591 
592 	return find_early_kill_thread(tsk);
593 }
594 
595 /*
596  * Collect processes when the error hit an anonymous page.
597  */
598 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
599 				int force_early)
600 {
601 	struct folio *folio = page_folio(page);
602 	struct vm_area_struct *vma;
603 	struct task_struct *tsk;
604 	struct anon_vma *av;
605 	pgoff_t pgoff;
606 
607 	av = folio_lock_anon_vma_read(folio, NULL);
608 	if (av == NULL)	/* Not actually mapped anymore */
609 		return;
610 
611 	pgoff = page_to_pgoff(page);
612 	read_lock(&tasklist_lock);
613 	for_each_process(tsk) {
614 		struct anon_vma_chain *vmac;
615 		struct task_struct *t = task_early_kill(tsk, force_early);
616 
617 		if (!t)
618 			continue;
619 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
620 					       pgoff, pgoff) {
621 			vma = vmac->vma;
622 			if (vma->vm_mm != t->mm)
623 				continue;
624 			if (!page_mapped_in_vma(page, vma))
625 				continue;
626 			add_to_kill_anon_file(t, page, vma, to_kill);
627 		}
628 	}
629 	read_unlock(&tasklist_lock);
630 	anon_vma_unlock_read(av);
631 }
632 
633 /*
634  * Collect processes when the error hit a file mapped page.
635  */
636 static void collect_procs_file(struct page *page, struct list_head *to_kill,
637 				int force_early)
638 {
639 	struct vm_area_struct *vma;
640 	struct task_struct *tsk;
641 	struct address_space *mapping = page->mapping;
642 	pgoff_t pgoff;
643 
644 	i_mmap_lock_read(mapping);
645 	read_lock(&tasklist_lock);
646 	pgoff = page_to_pgoff(page);
647 	for_each_process(tsk) {
648 		struct task_struct *t = task_early_kill(tsk, force_early);
649 
650 		if (!t)
651 			continue;
652 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
653 				      pgoff) {
654 			/*
655 			 * Send early kill signal to tasks where a vma covers
656 			 * the page but the corrupted page is not necessarily
657 			 * mapped in its pte.
658 			 * Assume applications who requested early kill want
659 			 * to be informed of all such data corruptions.
660 			 */
661 			if (vma->vm_mm == t->mm)
662 				add_to_kill_anon_file(t, page, vma, to_kill);
663 		}
664 	}
665 	read_unlock(&tasklist_lock);
666 	i_mmap_unlock_read(mapping);
667 }
668 
669 #ifdef CONFIG_FS_DAX
670 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
671 			      struct vm_area_struct *vma,
672 			      struct list_head *to_kill, pgoff_t pgoff)
673 {
674 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
675 }
676 
677 /*
678  * Collect processes when the error hit a fsdax page.
679  */
680 static void collect_procs_fsdax(struct page *page,
681 		struct address_space *mapping, pgoff_t pgoff,
682 		struct list_head *to_kill)
683 {
684 	struct vm_area_struct *vma;
685 	struct task_struct *tsk;
686 
687 	i_mmap_lock_read(mapping);
688 	read_lock(&tasklist_lock);
689 	for_each_process(tsk) {
690 		struct task_struct *t = task_early_kill(tsk, true);
691 
692 		if (!t)
693 			continue;
694 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
695 			if (vma->vm_mm == t->mm)
696 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
697 		}
698 	}
699 	read_unlock(&tasklist_lock);
700 	i_mmap_unlock_read(mapping);
701 }
702 #endif /* CONFIG_FS_DAX */
703 
704 /*
705  * Collect the processes who have the corrupted page mapped to kill.
706  */
707 static void collect_procs(struct page *page, struct list_head *tokill,
708 				int force_early)
709 {
710 	if (!page->mapping)
711 		return;
712 	if (unlikely(PageKsm(page)))
713 		collect_procs_ksm(page, tokill, force_early);
714 	else if (PageAnon(page))
715 		collect_procs_anon(page, tokill, force_early);
716 	else
717 		collect_procs_file(page, tokill, force_early);
718 }
719 
720 struct hwp_walk {
721 	struct to_kill tk;
722 	unsigned long pfn;
723 	int flags;
724 };
725 
726 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
727 {
728 	tk->addr = addr;
729 	tk->size_shift = shift;
730 }
731 
732 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
733 				unsigned long poisoned_pfn, struct to_kill *tk)
734 {
735 	unsigned long pfn = 0;
736 
737 	if (pte_present(pte)) {
738 		pfn = pte_pfn(pte);
739 	} else {
740 		swp_entry_t swp = pte_to_swp_entry(pte);
741 
742 		if (is_hwpoison_entry(swp))
743 			pfn = swp_offset_pfn(swp);
744 	}
745 
746 	if (!pfn || pfn != poisoned_pfn)
747 		return 0;
748 
749 	set_to_kill(tk, addr, shift);
750 	return 1;
751 }
752 
753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
754 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
755 				      struct hwp_walk *hwp)
756 {
757 	pmd_t pmd = *pmdp;
758 	unsigned long pfn;
759 	unsigned long hwpoison_vaddr;
760 
761 	if (!pmd_present(pmd))
762 		return 0;
763 	pfn = pmd_pfn(pmd);
764 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
765 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
766 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
767 		return 1;
768 	}
769 	return 0;
770 }
771 #else
772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773 				      struct hwp_walk *hwp)
774 {
775 	return 0;
776 }
777 #endif
778 
779 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
780 			      unsigned long end, struct mm_walk *walk)
781 {
782 	struct hwp_walk *hwp = walk->private;
783 	int ret = 0;
784 	pte_t *ptep, *mapped_pte;
785 	spinlock_t *ptl;
786 
787 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
788 	if (ptl) {
789 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
790 		spin_unlock(ptl);
791 		goto out;
792 	}
793 
794 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
795 						addr, &ptl);
796 	if (!ptep)
797 		goto out;
798 
799 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
800 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
801 					     hwp->pfn, &hwp->tk);
802 		if (ret == 1)
803 			break;
804 	}
805 	pte_unmap_unlock(mapped_pte, ptl);
806 out:
807 	cond_resched();
808 	return ret;
809 }
810 
811 #ifdef CONFIG_HUGETLB_PAGE
812 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
813 			    unsigned long addr, unsigned long end,
814 			    struct mm_walk *walk)
815 {
816 	struct hwp_walk *hwp = walk->private;
817 	pte_t pte = huge_ptep_get(ptep);
818 	struct hstate *h = hstate_vma(walk->vma);
819 
820 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
821 				      hwp->pfn, &hwp->tk);
822 }
823 #else
824 #define hwpoison_hugetlb_range	NULL
825 #endif
826 
827 static const struct mm_walk_ops hwp_walk_ops = {
828 	.pmd_entry = hwpoison_pte_range,
829 	.hugetlb_entry = hwpoison_hugetlb_range,
830 };
831 
832 /*
833  * Sends SIGBUS to the current process with error info.
834  *
835  * This function is intended to handle "Action Required" MCEs on already
836  * hardware poisoned pages. They could happen, for example, when
837  * memory_failure() failed to unmap the error page at the first call, or
838  * when multiple local machine checks happened on different CPUs.
839  *
840  * MCE handler currently has no easy access to the error virtual address,
841  * so this function walks page table to find it. The returned virtual address
842  * is proper in most cases, but it could be wrong when the application
843  * process has multiple entries mapping the error page.
844  */
845 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
846 				  int flags)
847 {
848 	int ret;
849 	struct hwp_walk priv = {
850 		.pfn = pfn,
851 	};
852 	priv.tk.tsk = p;
853 
854 	if (!p->mm)
855 		return -EFAULT;
856 
857 	mmap_read_lock(p->mm);
858 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
859 			      (void *)&priv);
860 	if (ret == 1 && priv.tk.addr)
861 		kill_proc(&priv.tk, pfn, flags);
862 	else
863 		ret = 0;
864 	mmap_read_unlock(p->mm);
865 	return ret > 0 ? -EHWPOISON : -EFAULT;
866 }
867 
868 static const char *action_name[] = {
869 	[MF_IGNORED] = "Ignored",
870 	[MF_FAILED] = "Failed",
871 	[MF_DELAYED] = "Delayed",
872 	[MF_RECOVERED] = "Recovered",
873 };
874 
875 static const char * const action_page_types[] = {
876 	[MF_MSG_KERNEL]			= "reserved kernel page",
877 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
878 	[MF_MSG_SLAB]			= "kernel slab page",
879 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
880 	[MF_MSG_HUGE]			= "huge page",
881 	[MF_MSG_FREE_HUGE]		= "free huge page",
882 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
883 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
884 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
885 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
886 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
887 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
888 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
889 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
890 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
891 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
892 	[MF_MSG_BUDDY]			= "free buddy page",
893 	[MF_MSG_DAX]			= "dax page",
894 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
895 	[MF_MSG_UNKNOWN]		= "unknown page",
896 };
897 
898 /*
899  * XXX: It is possible that a page is isolated from LRU cache,
900  * and then kept in swap cache or failed to remove from page cache.
901  * The page count will stop it from being freed by unpoison.
902  * Stress tests should be aware of this memory leak problem.
903  */
904 static int delete_from_lru_cache(struct page *p)
905 {
906 	if (isolate_lru_page(p)) {
907 		/*
908 		 * Clear sensible page flags, so that the buddy system won't
909 		 * complain when the page is unpoison-and-freed.
910 		 */
911 		ClearPageActive(p);
912 		ClearPageUnevictable(p);
913 
914 		/*
915 		 * Poisoned page might never drop its ref count to 0 so we have
916 		 * to uncharge it manually from its memcg.
917 		 */
918 		mem_cgroup_uncharge(page_folio(p));
919 
920 		/*
921 		 * drop the page count elevated by isolate_lru_page()
922 		 */
923 		put_page(p);
924 		return 0;
925 	}
926 	return -EIO;
927 }
928 
929 static int truncate_error_page(struct page *p, unsigned long pfn,
930 				struct address_space *mapping)
931 {
932 	int ret = MF_FAILED;
933 
934 	if (mapping->a_ops->error_remove_page) {
935 		struct folio *folio = page_folio(p);
936 		int err = mapping->a_ops->error_remove_page(mapping, p);
937 
938 		if (err != 0)
939 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
940 		else if (!filemap_release_folio(folio, GFP_NOIO))
941 			pr_info("%#lx: failed to release buffers\n", pfn);
942 		else
943 			ret = MF_RECOVERED;
944 	} else {
945 		/*
946 		 * If the file system doesn't support it just invalidate
947 		 * This fails on dirty or anything with private pages
948 		 */
949 		if (invalidate_inode_page(p))
950 			ret = MF_RECOVERED;
951 		else
952 			pr_info("%#lx: Failed to invalidate\n",	pfn);
953 	}
954 
955 	return ret;
956 }
957 
958 struct page_state {
959 	unsigned long mask;
960 	unsigned long res;
961 	enum mf_action_page_type type;
962 
963 	/* Callback ->action() has to unlock the relevant page inside it. */
964 	int (*action)(struct page_state *ps, struct page *p);
965 };
966 
967 /*
968  * Return true if page is still referenced by others, otherwise return
969  * false.
970  *
971  * The extra_pins is true when one extra refcount is expected.
972  */
973 static bool has_extra_refcount(struct page_state *ps, struct page *p,
974 			       bool extra_pins)
975 {
976 	int count = page_count(p) - 1;
977 
978 	if (extra_pins)
979 		count -= 1;
980 
981 	if (count > 0) {
982 		pr_err("%#lx: %s still referenced by %d users\n",
983 		       page_to_pfn(p), action_page_types[ps->type], count);
984 		return true;
985 	}
986 
987 	return false;
988 }
989 
990 /*
991  * Error hit kernel page.
992  * Do nothing, try to be lucky and not touch this instead. For a few cases we
993  * could be more sophisticated.
994  */
995 static int me_kernel(struct page_state *ps, struct page *p)
996 {
997 	unlock_page(p);
998 	return MF_IGNORED;
999 }
1000 
1001 /*
1002  * Page in unknown state. Do nothing.
1003  */
1004 static int me_unknown(struct page_state *ps, struct page *p)
1005 {
1006 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1007 	unlock_page(p);
1008 	return MF_FAILED;
1009 }
1010 
1011 /*
1012  * Clean (or cleaned) page cache page.
1013  */
1014 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1015 {
1016 	int ret;
1017 	struct address_space *mapping;
1018 	bool extra_pins;
1019 
1020 	delete_from_lru_cache(p);
1021 
1022 	/*
1023 	 * For anonymous pages we're done the only reference left
1024 	 * should be the one m_f() holds.
1025 	 */
1026 	if (PageAnon(p)) {
1027 		ret = MF_RECOVERED;
1028 		goto out;
1029 	}
1030 
1031 	/*
1032 	 * Now truncate the page in the page cache. This is really
1033 	 * more like a "temporary hole punch"
1034 	 * Don't do this for block devices when someone else
1035 	 * has a reference, because it could be file system metadata
1036 	 * and that's not safe to truncate.
1037 	 */
1038 	mapping = page_mapping(p);
1039 	if (!mapping) {
1040 		/*
1041 		 * Page has been teared down in the meanwhile
1042 		 */
1043 		ret = MF_FAILED;
1044 		goto out;
1045 	}
1046 
1047 	/*
1048 	 * The shmem page is kept in page cache instead of truncating
1049 	 * so is expected to have an extra refcount after error-handling.
1050 	 */
1051 	extra_pins = shmem_mapping(mapping);
1052 
1053 	/*
1054 	 * Truncation is a bit tricky. Enable it per file system for now.
1055 	 *
1056 	 * Open: to take i_rwsem or not for this? Right now we don't.
1057 	 */
1058 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1059 	if (has_extra_refcount(ps, p, extra_pins))
1060 		ret = MF_FAILED;
1061 
1062 out:
1063 	unlock_page(p);
1064 
1065 	return ret;
1066 }
1067 
1068 /*
1069  * Dirty pagecache page
1070  * Issues: when the error hit a hole page the error is not properly
1071  * propagated.
1072  */
1073 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1074 {
1075 	struct address_space *mapping = page_mapping(p);
1076 
1077 	SetPageError(p);
1078 	/* TBD: print more information about the file. */
1079 	if (mapping) {
1080 		/*
1081 		 * IO error will be reported by write(), fsync(), etc.
1082 		 * who check the mapping.
1083 		 * This way the application knows that something went
1084 		 * wrong with its dirty file data.
1085 		 *
1086 		 * There's one open issue:
1087 		 *
1088 		 * The EIO will be only reported on the next IO
1089 		 * operation and then cleared through the IO map.
1090 		 * Normally Linux has two mechanisms to pass IO error
1091 		 * first through the AS_EIO flag in the address space
1092 		 * and then through the PageError flag in the page.
1093 		 * Since we drop pages on memory failure handling the
1094 		 * only mechanism open to use is through AS_AIO.
1095 		 *
1096 		 * This has the disadvantage that it gets cleared on
1097 		 * the first operation that returns an error, while
1098 		 * the PageError bit is more sticky and only cleared
1099 		 * when the page is reread or dropped.  If an
1100 		 * application assumes it will always get error on
1101 		 * fsync, but does other operations on the fd before
1102 		 * and the page is dropped between then the error
1103 		 * will not be properly reported.
1104 		 *
1105 		 * This can already happen even without hwpoisoned
1106 		 * pages: first on metadata IO errors (which only
1107 		 * report through AS_EIO) or when the page is dropped
1108 		 * at the wrong time.
1109 		 *
1110 		 * So right now we assume that the application DTRT on
1111 		 * the first EIO, but we're not worse than other parts
1112 		 * of the kernel.
1113 		 */
1114 		mapping_set_error(mapping, -EIO);
1115 	}
1116 
1117 	return me_pagecache_clean(ps, p);
1118 }
1119 
1120 /*
1121  * Clean and dirty swap cache.
1122  *
1123  * Dirty swap cache page is tricky to handle. The page could live both in page
1124  * cache and swap cache(ie. page is freshly swapped in). So it could be
1125  * referenced concurrently by 2 types of PTEs:
1126  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1127  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1128  * and then
1129  *      - clear dirty bit to prevent IO
1130  *      - remove from LRU
1131  *      - but keep in the swap cache, so that when we return to it on
1132  *        a later page fault, we know the application is accessing
1133  *        corrupted data and shall be killed (we installed simple
1134  *        interception code in do_swap_page to catch it).
1135  *
1136  * Clean swap cache pages can be directly isolated. A later page fault will
1137  * bring in the known good data from disk.
1138  */
1139 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1140 {
1141 	int ret;
1142 	bool extra_pins = false;
1143 
1144 	ClearPageDirty(p);
1145 	/* Trigger EIO in shmem: */
1146 	ClearPageUptodate(p);
1147 
1148 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1149 	unlock_page(p);
1150 
1151 	if (ret == MF_DELAYED)
1152 		extra_pins = true;
1153 
1154 	if (has_extra_refcount(ps, p, extra_pins))
1155 		ret = MF_FAILED;
1156 
1157 	return ret;
1158 }
1159 
1160 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1161 {
1162 	struct folio *folio = page_folio(p);
1163 	int ret;
1164 
1165 	delete_from_swap_cache(folio);
1166 
1167 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1168 	folio_unlock(folio);
1169 
1170 	if (has_extra_refcount(ps, p, false))
1171 		ret = MF_FAILED;
1172 
1173 	return ret;
1174 }
1175 
1176 /*
1177  * Huge pages. Needs work.
1178  * Issues:
1179  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1180  *   To narrow down kill region to one page, we need to break up pmd.
1181  */
1182 static int me_huge_page(struct page_state *ps, struct page *p)
1183 {
1184 	int res;
1185 	struct page *hpage = compound_head(p);
1186 	struct address_space *mapping;
1187 	bool extra_pins = false;
1188 
1189 	mapping = page_mapping(hpage);
1190 	if (mapping) {
1191 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1192 		/* The page is kept in page cache. */
1193 		extra_pins = true;
1194 		unlock_page(hpage);
1195 	} else {
1196 		unlock_page(hpage);
1197 		/*
1198 		 * migration entry prevents later access on error hugepage,
1199 		 * so we can free and dissolve it into buddy to save healthy
1200 		 * subpages.
1201 		 */
1202 		put_page(hpage);
1203 		if (__page_handle_poison(p) >= 0) {
1204 			page_ref_inc(p);
1205 			res = MF_RECOVERED;
1206 		} else {
1207 			res = MF_FAILED;
1208 		}
1209 	}
1210 
1211 	if (has_extra_refcount(ps, p, extra_pins))
1212 		res = MF_FAILED;
1213 
1214 	return res;
1215 }
1216 
1217 /*
1218  * Various page states we can handle.
1219  *
1220  * A page state is defined by its current page->flags bits.
1221  * The table matches them in order and calls the right handler.
1222  *
1223  * This is quite tricky because we can access page at any time
1224  * in its live cycle, so all accesses have to be extremely careful.
1225  *
1226  * This is not complete. More states could be added.
1227  * For any missing state don't attempt recovery.
1228  */
1229 
1230 #define dirty		(1UL << PG_dirty)
1231 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1232 #define unevict		(1UL << PG_unevictable)
1233 #define mlock		(1UL << PG_mlocked)
1234 #define lru		(1UL << PG_lru)
1235 #define head		(1UL << PG_head)
1236 #define slab		(1UL << PG_slab)
1237 #define reserved	(1UL << PG_reserved)
1238 
1239 static struct page_state error_states[] = {
1240 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1241 	/*
1242 	 * free pages are specially detected outside this table:
1243 	 * PG_buddy pages only make a small fraction of all free pages.
1244 	 */
1245 
1246 	/*
1247 	 * Could in theory check if slab page is free or if we can drop
1248 	 * currently unused objects without touching them. But just
1249 	 * treat it as standard kernel for now.
1250 	 */
1251 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1252 
1253 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1254 
1255 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1256 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1257 
1258 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1259 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1260 
1261 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1262 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1263 
1264 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1265 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1266 
1267 	/*
1268 	 * Catchall entry: must be at end.
1269 	 */
1270 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1271 };
1272 
1273 #undef dirty
1274 #undef sc
1275 #undef unevict
1276 #undef mlock
1277 #undef lru
1278 #undef head
1279 #undef slab
1280 #undef reserved
1281 
1282 static void update_per_node_mf_stats(unsigned long pfn,
1283 				     enum mf_result result)
1284 {
1285 	int nid = MAX_NUMNODES;
1286 	struct memory_failure_stats *mf_stats = NULL;
1287 
1288 	nid = pfn_to_nid(pfn);
1289 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1290 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1291 		return;
1292 	}
1293 
1294 	mf_stats = &NODE_DATA(nid)->mf_stats;
1295 	switch (result) {
1296 	case MF_IGNORED:
1297 		++mf_stats->ignored;
1298 		break;
1299 	case MF_FAILED:
1300 		++mf_stats->failed;
1301 		break;
1302 	case MF_DELAYED:
1303 		++mf_stats->delayed;
1304 		break;
1305 	case MF_RECOVERED:
1306 		++mf_stats->recovered;
1307 		break;
1308 	default:
1309 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1310 		break;
1311 	}
1312 	++mf_stats->total;
1313 }
1314 
1315 /*
1316  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1317  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1318  */
1319 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1320 			 enum mf_result result)
1321 {
1322 	trace_memory_failure_event(pfn, type, result);
1323 
1324 	num_poisoned_pages_inc(pfn);
1325 
1326 	update_per_node_mf_stats(pfn, result);
1327 
1328 	pr_err("%#lx: recovery action for %s: %s\n",
1329 		pfn, action_page_types[type], action_name[result]);
1330 
1331 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1332 }
1333 
1334 static int page_action(struct page_state *ps, struct page *p,
1335 			unsigned long pfn)
1336 {
1337 	int result;
1338 
1339 	/* page p should be unlocked after returning from ps->action().  */
1340 	result = ps->action(ps, p);
1341 
1342 	/* Could do more checks here if page looks ok */
1343 	/*
1344 	 * Could adjust zone counters here to correct for the missing page.
1345 	 */
1346 
1347 	return action_result(pfn, ps->type, result);
1348 }
1349 
1350 static inline bool PageHWPoisonTakenOff(struct page *page)
1351 {
1352 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1353 }
1354 
1355 void SetPageHWPoisonTakenOff(struct page *page)
1356 {
1357 	set_page_private(page, MAGIC_HWPOISON);
1358 }
1359 
1360 void ClearPageHWPoisonTakenOff(struct page *page)
1361 {
1362 	if (PageHWPoison(page))
1363 		set_page_private(page, 0);
1364 }
1365 
1366 /*
1367  * Return true if a page type of a given page is supported by hwpoison
1368  * mechanism (while handling could fail), otherwise false.  This function
1369  * does not return true for hugetlb or device memory pages, so it's assumed
1370  * to be called only in the context where we never have such pages.
1371  */
1372 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1373 {
1374 	/* Soft offline could migrate non-LRU movable pages */
1375 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1376 		return true;
1377 
1378 	return PageLRU(page) || is_free_buddy_page(page);
1379 }
1380 
1381 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1382 {
1383 	struct folio *folio = page_folio(page);
1384 	int ret = 0;
1385 	bool hugetlb = false;
1386 
1387 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1388 	if (hugetlb) {
1389 		/* Make sure hugetlb demotion did not happen from under us. */
1390 		if (folio == page_folio(page))
1391 			return ret;
1392 		if (ret > 0) {
1393 			folio_put(folio);
1394 			folio = page_folio(page);
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * This check prevents from calling folio_try_get() for any
1400 	 * unsupported type of folio in order to reduce the risk of unexpected
1401 	 * races caused by taking a folio refcount.
1402 	 */
1403 	if (!HWPoisonHandlable(&folio->page, flags))
1404 		return -EBUSY;
1405 
1406 	if (folio_try_get(folio)) {
1407 		if (folio == page_folio(page))
1408 			return 1;
1409 
1410 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1411 		folio_put(folio);
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 static int get_any_page(struct page *p, unsigned long flags)
1418 {
1419 	int ret = 0, pass = 0;
1420 	bool count_increased = false;
1421 
1422 	if (flags & MF_COUNT_INCREASED)
1423 		count_increased = true;
1424 
1425 try_again:
1426 	if (!count_increased) {
1427 		ret = __get_hwpoison_page(p, flags);
1428 		if (!ret) {
1429 			if (page_count(p)) {
1430 				/* We raced with an allocation, retry. */
1431 				if (pass++ < 3)
1432 					goto try_again;
1433 				ret = -EBUSY;
1434 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1435 				/* We raced with put_page, retry. */
1436 				if (pass++ < 3)
1437 					goto try_again;
1438 				ret = -EIO;
1439 			}
1440 			goto out;
1441 		} else if (ret == -EBUSY) {
1442 			/*
1443 			 * We raced with (possibly temporary) unhandlable
1444 			 * page, retry.
1445 			 */
1446 			if (pass++ < 3) {
1447 				shake_page(p);
1448 				goto try_again;
1449 			}
1450 			ret = -EIO;
1451 			goto out;
1452 		}
1453 	}
1454 
1455 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1456 		ret = 1;
1457 	} else {
1458 		/*
1459 		 * A page we cannot handle. Check whether we can turn
1460 		 * it into something we can handle.
1461 		 */
1462 		if (pass++ < 3) {
1463 			put_page(p);
1464 			shake_page(p);
1465 			count_increased = false;
1466 			goto try_again;
1467 		}
1468 		put_page(p);
1469 		ret = -EIO;
1470 	}
1471 out:
1472 	if (ret == -EIO)
1473 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1474 
1475 	return ret;
1476 }
1477 
1478 static int __get_unpoison_page(struct page *page)
1479 {
1480 	struct folio *folio = page_folio(page);
1481 	int ret = 0;
1482 	bool hugetlb = false;
1483 
1484 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1485 	if (hugetlb) {
1486 		/* Make sure hugetlb demotion did not happen from under us. */
1487 		if (folio == page_folio(page))
1488 			return ret;
1489 		if (ret > 0)
1490 			folio_put(folio);
1491 	}
1492 
1493 	/*
1494 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1495 	 * but also isolated from buddy freelist, so need to identify the
1496 	 * state and have to cancel both operations to unpoison.
1497 	 */
1498 	if (PageHWPoisonTakenOff(page))
1499 		return -EHWPOISON;
1500 
1501 	return get_page_unless_zero(page) ? 1 : 0;
1502 }
1503 
1504 /**
1505  * get_hwpoison_page() - Get refcount for memory error handling
1506  * @p:		Raw error page (hit by memory error)
1507  * @flags:	Flags controlling behavior of error handling
1508  *
1509  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1510  * error on it, after checking that the error page is in a well-defined state
1511  * (defined as a page-type we can successfully handle the memory error on it,
1512  * such as LRU page and hugetlb page).
1513  *
1514  * Memory error handling could be triggered at any time on any type of page,
1515  * so it's prone to race with typical memory management lifecycle (like
1516  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1517  * extra care for the error page's state (as done in __get_hwpoison_page()),
1518  * and has some retry logic in get_any_page().
1519  *
1520  * When called from unpoison_memory(), the caller should already ensure that
1521  * the given page has PG_hwpoison. So it's never reused for other page
1522  * allocations, and __get_unpoison_page() never races with them.
1523  *
1524  * Return: 0 on failure,
1525  *         1 on success for in-use pages in a well-defined state,
1526  *         -EIO for pages on which we can not handle memory errors,
1527  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1528  *         operations like allocation and free,
1529  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1530  */
1531 static int get_hwpoison_page(struct page *p, unsigned long flags)
1532 {
1533 	int ret;
1534 
1535 	zone_pcp_disable(page_zone(p));
1536 	if (flags & MF_UNPOISON)
1537 		ret = __get_unpoison_page(p);
1538 	else
1539 		ret = get_any_page(p, flags);
1540 	zone_pcp_enable(page_zone(p));
1541 
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Do all that is necessary to remove user space mappings. Unmap
1547  * the pages and send SIGBUS to the processes if the data was dirty.
1548  */
1549 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1550 				  int flags, struct page *hpage)
1551 {
1552 	struct folio *folio = page_folio(hpage);
1553 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1554 	struct address_space *mapping;
1555 	LIST_HEAD(tokill);
1556 	bool unmap_success;
1557 	int forcekill;
1558 	bool mlocked = PageMlocked(hpage);
1559 
1560 	/*
1561 	 * Here we are interested only in user-mapped pages, so skip any
1562 	 * other types of pages.
1563 	 */
1564 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1565 		return true;
1566 	if (!(PageLRU(hpage) || PageHuge(p)))
1567 		return true;
1568 
1569 	/*
1570 	 * This check implies we don't kill processes if their pages
1571 	 * are in the swap cache early. Those are always late kills.
1572 	 */
1573 	if (!page_mapped(hpage))
1574 		return true;
1575 
1576 	if (PageSwapCache(p)) {
1577 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1578 		ttu &= ~TTU_HWPOISON;
1579 	}
1580 
1581 	/*
1582 	 * Propagate the dirty bit from PTEs to struct page first, because we
1583 	 * need this to decide if we should kill or just drop the page.
1584 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1585 	 * be called inside page lock (it's recommended but not enforced).
1586 	 */
1587 	mapping = page_mapping(hpage);
1588 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1589 	    mapping_can_writeback(mapping)) {
1590 		if (page_mkclean(hpage)) {
1591 			SetPageDirty(hpage);
1592 		} else {
1593 			ttu &= ~TTU_HWPOISON;
1594 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1595 				pfn);
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * First collect all the processes that have the page
1601 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1602 	 * because ttu takes the rmap data structures down.
1603 	 */
1604 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1605 
1606 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1607 		/*
1608 		 * For hugetlb pages in shared mappings, try_to_unmap
1609 		 * could potentially call huge_pmd_unshare.  Because of
1610 		 * this, take semaphore in write mode here and set
1611 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1612 		 * at this higher level.
1613 		 */
1614 		mapping = hugetlb_page_mapping_lock_write(hpage);
1615 		if (mapping) {
1616 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1617 			i_mmap_unlock_write(mapping);
1618 		} else
1619 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1620 	} else {
1621 		try_to_unmap(folio, ttu);
1622 	}
1623 
1624 	unmap_success = !page_mapped(hpage);
1625 	if (!unmap_success)
1626 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1627 		       pfn, page_mapcount(hpage));
1628 
1629 	/*
1630 	 * try_to_unmap() might put mlocked page in lru cache, so call
1631 	 * shake_page() again to ensure that it's flushed.
1632 	 */
1633 	if (mlocked)
1634 		shake_page(hpage);
1635 
1636 	/*
1637 	 * Now that the dirty bit has been propagated to the
1638 	 * struct page and all unmaps done we can decide if
1639 	 * killing is needed or not.  Only kill when the page
1640 	 * was dirty or the process is not restartable,
1641 	 * otherwise the tokill list is merely
1642 	 * freed.  When there was a problem unmapping earlier
1643 	 * use a more force-full uncatchable kill to prevent
1644 	 * any accesses to the poisoned memory.
1645 	 */
1646 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1647 		    !unmap_success;
1648 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1649 
1650 	return unmap_success;
1651 }
1652 
1653 static int identify_page_state(unsigned long pfn, struct page *p,
1654 				unsigned long page_flags)
1655 {
1656 	struct page_state *ps;
1657 
1658 	/*
1659 	 * The first check uses the current page flags which may not have any
1660 	 * relevant information. The second check with the saved page flags is
1661 	 * carried out only if the first check can't determine the page status.
1662 	 */
1663 	for (ps = error_states;; ps++)
1664 		if ((p->flags & ps->mask) == ps->res)
1665 			break;
1666 
1667 	page_flags |= (p->flags & (1UL << PG_dirty));
1668 
1669 	if (!ps->mask)
1670 		for (ps = error_states;; ps++)
1671 			if ((page_flags & ps->mask) == ps->res)
1672 				break;
1673 	return page_action(ps, p, pfn);
1674 }
1675 
1676 static int try_to_split_thp_page(struct page *page)
1677 {
1678 	int ret;
1679 
1680 	lock_page(page);
1681 	ret = split_huge_page(page);
1682 	unlock_page(page);
1683 
1684 	if (unlikely(ret))
1685 		put_page(page);
1686 
1687 	return ret;
1688 }
1689 
1690 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1691 		struct address_space *mapping, pgoff_t index, int flags)
1692 {
1693 	struct to_kill *tk;
1694 	unsigned long size = 0;
1695 
1696 	list_for_each_entry(tk, to_kill, nd)
1697 		if (tk->size_shift)
1698 			size = max(size, 1UL << tk->size_shift);
1699 
1700 	if (size) {
1701 		/*
1702 		 * Unmap the largest mapping to avoid breaking up device-dax
1703 		 * mappings which are constant size. The actual size of the
1704 		 * mapping being torn down is communicated in siginfo, see
1705 		 * kill_proc()
1706 		 */
1707 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1708 
1709 		unmap_mapping_range(mapping, start, size, 0);
1710 	}
1711 
1712 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1713 }
1714 
1715 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1716 		struct dev_pagemap *pgmap)
1717 {
1718 	struct page *page = pfn_to_page(pfn);
1719 	LIST_HEAD(to_kill);
1720 	dax_entry_t cookie;
1721 	int rc = 0;
1722 
1723 	/*
1724 	 * Pages instantiated by device-dax (not filesystem-dax)
1725 	 * may be compound pages.
1726 	 */
1727 	page = compound_head(page);
1728 
1729 	/*
1730 	 * Prevent the inode from being freed while we are interrogating
1731 	 * the address_space, typically this would be handled by
1732 	 * lock_page(), but dax pages do not use the page lock. This
1733 	 * also prevents changes to the mapping of this pfn until
1734 	 * poison signaling is complete.
1735 	 */
1736 	cookie = dax_lock_page(page);
1737 	if (!cookie)
1738 		return -EBUSY;
1739 
1740 	if (hwpoison_filter(page)) {
1741 		rc = -EOPNOTSUPP;
1742 		goto unlock;
1743 	}
1744 
1745 	switch (pgmap->type) {
1746 	case MEMORY_DEVICE_PRIVATE:
1747 	case MEMORY_DEVICE_COHERENT:
1748 		/*
1749 		 * TODO: Handle device pages which may need coordination
1750 		 * with device-side memory.
1751 		 */
1752 		rc = -ENXIO;
1753 		goto unlock;
1754 	default:
1755 		break;
1756 	}
1757 
1758 	/*
1759 	 * Use this flag as an indication that the dax page has been
1760 	 * remapped UC to prevent speculative consumption of poison.
1761 	 */
1762 	SetPageHWPoison(page);
1763 
1764 	/*
1765 	 * Unlike System-RAM there is no possibility to swap in a
1766 	 * different physical page at a given virtual address, so all
1767 	 * userspace consumption of ZONE_DEVICE memory necessitates
1768 	 * SIGBUS (i.e. MF_MUST_KILL)
1769 	 */
1770 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1771 	collect_procs(page, &to_kill, true);
1772 
1773 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1774 unlock:
1775 	dax_unlock_page(page, cookie);
1776 	return rc;
1777 }
1778 
1779 #ifdef CONFIG_FS_DAX
1780 /**
1781  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1782  * @mapping:	address_space of the file in use
1783  * @index:	start pgoff of the range within the file
1784  * @count:	length of the range, in unit of PAGE_SIZE
1785  * @mf_flags:	memory failure flags
1786  */
1787 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1788 		unsigned long count, int mf_flags)
1789 {
1790 	LIST_HEAD(to_kill);
1791 	dax_entry_t cookie;
1792 	struct page *page;
1793 	size_t end = index + count;
1794 
1795 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1796 
1797 	for (; index < end; index++) {
1798 		page = NULL;
1799 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1800 		if (!cookie)
1801 			return -EBUSY;
1802 		if (!page)
1803 			goto unlock;
1804 
1805 		SetPageHWPoison(page);
1806 
1807 		collect_procs_fsdax(page, mapping, index, &to_kill);
1808 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1809 				index, mf_flags);
1810 unlock:
1811 		dax_unlock_mapping_entry(mapping, index, cookie);
1812 	}
1813 	return 0;
1814 }
1815 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1816 #endif /* CONFIG_FS_DAX */
1817 
1818 #ifdef CONFIG_HUGETLB_PAGE
1819 
1820 /*
1821  * Struct raw_hwp_page represents information about "raw error page",
1822  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1823  */
1824 struct raw_hwp_page {
1825 	struct llist_node node;
1826 	struct page *page;
1827 };
1828 
1829 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1830 {
1831 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1832 }
1833 
1834 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1835 {
1836 	struct llist_head *raw_hwp_head;
1837 	struct raw_hwp_page *p;
1838 	struct folio *folio = page_folio(page);
1839 	bool ret = false;
1840 
1841 	if (!folio_test_hwpoison(folio))
1842 		return false;
1843 
1844 	if (!folio_test_hugetlb(folio))
1845 		return PageHWPoison(page);
1846 
1847 	/*
1848 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1849 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1850 	 */
1851 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1852 		return true;
1853 
1854 	mutex_lock(&mf_mutex);
1855 
1856 	raw_hwp_head = raw_hwp_list_head(folio);
1857 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1858 		if (page == p->page) {
1859 			ret = true;
1860 			break;
1861 		}
1862 	}
1863 
1864 	mutex_unlock(&mf_mutex);
1865 
1866 	return ret;
1867 }
1868 
1869 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1870 {
1871 	struct llist_node *t, *tnode, *head;
1872 	unsigned long count = 0;
1873 
1874 	head = llist_del_all(raw_hwp_list_head(folio));
1875 	llist_for_each_safe(tnode, t, head) {
1876 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1877 
1878 		if (move_flag)
1879 			SetPageHWPoison(p->page);
1880 		else
1881 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1882 		kfree(p);
1883 		count++;
1884 	}
1885 	return count;
1886 }
1887 
1888 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1889 {
1890 	struct llist_head *head;
1891 	struct raw_hwp_page *raw_hwp;
1892 	struct llist_node *t, *tnode;
1893 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1894 
1895 	/*
1896 	 * Once the hwpoison hugepage has lost reliable raw error info,
1897 	 * there is little meaning to keep additional error info precisely,
1898 	 * so skip to add additional raw error info.
1899 	 */
1900 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1901 		return -EHWPOISON;
1902 	head = raw_hwp_list_head(folio);
1903 	llist_for_each_safe(tnode, t, head->first) {
1904 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1905 
1906 		if (p->page == page)
1907 			return -EHWPOISON;
1908 	}
1909 
1910 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1911 	if (raw_hwp) {
1912 		raw_hwp->page = page;
1913 		llist_add(&raw_hwp->node, head);
1914 		/* the first error event will be counted in action_result(). */
1915 		if (ret)
1916 			num_poisoned_pages_inc(page_to_pfn(page));
1917 	} else {
1918 		/*
1919 		 * Failed to save raw error info.  We no longer trace all
1920 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1921 		 * this hwpoisoned hugepage.
1922 		 */
1923 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1924 		/*
1925 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1926 		 * used any more, so free it.
1927 		 */
1928 		__folio_free_raw_hwp(folio, false);
1929 	}
1930 	return ret;
1931 }
1932 
1933 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1934 {
1935 	/*
1936 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1937 	 * pages for tail pages are required but they don't exist.
1938 	 */
1939 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1940 		return 0;
1941 
1942 	/*
1943 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1944 	 * definition.
1945 	 */
1946 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1947 		return 0;
1948 
1949 	return __folio_free_raw_hwp(folio, move_flag);
1950 }
1951 
1952 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1953 {
1954 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1955 		return;
1956 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1957 		return;
1958 	folio_clear_hwpoison(folio);
1959 	folio_free_raw_hwp(folio, true);
1960 }
1961 
1962 /*
1963  * Called from hugetlb code with hugetlb_lock held.
1964  *
1965  * Return values:
1966  *   0             - free hugepage
1967  *   1             - in-use hugepage
1968  *   2             - not a hugepage
1969  *   -EBUSY        - the hugepage is busy (try to retry)
1970  *   -EHWPOISON    - the hugepage is already hwpoisoned
1971  */
1972 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1973 				 bool *migratable_cleared)
1974 {
1975 	struct page *page = pfn_to_page(pfn);
1976 	struct folio *folio = page_folio(page);
1977 	int ret = 2;	/* fallback to normal page handling */
1978 	bool count_increased = false;
1979 
1980 	if (!folio_test_hugetlb(folio))
1981 		goto out;
1982 
1983 	if (flags & MF_COUNT_INCREASED) {
1984 		ret = 1;
1985 		count_increased = true;
1986 	} else if (folio_test_hugetlb_freed(folio)) {
1987 		ret = 0;
1988 	} else if (folio_test_hugetlb_migratable(folio)) {
1989 		ret = folio_try_get(folio);
1990 		if (ret)
1991 			count_increased = true;
1992 	} else {
1993 		ret = -EBUSY;
1994 		if (!(flags & MF_NO_RETRY))
1995 			goto out;
1996 	}
1997 
1998 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1999 		ret = -EHWPOISON;
2000 		goto out;
2001 	}
2002 
2003 	/*
2004 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2005 	 * from being migrated by memory hotremove.
2006 	 */
2007 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2008 		folio_clear_hugetlb_migratable(folio);
2009 		*migratable_cleared = true;
2010 	}
2011 
2012 	return ret;
2013 out:
2014 	if (count_increased)
2015 		folio_put(folio);
2016 	return ret;
2017 }
2018 
2019 /*
2020  * Taking refcount of hugetlb pages needs extra care about race conditions
2021  * with basic operations like hugepage allocation/free/demotion.
2022  * So some of prechecks for hwpoison (pinning, and testing/setting
2023  * PageHWPoison) should be done in single hugetlb_lock range.
2024  */
2025 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2026 {
2027 	int res;
2028 	struct page *p = pfn_to_page(pfn);
2029 	struct folio *folio;
2030 	unsigned long page_flags;
2031 	bool migratable_cleared = false;
2032 
2033 	*hugetlb = 1;
2034 retry:
2035 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2036 	if (res == 2) { /* fallback to normal page handling */
2037 		*hugetlb = 0;
2038 		return 0;
2039 	} else if (res == -EHWPOISON) {
2040 		pr_err("%#lx: already hardware poisoned\n", pfn);
2041 		if (flags & MF_ACTION_REQUIRED) {
2042 			folio = page_folio(p);
2043 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2044 		}
2045 		return res;
2046 	} else if (res == -EBUSY) {
2047 		if (!(flags & MF_NO_RETRY)) {
2048 			flags |= MF_NO_RETRY;
2049 			goto retry;
2050 		}
2051 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2052 	}
2053 
2054 	folio = page_folio(p);
2055 	folio_lock(folio);
2056 
2057 	if (hwpoison_filter(p)) {
2058 		folio_clear_hugetlb_hwpoison(folio);
2059 		if (migratable_cleared)
2060 			folio_set_hugetlb_migratable(folio);
2061 		folio_unlock(folio);
2062 		if (res == 1)
2063 			folio_put(folio);
2064 		return -EOPNOTSUPP;
2065 	}
2066 
2067 	/*
2068 	 * Handling free hugepage.  The possible race with hugepage allocation
2069 	 * or demotion can be prevented by PageHWPoison flag.
2070 	 */
2071 	if (res == 0) {
2072 		folio_unlock(folio);
2073 		if (__page_handle_poison(p) >= 0) {
2074 			page_ref_inc(p);
2075 			res = MF_RECOVERED;
2076 		} else {
2077 			res = MF_FAILED;
2078 		}
2079 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2080 	}
2081 
2082 	page_flags = folio->flags;
2083 
2084 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2085 		folio_unlock(folio);
2086 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2087 	}
2088 
2089 	return identify_page_state(pfn, p, page_flags);
2090 }
2091 
2092 #else
2093 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2094 {
2095 	return 0;
2096 }
2097 
2098 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2099 {
2100 	return 0;
2101 }
2102 #endif	/* CONFIG_HUGETLB_PAGE */
2103 
2104 /* Drop the extra refcount in case we come from madvise() */
2105 static void put_ref_page(unsigned long pfn, int flags)
2106 {
2107 	struct page *page;
2108 
2109 	if (!(flags & MF_COUNT_INCREASED))
2110 		return;
2111 
2112 	page = pfn_to_page(pfn);
2113 	if (page)
2114 		put_page(page);
2115 }
2116 
2117 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2118 		struct dev_pagemap *pgmap)
2119 {
2120 	int rc = -ENXIO;
2121 
2122 	put_ref_page(pfn, flags);
2123 
2124 	/* device metadata space is not recoverable */
2125 	if (!pgmap_pfn_valid(pgmap, pfn))
2126 		goto out;
2127 
2128 	/*
2129 	 * Call driver's implementation to handle the memory failure, otherwise
2130 	 * fall back to generic handler.
2131 	 */
2132 	if (pgmap_has_memory_failure(pgmap)) {
2133 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2134 		/*
2135 		 * Fall back to generic handler too if operation is not
2136 		 * supported inside the driver/device/filesystem.
2137 		 */
2138 		if (rc != -EOPNOTSUPP)
2139 			goto out;
2140 	}
2141 
2142 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2143 out:
2144 	/* drop pgmap ref acquired in caller */
2145 	put_dev_pagemap(pgmap);
2146 	if (rc != -EOPNOTSUPP)
2147 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2148 	return rc;
2149 }
2150 
2151 /**
2152  * memory_failure - Handle memory failure of a page.
2153  * @pfn: Page Number of the corrupted page
2154  * @flags: fine tune action taken
2155  *
2156  * This function is called by the low level machine check code
2157  * of an architecture when it detects hardware memory corruption
2158  * of a page. It tries its best to recover, which includes
2159  * dropping pages, killing processes etc.
2160  *
2161  * The function is primarily of use for corruptions that
2162  * happen outside the current execution context (e.g. when
2163  * detected by a background scrubber)
2164  *
2165  * Must run in process context (e.g. a work queue) with interrupts
2166  * enabled and no spinlocks held.
2167  *
2168  * Return: 0 for successfully handled the memory error,
2169  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2170  *         < 0(except -EOPNOTSUPP) on failure.
2171  */
2172 int memory_failure(unsigned long pfn, int flags)
2173 {
2174 	struct page *p;
2175 	struct page *hpage;
2176 	struct dev_pagemap *pgmap;
2177 	int res = 0;
2178 	unsigned long page_flags;
2179 	bool retry = true;
2180 	int hugetlb = 0;
2181 
2182 	if (!sysctl_memory_failure_recovery)
2183 		panic("Memory failure on page %lx", pfn);
2184 
2185 	mutex_lock(&mf_mutex);
2186 
2187 	if (!(flags & MF_SW_SIMULATED))
2188 		hw_memory_failure = true;
2189 
2190 	p = pfn_to_online_page(pfn);
2191 	if (!p) {
2192 		res = arch_memory_failure(pfn, flags);
2193 		if (res == 0)
2194 			goto unlock_mutex;
2195 
2196 		if (pfn_valid(pfn)) {
2197 			pgmap = get_dev_pagemap(pfn, NULL);
2198 			if (pgmap) {
2199 				res = memory_failure_dev_pagemap(pfn, flags,
2200 								 pgmap);
2201 				goto unlock_mutex;
2202 			}
2203 		}
2204 		pr_err("%#lx: memory outside kernel control\n", pfn);
2205 		res = -ENXIO;
2206 		goto unlock_mutex;
2207 	}
2208 
2209 try_again:
2210 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2211 	if (hugetlb)
2212 		goto unlock_mutex;
2213 
2214 	if (TestSetPageHWPoison(p)) {
2215 		pr_err("%#lx: already hardware poisoned\n", pfn);
2216 		res = -EHWPOISON;
2217 		if (flags & MF_ACTION_REQUIRED)
2218 			res = kill_accessing_process(current, pfn, flags);
2219 		if (flags & MF_COUNT_INCREASED)
2220 			put_page(p);
2221 		goto unlock_mutex;
2222 	}
2223 
2224 	/*
2225 	 * We need/can do nothing about count=0 pages.
2226 	 * 1) it's a free page, and therefore in safe hand:
2227 	 *    check_new_page() will be the gate keeper.
2228 	 * 2) it's part of a non-compound high order page.
2229 	 *    Implies some kernel user: cannot stop them from
2230 	 *    R/W the page; let's pray that the page has been
2231 	 *    used and will be freed some time later.
2232 	 * In fact it's dangerous to directly bump up page count from 0,
2233 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2234 	 */
2235 	if (!(flags & MF_COUNT_INCREASED)) {
2236 		res = get_hwpoison_page(p, flags);
2237 		if (!res) {
2238 			if (is_free_buddy_page(p)) {
2239 				if (take_page_off_buddy(p)) {
2240 					page_ref_inc(p);
2241 					res = MF_RECOVERED;
2242 				} else {
2243 					/* We lost the race, try again */
2244 					if (retry) {
2245 						ClearPageHWPoison(p);
2246 						retry = false;
2247 						goto try_again;
2248 					}
2249 					res = MF_FAILED;
2250 				}
2251 				res = action_result(pfn, MF_MSG_BUDDY, res);
2252 			} else {
2253 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2254 			}
2255 			goto unlock_mutex;
2256 		} else if (res < 0) {
2257 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2258 			goto unlock_mutex;
2259 		}
2260 	}
2261 
2262 	hpage = compound_head(p);
2263 	if (PageTransHuge(hpage)) {
2264 		/*
2265 		 * The flag must be set after the refcount is bumped
2266 		 * otherwise it may race with THP split.
2267 		 * And the flag can't be set in get_hwpoison_page() since
2268 		 * it is called by soft offline too and it is just called
2269 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2270 		 * place.
2271 		 *
2272 		 * Don't need care about the above error handling paths for
2273 		 * get_hwpoison_page() since they handle either free page
2274 		 * or unhandlable page.  The refcount is bumped iff the
2275 		 * page is a valid handlable page.
2276 		 */
2277 		SetPageHasHWPoisoned(hpage);
2278 		if (try_to_split_thp_page(p) < 0) {
2279 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2280 			goto unlock_mutex;
2281 		}
2282 		VM_BUG_ON_PAGE(!page_count(p), p);
2283 	}
2284 
2285 	/*
2286 	 * We ignore non-LRU pages for good reasons.
2287 	 * - PG_locked is only well defined for LRU pages and a few others
2288 	 * - to avoid races with __SetPageLocked()
2289 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2290 	 * The check (unnecessarily) ignores LRU pages being isolated and
2291 	 * walked by the page reclaim code, however that's not a big loss.
2292 	 */
2293 	shake_page(p);
2294 
2295 	lock_page(p);
2296 
2297 	/*
2298 	 * We're only intended to deal with the non-Compound page here.
2299 	 * However, the page could have changed compound pages due to
2300 	 * race window. If this happens, we could try again to hopefully
2301 	 * handle the page next round.
2302 	 */
2303 	if (PageCompound(p)) {
2304 		if (retry) {
2305 			ClearPageHWPoison(p);
2306 			unlock_page(p);
2307 			put_page(p);
2308 			flags &= ~MF_COUNT_INCREASED;
2309 			retry = false;
2310 			goto try_again;
2311 		}
2312 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2313 		goto unlock_page;
2314 	}
2315 
2316 	/*
2317 	 * We use page flags to determine what action should be taken, but
2318 	 * the flags can be modified by the error containment action.  One
2319 	 * example is an mlocked page, where PG_mlocked is cleared by
2320 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2321 	 * correctly, we save a copy of the page flags at this time.
2322 	 */
2323 	page_flags = p->flags;
2324 
2325 	if (hwpoison_filter(p)) {
2326 		ClearPageHWPoison(p);
2327 		unlock_page(p);
2328 		put_page(p);
2329 		res = -EOPNOTSUPP;
2330 		goto unlock_mutex;
2331 	}
2332 
2333 	/*
2334 	 * __munlock_folio() may clear a writeback page's LRU flag without
2335 	 * page_lock. We need wait writeback completion for this page or it
2336 	 * may trigger vfs BUG while evict inode.
2337 	 */
2338 	if (!PageLRU(p) && !PageWriteback(p))
2339 		goto identify_page_state;
2340 
2341 	/*
2342 	 * It's very difficult to mess with pages currently under IO
2343 	 * and in many cases impossible, so we just avoid it here.
2344 	 */
2345 	wait_on_page_writeback(p);
2346 
2347 	/*
2348 	 * Now take care of user space mappings.
2349 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2350 	 */
2351 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2352 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2353 		goto unlock_page;
2354 	}
2355 
2356 	/*
2357 	 * Torn down by someone else?
2358 	 */
2359 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2360 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2361 		goto unlock_page;
2362 	}
2363 
2364 identify_page_state:
2365 	res = identify_page_state(pfn, p, page_flags);
2366 	mutex_unlock(&mf_mutex);
2367 	return res;
2368 unlock_page:
2369 	unlock_page(p);
2370 unlock_mutex:
2371 	mutex_unlock(&mf_mutex);
2372 	return res;
2373 }
2374 EXPORT_SYMBOL_GPL(memory_failure);
2375 
2376 #define MEMORY_FAILURE_FIFO_ORDER	4
2377 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2378 
2379 struct memory_failure_entry {
2380 	unsigned long pfn;
2381 	int flags;
2382 };
2383 
2384 struct memory_failure_cpu {
2385 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2386 		      MEMORY_FAILURE_FIFO_SIZE);
2387 	spinlock_t lock;
2388 	struct work_struct work;
2389 };
2390 
2391 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2392 
2393 /**
2394  * memory_failure_queue - Schedule handling memory failure of a page.
2395  * @pfn: Page Number of the corrupted page
2396  * @flags: Flags for memory failure handling
2397  *
2398  * This function is called by the low level hardware error handler
2399  * when it detects hardware memory corruption of a page. It schedules
2400  * the recovering of error page, including dropping pages, killing
2401  * processes etc.
2402  *
2403  * The function is primarily of use for corruptions that
2404  * happen outside the current execution context (e.g. when
2405  * detected by a background scrubber)
2406  *
2407  * Can run in IRQ context.
2408  */
2409 void memory_failure_queue(unsigned long pfn, int flags)
2410 {
2411 	struct memory_failure_cpu *mf_cpu;
2412 	unsigned long proc_flags;
2413 	struct memory_failure_entry entry = {
2414 		.pfn =		pfn,
2415 		.flags =	flags,
2416 	};
2417 
2418 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2419 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2420 	if (kfifo_put(&mf_cpu->fifo, entry))
2421 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2422 	else
2423 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2424 		       pfn);
2425 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2426 	put_cpu_var(memory_failure_cpu);
2427 }
2428 EXPORT_SYMBOL_GPL(memory_failure_queue);
2429 
2430 static void memory_failure_work_func(struct work_struct *work)
2431 {
2432 	struct memory_failure_cpu *mf_cpu;
2433 	struct memory_failure_entry entry = { 0, };
2434 	unsigned long proc_flags;
2435 	int gotten;
2436 
2437 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2438 	for (;;) {
2439 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2440 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2441 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2442 		if (!gotten)
2443 			break;
2444 		if (entry.flags & MF_SOFT_OFFLINE)
2445 			soft_offline_page(entry.pfn, entry.flags);
2446 		else
2447 			memory_failure(entry.pfn, entry.flags);
2448 	}
2449 }
2450 
2451 /*
2452  * Process memory_failure work queued on the specified CPU.
2453  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2454  */
2455 void memory_failure_queue_kick(int cpu)
2456 {
2457 	struct memory_failure_cpu *mf_cpu;
2458 
2459 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2460 	cancel_work_sync(&mf_cpu->work);
2461 	memory_failure_work_func(&mf_cpu->work);
2462 }
2463 
2464 static int __init memory_failure_init(void)
2465 {
2466 	struct memory_failure_cpu *mf_cpu;
2467 	int cpu;
2468 
2469 	for_each_possible_cpu(cpu) {
2470 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2471 		spin_lock_init(&mf_cpu->lock);
2472 		INIT_KFIFO(mf_cpu->fifo);
2473 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2474 	}
2475 
2476 	register_sysctl_init("vm", memory_failure_table);
2477 
2478 	return 0;
2479 }
2480 core_initcall(memory_failure_init);
2481 
2482 #undef pr_fmt
2483 #define pr_fmt(fmt)	"" fmt
2484 #define unpoison_pr_info(fmt, pfn, rs)			\
2485 ({							\
2486 	if (__ratelimit(rs))				\
2487 		pr_info(fmt, pfn);			\
2488 })
2489 
2490 /**
2491  * unpoison_memory - Unpoison a previously poisoned page
2492  * @pfn: Page number of the to be unpoisoned page
2493  *
2494  * Software-unpoison a page that has been poisoned by
2495  * memory_failure() earlier.
2496  *
2497  * This is only done on the software-level, so it only works
2498  * for linux injected failures, not real hardware failures
2499  *
2500  * Returns 0 for success, otherwise -errno.
2501  */
2502 int unpoison_memory(unsigned long pfn)
2503 {
2504 	struct folio *folio;
2505 	struct page *p;
2506 	int ret = -EBUSY;
2507 	unsigned long count = 1;
2508 	bool huge = false;
2509 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2510 					DEFAULT_RATELIMIT_BURST);
2511 
2512 	if (!pfn_valid(pfn))
2513 		return -ENXIO;
2514 
2515 	p = pfn_to_page(pfn);
2516 	folio = page_folio(p);
2517 
2518 	mutex_lock(&mf_mutex);
2519 
2520 	if (hw_memory_failure) {
2521 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2522 				 pfn, &unpoison_rs);
2523 		ret = -EOPNOTSUPP;
2524 		goto unlock_mutex;
2525 	}
2526 
2527 	if (!PageHWPoison(p)) {
2528 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2529 				 pfn, &unpoison_rs);
2530 		goto unlock_mutex;
2531 	}
2532 
2533 	if (folio_ref_count(folio) > 1) {
2534 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2535 				 pfn, &unpoison_rs);
2536 		goto unlock_mutex;
2537 	}
2538 
2539 	if (folio_mapped(folio)) {
2540 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2541 				 pfn, &unpoison_rs);
2542 		goto unlock_mutex;
2543 	}
2544 
2545 	if (folio_mapping(folio)) {
2546 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2547 				 pfn, &unpoison_rs);
2548 		goto unlock_mutex;
2549 	}
2550 
2551 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2552 		goto unlock_mutex;
2553 
2554 	ret = get_hwpoison_page(p, MF_UNPOISON);
2555 	if (!ret) {
2556 		if (PageHuge(p)) {
2557 			huge = true;
2558 			count = folio_free_raw_hwp(folio, false);
2559 			if (count == 0) {
2560 				ret = -EBUSY;
2561 				goto unlock_mutex;
2562 			}
2563 		}
2564 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2565 	} else if (ret < 0) {
2566 		if (ret == -EHWPOISON) {
2567 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2568 		} else
2569 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2570 					 pfn, &unpoison_rs);
2571 	} else {
2572 		if (PageHuge(p)) {
2573 			huge = true;
2574 			count = folio_free_raw_hwp(folio, false);
2575 			if (count == 0) {
2576 				ret = -EBUSY;
2577 				folio_put(folio);
2578 				goto unlock_mutex;
2579 			}
2580 		}
2581 
2582 		folio_put(folio);
2583 		if (TestClearPageHWPoison(p)) {
2584 			folio_put(folio);
2585 			ret = 0;
2586 		}
2587 	}
2588 
2589 unlock_mutex:
2590 	mutex_unlock(&mf_mutex);
2591 	if (!ret) {
2592 		if (!huge)
2593 			num_poisoned_pages_sub(pfn, 1);
2594 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2595 				 page_to_pfn(p), &unpoison_rs);
2596 	}
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL(unpoison_memory);
2600 
2601 static bool isolate_page(struct page *page, struct list_head *pagelist)
2602 {
2603 	bool isolated = false;
2604 
2605 	if (PageHuge(page)) {
2606 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2607 	} else {
2608 		bool lru = !__PageMovable(page);
2609 
2610 		if (lru)
2611 			isolated = isolate_lru_page(page);
2612 		else
2613 			isolated = isolate_movable_page(page,
2614 							ISOLATE_UNEVICTABLE);
2615 
2616 		if (isolated) {
2617 			list_add(&page->lru, pagelist);
2618 			if (lru)
2619 				inc_node_page_state(page, NR_ISOLATED_ANON +
2620 						    page_is_file_lru(page));
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * If we succeed to isolate the page, we grabbed another refcount on
2626 	 * the page, so we can safely drop the one we got from get_any_page().
2627 	 * If we failed to isolate the page, it means that we cannot go further
2628 	 * and we will return an error, so drop the reference we got from
2629 	 * get_any_page() as well.
2630 	 */
2631 	put_page(page);
2632 	return isolated;
2633 }
2634 
2635 /*
2636  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2637  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2638  * If the page is mapped, it migrates the contents over.
2639  */
2640 static int soft_offline_in_use_page(struct page *page)
2641 {
2642 	long ret = 0;
2643 	unsigned long pfn = page_to_pfn(page);
2644 	struct page *hpage = compound_head(page);
2645 	char const *msg_page[] = {"page", "hugepage"};
2646 	bool huge = PageHuge(page);
2647 	LIST_HEAD(pagelist);
2648 	struct migration_target_control mtc = {
2649 		.nid = NUMA_NO_NODE,
2650 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2651 	};
2652 
2653 	if (!huge && PageTransHuge(hpage)) {
2654 		if (try_to_split_thp_page(page)) {
2655 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2656 			return -EBUSY;
2657 		}
2658 		hpage = page;
2659 	}
2660 
2661 	lock_page(page);
2662 	if (!huge)
2663 		wait_on_page_writeback(page);
2664 	if (PageHWPoison(page)) {
2665 		unlock_page(page);
2666 		put_page(page);
2667 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2668 		return 0;
2669 	}
2670 
2671 	if (!huge && PageLRU(page) && !PageSwapCache(page))
2672 		/*
2673 		 * Try to invalidate first. This should work for
2674 		 * non dirty unmapped page cache pages.
2675 		 */
2676 		ret = invalidate_inode_page(page);
2677 	unlock_page(page);
2678 
2679 	if (ret) {
2680 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2681 		page_handle_poison(page, false, true);
2682 		return 0;
2683 	}
2684 
2685 	if (isolate_page(hpage, &pagelist)) {
2686 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2687 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2688 		if (!ret) {
2689 			bool release = !huge;
2690 
2691 			if (!page_handle_poison(page, huge, release))
2692 				ret = -EBUSY;
2693 		} else {
2694 			if (!list_empty(&pagelist))
2695 				putback_movable_pages(&pagelist);
2696 
2697 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2698 				pfn, msg_page[huge], ret, &page->flags);
2699 			if (ret > 0)
2700 				ret = -EBUSY;
2701 		}
2702 	} else {
2703 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2704 			pfn, msg_page[huge], page_count(page), &page->flags);
2705 		ret = -EBUSY;
2706 	}
2707 	return ret;
2708 }
2709 
2710 /**
2711  * soft_offline_page - Soft offline a page.
2712  * @pfn: pfn to soft-offline
2713  * @flags: flags. Same as memory_failure().
2714  *
2715  * Returns 0 on success
2716  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2717  *         < 0 otherwise negated errno.
2718  *
2719  * Soft offline a page, by migration or invalidation,
2720  * without killing anything. This is for the case when
2721  * a page is not corrupted yet (so it's still valid to access),
2722  * but has had a number of corrected errors and is better taken
2723  * out.
2724  *
2725  * The actual policy on when to do that is maintained by
2726  * user space.
2727  *
2728  * This should never impact any application or cause data loss,
2729  * however it might take some time.
2730  *
2731  * This is not a 100% solution for all memory, but tries to be
2732  * ``good enough'' for the majority of memory.
2733  */
2734 int soft_offline_page(unsigned long pfn, int flags)
2735 {
2736 	int ret;
2737 	bool try_again = true;
2738 	struct page *page;
2739 
2740 	if (!pfn_valid(pfn)) {
2741 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2742 		return -ENXIO;
2743 	}
2744 
2745 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2746 	page = pfn_to_online_page(pfn);
2747 	if (!page) {
2748 		put_ref_page(pfn, flags);
2749 		return -EIO;
2750 	}
2751 
2752 	mutex_lock(&mf_mutex);
2753 
2754 	if (PageHWPoison(page)) {
2755 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2756 		put_ref_page(pfn, flags);
2757 		mutex_unlock(&mf_mutex);
2758 		return 0;
2759 	}
2760 
2761 retry:
2762 	get_online_mems();
2763 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2764 	put_online_mems();
2765 
2766 	if (hwpoison_filter(page)) {
2767 		if (ret > 0)
2768 			put_page(page);
2769 
2770 		mutex_unlock(&mf_mutex);
2771 		return -EOPNOTSUPP;
2772 	}
2773 
2774 	if (ret > 0) {
2775 		ret = soft_offline_in_use_page(page);
2776 	} else if (ret == 0) {
2777 		if (!page_handle_poison(page, true, false) && try_again) {
2778 			try_again = false;
2779 			flags &= ~MF_COUNT_INCREASED;
2780 			goto retry;
2781 		}
2782 	}
2783 
2784 	mutex_unlock(&mf_mutex);
2785 
2786 	return ret;
2787 }
2788