xref: /openbmc/linux/mm/memory-failure.c (revision 3d40aed8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69 
70 static int sysctl_memory_failure_early_kill __read_mostly;
71 
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73 
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 
76 static bool hw_memory_failure __read_mostly = false;
77 
78 inline void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 	atomic_long_inc(&num_poisoned_pages);
81 	memblk_nr_poison_inc(pfn);
82 }
83 
84 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 	atomic_long_sub(i, &num_poisoned_pages);
87 	if (pfn != -1UL)
88 		memblk_nr_poison_sub(pfn, i);
89 }
90 
91 /**
92  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93  * @_name: name of the file in the per NUMA sysfs directory.
94  */
95 #define MF_ATTR_RO(_name)					\
96 static ssize_t _name##_show(struct device *dev,			\
97 			    struct device_attribute *attr,	\
98 			    char *buf)				\
99 {								\
100 	struct memory_failure_stats *mf_stats =			\
101 		&NODE_DATA(dev->id)->mf_stats;			\
102 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
103 }								\
104 static DEVICE_ATTR_RO(_name)
105 
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111 
112 static struct attribute *memory_failure_attr[] = {
113 	&dev_attr_total.attr,
114 	&dev_attr_ignored.attr,
115 	&dev_attr_failed.attr,
116 	&dev_attr_delayed.attr,
117 	&dev_attr_recovered.attr,
118 	NULL,
119 };
120 
121 const struct attribute_group memory_failure_attr_group = {
122 	.name = "memory_failure",
123 	.attrs = memory_failure_attr,
124 };
125 
126 static struct ctl_table memory_failure_table[] = {
127 	{
128 		.procname	= "memory_failure_early_kill",
129 		.data		= &sysctl_memory_failure_early_kill,
130 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
131 		.mode		= 0644,
132 		.proc_handler	= proc_dointvec_minmax,
133 		.extra1		= SYSCTL_ZERO,
134 		.extra2		= SYSCTL_ONE,
135 	},
136 	{
137 		.procname	= "memory_failure_recovery",
138 		.data		= &sysctl_memory_failure_recovery,
139 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
140 		.mode		= 0644,
141 		.proc_handler	= proc_dointvec_minmax,
142 		.extra1		= SYSCTL_ZERO,
143 		.extra2		= SYSCTL_ONE,
144 	},
145 	{ }
146 };
147 
148 /*
149  * Return values:
150  *   1:   the page is dissolved (if needed) and taken off from buddy,
151  *   0:   the page is dissolved (if needed) and not taken off from buddy,
152  *   < 0: failed to dissolve.
153  */
154 static int __page_handle_poison(struct page *page)
155 {
156 	int ret;
157 
158 	zone_pcp_disable(page_zone(page));
159 	ret = dissolve_free_huge_page(page);
160 	if (!ret)
161 		ret = take_page_off_buddy(page);
162 	zone_pcp_enable(page_zone(page));
163 
164 	return ret;
165 }
166 
167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
168 {
169 	if (hugepage_or_freepage) {
170 		/*
171 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 		 * returns 0 for non-hugetlb pages as well.
173 		 */
174 		if (__page_handle_poison(page) <= 0)
175 			/*
176 			 * We could fail to take off the target page from buddy
177 			 * for example due to racy page allocation, but that's
178 			 * acceptable because soft-offlined page is not broken
179 			 * and if someone really want to use it, they should
180 			 * take it.
181 			 */
182 			return false;
183 	}
184 
185 	SetPageHWPoison(page);
186 	if (release)
187 		put_page(page);
188 	page_ref_inc(page);
189 	num_poisoned_pages_inc(page_to_pfn(page));
190 
191 	return true;
192 }
193 
194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
195 
196 u32 hwpoison_filter_enable = 0;
197 u32 hwpoison_filter_dev_major = ~0U;
198 u32 hwpoison_filter_dev_minor = ~0U;
199 u64 hwpoison_filter_flags_mask;
200 u64 hwpoison_filter_flags_value;
201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
206 
207 static int hwpoison_filter_dev(struct page *p)
208 {
209 	struct address_space *mapping;
210 	dev_t dev;
211 
212 	if (hwpoison_filter_dev_major == ~0U &&
213 	    hwpoison_filter_dev_minor == ~0U)
214 		return 0;
215 
216 	mapping = page_mapping(p);
217 	if (mapping == NULL || mapping->host == NULL)
218 		return -EINVAL;
219 
220 	dev = mapping->host->i_sb->s_dev;
221 	if (hwpoison_filter_dev_major != ~0U &&
222 	    hwpoison_filter_dev_major != MAJOR(dev))
223 		return -EINVAL;
224 	if (hwpoison_filter_dev_minor != ~0U &&
225 	    hwpoison_filter_dev_minor != MINOR(dev))
226 		return -EINVAL;
227 
228 	return 0;
229 }
230 
231 static int hwpoison_filter_flags(struct page *p)
232 {
233 	if (!hwpoison_filter_flags_mask)
234 		return 0;
235 
236 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 				    hwpoison_filter_flags_value)
238 		return 0;
239 	else
240 		return -EINVAL;
241 }
242 
243 /*
244  * This allows stress tests to limit test scope to a collection of tasks
245  * by putting them under some memcg. This prevents killing unrelated/important
246  * processes such as /sbin/init. Note that the target task may share clean
247  * pages with init (eg. libc text), which is harmless. If the target task
248  * share _dirty_ pages with another task B, the test scheme must make sure B
249  * is also included in the memcg. At last, due to race conditions this filter
250  * can only guarantee that the page either belongs to the memcg tasks, or is
251  * a freed page.
252  */
253 #ifdef CONFIG_MEMCG
254 u64 hwpoison_filter_memcg;
255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256 static int hwpoison_filter_task(struct page *p)
257 {
258 	if (!hwpoison_filter_memcg)
259 		return 0;
260 
261 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
262 		return -EINVAL;
263 
264 	return 0;
265 }
266 #else
267 static int hwpoison_filter_task(struct page *p) { return 0; }
268 #endif
269 
270 int hwpoison_filter(struct page *p)
271 {
272 	if (!hwpoison_filter_enable)
273 		return 0;
274 
275 	if (hwpoison_filter_dev(p))
276 		return -EINVAL;
277 
278 	if (hwpoison_filter_flags(p))
279 		return -EINVAL;
280 
281 	if (hwpoison_filter_task(p))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 #else
287 int hwpoison_filter(struct page *p)
288 {
289 	return 0;
290 }
291 #endif
292 
293 EXPORT_SYMBOL_GPL(hwpoison_filter);
294 
295 /*
296  * Kill all processes that have a poisoned page mapped and then isolate
297  * the page.
298  *
299  * General strategy:
300  * Find all processes having the page mapped and kill them.
301  * But we keep a page reference around so that the page is not
302  * actually freed yet.
303  * Then stash the page away
304  *
305  * There's no convenient way to get back to mapped processes
306  * from the VMAs. So do a brute-force search over all
307  * running processes.
308  *
309  * Remember that machine checks are not common (or rather
310  * if they are common you have other problems), so this shouldn't
311  * be a performance issue.
312  *
313  * Also there are some races possible while we get from the
314  * error detection to actually handle it.
315  */
316 
317 struct to_kill {
318 	struct list_head nd;
319 	struct task_struct *tsk;
320 	unsigned long addr;
321 	short size_shift;
322 };
323 
324 /*
325  * Send all the processes who have the page mapped a signal.
326  * ``action optional'' if they are not immediately affected by the error
327  * ``action required'' if error happened in current execution context
328  */
329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
330 {
331 	struct task_struct *t = tk->tsk;
332 	short addr_lsb = tk->size_shift;
333 	int ret = 0;
334 
335 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
336 			pfn, t->comm, t->pid);
337 
338 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 		ret = force_sig_mceerr(BUS_MCEERR_AR,
340 				 (void __user *)tk->addr, addr_lsb);
341 	else
342 		/*
343 		 * Signal other processes sharing the page if they have
344 		 * PF_MCE_EARLY set.
345 		 * Don't use force here, it's convenient if the signal
346 		 * can be temporarily blocked.
347 		 * This could cause a loop when the user sets SIGBUS
348 		 * to SIG_IGN, but hopefully no one will do that?
349 		 */
350 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
351 				      addr_lsb, t);
352 	if (ret < 0)
353 		pr_info("Error sending signal to %s:%d: %d\n",
354 			t->comm, t->pid, ret);
355 	return ret;
356 }
357 
358 /*
359  * Unknown page type encountered. Try to check whether it can turn PageLRU by
360  * lru_add_drain_all.
361  */
362 void shake_page(struct page *p)
363 {
364 	if (PageHuge(p))
365 		return;
366 
367 	if (!PageSlab(p)) {
368 		lru_add_drain_all();
369 		if (PageLRU(p) || is_free_buddy_page(p))
370 			return;
371 	}
372 
373 	/*
374 	 * TODO: Could shrink slab caches here if a lightweight range-based
375 	 * shrinker will be available.
376 	 */
377 }
378 EXPORT_SYMBOL_GPL(shake_page);
379 
380 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
381 		unsigned long address)
382 {
383 	unsigned long ret = 0;
384 	pgd_t *pgd;
385 	p4d_t *p4d;
386 	pud_t *pud;
387 	pmd_t *pmd;
388 	pte_t *pte;
389 	pte_t ptent;
390 
391 	VM_BUG_ON_VMA(address == -EFAULT, vma);
392 	pgd = pgd_offset(vma->vm_mm, address);
393 	if (!pgd_present(*pgd))
394 		return 0;
395 	p4d = p4d_offset(pgd, address);
396 	if (!p4d_present(*p4d))
397 		return 0;
398 	pud = pud_offset(p4d, address);
399 	if (!pud_present(*pud))
400 		return 0;
401 	if (pud_devmap(*pud))
402 		return PUD_SHIFT;
403 	pmd = pmd_offset(pud, address);
404 	if (!pmd_present(*pmd))
405 		return 0;
406 	if (pmd_devmap(*pmd))
407 		return PMD_SHIFT;
408 	pte = pte_offset_map(pmd, address);
409 	if (!pte)
410 		return 0;
411 	ptent = ptep_get(pte);
412 	if (pte_present(ptent) && pte_devmap(ptent))
413 		ret = PAGE_SHIFT;
414 	pte_unmap(pte);
415 	return ret;
416 }
417 
418 /*
419  * Failure handling: if we can't find or can't kill a process there's
420  * not much we can do.	We just print a message and ignore otherwise.
421  */
422 
423 #define FSDAX_INVALID_PGOFF ULONG_MAX
424 
425 /*
426  * Schedule a process for later kill.
427  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
428  *
429  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
430  * filesystem with a memory failure handler has claimed the
431  * memory_failure event. In all other cases, page->index and
432  * page->mapping are sufficient for mapping the page back to its
433  * corresponding user virtual address.
434  */
435 static void __add_to_kill(struct task_struct *tsk, struct page *p,
436 			  struct vm_area_struct *vma, struct list_head *to_kill,
437 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
438 {
439 	struct to_kill *tk;
440 
441 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
442 	if (!tk) {
443 		pr_err("Out of memory while machine check handling\n");
444 		return;
445 	}
446 
447 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
448 	if (is_zone_device_page(p)) {
449 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
450 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
451 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
452 	} else
453 		tk->size_shift = page_shift(compound_head(p));
454 
455 	/*
456 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
457 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
458 	 * so "tk->size_shift == 0" effectively checks no mapping on
459 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
460 	 * to a process' address space, it's possible not all N VMAs
461 	 * contain mappings for the page, but at least one VMA does.
462 	 * Only deliver SIGBUS with payload derived from the VMA that
463 	 * has a mapping for the page.
464 	 */
465 	if (tk->addr == -EFAULT) {
466 		pr_info("Unable to find user space address %lx in %s\n",
467 			page_to_pfn(p), tsk->comm);
468 	} else if (tk->size_shift == 0) {
469 		kfree(tk);
470 		return;
471 	}
472 
473 	get_task_struct(tsk);
474 	tk->tsk = tsk;
475 	list_add_tail(&tk->nd, to_kill);
476 }
477 
478 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
479 				  struct vm_area_struct *vma,
480 				  struct list_head *to_kill)
481 {
482 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
483 }
484 
485 #ifdef CONFIG_KSM
486 static bool task_in_to_kill_list(struct list_head *to_kill,
487 				 struct task_struct *tsk)
488 {
489 	struct to_kill *tk, *next;
490 
491 	list_for_each_entry_safe(tk, next, to_kill, nd) {
492 		if (tk->tsk == tsk)
493 			return true;
494 	}
495 
496 	return false;
497 }
498 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
499 		     struct vm_area_struct *vma, struct list_head *to_kill,
500 		     unsigned long ksm_addr)
501 {
502 	if (!task_in_to_kill_list(to_kill, tsk))
503 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
504 }
505 #endif
506 /*
507  * Kill the processes that have been collected earlier.
508  *
509  * Only do anything when FORCEKILL is set, otherwise just free the
510  * list (this is used for clean pages which do not need killing)
511  * Also when FAIL is set do a force kill because something went
512  * wrong earlier.
513  */
514 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
515 		unsigned long pfn, int flags)
516 {
517 	struct to_kill *tk, *next;
518 
519 	list_for_each_entry_safe(tk, next, to_kill, nd) {
520 		if (forcekill) {
521 			/*
522 			 * In case something went wrong with munmapping
523 			 * make sure the process doesn't catch the
524 			 * signal and then access the memory. Just kill it.
525 			 */
526 			if (fail || tk->addr == -EFAULT) {
527 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
528 				       pfn, tk->tsk->comm, tk->tsk->pid);
529 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
530 						 tk->tsk, PIDTYPE_PID);
531 			}
532 
533 			/*
534 			 * In theory the process could have mapped
535 			 * something else on the address in-between. We could
536 			 * check for that, but we need to tell the
537 			 * process anyways.
538 			 */
539 			else if (kill_proc(tk, pfn, flags) < 0)
540 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
541 				       pfn, tk->tsk->comm, tk->tsk->pid);
542 		}
543 		list_del(&tk->nd);
544 		put_task_struct(tk->tsk);
545 		kfree(tk);
546 	}
547 }
548 
549 /*
550  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
551  * on behalf of the thread group. Return task_struct of the (first found)
552  * dedicated thread if found, and return NULL otherwise.
553  *
554  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
555  * have to call rcu_read_lock/unlock() in this function.
556  */
557 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
558 {
559 	struct task_struct *t;
560 
561 	for_each_thread(tsk, t) {
562 		if (t->flags & PF_MCE_PROCESS) {
563 			if (t->flags & PF_MCE_EARLY)
564 				return t;
565 		} else {
566 			if (sysctl_memory_failure_early_kill)
567 				return t;
568 		}
569 	}
570 	return NULL;
571 }
572 
573 /*
574  * Determine whether a given process is "early kill" process which expects
575  * to be signaled when some page under the process is hwpoisoned.
576  * Return task_struct of the dedicated thread (main thread unless explicitly
577  * specified) if the process is "early kill" and otherwise returns NULL.
578  *
579  * Note that the above is true for Action Optional case. For Action Required
580  * case, it's only meaningful to the current thread which need to be signaled
581  * with SIGBUS, this error is Action Optional for other non current
582  * processes sharing the same error page,if the process is "early kill", the
583  * task_struct of the dedicated thread will also be returned.
584  */
585 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
586 {
587 	if (!tsk->mm)
588 		return NULL;
589 	/*
590 	 * Comparing ->mm here because current task might represent
591 	 * a subthread, while tsk always points to the main thread.
592 	 */
593 	if (force_early && tsk->mm == current->mm)
594 		return current;
595 
596 	return find_early_kill_thread(tsk);
597 }
598 
599 /*
600  * Collect processes when the error hit an anonymous page.
601  */
602 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
603 				int force_early)
604 {
605 	struct folio *folio = page_folio(page);
606 	struct vm_area_struct *vma;
607 	struct task_struct *tsk;
608 	struct anon_vma *av;
609 	pgoff_t pgoff;
610 
611 	av = folio_lock_anon_vma_read(folio, NULL);
612 	if (av == NULL)	/* Not actually mapped anymore */
613 		return;
614 
615 	pgoff = page_to_pgoff(page);
616 	read_lock(&tasklist_lock);
617 	for_each_process (tsk) {
618 		struct anon_vma_chain *vmac;
619 		struct task_struct *t = task_early_kill(tsk, force_early);
620 
621 		if (!t)
622 			continue;
623 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
624 					       pgoff, pgoff) {
625 			vma = vmac->vma;
626 			if (vma->vm_mm != t->mm)
627 				continue;
628 			if (!page_mapped_in_vma(page, vma))
629 				continue;
630 			add_to_kill_anon_file(t, page, vma, to_kill);
631 		}
632 	}
633 	read_unlock(&tasklist_lock);
634 	anon_vma_unlock_read(av);
635 }
636 
637 /*
638  * Collect processes when the error hit a file mapped page.
639  */
640 static void collect_procs_file(struct page *page, struct list_head *to_kill,
641 				int force_early)
642 {
643 	struct vm_area_struct *vma;
644 	struct task_struct *tsk;
645 	struct address_space *mapping = page->mapping;
646 	pgoff_t pgoff;
647 
648 	i_mmap_lock_read(mapping);
649 	read_lock(&tasklist_lock);
650 	pgoff = page_to_pgoff(page);
651 	for_each_process(tsk) {
652 		struct task_struct *t = task_early_kill(tsk, force_early);
653 
654 		if (!t)
655 			continue;
656 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
657 				      pgoff) {
658 			/*
659 			 * Send early kill signal to tasks where a vma covers
660 			 * the page but the corrupted page is not necessarily
661 			 * mapped it in its pte.
662 			 * Assume applications who requested early kill want
663 			 * to be informed of all such data corruptions.
664 			 */
665 			if (vma->vm_mm == t->mm)
666 				add_to_kill_anon_file(t, page, vma, to_kill);
667 		}
668 	}
669 	read_unlock(&tasklist_lock);
670 	i_mmap_unlock_read(mapping);
671 }
672 
673 #ifdef CONFIG_FS_DAX
674 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
675 			      struct vm_area_struct *vma,
676 			      struct list_head *to_kill, pgoff_t pgoff)
677 {
678 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
679 }
680 
681 /*
682  * Collect processes when the error hit a fsdax page.
683  */
684 static void collect_procs_fsdax(struct page *page,
685 		struct address_space *mapping, pgoff_t pgoff,
686 		struct list_head *to_kill)
687 {
688 	struct vm_area_struct *vma;
689 	struct task_struct *tsk;
690 
691 	i_mmap_lock_read(mapping);
692 	read_lock(&tasklist_lock);
693 	for_each_process(tsk) {
694 		struct task_struct *t = task_early_kill(tsk, true);
695 
696 		if (!t)
697 			continue;
698 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
699 			if (vma->vm_mm == t->mm)
700 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
701 		}
702 	}
703 	read_unlock(&tasklist_lock);
704 	i_mmap_unlock_read(mapping);
705 }
706 #endif /* CONFIG_FS_DAX */
707 
708 /*
709  * Collect the processes who have the corrupted page mapped to kill.
710  */
711 static void collect_procs(struct page *page, struct list_head *tokill,
712 				int force_early)
713 {
714 	if (!page->mapping)
715 		return;
716 	if (unlikely(PageKsm(page)))
717 		collect_procs_ksm(page, tokill, force_early);
718 	else if (PageAnon(page))
719 		collect_procs_anon(page, tokill, force_early);
720 	else
721 		collect_procs_file(page, tokill, force_early);
722 }
723 
724 struct hwp_walk {
725 	struct to_kill tk;
726 	unsigned long pfn;
727 	int flags;
728 };
729 
730 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
731 {
732 	tk->addr = addr;
733 	tk->size_shift = shift;
734 }
735 
736 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
737 				unsigned long poisoned_pfn, struct to_kill *tk)
738 {
739 	unsigned long pfn = 0;
740 
741 	if (pte_present(pte)) {
742 		pfn = pte_pfn(pte);
743 	} else {
744 		swp_entry_t swp = pte_to_swp_entry(pte);
745 
746 		if (is_hwpoison_entry(swp))
747 			pfn = swp_offset_pfn(swp);
748 	}
749 
750 	if (!pfn || pfn != poisoned_pfn)
751 		return 0;
752 
753 	set_to_kill(tk, addr, shift);
754 	return 1;
755 }
756 
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
759 				      struct hwp_walk *hwp)
760 {
761 	pmd_t pmd = *pmdp;
762 	unsigned long pfn;
763 	unsigned long hwpoison_vaddr;
764 
765 	if (!pmd_present(pmd))
766 		return 0;
767 	pfn = pmd_pfn(pmd);
768 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
769 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
770 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
771 		return 1;
772 	}
773 	return 0;
774 }
775 #else
776 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
777 				      struct hwp_walk *hwp)
778 {
779 	return 0;
780 }
781 #endif
782 
783 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
784 			      unsigned long end, struct mm_walk *walk)
785 {
786 	struct hwp_walk *hwp = walk->private;
787 	int ret = 0;
788 	pte_t *ptep, *mapped_pte;
789 	spinlock_t *ptl;
790 
791 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
792 	if (ptl) {
793 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
794 		spin_unlock(ptl);
795 		goto out;
796 	}
797 
798 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
799 						addr, &ptl);
800 	if (!ptep)
801 		goto out;
802 
803 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
804 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
805 					     hwp->pfn, &hwp->tk);
806 		if (ret == 1)
807 			break;
808 	}
809 	pte_unmap_unlock(mapped_pte, ptl);
810 out:
811 	cond_resched();
812 	return ret;
813 }
814 
815 #ifdef CONFIG_HUGETLB_PAGE
816 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
817 			    unsigned long addr, unsigned long end,
818 			    struct mm_walk *walk)
819 {
820 	struct hwp_walk *hwp = walk->private;
821 	pte_t pte = huge_ptep_get(ptep);
822 	struct hstate *h = hstate_vma(walk->vma);
823 
824 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
825 				      hwp->pfn, &hwp->tk);
826 }
827 #else
828 #define hwpoison_hugetlb_range	NULL
829 #endif
830 
831 static const struct mm_walk_ops hwp_walk_ops = {
832 	.pmd_entry = hwpoison_pte_range,
833 	.hugetlb_entry = hwpoison_hugetlb_range,
834 };
835 
836 /*
837  * Sends SIGBUS to the current process with error info.
838  *
839  * This function is intended to handle "Action Required" MCEs on already
840  * hardware poisoned pages. They could happen, for example, when
841  * memory_failure() failed to unmap the error page at the first call, or
842  * when multiple local machine checks happened on different CPUs.
843  *
844  * MCE handler currently has no easy access to the error virtual address,
845  * so this function walks page table to find it. The returned virtual address
846  * is proper in most cases, but it could be wrong when the application
847  * process has multiple entries mapping the error page.
848  */
849 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
850 				  int flags)
851 {
852 	int ret;
853 	struct hwp_walk priv = {
854 		.pfn = pfn,
855 	};
856 	priv.tk.tsk = p;
857 
858 	if (!p->mm)
859 		return -EFAULT;
860 
861 	mmap_read_lock(p->mm);
862 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
863 			      (void *)&priv);
864 	if (ret == 1 && priv.tk.addr)
865 		kill_proc(&priv.tk, pfn, flags);
866 	else
867 		ret = 0;
868 	mmap_read_unlock(p->mm);
869 	return ret > 0 ? -EHWPOISON : -EFAULT;
870 }
871 
872 static const char *action_name[] = {
873 	[MF_IGNORED] = "Ignored",
874 	[MF_FAILED] = "Failed",
875 	[MF_DELAYED] = "Delayed",
876 	[MF_RECOVERED] = "Recovered",
877 };
878 
879 static const char * const action_page_types[] = {
880 	[MF_MSG_KERNEL]			= "reserved kernel page",
881 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
882 	[MF_MSG_SLAB]			= "kernel slab page",
883 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
884 	[MF_MSG_HUGE]			= "huge page",
885 	[MF_MSG_FREE_HUGE]		= "free huge page",
886 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
887 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
888 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
889 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
890 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
891 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
892 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
893 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
894 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
895 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
896 	[MF_MSG_BUDDY]			= "free buddy page",
897 	[MF_MSG_DAX]			= "dax page",
898 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
899 	[MF_MSG_UNKNOWN]		= "unknown page",
900 };
901 
902 /*
903  * XXX: It is possible that a page is isolated from LRU cache,
904  * and then kept in swap cache or failed to remove from page cache.
905  * The page count will stop it from being freed by unpoison.
906  * Stress tests should be aware of this memory leak problem.
907  */
908 static int delete_from_lru_cache(struct page *p)
909 {
910 	if (isolate_lru_page(p)) {
911 		/*
912 		 * Clear sensible page flags, so that the buddy system won't
913 		 * complain when the page is unpoison-and-freed.
914 		 */
915 		ClearPageActive(p);
916 		ClearPageUnevictable(p);
917 
918 		/*
919 		 * Poisoned page might never drop its ref count to 0 so we have
920 		 * to uncharge it manually from its memcg.
921 		 */
922 		mem_cgroup_uncharge(page_folio(p));
923 
924 		/*
925 		 * drop the page count elevated by isolate_lru_page()
926 		 */
927 		put_page(p);
928 		return 0;
929 	}
930 	return -EIO;
931 }
932 
933 static int truncate_error_page(struct page *p, unsigned long pfn,
934 				struct address_space *mapping)
935 {
936 	int ret = MF_FAILED;
937 
938 	if (mapping->a_ops->error_remove_page) {
939 		struct folio *folio = page_folio(p);
940 		int err = mapping->a_ops->error_remove_page(mapping, p);
941 
942 		if (err != 0) {
943 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
944 		} else if (folio_has_private(folio) &&
945 			   !filemap_release_folio(folio, GFP_NOIO)) {
946 			pr_info("%#lx: failed to release buffers\n", pfn);
947 		} else {
948 			ret = MF_RECOVERED;
949 		}
950 	} else {
951 		/*
952 		 * If the file system doesn't support it just invalidate
953 		 * This fails on dirty or anything with private pages
954 		 */
955 		if (invalidate_inode_page(p))
956 			ret = MF_RECOVERED;
957 		else
958 			pr_info("%#lx: Failed to invalidate\n",	pfn);
959 	}
960 
961 	return ret;
962 }
963 
964 struct page_state {
965 	unsigned long mask;
966 	unsigned long res;
967 	enum mf_action_page_type type;
968 
969 	/* Callback ->action() has to unlock the relevant page inside it. */
970 	int (*action)(struct page_state *ps, struct page *p);
971 };
972 
973 /*
974  * Return true if page is still referenced by others, otherwise return
975  * false.
976  *
977  * The extra_pins is true when one extra refcount is expected.
978  */
979 static bool has_extra_refcount(struct page_state *ps, struct page *p,
980 			       bool extra_pins)
981 {
982 	int count = page_count(p) - 1;
983 
984 	if (extra_pins)
985 		count -= 1;
986 
987 	if (count > 0) {
988 		pr_err("%#lx: %s still referenced by %d users\n",
989 		       page_to_pfn(p), action_page_types[ps->type], count);
990 		return true;
991 	}
992 
993 	return false;
994 }
995 
996 /*
997  * Error hit kernel page.
998  * Do nothing, try to be lucky and not touch this instead. For a few cases we
999  * could be more sophisticated.
1000  */
1001 static int me_kernel(struct page_state *ps, struct page *p)
1002 {
1003 	unlock_page(p);
1004 	return MF_IGNORED;
1005 }
1006 
1007 /*
1008  * Page in unknown state. Do nothing.
1009  */
1010 static int me_unknown(struct page_state *ps, struct page *p)
1011 {
1012 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1013 	unlock_page(p);
1014 	return MF_FAILED;
1015 }
1016 
1017 /*
1018  * Clean (or cleaned) page cache page.
1019  */
1020 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1021 {
1022 	int ret;
1023 	struct address_space *mapping;
1024 	bool extra_pins;
1025 
1026 	delete_from_lru_cache(p);
1027 
1028 	/*
1029 	 * For anonymous pages we're done the only reference left
1030 	 * should be the one m_f() holds.
1031 	 */
1032 	if (PageAnon(p)) {
1033 		ret = MF_RECOVERED;
1034 		goto out;
1035 	}
1036 
1037 	/*
1038 	 * Now truncate the page in the page cache. This is really
1039 	 * more like a "temporary hole punch"
1040 	 * Don't do this for block devices when someone else
1041 	 * has a reference, because it could be file system metadata
1042 	 * and that's not safe to truncate.
1043 	 */
1044 	mapping = page_mapping(p);
1045 	if (!mapping) {
1046 		/*
1047 		 * Page has been teared down in the meanwhile
1048 		 */
1049 		ret = MF_FAILED;
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * The shmem page is kept in page cache instead of truncating
1055 	 * so is expected to have an extra refcount after error-handling.
1056 	 */
1057 	extra_pins = shmem_mapping(mapping);
1058 
1059 	/*
1060 	 * Truncation is a bit tricky. Enable it per file system for now.
1061 	 *
1062 	 * Open: to take i_rwsem or not for this? Right now we don't.
1063 	 */
1064 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1065 	if (has_extra_refcount(ps, p, extra_pins))
1066 		ret = MF_FAILED;
1067 
1068 out:
1069 	unlock_page(p);
1070 
1071 	return ret;
1072 }
1073 
1074 /*
1075  * Dirty pagecache page
1076  * Issues: when the error hit a hole page the error is not properly
1077  * propagated.
1078  */
1079 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1080 {
1081 	struct address_space *mapping = page_mapping(p);
1082 
1083 	SetPageError(p);
1084 	/* TBD: print more information about the file. */
1085 	if (mapping) {
1086 		/*
1087 		 * IO error will be reported by write(), fsync(), etc.
1088 		 * who check the mapping.
1089 		 * This way the application knows that something went
1090 		 * wrong with its dirty file data.
1091 		 *
1092 		 * There's one open issue:
1093 		 *
1094 		 * The EIO will be only reported on the next IO
1095 		 * operation and then cleared through the IO map.
1096 		 * Normally Linux has two mechanisms to pass IO error
1097 		 * first through the AS_EIO flag in the address space
1098 		 * and then through the PageError flag in the page.
1099 		 * Since we drop pages on memory failure handling the
1100 		 * only mechanism open to use is through AS_AIO.
1101 		 *
1102 		 * This has the disadvantage that it gets cleared on
1103 		 * the first operation that returns an error, while
1104 		 * the PageError bit is more sticky and only cleared
1105 		 * when the page is reread or dropped.  If an
1106 		 * application assumes it will always get error on
1107 		 * fsync, but does other operations on the fd before
1108 		 * and the page is dropped between then the error
1109 		 * will not be properly reported.
1110 		 *
1111 		 * This can already happen even without hwpoisoned
1112 		 * pages: first on metadata IO errors (which only
1113 		 * report through AS_EIO) or when the page is dropped
1114 		 * at the wrong time.
1115 		 *
1116 		 * So right now we assume that the application DTRT on
1117 		 * the first EIO, but we're not worse than other parts
1118 		 * of the kernel.
1119 		 */
1120 		mapping_set_error(mapping, -EIO);
1121 	}
1122 
1123 	return me_pagecache_clean(ps, p);
1124 }
1125 
1126 /*
1127  * Clean and dirty swap cache.
1128  *
1129  * Dirty swap cache page is tricky to handle. The page could live both in page
1130  * cache and swap cache(ie. page is freshly swapped in). So it could be
1131  * referenced concurrently by 2 types of PTEs:
1132  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1133  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1134  * and then
1135  *      - clear dirty bit to prevent IO
1136  *      - remove from LRU
1137  *      - but keep in the swap cache, so that when we return to it on
1138  *        a later page fault, we know the application is accessing
1139  *        corrupted data and shall be killed (we installed simple
1140  *        interception code in do_swap_page to catch it).
1141  *
1142  * Clean swap cache pages can be directly isolated. A later page fault will
1143  * bring in the known good data from disk.
1144  */
1145 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1146 {
1147 	int ret;
1148 	bool extra_pins = false;
1149 
1150 	ClearPageDirty(p);
1151 	/* Trigger EIO in shmem: */
1152 	ClearPageUptodate(p);
1153 
1154 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1155 	unlock_page(p);
1156 
1157 	if (ret == MF_DELAYED)
1158 		extra_pins = true;
1159 
1160 	if (has_extra_refcount(ps, p, extra_pins))
1161 		ret = MF_FAILED;
1162 
1163 	return ret;
1164 }
1165 
1166 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1167 {
1168 	struct folio *folio = page_folio(p);
1169 	int ret;
1170 
1171 	delete_from_swap_cache(folio);
1172 
1173 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1174 	folio_unlock(folio);
1175 
1176 	if (has_extra_refcount(ps, p, false))
1177 		ret = MF_FAILED;
1178 
1179 	return ret;
1180 }
1181 
1182 /*
1183  * Huge pages. Needs work.
1184  * Issues:
1185  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1186  *   To narrow down kill region to one page, we need to break up pmd.
1187  */
1188 static int me_huge_page(struct page_state *ps, struct page *p)
1189 {
1190 	int res;
1191 	struct page *hpage = compound_head(p);
1192 	struct address_space *mapping;
1193 	bool extra_pins = false;
1194 
1195 	if (!PageHuge(hpage))
1196 		return MF_DELAYED;
1197 
1198 	mapping = page_mapping(hpage);
1199 	if (mapping) {
1200 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1201 		/* The page is kept in page cache. */
1202 		extra_pins = true;
1203 		unlock_page(hpage);
1204 	} else {
1205 		unlock_page(hpage);
1206 		/*
1207 		 * migration entry prevents later access on error hugepage,
1208 		 * so we can free and dissolve it into buddy to save healthy
1209 		 * subpages.
1210 		 */
1211 		put_page(hpage);
1212 		if (__page_handle_poison(p) >= 0) {
1213 			page_ref_inc(p);
1214 			res = MF_RECOVERED;
1215 		} else {
1216 			res = MF_FAILED;
1217 		}
1218 	}
1219 
1220 	if (has_extra_refcount(ps, p, extra_pins))
1221 		res = MF_FAILED;
1222 
1223 	return res;
1224 }
1225 
1226 /*
1227  * Various page states we can handle.
1228  *
1229  * A page state is defined by its current page->flags bits.
1230  * The table matches them in order and calls the right handler.
1231  *
1232  * This is quite tricky because we can access page at any time
1233  * in its live cycle, so all accesses have to be extremely careful.
1234  *
1235  * This is not complete. More states could be added.
1236  * For any missing state don't attempt recovery.
1237  */
1238 
1239 #define dirty		(1UL << PG_dirty)
1240 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1241 #define unevict		(1UL << PG_unevictable)
1242 #define mlock		(1UL << PG_mlocked)
1243 #define lru		(1UL << PG_lru)
1244 #define head		(1UL << PG_head)
1245 #define slab		(1UL << PG_slab)
1246 #define reserved	(1UL << PG_reserved)
1247 
1248 static struct page_state error_states[] = {
1249 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1250 	/*
1251 	 * free pages are specially detected outside this table:
1252 	 * PG_buddy pages only make a small fraction of all free pages.
1253 	 */
1254 
1255 	/*
1256 	 * Could in theory check if slab page is free or if we can drop
1257 	 * currently unused objects without touching them. But just
1258 	 * treat it as standard kernel for now.
1259 	 */
1260 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1261 
1262 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1263 
1264 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1265 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1266 
1267 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1268 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1269 
1270 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1271 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1272 
1273 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1274 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1275 
1276 	/*
1277 	 * Catchall entry: must be at end.
1278 	 */
1279 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1280 };
1281 
1282 #undef dirty
1283 #undef sc
1284 #undef unevict
1285 #undef mlock
1286 #undef lru
1287 #undef head
1288 #undef slab
1289 #undef reserved
1290 
1291 static void update_per_node_mf_stats(unsigned long pfn,
1292 				     enum mf_result result)
1293 {
1294 	int nid = MAX_NUMNODES;
1295 	struct memory_failure_stats *mf_stats = NULL;
1296 
1297 	nid = pfn_to_nid(pfn);
1298 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300 		return;
1301 	}
1302 
1303 	mf_stats = &NODE_DATA(nid)->mf_stats;
1304 	switch (result) {
1305 	case MF_IGNORED:
1306 		++mf_stats->ignored;
1307 		break;
1308 	case MF_FAILED:
1309 		++mf_stats->failed;
1310 		break;
1311 	case MF_DELAYED:
1312 		++mf_stats->delayed;
1313 		break;
1314 	case MF_RECOVERED:
1315 		++mf_stats->recovered;
1316 		break;
1317 	default:
1318 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319 		break;
1320 	}
1321 	++mf_stats->total;
1322 }
1323 
1324 /*
1325  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1327  */
1328 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329 			 enum mf_result result)
1330 {
1331 	trace_memory_failure_event(pfn, type, result);
1332 
1333 	num_poisoned_pages_inc(pfn);
1334 
1335 	update_per_node_mf_stats(pfn, result);
1336 
1337 	pr_err("%#lx: recovery action for %s: %s\n",
1338 		pfn, action_page_types[type], action_name[result]);
1339 
1340 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341 }
1342 
1343 static int page_action(struct page_state *ps, struct page *p,
1344 			unsigned long pfn)
1345 {
1346 	int result;
1347 
1348 	/* page p should be unlocked after returning from ps->action().  */
1349 	result = ps->action(ps, p);
1350 
1351 	/* Could do more checks here if page looks ok */
1352 	/*
1353 	 * Could adjust zone counters here to correct for the missing page.
1354 	 */
1355 
1356 	return action_result(pfn, ps->type, result);
1357 }
1358 
1359 static inline bool PageHWPoisonTakenOff(struct page *page)
1360 {
1361 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362 }
1363 
1364 void SetPageHWPoisonTakenOff(struct page *page)
1365 {
1366 	set_page_private(page, MAGIC_HWPOISON);
1367 }
1368 
1369 void ClearPageHWPoisonTakenOff(struct page *page)
1370 {
1371 	if (PageHWPoison(page))
1372 		set_page_private(page, 0);
1373 }
1374 
1375 /*
1376  * Return true if a page type of a given page is supported by hwpoison
1377  * mechanism (while handling could fail), otherwise false.  This function
1378  * does not return true for hugetlb or device memory pages, so it's assumed
1379  * to be called only in the context where we never have such pages.
1380  */
1381 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1382 {
1383 	/* Soft offline could migrate non-LRU movable pages */
1384 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1385 		return true;
1386 
1387 	return PageLRU(page) || is_free_buddy_page(page);
1388 }
1389 
1390 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1391 {
1392 	struct folio *folio = page_folio(page);
1393 	int ret = 0;
1394 	bool hugetlb = false;
1395 
1396 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1397 	if (hugetlb)
1398 		return ret;
1399 
1400 	/*
1401 	 * This check prevents from calling folio_try_get() for any
1402 	 * unsupported type of folio in order to reduce the risk of unexpected
1403 	 * races caused by taking a folio refcount.
1404 	 */
1405 	if (!HWPoisonHandlable(&folio->page, flags))
1406 		return -EBUSY;
1407 
1408 	if (folio_try_get(folio)) {
1409 		if (folio == page_folio(page))
1410 			return 1;
1411 
1412 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1413 		folio_put(folio);
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static int get_any_page(struct page *p, unsigned long flags)
1420 {
1421 	int ret = 0, pass = 0;
1422 	bool count_increased = false;
1423 
1424 	if (flags & MF_COUNT_INCREASED)
1425 		count_increased = true;
1426 
1427 try_again:
1428 	if (!count_increased) {
1429 		ret = __get_hwpoison_page(p, flags);
1430 		if (!ret) {
1431 			if (page_count(p)) {
1432 				/* We raced with an allocation, retry. */
1433 				if (pass++ < 3)
1434 					goto try_again;
1435 				ret = -EBUSY;
1436 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1437 				/* We raced with put_page, retry. */
1438 				if (pass++ < 3)
1439 					goto try_again;
1440 				ret = -EIO;
1441 			}
1442 			goto out;
1443 		} else if (ret == -EBUSY) {
1444 			/*
1445 			 * We raced with (possibly temporary) unhandlable
1446 			 * page, retry.
1447 			 */
1448 			if (pass++ < 3) {
1449 				shake_page(p);
1450 				goto try_again;
1451 			}
1452 			ret = -EIO;
1453 			goto out;
1454 		}
1455 	}
1456 
1457 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1458 		ret = 1;
1459 	} else {
1460 		/*
1461 		 * A page we cannot handle. Check whether we can turn
1462 		 * it into something we can handle.
1463 		 */
1464 		if (pass++ < 3) {
1465 			put_page(p);
1466 			shake_page(p);
1467 			count_increased = false;
1468 			goto try_again;
1469 		}
1470 		put_page(p);
1471 		ret = -EIO;
1472 	}
1473 out:
1474 	if (ret == -EIO)
1475 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1476 
1477 	return ret;
1478 }
1479 
1480 static int __get_unpoison_page(struct page *page)
1481 {
1482 	struct folio *folio = page_folio(page);
1483 	int ret = 0;
1484 	bool hugetlb = false;
1485 
1486 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1487 	if (hugetlb)
1488 		return ret;
1489 
1490 	/*
1491 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1492 	 * but also isolated from buddy freelist, so need to identify the
1493 	 * state and have to cancel both operations to unpoison.
1494 	 */
1495 	if (PageHWPoisonTakenOff(page))
1496 		return -EHWPOISON;
1497 
1498 	return get_page_unless_zero(page) ? 1 : 0;
1499 }
1500 
1501 /**
1502  * get_hwpoison_page() - Get refcount for memory error handling
1503  * @p:		Raw error page (hit by memory error)
1504  * @flags:	Flags controlling behavior of error handling
1505  *
1506  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1507  * error on it, after checking that the error page is in a well-defined state
1508  * (defined as a page-type we can successfully handle the memory error on it,
1509  * such as LRU page and hugetlb page).
1510  *
1511  * Memory error handling could be triggered at any time on any type of page,
1512  * so it's prone to race with typical memory management lifecycle (like
1513  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1514  * extra care for the error page's state (as done in __get_hwpoison_page()),
1515  * and has some retry logic in get_any_page().
1516  *
1517  * When called from unpoison_memory(), the caller should already ensure that
1518  * the given page has PG_hwpoison. So it's never reused for other page
1519  * allocations, and __get_unpoison_page() never races with them.
1520  *
1521  * Return: 0 on failure,
1522  *         1 on success for in-use pages in a well-defined state,
1523  *         -EIO for pages on which we can not handle memory errors,
1524  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1525  *         operations like allocation and free,
1526  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1527  */
1528 static int get_hwpoison_page(struct page *p, unsigned long flags)
1529 {
1530 	int ret;
1531 
1532 	zone_pcp_disable(page_zone(p));
1533 	if (flags & MF_UNPOISON)
1534 		ret = __get_unpoison_page(p);
1535 	else
1536 		ret = get_any_page(p, flags);
1537 	zone_pcp_enable(page_zone(p));
1538 
1539 	return ret;
1540 }
1541 
1542 /*
1543  * Do all that is necessary to remove user space mappings. Unmap
1544  * the pages and send SIGBUS to the processes if the data was dirty.
1545  */
1546 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1547 				  int flags, struct page *hpage)
1548 {
1549 	struct folio *folio = page_folio(hpage);
1550 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1551 	struct address_space *mapping;
1552 	LIST_HEAD(tokill);
1553 	bool unmap_success;
1554 	int forcekill;
1555 	bool mlocked = PageMlocked(hpage);
1556 
1557 	/*
1558 	 * Here we are interested only in user-mapped pages, so skip any
1559 	 * other types of pages.
1560 	 */
1561 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1562 		return true;
1563 	if (!(PageLRU(hpage) || PageHuge(p)))
1564 		return true;
1565 
1566 	/*
1567 	 * This check implies we don't kill processes if their pages
1568 	 * are in the swap cache early. Those are always late kills.
1569 	 */
1570 	if (!page_mapped(hpage))
1571 		return true;
1572 
1573 	if (PageSwapCache(p)) {
1574 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1575 		ttu &= ~TTU_HWPOISON;
1576 	}
1577 
1578 	/*
1579 	 * Propagate the dirty bit from PTEs to struct page first, because we
1580 	 * need this to decide if we should kill or just drop the page.
1581 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1582 	 * be called inside page lock (it's recommended but not enforced).
1583 	 */
1584 	mapping = page_mapping(hpage);
1585 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1586 	    mapping_can_writeback(mapping)) {
1587 		if (page_mkclean(hpage)) {
1588 			SetPageDirty(hpage);
1589 		} else {
1590 			ttu &= ~TTU_HWPOISON;
1591 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1592 				pfn);
1593 		}
1594 	}
1595 
1596 	/*
1597 	 * First collect all the processes that have the page
1598 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1599 	 * because ttu takes the rmap data structures down.
1600 	 */
1601 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1602 
1603 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1604 		/*
1605 		 * For hugetlb pages in shared mappings, try_to_unmap
1606 		 * could potentially call huge_pmd_unshare.  Because of
1607 		 * this, take semaphore in write mode here and set
1608 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1609 		 * at this higher level.
1610 		 */
1611 		mapping = hugetlb_page_mapping_lock_write(hpage);
1612 		if (mapping) {
1613 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1614 			i_mmap_unlock_write(mapping);
1615 		} else
1616 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1617 	} else {
1618 		try_to_unmap(folio, ttu);
1619 	}
1620 
1621 	unmap_success = !page_mapped(hpage);
1622 	if (!unmap_success)
1623 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1624 		       pfn, page_mapcount(hpage));
1625 
1626 	/*
1627 	 * try_to_unmap() might put mlocked page in lru cache, so call
1628 	 * shake_page() again to ensure that it's flushed.
1629 	 */
1630 	if (mlocked)
1631 		shake_page(hpage);
1632 
1633 	/*
1634 	 * Now that the dirty bit has been propagated to the
1635 	 * struct page and all unmaps done we can decide if
1636 	 * killing is needed or not.  Only kill when the page
1637 	 * was dirty or the process is not restartable,
1638 	 * otherwise the tokill list is merely
1639 	 * freed.  When there was a problem unmapping earlier
1640 	 * use a more force-full uncatchable kill to prevent
1641 	 * any accesses to the poisoned memory.
1642 	 */
1643 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1644 		    !unmap_success;
1645 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1646 
1647 	return unmap_success;
1648 }
1649 
1650 static int identify_page_state(unsigned long pfn, struct page *p,
1651 				unsigned long page_flags)
1652 {
1653 	struct page_state *ps;
1654 
1655 	/*
1656 	 * The first check uses the current page flags which may not have any
1657 	 * relevant information. The second check with the saved page flags is
1658 	 * carried out only if the first check can't determine the page status.
1659 	 */
1660 	for (ps = error_states;; ps++)
1661 		if ((p->flags & ps->mask) == ps->res)
1662 			break;
1663 
1664 	page_flags |= (p->flags & (1UL << PG_dirty));
1665 
1666 	if (!ps->mask)
1667 		for (ps = error_states;; ps++)
1668 			if ((page_flags & ps->mask) == ps->res)
1669 				break;
1670 	return page_action(ps, p, pfn);
1671 }
1672 
1673 static int try_to_split_thp_page(struct page *page)
1674 {
1675 	int ret;
1676 
1677 	lock_page(page);
1678 	ret = split_huge_page(page);
1679 	unlock_page(page);
1680 
1681 	if (unlikely(ret))
1682 		put_page(page);
1683 
1684 	return ret;
1685 }
1686 
1687 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1688 		struct address_space *mapping, pgoff_t index, int flags)
1689 {
1690 	struct to_kill *tk;
1691 	unsigned long size = 0;
1692 
1693 	list_for_each_entry(tk, to_kill, nd)
1694 		if (tk->size_shift)
1695 			size = max(size, 1UL << tk->size_shift);
1696 
1697 	if (size) {
1698 		/*
1699 		 * Unmap the largest mapping to avoid breaking up device-dax
1700 		 * mappings which are constant size. The actual size of the
1701 		 * mapping being torn down is communicated in siginfo, see
1702 		 * kill_proc()
1703 		 */
1704 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1705 
1706 		unmap_mapping_range(mapping, start, size, 0);
1707 	}
1708 
1709 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1710 }
1711 
1712 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1713 		struct dev_pagemap *pgmap)
1714 {
1715 	struct page *page = pfn_to_page(pfn);
1716 	LIST_HEAD(to_kill);
1717 	dax_entry_t cookie;
1718 	int rc = 0;
1719 
1720 	/*
1721 	 * Pages instantiated by device-dax (not filesystem-dax)
1722 	 * may be compound pages.
1723 	 */
1724 	page = compound_head(page);
1725 
1726 	/*
1727 	 * Prevent the inode from being freed while we are interrogating
1728 	 * the address_space, typically this would be handled by
1729 	 * lock_page(), but dax pages do not use the page lock. This
1730 	 * also prevents changes to the mapping of this pfn until
1731 	 * poison signaling is complete.
1732 	 */
1733 	cookie = dax_lock_page(page);
1734 	if (!cookie)
1735 		return -EBUSY;
1736 
1737 	if (hwpoison_filter(page)) {
1738 		rc = -EOPNOTSUPP;
1739 		goto unlock;
1740 	}
1741 
1742 	switch (pgmap->type) {
1743 	case MEMORY_DEVICE_PRIVATE:
1744 	case MEMORY_DEVICE_COHERENT:
1745 		/*
1746 		 * TODO: Handle device pages which may need coordination
1747 		 * with device-side memory.
1748 		 */
1749 		rc = -ENXIO;
1750 		goto unlock;
1751 	default:
1752 		break;
1753 	}
1754 
1755 	/*
1756 	 * Use this flag as an indication that the dax page has been
1757 	 * remapped UC to prevent speculative consumption of poison.
1758 	 */
1759 	SetPageHWPoison(page);
1760 
1761 	/*
1762 	 * Unlike System-RAM there is no possibility to swap in a
1763 	 * different physical page at a given virtual address, so all
1764 	 * userspace consumption of ZONE_DEVICE memory necessitates
1765 	 * SIGBUS (i.e. MF_MUST_KILL)
1766 	 */
1767 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1768 	collect_procs(page, &to_kill, true);
1769 
1770 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1771 unlock:
1772 	dax_unlock_page(page, cookie);
1773 	return rc;
1774 }
1775 
1776 #ifdef CONFIG_FS_DAX
1777 /**
1778  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1779  * @mapping:	address_space of the file in use
1780  * @index:	start pgoff of the range within the file
1781  * @count:	length of the range, in unit of PAGE_SIZE
1782  * @mf_flags:	memory failure flags
1783  */
1784 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1785 		unsigned long count, int mf_flags)
1786 {
1787 	LIST_HEAD(to_kill);
1788 	dax_entry_t cookie;
1789 	struct page *page;
1790 	size_t end = index + count;
1791 
1792 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1793 
1794 	for (; index < end; index++) {
1795 		page = NULL;
1796 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1797 		if (!cookie)
1798 			return -EBUSY;
1799 		if (!page)
1800 			goto unlock;
1801 
1802 		SetPageHWPoison(page);
1803 
1804 		collect_procs_fsdax(page, mapping, index, &to_kill);
1805 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1806 				index, mf_flags);
1807 unlock:
1808 		dax_unlock_mapping_entry(mapping, index, cookie);
1809 	}
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1813 #endif /* CONFIG_FS_DAX */
1814 
1815 #ifdef CONFIG_HUGETLB_PAGE
1816 /*
1817  * Struct raw_hwp_page represents information about "raw error page",
1818  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1819  */
1820 struct raw_hwp_page {
1821 	struct llist_node node;
1822 	struct page *page;
1823 };
1824 
1825 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1826 {
1827 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1828 }
1829 
1830 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1831 {
1832 	struct llist_head *head;
1833 	struct llist_node *t, *tnode;
1834 	unsigned long count = 0;
1835 
1836 	head = raw_hwp_list_head(folio);
1837 	llist_for_each_safe(tnode, t, head->first) {
1838 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1839 
1840 		if (move_flag)
1841 			SetPageHWPoison(p->page);
1842 		else
1843 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1844 		kfree(p);
1845 		count++;
1846 	}
1847 	llist_del_all(head);
1848 	return count;
1849 }
1850 
1851 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1852 {
1853 	struct llist_head *head;
1854 	struct raw_hwp_page *raw_hwp;
1855 	struct llist_node *t, *tnode;
1856 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1857 
1858 	/*
1859 	 * Once the hwpoison hugepage has lost reliable raw error info,
1860 	 * there is little meaning to keep additional error info precisely,
1861 	 * so skip to add additional raw error info.
1862 	 */
1863 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1864 		return -EHWPOISON;
1865 	head = raw_hwp_list_head(folio);
1866 	llist_for_each_safe(tnode, t, head->first) {
1867 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1868 
1869 		if (p->page == page)
1870 			return -EHWPOISON;
1871 	}
1872 
1873 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1874 	if (raw_hwp) {
1875 		raw_hwp->page = page;
1876 		llist_add(&raw_hwp->node, head);
1877 		/* the first error event will be counted in action_result(). */
1878 		if (ret)
1879 			num_poisoned_pages_inc(page_to_pfn(page));
1880 	} else {
1881 		/*
1882 		 * Failed to save raw error info.  We no longer trace all
1883 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1884 		 * this hwpoisoned hugepage.
1885 		 */
1886 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1887 		/*
1888 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1889 		 * used any more, so free it.
1890 		 */
1891 		__folio_free_raw_hwp(folio, false);
1892 	}
1893 	return ret;
1894 }
1895 
1896 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1897 {
1898 	/*
1899 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1900 	 * pages for tail pages are required but they don't exist.
1901 	 */
1902 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1903 		return 0;
1904 
1905 	/*
1906 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1907 	 * definition.
1908 	 */
1909 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1910 		return 0;
1911 
1912 	return __folio_free_raw_hwp(folio, move_flag);
1913 }
1914 
1915 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1916 {
1917 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1918 		return;
1919 	folio_clear_hwpoison(folio);
1920 	folio_free_raw_hwp(folio, true);
1921 }
1922 
1923 /*
1924  * Called from hugetlb code with hugetlb_lock held.
1925  *
1926  * Return values:
1927  *   0             - free hugepage
1928  *   1             - in-use hugepage
1929  *   2             - not a hugepage
1930  *   -EBUSY        - the hugepage is busy (try to retry)
1931  *   -EHWPOISON    - the hugepage is already hwpoisoned
1932  */
1933 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1934 				 bool *migratable_cleared)
1935 {
1936 	struct page *page = pfn_to_page(pfn);
1937 	struct folio *folio = page_folio(page);
1938 	int ret = 2;	/* fallback to normal page handling */
1939 	bool count_increased = false;
1940 
1941 	if (!folio_test_hugetlb(folio))
1942 		goto out;
1943 
1944 	if (flags & MF_COUNT_INCREASED) {
1945 		ret = 1;
1946 		count_increased = true;
1947 	} else if (folio_test_hugetlb_freed(folio)) {
1948 		ret = 0;
1949 	} else if (folio_test_hugetlb_migratable(folio)) {
1950 		ret = folio_try_get(folio);
1951 		if (ret)
1952 			count_increased = true;
1953 	} else {
1954 		ret = -EBUSY;
1955 		if (!(flags & MF_NO_RETRY))
1956 			goto out;
1957 	}
1958 
1959 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1960 		ret = -EHWPOISON;
1961 		goto out;
1962 	}
1963 
1964 	/*
1965 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1966 	 * from being migrated by memory hotremove.
1967 	 */
1968 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1969 		folio_clear_hugetlb_migratable(folio);
1970 		*migratable_cleared = true;
1971 	}
1972 
1973 	return ret;
1974 out:
1975 	if (count_increased)
1976 		folio_put(folio);
1977 	return ret;
1978 }
1979 
1980 /*
1981  * Taking refcount of hugetlb pages needs extra care about race conditions
1982  * with basic operations like hugepage allocation/free/demotion.
1983  * So some of prechecks for hwpoison (pinning, and testing/setting
1984  * PageHWPoison) should be done in single hugetlb_lock range.
1985  */
1986 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1987 {
1988 	int res;
1989 	struct page *p = pfn_to_page(pfn);
1990 	struct folio *folio;
1991 	unsigned long page_flags;
1992 	bool migratable_cleared = false;
1993 
1994 	*hugetlb = 1;
1995 retry:
1996 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1997 	if (res == 2) { /* fallback to normal page handling */
1998 		*hugetlb = 0;
1999 		return 0;
2000 	} else if (res == -EHWPOISON) {
2001 		pr_err("%#lx: already hardware poisoned\n", pfn);
2002 		if (flags & MF_ACTION_REQUIRED) {
2003 			folio = page_folio(p);
2004 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2005 		}
2006 		return res;
2007 	} else if (res == -EBUSY) {
2008 		if (!(flags & MF_NO_RETRY)) {
2009 			flags |= MF_NO_RETRY;
2010 			goto retry;
2011 		}
2012 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2013 	}
2014 
2015 	folio = page_folio(p);
2016 	folio_lock(folio);
2017 
2018 	if (hwpoison_filter(p)) {
2019 		folio_clear_hugetlb_hwpoison(folio);
2020 		if (migratable_cleared)
2021 			folio_set_hugetlb_migratable(folio);
2022 		folio_unlock(folio);
2023 		if (res == 1)
2024 			folio_put(folio);
2025 		return -EOPNOTSUPP;
2026 	}
2027 
2028 	/*
2029 	 * Handling free hugepage.  The possible race with hugepage allocation
2030 	 * or demotion can be prevented by PageHWPoison flag.
2031 	 */
2032 	if (res == 0) {
2033 		folio_unlock(folio);
2034 		if (__page_handle_poison(p) >= 0) {
2035 			page_ref_inc(p);
2036 			res = MF_RECOVERED;
2037 		} else {
2038 			res = MF_FAILED;
2039 		}
2040 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2041 	}
2042 
2043 	page_flags = folio->flags;
2044 
2045 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2046 		folio_unlock(folio);
2047 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2048 	}
2049 
2050 	return identify_page_state(pfn, p, page_flags);
2051 }
2052 
2053 #else
2054 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2055 {
2056 	return 0;
2057 }
2058 
2059 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2060 {
2061 	return 0;
2062 }
2063 #endif	/* CONFIG_HUGETLB_PAGE */
2064 
2065 /* Drop the extra refcount in case we come from madvise() */
2066 static void put_ref_page(unsigned long pfn, int flags)
2067 {
2068 	struct page *page;
2069 
2070 	if (!(flags & MF_COUNT_INCREASED))
2071 		return;
2072 
2073 	page = pfn_to_page(pfn);
2074 	if (page)
2075 		put_page(page);
2076 }
2077 
2078 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2079 		struct dev_pagemap *pgmap)
2080 {
2081 	int rc = -ENXIO;
2082 
2083 	put_ref_page(pfn, flags);
2084 
2085 	/* device metadata space is not recoverable */
2086 	if (!pgmap_pfn_valid(pgmap, pfn))
2087 		goto out;
2088 
2089 	/*
2090 	 * Call driver's implementation to handle the memory failure, otherwise
2091 	 * fall back to generic handler.
2092 	 */
2093 	if (pgmap_has_memory_failure(pgmap)) {
2094 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2095 		/*
2096 		 * Fall back to generic handler too if operation is not
2097 		 * supported inside the driver/device/filesystem.
2098 		 */
2099 		if (rc != -EOPNOTSUPP)
2100 			goto out;
2101 	}
2102 
2103 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2104 out:
2105 	/* drop pgmap ref acquired in caller */
2106 	put_dev_pagemap(pgmap);
2107 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2108 	return rc;
2109 }
2110 
2111 static DEFINE_MUTEX(mf_mutex);
2112 
2113 /**
2114  * memory_failure - Handle memory failure of a page.
2115  * @pfn: Page Number of the corrupted page
2116  * @flags: fine tune action taken
2117  *
2118  * This function is called by the low level machine check code
2119  * of an architecture when it detects hardware memory corruption
2120  * of a page. It tries its best to recover, which includes
2121  * dropping pages, killing processes etc.
2122  *
2123  * The function is primarily of use for corruptions that
2124  * happen outside the current execution context (e.g. when
2125  * detected by a background scrubber)
2126  *
2127  * Must run in process context (e.g. a work queue) with interrupts
2128  * enabled and no spinlocks hold.
2129  *
2130  * Return: 0 for successfully handled the memory error,
2131  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2132  *         < 0(except -EOPNOTSUPP) on failure.
2133  */
2134 int memory_failure(unsigned long pfn, int flags)
2135 {
2136 	struct page *p;
2137 	struct page *hpage;
2138 	struct dev_pagemap *pgmap;
2139 	int res = 0;
2140 	unsigned long page_flags;
2141 	bool retry = true;
2142 	int hugetlb = 0;
2143 
2144 	if (!sysctl_memory_failure_recovery)
2145 		panic("Memory failure on page %lx", pfn);
2146 
2147 	mutex_lock(&mf_mutex);
2148 
2149 	if (!(flags & MF_SW_SIMULATED))
2150 		hw_memory_failure = true;
2151 
2152 	p = pfn_to_online_page(pfn);
2153 	if (!p) {
2154 		res = arch_memory_failure(pfn, flags);
2155 		if (res == 0)
2156 			goto unlock_mutex;
2157 
2158 		if (pfn_valid(pfn)) {
2159 			pgmap = get_dev_pagemap(pfn, NULL);
2160 			if (pgmap) {
2161 				res = memory_failure_dev_pagemap(pfn, flags,
2162 								 pgmap);
2163 				goto unlock_mutex;
2164 			}
2165 		}
2166 		pr_err("%#lx: memory outside kernel control\n", pfn);
2167 		res = -ENXIO;
2168 		goto unlock_mutex;
2169 	}
2170 
2171 try_again:
2172 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2173 	if (hugetlb)
2174 		goto unlock_mutex;
2175 
2176 	if (TestSetPageHWPoison(p)) {
2177 		pr_err("%#lx: already hardware poisoned\n", pfn);
2178 		res = -EHWPOISON;
2179 		if (flags & MF_ACTION_REQUIRED)
2180 			res = kill_accessing_process(current, pfn, flags);
2181 		if (flags & MF_COUNT_INCREASED)
2182 			put_page(p);
2183 		goto unlock_mutex;
2184 	}
2185 
2186 	hpage = compound_head(p);
2187 
2188 	/*
2189 	 * We need/can do nothing about count=0 pages.
2190 	 * 1) it's a free page, and therefore in safe hand:
2191 	 *    check_new_page() will be the gate keeper.
2192 	 * 2) it's part of a non-compound high order page.
2193 	 *    Implies some kernel user: cannot stop them from
2194 	 *    R/W the page; let's pray that the page has been
2195 	 *    used and will be freed some time later.
2196 	 * In fact it's dangerous to directly bump up page count from 0,
2197 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2198 	 */
2199 	if (!(flags & MF_COUNT_INCREASED)) {
2200 		res = get_hwpoison_page(p, flags);
2201 		if (!res) {
2202 			if (is_free_buddy_page(p)) {
2203 				if (take_page_off_buddy(p)) {
2204 					page_ref_inc(p);
2205 					res = MF_RECOVERED;
2206 				} else {
2207 					/* We lost the race, try again */
2208 					if (retry) {
2209 						ClearPageHWPoison(p);
2210 						retry = false;
2211 						goto try_again;
2212 					}
2213 					res = MF_FAILED;
2214 				}
2215 				res = action_result(pfn, MF_MSG_BUDDY, res);
2216 			} else {
2217 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2218 			}
2219 			goto unlock_mutex;
2220 		} else if (res < 0) {
2221 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2222 			goto unlock_mutex;
2223 		}
2224 	}
2225 
2226 	if (PageTransHuge(hpage)) {
2227 		/*
2228 		 * The flag must be set after the refcount is bumped
2229 		 * otherwise it may race with THP split.
2230 		 * And the flag can't be set in get_hwpoison_page() since
2231 		 * it is called by soft offline too and it is just called
2232 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2233 		 * place.
2234 		 *
2235 		 * Don't need care about the above error handling paths for
2236 		 * get_hwpoison_page() since they handle either free page
2237 		 * or unhandlable page.  The refcount is bumped iff the
2238 		 * page is a valid handlable page.
2239 		 */
2240 		SetPageHasHWPoisoned(hpage);
2241 		if (try_to_split_thp_page(p) < 0) {
2242 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2243 			goto unlock_mutex;
2244 		}
2245 		VM_BUG_ON_PAGE(!page_count(p), p);
2246 	}
2247 
2248 	/*
2249 	 * We ignore non-LRU pages for good reasons.
2250 	 * - PG_locked is only well defined for LRU pages and a few others
2251 	 * - to avoid races with __SetPageLocked()
2252 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2253 	 * The check (unnecessarily) ignores LRU pages being isolated and
2254 	 * walked by the page reclaim code, however that's not a big loss.
2255 	 */
2256 	shake_page(p);
2257 
2258 	lock_page(p);
2259 
2260 	/*
2261 	 * We're only intended to deal with the non-Compound page here.
2262 	 * However, the page could have changed compound pages due to
2263 	 * race window. If this happens, we could try again to hopefully
2264 	 * handle the page next round.
2265 	 */
2266 	if (PageCompound(p)) {
2267 		if (retry) {
2268 			ClearPageHWPoison(p);
2269 			unlock_page(p);
2270 			put_page(p);
2271 			flags &= ~MF_COUNT_INCREASED;
2272 			retry = false;
2273 			goto try_again;
2274 		}
2275 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2276 		goto unlock_page;
2277 	}
2278 
2279 	/*
2280 	 * We use page flags to determine what action should be taken, but
2281 	 * the flags can be modified by the error containment action.  One
2282 	 * example is an mlocked page, where PG_mlocked is cleared by
2283 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2284 	 * correctly, we save a copy of the page flags at this time.
2285 	 */
2286 	page_flags = p->flags;
2287 
2288 	if (hwpoison_filter(p)) {
2289 		ClearPageHWPoison(p);
2290 		unlock_page(p);
2291 		put_page(p);
2292 		res = -EOPNOTSUPP;
2293 		goto unlock_mutex;
2294 	}
2295 
2296 	/*
2297 	 * __munlock_folio() may clear a writeback page's LRU flag without
2298 	 * page_lock. We need wait writeback completion for this page or it
2299 	 * may trigger vfs BUG while evict inode.
2300 	 */
2301 	if (!PageLRU(p) && !PageWriteback(p))
2302 		goto identify_page_state;
2303 
2304 	/*
2305 	 * It's very difficult to mess with pages currently under IO
2306 	 * and in many cases impossible, so we just avoid it here.
2307 	 */
2308 	wait_on_page_writeback(p);
2309 
2310 	/*
2311 	 * Now take care of user space mappings.
2312 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2313 	 */
2314 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2315 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2316 		goto unlock_page;
2317 	}
2318 
2319 	/*
2320 	 * Torn down by someone else?
2321 	 */
2322 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2323 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2324 		goto unlock_page;
2325 	}
2326 
2327 identify_page_state:
2328 	res = identify_page_state(pfn, p, page_flags);
2329 	mutex_unlock(&mf_mutex);
2330 	return res;
2331 unlock_page:
2332 	unlock_page(p);
2333 unlock_mutex:
2334 	mutex_unlock(&mf_mutex);
2335 	return res;
2336 }
2337 EXPORT_SYMBOL_GPL(memory_failure);
2338 
2339 #define MEMORY_FAILURE_FIFO_ORDER	4
2340 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2341 
2342 struct memory_failure_entry {
2343 	unsigned long pfn;
2344 	int flags;
2345 };
2346 
2347 struct memory_failure_cpu {
2348 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2349 		      MEMORY_FAILURE_FIFO_SIZE);
2350 	spinlock_t lock;
2351 	struct work_struct work;
2352 };
2353 
2354 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2355 
2356 /**
2357  * memory_failure_queue - Schedule handling memory failure of a page.
2358  * @pfn: Page Number of the corrupted page
2359  * @flags: Flags for memory failure handling
2360  *
2361  * This function is called by the low level hardware error handler
2362  * when it detects hardware memory corruption of a page. It schedules
2363  * the recovering of error page, including dropping pages, killing
2364  * processes etc.
2365  *
2366  * The function is primarily of use for corruptions that
2367  * happen outside the current execution context (e.g. when
2368  * detected by a background scrubber)
2369  *
2370  * Can run in IRQ context.
2371  */
2372 void memory_failure_queue(unsigned long pfn, int flags)
2373 {
2374 	struct memory_failure_cpu *mf_cpu;
2375 	unsigned long proc_flags;
2376 	struct memory_failure_entry entry = {
2377 		.pfn =		pfn,
2378 		.flags =	flags,
2379 	};
2380 
2381 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2382 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2383 	if (kfifo_put(&mf_cpu->fifo, entry))
2384 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2385 	else
2386 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2387 		       pfn);
2388 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2389 	put_cpu_var(memory_failure_cpu);
2390 }
2391 EXPORT_SYMBOL_GPL(memory_failure_queue);
2392 
2393 static void memory_failure_work_func(struct work_struct *work)
2394 {
2395 	struct memory_failure_cpu *mf_cpu;
2396 	struct memory_failure_entry entry = { 0, };
2397 	unsigned long proc_flags;
2398 	int gotten;
2399 
2400 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2401 	for (;;) {
2402 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2403 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2404 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2405 		if (!gotten)
2406 			break;
2407 		if (entry.flags & MF_SOFT_OFFLINE)
2408 			soft_offline_page(entry.pfn, entry.flags);
2409 		else
2410 			memory_failure(entry.pfn, entry.flags);
2411 	}
2412 }
2413 
2414 /*
2415  * Process memory_failure work queued on the specified CPU.
2416  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2417  */
2418 void memory_failure_queue_kick(int cpu)
2419 {
2420 	struct memory_failure_cpu *mf_cpu;
2421 
2422 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2423 	cancel_work_sync(&mf_cpu->work);
2424 	memory_failure_work_func(&mf_cpu->work);
2425 }
2426 
2427 static int __init memory_failure_init(void)
2428 {
2429 	struct memory_failure_cpu *mf_cpu;
2430 	int cpu;
2431 
2432 	for_each_possible_cpu(cpu) {
2433 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2434 		spin_lock_init(&mf_cpu->lock);
2435 		INIT_KFIFO(mf_cpu->fifo);
2436 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2437 	}
2438 
2439 	register_sysctl_init("vm", memory_failure_table);
2440 
2441 	return 0;
2442 }
2443 core_initcall(memory_failure_init);
2444 
2445 #undef pr_fmt
2446 #define pr_fmt(fmt)	"" fmt
2447 #define unpoison_pr_info(fmt, pfn, rs)			\
2448 ({							\
2449 	if (__ratelimit(rs))				\
2450 		pr_info(fmt, pfn);			\
2451 })
2452 
2453 /**
2454  * unpoison_memory - Unpoison a previously poisoned page
2455  * @pfn: Page number of the to be unpoisoned page
2456  *
2457  * Software-unpoison a page that has been poisoned by
2458  * memory_failure() earlier.
2459  *
2460  * This is only done on the software-level, so it only works
2461  * for linux injected failures, not real hardware failures
2462  *
2463  * Returns 0 for success, otherwise -errno.
2464  */
2465 int unpoison_memory(unsigned long pfn)
2466 {
2467 	struct folio *folio;
2468 	struct page *p;
2469 	int ret = -EBUSY;
2470 	unsigned long count = 1;
2471 	bool huge = false;
2472 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2473 					DEFAULT_RATELIMIT_BURST);
2474 
2475 	if (!pfn_valid(pfn))
2476 		return -ENXIO;
2477 
2478 	p = pfn_to_page(pfn);
2479 	folio = page_folio(p);
2480 
2481 	mutex_lock(&mf_mutex);
2482 
2483 	if (hw_memory_failure) {
2484 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2485 				 pfn, &unpoison_rs);
2486 		ret = -EOPNOTSUPP;
2487 		goto unlock_mutex;
2488 	}
2489 
2490 	if (!folio_test_hwpoison(folio)) {
2491 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2492 				 pfn, &unpoison_rs);
2493 		goto unlock_mutex;
2494 	}
2495 
2496 	if (folio_ref_count(folio) > 1) {
2497 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2498 				 pfn, &unpoison_rs);
2499 		goto unlock_mutex;
2500 	}
2501 
2502 	if (folio_mapped(folio)) {
2503 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2504 				 pfn, &unpoison_rs);
2505 		goto unlock_mutex;
2506 	}
2507 
2508 	if (folio_mapping(folio)) {
2509 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2510 				 pfn, &unpoison_rs);
2511 		goto unlock_mutex;
2512 	}
2513 
2514 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2515 		goto unlock_mutex;
2516 
2517 	ret = get_hwpoison_page(p, MF_UNPOISON);
2518 	if (!ret) {
2519 		if (PageHuge(p)) {
2520 			huge = true;
2521 			count = folio_free_raw_hwp(folio, false);
2522 			if (count == 0) {
2523 				ret = -EBUSY;
2524 				goto unlock_mutex;
2525 			}
2526 		}
2527 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2528 	} else if (ret < 0) {
2529 		if (ret == -EHWPOISON) {
2530 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2531 		} else
2532 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2533 					 pfn, &unpoison_rs);
2534 	} else {
2535 		if (PageHuge(p)) {
2536 			huge = true;
2537 			count = folio_free_raw_hwp(folio, false);
2538 			if (count == 0) {
2539 				ret = -EBUSY;
2540 				folio_put(folio);
2541 				goto unlock_mutex;
2542 			}
2543 		}
2544 
2545 		folio_put(folio);
2546 		if (TestClearPageHWPoison(p)) {
2547 			folio_put(folio);
2548 			ret = 0;
2549 		}
2550 	}
2551 
2552 unlock_mutex:
2553 	mutex_unlock(&mf_mutex);
2554 	if (!ret) {
2555 		if (!huge)
2556 			num_poisoned_pages_sub(pfn, 1);
2557 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2558 				 page_to_pfn(p), &unpoison_rs);
2559 	}
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(unpoison_memory);
2563 
2564 static bool isolate_page(struct page *page, struct list_head *pagelist)
2565 {
2566 	bool isolated = false;
2567 
2568 	if (PageHuge(page)) {
2569 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2570 	} else {
2571 		bool lru = !__PageMovable(page);
2572 
2573 		if (lru)
2574 			isolated = isolate_lru_page(page);
2575 		else
2576 			isolated = isolate_movable_page(page,
2577 							ISOLATE_UNEVICTABLE);
2578 
2579 		if (isolated) {
2580 			list_add(&page->lru, pagelist);
2581 			if (lru)
2582 				inc_node_page_state(page, NR_ISOLATED_ANON +
2583 						    page_is_file_lru(page));
2584 		}
2585 	}
2586 
2587 	/*
2588 	 * If we succeed to isolate the page, we grabbed another refcount on
2589 	 * the page, so we can safely drop the one we got from get_any_pages().
2590 	 * If we failed to isolate the page, it means that we cannot go further
2591 	 * and we will return an error, so drop the reference we got from
2592 	 * get_any_pages() as well.
2593 	 */
2594 	put_page(page);
2595 	return isolated;
2596 }
2597 
2598 /*
2599  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2600  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2601  * If the page is mapped, it migrates the contents over.
2602  */
2603 static int soft_offline_in_use_page(struct page *page)
2604 {
2605 	long ret = 0;
2606 	unsigned long pfn = page_to_pfn(page);
2607 	struct page *hpage = compound_head(page);
2608 	char const *msg_page[] = {"page", "hugepage"};
2609 	bool huge = PageHuge(page);
2610 	LIST_HEAD(pagelist);
2611 	struct migration_target_control mtc = {
2612 		.nid = NUMA_NO_NODE,
2613 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2614 	};
2615 
2616 	if (!huge && PageTransHuge(hpage)) {
2617 		if (try_to_split_thp_page(page)) {
2618 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2619 			return -EBUSY;
2620 		}
2621 		hpage = page;
2622 	}
2623 
2624 	lock_page(page);
2625 	if (!PageHuge(page))
2626 		wait_on_page_writeback(page);
2627 	if (PageHWPoison(page)) {
2628 		unlock_page(page);
2629 		put_page(page);
2630 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2631 		return 0;
2632 	}
2633 
2634 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2635 		/*
2636 		 * Try to invalidate first. This should work for
2637 		 * non dirty unmapped page cache pages.
2638 		 */
2639 		ret = invalidate_inode_page(page);
2640 	unlock_page(page);
2641 
2642 	if (ret) {
2643 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2644 		page_handle_poison(page, false, true);
2645 		return 0;
2646 	}
2647 
2648 	if (isolate_page(hpage, &pagelist)) {
2649 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2650 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2651 		if (!ret) {
2652 			bool release = !huge;
2653 
2654 			if (!page_handle_poison(page, huge, release))
2655 				ret = -EBUSY;
2656 		} else {
2657 			if (!list_empty(&pagelist))
2658 				putback_movable_pages(&pagelist);
2659 
2660 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2661 				pfn, msg_page[huge], ret, &page->flags);
2662 			if (ret > 0)
2663 				ret = -EBUSY;
2664 		}
2665 	} else {
2666 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2667 			pfn, msg_page[huge], page_count(page), &page->flags);
2668 		ret = -EBUSY;
2669 	}
2670 	return ret;
2671 }
2672 
2673 /**
2674  * soft_offline_page - Soft offline a page.
2675  * @pfn: pfn to soft-offline
2676  * @flags: flags. Same as memory_failure().
2677  *
2678  * Returns 0 on success
2679  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2680  *         < 0 otherwise negated errno.
2681  *
2682  * Soft offline a page, by migration or invalidation,
2683  * without killing anything. This is for the case when
2684  * a page is not corrupted yet (so it's still valid to access),
2685  * but has had a number of corrected errors and is better taken
2686  * out.
2687  *
2688  * The actual policy on when to do that is maintained by
2689  * user space.
2690  *
2691  * This should never impact any application or cause data loss,
2692  * however it might take some time.
2693  *
2694  * This is not a 100% solution for all memory, but tries to be
2695  * ``good enough'' for the majority of memory.
2696  */
2697 int soft_offline_page(unsigned long pfn, int flags)
2698 {
2699 	int ret;
2700 	bool try_again = true;
2701 	struct page *page;
2702 
2703 	if (!pfn_valid(pfn)) {
2704 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2705 		return -ENXIO;
2706 	}
2707 
2708 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2709 	page = pfn_to_online_page(pfn);
2710 	if (!page) {
2711 		put_ref_page(pfn, flags);
2712 		return -EIO;
2713 	}
2714 
2715 	mutex_lock(&mf_mutex);
2716 
2717 	if (PageHWPoison(page)) {
2718 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2719 		put_ref_page(pfn, flags);
2720 		mutex_unlock(&mf_mutex);
2721 		return 0;
2722 	}
2723 
2724 retry:
2725 	get_online_mems();
2726 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2727 	put_online_mems();
2728 
2729 	if (hwpoison_filter(page)) {
2730 		if (ret > 0)
2731 			put_page(page);
2732 
2733 		mutex_unlock(&mf_mutex);
2734 		return -EOPNOTSUPP;
2735 	}
2736 
2737 	if (ret > 0) {
2738 		ret = soft_offline_in_use_page(page);
2739 	} else if (ret == 0) {
2740 		if (!page_handle_poison(page, true, false) && try_again) {
2741 			try_again = false;
2742 			flags &= ~MF_COUNT_INCREASED;
2743 			goto retry;
2744 		}
2745 	}
2746 
2747 	mutex_unlock(&mf_mutex);
2748 
2749 	return ret;
2750 }
2751