xref: /openbmc/linux/mm/memory-failure.c (revision 3b64b188)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	/* root_mem_cgroup has NULL dentries */
149 	if (!css->cgroup->dentry)
150 		return -EINVAL;
151 
152 	ino = css->cgroup->dentry->d_inode->i_ino;
153 	css_put(css);
154 
155 	if (ino != hwpoison_filter_memcg)
156 		return -EINVAL;
157 
158 	return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
164 int hwpoison_filter(struct page *p)
165 {
166 	if (!hwpoison_filter_enable)
167 		return 0;
168 
169 	if (hwpoison_filter_dev(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_flags(p))
173 		return -EINVAL;
174 
175 	if (hwpoison_filter_task(p))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183 	return 0;
184 }
185 #endif
186 
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 			unsigned long pfn, struct page *page, int flags)
196 {
197 	struct siginfo si;
198 	int ret;
199 
200 	printk(KERN_ERR
201 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 		pfn, t->comm, t->pid);
203 	si.si_signo = SIGBUS;
204 	si.si_errno = 0;
205 	si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 	si.si_trapno = trapno;
208 #endif
209 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 
211 	if ((flags & MF_ACTION_REQUIRED) && t == current) {
212 		si.si_code = BUS_MCEERR_AR;
213 		ret = force_sig_info(SIGBUS, &si, t);
214 	} else {
215 		/*
216 		 * Don't use force here, it's convenient if the signal
217 		 * can be temporarily blocked.
218 		 * This could cause a loop when the user sets SIGBUS
219 		 * to SIG_IGN, but hopefully no one will do that?
220 		 */
221 		si.si_code = BUS_MCEERR_AO;
222 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
223 	}
224 	if (ret < 0)
225 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 		       t->comm, t->pid, ret);
227 	return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
234 void shake_page(struct page *p, int access)
235 {
236 	if (!PageSlab(p)) {
237 		lru_add_drain_all();
238 		if (PageLRU(p))
239 			return;
240 		drain_all_pages();
241 		if (PageLRU(p) || is_free_buddy_page(p))
242 			return;
243 	}
244 
245 	/*
246 	 * Only call shrink_slab here (which would also shrink other caches) if
247 	 * access is not potentially fatal.
248 	 */
249 	if (access) {
250 		int nr;
251 		do {
252 			struct shrink_control shrink = {
253 				.gfp_mask = GFP_KERNEL,
254 			};
255 
256 			nr = shrink_slab(&shrink, 1000, 1000);
257 			if (page_count(p) == 1)
258 				break;
259 		} while (nr > 10);
260 	}
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 /*
265  * Kill all processes that have a poisoned page mapped and then isolate
266  * the page.
267  *
268  * General strategy:
269  * Find all processes having the page mapped and kill them.
270  * But we keep a page reference around so that the page is not
271  * actually freed yet.
272  * Then stash the page away
273  *
274  * There's no convenient way to get back to mapped processes
275  * from the VMAs. So do a brute-force search over all
276  * running processes.
277  *
278  * Remember that machine checks are not common (or rather
279  * if they are common you have other problems), so this shouldn't
280  * be a performance issue.
281  *
282  * Also there are some races possible while we get from the
283  * error detection to actually handle it.
284  */
285 
286 struct to_kill {
287 	struct list_head nd;
288 	struct task_struct *tsk;
289 	unsigned long addr;
290 	char addr_valid;
291 };
292 
293 /*
294  * Failure handling: if we can't find or can't kill a process there's
295  * not much we can do.	We just print a message and ignore otherwise.
296  */
297 
298 /*
299  * Schedule a process for later kill.
300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301  * TBD would GFP_NOIO be enough?
302  */
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304 		       struct vm_area_struct *vma,
305 		       struct list_head *to_kill,
306 		       struct to_kill **tkc)
307 {
308 	struct to_kill *tk;
309 
310 	if (*tkc) {
311 		tk = *tkc;
312 		*tkc = NULL;
313 	} else {
314 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 		if (!tk) {
316 			printk(KERN_ERR
317 		"MCE: Out of memory while machine check handling\n");
318 			return;
319 		}
320 	}
321 	tk->addr = page_address_in_vma(p, vma);
322 	tk->addr_valid = 1;
323 
324 	/*
325 	 * In theory we don't have to kill when the page was
326 	 * munmaped. But it could be also a mremap. Since that's
327 	 * likely very rare kill anyways just out of paranoia, but use
328 	 * a SIGKILL because the error is not contained anymore.
329 	 */
330 	if (tk->addr == -EFAULT) {
331 		pr_info("MCE: Unable to find user space address %lx in %s\n",
332 			page_to_pfn(p), tsk->comm);
333 		tk->addr_valid = 0;
334 	}
335 	get_task_struct(tsk);
336 	tk->tsk = tsk;
337 	list_add_tail(&tk->nd, to_kill);
338 }
339 
340 /*
341  * Kill the processes that have been collected earlier.
342  *
343  * Only do anything when DOIT is set, otherwise just free the list
344  * (this is used for clean pages which do not need killing)
345  * Also when FAIL is set do a force kill because something went
346  * wrong earlier.
347  */
348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349 			  int fail, struct page *page, unsigned long pfn,
350 			  int flags)
351 {
352 	struct to_kill *tk, *next;
353 
354 	list_for_each_entry_safe (tk, next, to_kill, nd) {
355 		if (forcekill) {
356 			/*
357 			 * In case something went wrong with munmapping
358 			 * make sure the process doesn't catch the
359 			 * signal and then access the memory. Just kill it.
360 			 */
361 			if (fail || tk->addr_valid == 0) {
362 				printk(KERN_ERR
363 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 					pfn, tk->tsk->comm, tk->tsk->pid);
365 				force_sig(SIGKILL, tk->tsk);
366 			}
367 
368 			/*
369 			 * In theory the process could have mapped
370 			 * something else on the address in-between. We could
371 			 * check for that, but we need to tell the
372 			 * process anyways.
373 			 */
374 			else if (kill_proc(tk->tsk, tk->addr, trapno,
375 					      pfn, page, flags) < 0)
376 				printk(KERN_ERR
377 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 					pfn, tk->tsk->comm, tk->tsk->pid);
379 		}
380 		put_task_struct(tk->tsk);
381 		kfree(tk);
382 	}
383 }
384 
385 static int task_early_kill(struct task_struct *tsk)
386 {
387 	if (!tsk->mm)
388 		return 0;
389 	if (tsk->flags & PF_MCE_PROCESS)
390 		return !!(tsk->flags & PF_MCE_EARLY);
391 	return sysctl_memory_failure_early_kill;
392 }
393 
394 /*
395  * Collect processes when the error hit an anonymous page.
396  */
397 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 			      struct to_kill **tkc)
399 {
400 	struct vm_area_struct *vma;
401 	struct task_struct *tsk;
402 	struct anon_vma *av;
403 
404 	av = page_lock_anon_vma(page);
405 	if (av == NULL)	/* Not actually mapped anymore */
406 		return;
407 
408 	read_lock(&tasklist_lock);
409 	for_each_process (tsk) {
410 		struct anon_vma_chain *vmac;
411 
412 		if (!task_early_kill(tsk))
413 			continue;
414 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
415 			vma = vmac->vma;
416 			if (!page_mapped_in_vma(page, vma))
417 				continue;
418 			if (vma->vm_mm == tsk->mm)
419 				add_to_kill(tsk, page, vma, to_kill, tkc);
420 		}
421 	}
422 	read_unlock(&tasklist_lock);
423 	page_unlock_anon_vma(av);
424 }
425 
426 /*
427  * Collect processes when the error hit a file mapped page.
428  */
429 static void collect_procs_file(struct page *page, struct list_head *to_kill,
430 			      struct to_kill **tkc)
431 {
432 	struct vm_area_struct *vma;
433 	struct task_struct *tsk;
434 	struct prio_tree_iter iter;
435 	struct address_space *mapping = page->mapping;
436 
437 	mutex_lock(&mapping->i_mmap_mutex);
438 	read_lock(&tasklist_lock);
439 	for_each_process(tsk) {
440 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441 
442 		if (!task_early_kill(tsk))
443 			continue;
444 
445 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
446 				      pgoff) {
447 			/*
448 			 * Send early kill signal to tasks where a vma covers
449 			 * the page but the corrupted page is not necessarily
450 			 * mapped it in its pte.
451 			 * Assume applications who requested early kill want
452 			 * to be informed of all such data corruptions.
453 			 */
454 			if (vma->vm_mm == tsk->mm)
455 				add_to_kill(tsk, page, vma, to_kill, tkc);
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	mutex_unlock(&mapping->i_mmap_mutex);
460 }
461 
462 /*
463  * Collect the processes who have the corrupted page mapped to kill.
464  * This is done in two steps for locking reasons.
465  * First preallocate one tokill structure outside the spin locks,
466  * so that we can kill at least one process reasonably reliable.
467  */
468 static void collect_procs(struct page *page, struct list_head *tokill)
469 {
470 	struct to_kill *tk;
471 
472 	if (!page->mapping)
473 		return;
474 
475 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 	if (!tk)
477 		return;
478 	if (PageAnon(page))
479 		collect_procs_anon(page, tokill, &tk);
480 	else
481 		collect_procs_file(page, tokill, &tk);
482 	kfree(tk);
483 }
484 
485 /*
486  * Error handlers for various types of pages.
487  */
488 
489 enum outcome {
490 	IGNORED,	/* Error: cannot be handled */
491 	FAILED,		/* Error: handling failed */
492 	DELAYED,	/* Will be handled later */
493 	RECOVERED,	/* Successfully recovered */
494 };
495 
496 static const char *action_name[] = {
497 	[IGNORED] = "Ignored",
498 	[FAILED] = "Failed",
499 	[DELAYED] = "Delayed",
500 	[RECOVERED] = "Recovered",
501 };
502 
503 /*
504  * XXX: It is possible that a page is isolated from LRU cache,
505  * and then kept in swap cache or failed to remove from page cache.
506  * The page count will stop it from being freed by unpoison.
507  * Stress tests should be aware of this memory leak problem.
508  */
509 static int delete_from_lru_cache(struct page *p)
510 {
511 	if (!isolate_lru_page(p)) {
512 		/*
513 		 * Clear sensible page flags, so that the buddy system won't
514 		 * complain when the page is unpoison-and-freed.
515 		 */
516 		ClearPageActive(p);
517 		ClearPageUnevictable(p);
518 		/*
519 		 * drop the page count elevated by isolate_lru_page()
520 		 */
521 		page_cache_release(p);
522 		return 0;
523 	}
524 	return -EIO;
525 }
526 
527 /*
528  * Error hit kernel page.
529  * Do nothing, try to be lucky and not touch this instead. For a few cases we
530  * could be more sophisticated.
531  */
532 static int me_kernel(struct page *p, unsigned long pfn)
533 {
534 	return IGNORED;
535 }
536 
537 /*
538  * Page in unknown state. Do nothing.
539  */
540 static int me_unknown(struct page *p, unsigned long pfn)
541 {
542 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 	return FAILED;
544 }
545 
546 /*
547  * Clean (or cleaned) page cache page.
548  */
549 static int me_pagecache_clean(struct page *p, unsigned long pfn)
550 {
551 	int err;
552 	int ret = FAILED;
553 	struct address_space *mapping;
554 
555 	delete_from_lru_cache(p);
556 
557 	/*
558 	 * For anonymous pages we're done the only reference left
559 	 * should be the one m_f() holds.
560 	 */
561 	if (PageAnon(p))
562 		return RECOVERED;
563 
564 	/*
565 	 * Now truncate the page in the page cache. This is really
566 	 * more like a "temporary hole punch"
567 	 * Don't do this for block devices when someone else
568 	 * has a reference, because it could be file system metadata
569 	 * and that's not safe to truncate.
570 	 */
571 	mapping = page_mapping(p);
572 	if (!mapping) {
573 		/*
574 		 * Page has been teared down in the meanwhile
575 		 */
576 		return FAILED;
577 	}
578 
579 	/*
580 	 * Truncation is a bit tricky. Enable it per file system for now.
581 	 *
582 	 * Open: to take i_mutex or not for this? Right now we don't.
583 	 */
584 	if (mapping->a_ops->error_remove_page) {
585 		err = mapping->a_ops->error_remove_page(mapping, p);
586 		if (err != 0) {
587 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 					pfn, err);
589 		} else if (page_has_private(p) &&
590 				!try_to_release_page(p, GFP_NOIO)) {
591 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
592 		} else {
593 			ret = RECOVERED;
594 		}
595 	} else {
596 		/*
597 		 * If the file system doesn't support it just invalidate
598 		 * This fails on dirty or anything with private pages
599 		 */
600 		if (invalidate_inode_page(p))
601 			ret = RECOVERED;
602 		else
603 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 				pfn);
605 	}
606 	return ret;
607 }
608 
609 /*
610  * Dirty cache page page
611  * Issues: when the error hit a hole page the error is not properly
612  * propagated.
613  */
614 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615 {
616 	struct address_space *mapping = page_mapping(p);
617 
618 	SetPageError(p);
619 	/* TBD: print more information about the file. */
620 	if (mapping) {
621 		/*
622 		 * IO error will be reported by write(), fsync(), etc.
623 		 * who check the mapping.
624 		 * This way the application knows that something went
625 		 * wrong with its dirty file data.
626 		 *
627 		 * There's one open issue:
628 		 *
629 		 * The EIO will be only reported on the next IO
630 		 * operation and then cleared through the IO map.
631 		 * Normally Linux has two mechanisms to pass IO error
632 		 * first through the AS_EIO flag in the address space
633 		 * and then through the PageError flag in the page.
634 		 * Since we drop pages on memory failure handling the
635 		 * only mechanism open to use is through AS_AIO.
636 		 *
637 		 * This has the disadvantage that it gets cleared on
638 		 * the first operation that returns an error, while
639 		 * the PageError bit is more sticky and only cleared
640 		 * when the page is reread or dropped.  If an
641 		 * application assumes it will always get error on
642 		 * fsync, but does other operations on the fd before
643 		 * and the page is dropped between then the error
644 		 * will not be properly reported.
645 		 *
646 		 * This can already happen even without hwpoisoned
647 		 * pages: first on metadata IO errors (which only
648 		 * report through AS_EIO) or when the page is dropped
649 		 * at the wrong time.
650 		 *
651 		 * So right now we assume that the application DTRT on
652 		 * the first EIO, but we're not worse than other parts
653 		 * of the kernel.
654 		 */
655 		mapping_set_error(mapping, EIO);
656 	}
657 
658 	return me_pagecache_clean(p, pfn);
659 }
660 
661 /*
662  * Clean and dirty swap cache.
663  *
664  * Dirty swap cache page is tricky to handle. The page could live both in page
665  * cache and swap cache(ie. page is freshly swapped in). So it could be
666  * referenced concurrently by 2 types of PTEs:
667  * normal PTEs and swap PTEs. We try to handle them consistently by calling
668  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669  * and then
670  *      - clear dirty bit to prevent IO
671  *      - remove from LRU
672  *      - but keep in the swap cache, so that when we return to it on
673  *        a later page fault, we know the application is accessing
674  *        corrupted data and shall be killed (we installed simple
675  *        interception code in do_swap_page to catch it).
676  *
677  * Clean swap cache pages can be directly isolated. A later page fault will
678  * bring in the known good data from disk.
679  */
680 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681 {
682 	ClearPageDirty(p);
683 	/* Trigger EIO in shmem: */
684 	ClearPageUptodate(p);
685 
686 	if (!delete_from_lru_cache(p))
687 		return DELAYED;
688 	else
689 		return FAILED;
690 }
691 
692 static int me_swapcache_clean(struct page *p, unsigned long pfn)
693 {
694 	delete_from_swap_cache(p);
695 
696 	if (!delete_from_lru_cache(p))
697 		return RECOVERED;
698 	else
699 		return FAILED;
700 }
701 
702 /*
703  * Huge pages. Needs work.
704  * Issues:
705  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706  *   To narrow down kill region to one page, we need to break up pmd.
707  */
708 static int me_huge_page(struct page *p, unsigned long pfn)
709 {
710 	int res = 0;
711 	struct page *hpage = compound_head(p);
712 	/*
713 	 * We can safely recover from error on free or reserved (i.e.
714 	 * not in-use) hugepage by dequeuing it from freelist.
715 	 * To check whether a hugepage is in-use or not, we can't use
716 	 * page->lru because it can be used in other hugepage operations,
717 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 	 * So instead we use page_mapping() and PageAnon().
719 	 * We assume that this function is called with page lock held,
720 	 * so there is no race between isolation and mapping/unmapping.
721 	 */
722 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
723 		res = dequeue_hwpoisoned_huge_page(hpage);
724 		if (!res)
725 			return RECOVERED;
726 	}
727 	return DELAYED;
728 }
729 
730 /*
731  * Various page states we can handle.
732  *
733  * A page state is defined by its current page->flags bits.
734  * The table matches them in order and calls the right handler.
735  *
736  * This is quite tricky because we can access page at any time
737  * in its live cycle, so all accesses have to be extremely careful.
738  *
739  * This is not complete. More states could be added.
740  * For any missing state don't attempt recovery.
741  */
742 
743 #define dirty		(1UL << PG_dirty)
744 #define sc		(1UL << PG_swapcache)
745 #define unevict		(1UL << PG_unevictable)
746 #define mlock		(1UL << PG_mlocked)
747 #define writeback	(1UL << PG_writeback)
748 #define lru		(1UL << PG_lru)
749 #define swapbacked	(1UL << PG_swapbacked)
750 #define head		(1UL << PG_head)
751 #define tail		(1UL << PG_tail)
752 #define compound	(1UL << PG_compound)
753 #define slab		(1UL << PG_slab)
754 #define reserved	(1UL << PG_reserved)
755 
756 static struct page_state {
757 	unsigned long mask;
758 	unsigned long res;
759 	char *msg;
760 	int (*action)(struct page *p, unsigned long pfn);
761 } error_states[] = {
762 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
763 	/*
764 	 * free pages are specially detected outside this table:
765 	 * PG_buddy pages only make a small fraction of all free pages.
766 	 */
767 
768 	/*
769 	 * Could in theory check if slab page is free or if we can drop
770 	 * currently unused objects without touching them. But just
771 	 * treat it as standard kernel for now.
772 	 */
773 	{ slab,		slab,		"kernel slab",	me_kernel },
774 
775 #ifdef CONFIG_PAGEFLAGS_EXTENDED
776 	{ head,		head,		"huge",		me_huge_page },
777 	{ tail,		tail,		"huge",		me_huge_page },
778 #else
779 	{ compound,	compound,	"huge",		me_huge_page },
780 #endif
781 
782 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
783 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
784 
785 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
786 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
787 
788 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
789 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
790 
791 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
792 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
793 
794 	/*
795 	 * Catchall entry: must be at end.
796 	 */
797 	{ 0,		0,		"unknown page state",	me_unknown },
798 };
799 
800 #undef dirty
801 #undef sc
802 #undef unevict
803 #undef mlock
804 #undef writeback
805 #undef lru
806 #undef swapbacked
807 #undef head
808 #undef tail
809 #undef compound
810 #undef slab
811 #undef reserved
812 
813 static void action_result(unsigned long pfn, char *msg, int result)
814 {
815 	struct page *page = pfn_to_page(pfn);
816 
817 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
818 		pfn,
819 		PageDirty(page) ? "dirty " : "",
820 		msg, action_name[result]);
821 }
822 
823 static int page_action(struct page_state *ps, struct page *p,
824 			unsigned long pfn)
825 {
826 	int result;
827 	int count;
828 
829 	result = ps->action(p, pfn);
830 	action_result(pfn, ps->msg, result);
831 
832 	count = page_count(p) - 1;
833 	if (ps->action == me_swapcache_dirty && result == DELAYED)
834 		count--;
835 	if (count != 0) {
836 		printk(KERN_ERR
837 		       "MCE %#lx: %s page still referenced by %d users\n",
838 		       pfn, ps->msg, count);
839 		result = FAILED;
840 	}
841 
842 	/* Could do more checks here if page looks ok */
843 	/*
844 	 * Could adjust zone counters here to correct for the missing page.
845 	 */
846 
847 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848 }
849 
850 /*
851  * Do all that is necessary to remove user space mappings. Unmap
852  * the pages and send SIGBUS to the processes if the data was dirty.
853  */
854 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855 				  int trapno, int flags)
856 {
857 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 	struct address_space *mapping;
859 	LIST_HEAD(tokill);
860 	int ret;
861 	int kill = 1, forcekill;
862 	struct page *hpage = compound_head(p);
863 	struct page *ppage;
864 
865 	if (PageReserved(p) || PageSlab(p))
866 		return SWAP_SUCCESS;
867 
868 	/*
869 	 * This check implies we don't kill processes if their pages
870 	 * are in the swap cache early. Those are always late kills.
871 	 */
872 	if (!page_mapped(hpage))
873 		return SWAP_SUCCESS;
874 
875 	if (PageKsm(p))
876 		return SWAP_FAIL;
877 
878 	if (PageSwapCache(p)) {
879 		printk(KERN_ERR
880 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 		ttu |= TTU_IGNORE_HWPOISON;
882 	}
883 
884 	/*
885 	 * Propagate the dirty bit from PTEs to struct page first, because we
886 	 * need this to decide if we should kill or just drop the page.
887 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 	 * be called inside page lock (it's recommended but not enforced).
889 	 */
890 	mapping = page_mapping(hpage);
891 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
892 	    mapping_cap_writeback_dirty(mapping)) {
893 		if (page_mkclean(hpage)) {
894 			SetPageDirty(hpage);
895 		} else {
896 			kill = 0;
897 			ttu |= TTU_IGNORE_HWPOISON;
898 			printk(KERN_INFO
899 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 				pfn);
901 		}
902 	}
903 
904 	/*
905 	 * ppage: poisoned page
906 	 *   if p is regular page(4k page)
907 	 *        ppage == real poisoned page;
908 	 *   else p is hugetlb or THP, ppage == head page.
909 	 */
910 	ppage = hpage;
911 
912 	if (PageTransHuge(hpage)) {
913 		/*
914 		 * Verify that this isn't a hugetlbfs head page, the check for
915 		 * PageAnon is just for avoid tripping a split_huge_page
916 		 * internal debug check, as split_huge_page refuses to deal with
917 		 * anything that isn't an anon page. PageAnon can't go away fro
918 		 * under us because we hold a refcount on the hpage, without a
919 		 * refcount on the hpage. split_huge_page can't be safely called
920 		 * in the first place, having a refcount on the tail isn't
921 		 * enough * to be safe.
922 		 */
923 		if (!PageHuge(hpage) && PageAnon(hpage)) {
924 			if (unlikely(split_huge_page(hpage))) {
925 				/*
926 				 * FIXME: if splitting THP is failed, it is
927 				 * better to stop the following operation rather
928 				 * than causing panic by unmapping. System might
929 				 * survive if the page is freed later.
930 				 */
931 				printk(KERN_INFO
932 					"MCE %#lx: failed to split THP\n", pfn);
933 
934 				BUG_ON(!PageHWPoison(p));
935 				return SWAP_FAIL;
936 			}
937 			/* THP is split, so ppage should be the real poisoned page. */
938 			ppage = p;
939 		}
940 	}
941 
942 	/*
943 	 * First collect all the processes that have the page
944 	 * mapped in dirty form.  This has to be done before try_to_unmap,
945 	 * because ttu takes the rmap data structures down.
946 	 *
947 	 * Error handling: We ignore errors here because
948 	 * there's nothing that can be done.
949 	 */
950 	if (kill)
951 		collect_procs(ppage, &tokill);
952 
953 	if (hpage != ppage)
954 		lock_page(ppage);
955 
956 	ret = try_to_unmap(ppage, ttu);
957 	if (ret != SWAP_SUCCESS)
958 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
959 				pfn, page_mapcount(ppage));
960 
961 	if (hpage != ppage)
962 		unlock_page(ppage);
963 
964 	/*
965 	 * Now that the dirty bit has been propagated to the
966 	 * struct page and all unmaps done we can decide if
967 	 * killing is needed or not.  Only kill when the page
968 	 * was dirty or the process is not restartable,
969 	 * otherwise the tokill list is merely
970 	 * freed.  When there was a problem unmapping earlier
971 	 * use a more force-full uncatchable kill to prevent
972 	 * any accesses to the poisoned memory.
973 	 */
974 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
975 	kill_procs(&tokill, forcekill, trapno,
976 		      ret != SWAP_SUCCESS, p, pfn, flags);
977 
978 	return ret;
979 }
980 
981 static void set_page_hwpoison_huge_page(struct page *hpage)
982 {
983 	int i;
984 	int nr_pages = 1 << compound_trans_order(hpage);
985 	for (i = 0; i < nr_pages; i++)
986 		SetPageHWPoison(hpage + i);
987 }
988 
989 static void clear_page_hwpoison_huge_page(struct page *hpage)
990 {
991 	int i;
992 	int nr_pages = 1 << compound_trans_order(hpage);
993 	for (i = 0; i < nr_pages; i++)
994 		ClearPageHWPoison(hpage + i);
995 }
996 
997 /**
998  * memory_failure - Handle memory failure of a page.
999  * @pfn: Page Number of the corrupted page
1000  * @trapno: Trap number reported in the signal to user space.
1001  * @flags: fine tune action taken
1002  *
1003  * This function is called by the low level machine check code
1004  * of an architecture when it detects hardware memory corruption
1005  * of a page. It tries its best to recover, which includes
1006  * dropping pages, killing processes etc.
1007  *
1008  * The function is primarily of use for corruptions that
1009  * happen outside the current execution context (e.g. when
1010  * detected by a background scrubber)
1011  *
1012  * Must run in process context (e.g. a work queue) with interrupts
1013  * enabled and no spinlocks hold.
1014  */
1015 int memory_failure(unsigned long pfn, int trapno, int flags)
1016 {
1017 	struct page_state *ps;
1018 	struct page *p;
1019 	struct page *hpage;
1020 	int res;
1021 	unsigned int nr_pages;
1022 
1023 	if (!sysctl_memory_failure_recovery)
1024 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1025 
1026 	if (!pfn_valid(pfn)) {
1027 		printk(KERN_ERR
1028 		       "MCE %#lx: memory outside kernel control\n",
1029 		       pfn);
1030 		return -ENXIO;
1031 	}
1032 
1033 	p = pfn_to_page(pfn);
1034 	hpage = compound_head(p);
1035 	if (TestSetPageHWPoison(p)) {
1036 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1037 		return 0;
1038 	}
1039 
1040 	nr_pages = 1 << compound_trans_order(hpage);
1041 	atomic_long_add(nr_pages, &mce_bad_pages);
1042 
1043 	/*
1044 	 * We need/can do nothing about count=0 pages.
1045 	 * 1) it's a free page, and therefore in safe hand:
1046 	 *    prep_new_page() will be the gate keeper.
1047 	 * 2) it's a free hugepage, which is also safe:
1048 	 *    an affected hugepage will be dequeued from hugepage freelist,
1049 	 *    so there's no concern about reusing it ever after.
1050 	 * 3) it's part of a non-compound high order page.
1051 	 *    Implies some kernel user: cannot stop them from
1052 	 *    R/W the page; let's pray that the page has been
1053 	 *    used and will be freed some time later.
1054 	 * In fact it's dangerous to directly bump up page count from 0,
1055 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1056 	 */
1057 	if (!(flags & MF_COUNT_INCREASED) &&
1058 		!get_page_unless_zero(hpage)) {
1059 		if (is_free_buddy_page(p)) {
1060 			action_result(pfn, "free buddy", DELAYED);
1061 			return 0;
1062 		} else if (PageHuge(hpage)) {
1063 			/*
1064 			 * Check "just unpoisoned", "filter hit", and
1065 			 * "race with other subpage."
1066 			 */
1067 			lock_page(hpage);
1068 			if (!PageHWPoison(hpage)
1069 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1070 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1071 				atomic_long_sub(nr_pages, &mce_bad_pages);
1072 				return 0;
1073 			}
1074 			set_page_hwpoison_huge_page(hpage);
1075 			res = dequeue_hwpoisoned_huge_page(hpage);
1076 			action_result(pfn, "free huge",
1077 				      res ? IGNORED : DELAYED);
1078 			unlock_page(hpage);
1079 			return res;
1080 		} else {
1081 			action_result(pfn, "high order kernel", IGNORED);
1082 			return -EBUSY;
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * We ignore non-LRU pages for good reasons.
1088 	 * - PG_locked is only well defined for LRU pages and a few others
1089 	 * - to avoid races with __set_page_locked()
1090 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1091 	 * The check (unnecessarily) ignores LRU pages being isolated and
1092 	 * walked by the page reclaim code, however that's not a big loss.
1093 	 */
1094 	if (!PageHuge(p) && !PageTransTail(p)) {
1095 		if (!PageLRU(p))
1096 			shake_page(p, 0);
1097 		if (!PageLRU(p)) {
1098 			/*
1099 			 * shake_page could have turned it free.
1100 			 */
1101 			if (is_free_buddy_page(p)) {
1102 				action_result(pfn, "free buddy, 2nd try",
1103 						DELAYED);
1104 				return 0;
1105 			}
1106 			action_result(pfn, "non LRU", IGNORED);
1107 			put_page(p);
1108 			return -EBUSY;
1109 		}
1110 	}
1111 
1112 	/*
1113 	 * Lock the page and wait for writeback to finish.
1114 	 * It's very difficult to mess with pages currently under IO
1115 	 * and in many cases impossible, so we just avoid it here.
1116 	 */
1117 	lock_page(hpage);
1118 
1119 	/*
1120 	 * unpoison always clear PG_hwpoison inside page lock
1121 	 */
1122 	if (!PageHWPoison(p)) {
1123 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1124 		res = 0;
1125 		goto out;
1126 	}
1127 	if (hwpoison_filter(p)) {
1128 		if (TestClearPageHWPoison(p))
1129 			atomic_long_sub(nr_pages, &mce_bad_pages);
1130 		unlock_page(hpage);
1131 		put_page(hpage);
1132 		return 0;
1133 	}
1134 
1135 	/*
1136 	 * For error on the tail page, we should set PG_hwpoison
1137 	 * on the head page to show that the hugepage is hwpoisoned
1138 	 */
1139 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1140 		action_result(pfn, "hugepage already hardware poisoned",
1141 				IGNORED);
1142 		unlock_page(hpage);
1143 		put_page(hpage);
1144 		return 0;
1145 	}
1146 	/*
1147 	 * Set PG_hwpoison on all pages in an error hugepage,
1148 	 * because containment is done in hugepage unit for now.
1149 	 * Since we have done TestSetPageHWPoison() for the head page with
1150 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1151 	 */
1152 	if (PageHuge(p))
1153 		set_page_hwpoison_huge_page(hpage);
1154 
1155 	wait_on_page_writeback(p);
1156 
1157 	/*
1158 	 * Now take care of user space mappings.
1159 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1160 	 */
1161 	if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1162 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1163 		res = -EBUSY;
1164 		goto out;
1165 	}
1166 
1167 	/*
1168 	 * Torn down by someone else?
1169 	 */
1170 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1171 		action_result(pfn, "already truncated LRU", IGNORED);
1172 		res = -EBUSY;
1173 		goto out;
1174 	}
1175 
1176 	res = -EBUSY;
1177 	for (ps = error_states;; ps++) {
1178 		if ((p->flags & ps->mask) == ps->res) {
1179 			res = page_action(ps, p, pfn);
1180 			break;
1181 		}
1182 	}
1183 out:
1184 	unlock_page(hpage);
1185 	return res;
1186 }
1187 EXPORT_SYMBOL_GPL(memory_failure);
1188 
1189 #define MEMORY_FAILURE_FIFO_ORDER	4
1190 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1191 
1192 struct memory_failure_entry {
1193 	unsigned long pfn;
1194 	int trapno;
1195 	int flags;
1196 };
1197 
1198 struct memory_failure_cpu {
1199 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1200 		      MEMORY_FAILURE_FIFO_SIZE);
1201 	spinlock_t lock;
1202 	struct work_struct work;
1203 };
1204 
1205 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1206 
1207 /**
1208  * memory_failure_queue - Schedule handling memory failure of a page.
1209  * @pfn: Page Number of the corrupted page
1210  * @trapno: Trap number reported in the signal to user space.
1211  * @flags: Flags for memory failure handling
1212  *
1213  * This function is called by the low level hardware error handler
1214  * when it detects hardware memory corruption of a page. It schedules
1215  * the recovering of error page, including dropping pages, killing
1216  * processes etc.
1217  *
1218  * The function is primarily of use for corruptions that
1219  * happen outside the current execution context (e.g. when
1220  * detected by a background scrubber)
1221  *
1222  * Can run in IRQ context.
1223  */
1224 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1225 {
1226 	struct memory_failure_cpu *mf_cpu;
1227 	unsigned long proc_flags;
1228 	struct memory_failure_entry entry = {
1229 		.pfn =		pfn,
1230 		.trapno =	trapno,
1231 		.flags =	flags,
1232 	};
1233 
1234 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1235 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1236 	if (kfifo_put(&mf_cpu->fifo, &entry))
1237 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1238 	else
1239 		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1240 		       pfn);
1241 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1242 	put_cpu_var(memory_failure_cpu);
1243 }
1244 EXPORT_SYMBOL_GPL(memory_failure_queue);
1245 
1246 static void memory_failure_work_func(struct work_struct *work)
1247 {
1248 	struct memory_failure_cpu *mf_cpu;
1249 	struct memory_failure_entry entry = { 0, };
1250 	unsigned long proc_flags;
1251 	int gotten;
1252 
1253 	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1254 	for (;;) {
1255 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1256 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1257 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1258 		if (!gotten)
1259 			break;
1260 		memory_failure(entry.pfn, entry.trapno, entry.flags);
1261 	}
1262 }
1263 
1264 static int __init memory_failure_init(void)
1265 {
1266 	struct memory_failure_cpu *mf_cpu;
1267 	int cpu;
1268 
1269 	for_each_possible_cpu(cpu) {
1270 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1271 		spin_lock_init(&mf_cpu->lock);
1272 		INIT_KFIFO(mf_cpu->fifo);
1273 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1274 	}
1275 
1276 	return 0;
1277 }
1278 core_initcall(memory_failure_init);
1279 
1280 /**
1281  * unpoison_memory - Unpoison a previously poisoned page
1282  * @pfn: Page number of the to be unpoisoned page
1283  *
1284  * Software-unpoison a page that has been poisoned by
1285  * memory_failure() earlier.
1286  *
1287  * This is only done on the software-level, so it only works
1288  * for linux injected failures, not real hardware failures
1289  *
1290  * Returns 0 for success, otherwise -errno.
1291  */
1292 int unpoison_memory(unsigned long pfn)
1293 {
1294 	struct page *page;
1295 	struct page *p;
1296 	int freeit = 0;
1297 	unsigned int nr_pages;
1298 
1299 	if (!pfn_valid(pfn))
1300 		return -ENXIO;
1301 
1302 	p = pfn_to_page(pfn);
1303 	page = compound_head(p);
1304 
1305 	if (!PageHWPoison(p)) {
1306 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1307 		return 0;
1308 	}
1309 
1310 	nr_pages = 1 << compound_trans_order(page);
1311 
1312 	if (!get_page_unless_zero(page)) {
1313 		/*
1314 		 * Since HWPoisoned hugepage should have non-zero refcount,
1315 		 * race between memory failure and unpoison seems to happen.
1316 		 * In such case unpoison fails and memory failure runs
1317 		 * to the end.
1318 		 */
1319 		if (PageHuge(page)) {
1320 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1321 			return 0;
1322 		}
1323 		if (TestClearPageHWPoison(p))
1324 			atomic_long_sub(nr_pages, &mce_bad_pages);
1325 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1326 		return 0;
1327 	}
1328 
1329 	lock_page(page);
1330 	/*
1331 	 * This test is racy because PG_hwpoison is set outside of page lock.
1332 	 * That's acceptable because that won't trigger kernel panic. Instead,
1333 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1334 	 * the free buddy page pool.
1335 	 */
1336 	if (TestClearPageHWPoison(page)) {
1337 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1338 		atomic_long_sub(nr_pages, &mce_bad_pages);
1339 		freeit = 1;
1340 		if (PageHuge(page))
1341 			clear_page_hwpoison_huge_page(page);
1342 	}
1343 	unlock_page(page);
1344 
1345 	put_page(page);
1346 	if (freeit)
1347 		put_page(page);
1348 
1349 	return 0;
1350 }
1351 EXPORT_SYMBOL(unpoison_memory);
1352 
1353 static struct page *new_page(struct page *p, unsigned long private, int **x)
1354 {
1355 	int nid = page_to_nid(p);
1356 	if (PageHuge(p))
1357 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1358 						   nid);
1359 	else
1360 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1361 }
1362 
1363 /*
1364  * Safely get reference count of an arbitrary page.
1365  * Returns 0 for a free page, -EIO for a zero refcount page
1366  * that is not free, and 1 for any other page type.
1367  * For 1 the page is returned with increased page count, otherwise not.
1368  */
1369 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1370 {
1371 	int ret;
1372 
1373 	if (flags & MF_COUNT_INCREASED)
1374 		return 1;
1375 
1376 	/*
1377 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1378 	 * This is a big hammer, a better would be nicer.
1379 	 */
1380 	lock_memory_hotplug();
1381 
1382 	/*
1383 	 * Isolate the page, so that it doesn't get reallocated if it
1384 	 * was free.
1385 	 */
1386 	set_migratetype_isolate(p);
1387 	/*
1388 	 * When the target page is a free hugepage, just remove it
1389 	 * from free hugepage list.
1390 	 */
1391 	if (!get_page_unless_zero(compound_head(p))) {
1392 		if (PageHuge(p)) {
1393 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1394 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1395 		} else if (is_free_buddy_page(p)) {
1396 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1397 			/* Set hwpoison bit while page is still isolated */
1398 			SetPageHWPoison(p);
1399 			ret = 0;
1400 		} else {
1401 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1402 				__func__, pfn, p->flags);
1403 			ret = -EIO;
1404 		}
1405 	} else {
1406 		/* Not a free page */
1407 		ret = 1;
1408 	}
1409 	unset_migratetype_isolate(p, MIGRATE_MOVABLE);
1410 	unlock_memory_hotplug();
1411 	return ret;
1412 }
1413 
1414 static int soft_offline_huge_page(struct page *page, int flags)
1415 {
1416 	int ret;
1417 	unsigned long pfn = page_to_pfn(page);
1418 	struct page *hpage = compound_head(page);
1419 
1420 	ret = get_any_page(page, pfn, flags);
1421 	if (ret < 0)
1422 		return ret;
1423 	if (ret == 0)
1424 		goto done;
1425 
1426 	if (PageHWPoison(hpage)) {
1427 		put_page(hpage);
1428 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1429 		return -EBUSY;
1430 	}
1431 
1432 	/* Keep page count to indicate a given hugepage is isolated. */
1433 	ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
1434 				MIGRATE_SYNC);
1435 	put_page(hpage);
1436 	if (ret) {
1437 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1438 			pfn, ret, page->flags);
1439 		return ret;
1440 	}
1441 done:
1442 	if (!PageHWPoison(hpage))
1443 		atomic_long_add(1 << compound_trans_order(hpage),
1444 				&mce_bad_pages);
1445 	set_page_hwpoison_huge_page(hpage);
1446 	dequeue_hwpoisoned_huge_page(hpage);
1447 	/* keep elevated page count for bad page */
1448 	return ret;
1449 }
1450 
1451 /**
1452  * soft_offline_page - Soft offline a page.
1453  * @page: page to offline
1454  * @flags: flags. Same as memory_failure().
1455  *
1456  * Returns 0 on success, otherwise negated errno.
1457  *
1458  * Soft offline a page, by migration or invalidation,
1459  * without killing anything. This is for the case when
1460  * a page is not corrupted yet (so it's still valid to access),
1461  * but has had a number of corrected errors and is better taken
1462  * out.
1463  *
1464  * The actual policy on when to do that is maintained by
1465  * user space.
1466  *
1467  * This should never impact any application or cause data loss,
1468  * however it might take some time.
1469  *
1470  * This is not a 100% solution for all memory, but tries to be
1471  * ``good enough'' for the majority of memory.
1472  */
1473 int soft_offline_page(struct page *page, int flags)
1474 {
1475 	int ret;
1476 	unsigned long pfn = page_to_pfn(page);
1477 
1478 	if (PageHuge(page))
1479 		return soft_offline_huge_page(page, flags);
1480 
1481 	ret = get_any_page(page, pfn, flags);
1482 	if (ret < 0)
1483 		return ret;
1484 	if (ret == 0)
1485 		goto done;
1486 
1487 	/*
1488 	 * Page cache page we can handle?
1489 	 */
1490 	if (!PageLRU(page)) {
1491 		/*
1492 		 * Try to free it.
1493 		 */
1494 		put_page(page);
1495 		shake_page(page, 1);
1496 
1497 		/*
1498 		 * Did it turn free?
1499 		 */
1500 		ret = get_any_page(page, pfn, 0);
1501 		if (ret < 0)
1502 			return ret;
1503 		if (ret == 0)
1504 			goto done;
1505 	}
1506 	if (!PageLRU(page)) {
1507 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1508 			pfn, page->flags);
1509 		return -EIO;
1510 	}
1511 
1512 	lock_page(page);
1513 	wait_on_page_writeback(page);
1514 
1515 	/*
1516 	 * Synchronized using the page lock with memory_failure()
1517 	 */
1518 	if (PageHWPoison(page)) {
1519 		unlock_page(page);
1520 		put_page(page);
1521 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1522 		return -EBUSY;
1523 	}
1524 
1525 	/*
1526 	 * Try to invalidate first. This should work for
1527 	 * non dirty unmapped page cache pages.
1528 	 */
1529 	ret = invalidate_inode_page(page);
1530 	unlock_page(page);
1531 	/*
1532 	 * RED-PEN would be better to keep it isolated here, but we
1533 	 * would need to fix isolation locking first.
1534 	 */
1535 	if (ret == 1) {
1536 		put_page(page);
1537 		ret = 0;
1538 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1539 		goto done;
1540 	}
1541 
1542 	/*
1543 	 * Simple invalidation didn't work.
1544 	 * Try to migrate to a new page instead. migrate.c
1545 	 * handles a large number of cases for us.
1546 	 */
1547 	ret = isolate_lru_page(page);
1548 	/*
1549 	 * Drop page reference which is came from get_any_page()
1550 	 * successful isolate_lru_page() already took another one.
1551 	 */
1552 	put_page(page);
1553 	if (!ret) {
1554 		LIST_HEAD(pagelist);
1555 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1556 					    page_is_file_cache(page));
1557 		list_add(&page->lru, &pagelist);
1558 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1559 							false, MIGRATE_SYNC);
1560 		if (ret) {
1561 			putback_lru_pages(&pagelist);
1562 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1563 				pfn, ret, page->flags);
1564 			if (ret > 0)
1565 				ret = -EIO;
1566 		}
1567 	} else {
1568 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1569 			pfn, ret, page_count(page), page->flags);
1570 	}
1571 	if (ret)
1572 		return ret;
1573 
1574 done:
1575 	atomic_long_add(1, &mce_bad_pages);
1576 	SetPageHWPoison(page);
1577 	/* keep elevated page count for bad page */
1578 	return ret;
1579 }
1580