1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Kill all processes that have a poisoned page mapped and then isolate 177 * the page. 178 * 179 * General strategy: 180 * Find all processes having the page mapped and kill them. 181 * But we keep a page reference around so that the page is not 182 * actually freed yet. 183 * Then stash the page away 184 * 185 * There's no convenient way to get back to mapped processes 186 * from the VMAs. So do a brute-force search over all 187 * running processes. 188 * 189 * Remember that machine checks are not common (or rather 190 * if they are common you have other problems), so this shouldn't 191 * be a performance issue. 192 * 193 * Also there are some races possible while we get from the 194 * error detection to actually handle it. 195 */ 196 197 struct to_kill { 198 struct list_head nd; 199 struct task_struct *tsk; 200 unsigned long addr; 201 short size_shift; 202 }; 203 204 /* 205 * Send all the processes who have the page mapped a signal. 206 * ``action optional'' if they are not immediately affected by the error 207 * ``action required'' if error happened in current execution context 208 */ 209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 210 { 211 struct task_struct *t = tk->tsk; 212 short addr_lsb = tk->size_shift; 213 int ret; 214 215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 216 pfn, t->comm, t->pid); 217 218 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 219 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, 220 addr_lsb); 221 } else { 222 /* 223 * Don't use force here, it's convenient if the signal 224 * can be temporarily blocked. 225 * This could cause a loop when the user sets SIGBUS 226 * to SIG_IGN, but hopefully no one will do that? 227 */ 228 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 229 addr_lsb, t); /* synchronous? */ 230 } 231 if (ret < 0) 232 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 233 t->comm, t->pid, ret); 234 return ret; 235 } 236 237 /* 238 * When a unknown page type is encountered drain as many buffers as possible 239 * in the hope to turn the page into a LRU or free page, which we can handle. 240 */ 241 void shake_page(struct page *p, int access) 242 { 243 if (PageHuge(p)) 244 return; 245 246 if (!PageSlab(p)) { 247 lru_add_drain_all(); 248 if (PageLRU(p)) 249 return; 250 drain_all_pages(page_zone(p)); 251 if (PageLRU(p) || is_free_buddy_page(p)) 252 return; 253 } 254 255 /* 256 * Only call shrink_node_slabs here (which would also shrink 257 * other caches) if access is not potentially fatal. 258 */ 259 if (access) 260 drop_slab_node(page_to_nid(p)); 261 } 262 EXPORT_SYMBOL_GPL(shake_page); 263 264 static unsigned long dev_pagemap_mapping_shift(struct page *page, 265 struct vm_area_struct *vma) 266 { 267 unsigned long address = vma_address(page, vma); 268 pgd_t *pgd; 269 p4d_t *p4d; 270 pud_t *pud; 271 pmd_t *pmd; 272 pte_t *pte; 273 274 pgd = pgd_offset(vma->vm_mm, address); 275 if (!pgd_present(*pgd)) 276 return 0; 277 p4d = p4d_offset(pgd, address); 278 if (!p4d_present(*p4d)) 279 return 0; 280 pud = pud_offset(p4d, address); 281 if (!pud_present(*pud)) 282 return 0; 283 if (pud_devmap(*pud)) 284 return PUD_SHIFT; 285 pmd = pmd_offset(pud, address); 286 if (!pmd_present(*pmd)) 287 return 0; 288 if (pmd_devmap(*pmd)) 289 return PMD_SHIFT; 290 pte = pte_offset_map(pmd, address); 291 if (!pte_present(*pte)) 292 return 0; 293 if (pte_devmap(*pte)) 294 return PAGE_SHIFT; 295 return 0; 296 } 297 298 /* 299 * Failure handling: if we can't find or can't kill a process there's 300 * not much we can do. We just print a message and ignore otherwise. 301 */ 302 303 /* 304 * Schedule a process for later kill. 305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 306 */ 307 static void add_to_kill(struct task_struct *tsk, struct page *p, 308 struct vm_area_struct *vma, 309 struct list_head *to_kill) 310 { 311 struct to_kill *tk; 312 313 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 314 if (!tk) { 315 pr_err("Memory failure: Out of memory while machine check handling\n"); 316 return; 317 } 318 319 tk->addr = page_address_in_vma(p, vma); 320 if (is_zone_device_page(p)) 321 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 322 else 323 tk->size_shift = page_shift(compound_head(p)); 324 325 /* 326 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 327 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 328 * so "tk->size_shift == 0" effectively checks no mapping on 329 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 330 * to a process' address space, it's possible not all N VMAs 331 * contain mappings for the page, but at least one VMA does. 332 * Only deliver SIGBUS with payload derived from the VMA that 333 * has a mapping for the page. 334 */ 335 if (tk->addr == -EFAULT) { 336 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 337 page_to_pfn(p), tsk->comm); 338 } else if (tk->size_shift == 0) { 339 kfree(tk); 340 return; 341 } 342 343 get_task_struct(tsk); 344 tk->tsk = tsk; 345 list_add_tail(&tk->nd, to_kill); 346 } 347 348 /* 349 * Kill the processes that have been collected earlier. 350 * 351 * Only do anything when DOIT is set, otherwise just free the list 352 * (this is used for clean pages which do not need killing) 353 * Also when FAIL is set do a force kill because something went 354 * wrong earlier. 355 */ 356 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 357 unsigned long pfn, int flags) 358 { 359 struct to_kill *tk, *next; 360 361 list_for_each_entry_safe (tk, next, to_kill, nd) { 362 if (forcekill) { 363 /* 364 * In case something went wrong with munmapping 365 * make sure the process doesn't catch the 366 * signal and then access the memory. Just kill it. 367 */ 368 if (fail || tk->addr == -EFAULT) { 369 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 370 pfn, tk->tsk->comm, tk->tsk->pid); 371 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 372 tk->tsk, PIDTYPE_PID); 373 } 374 375 /* 376 * In theory the process could have mapped 377 * something else on the address in-between. We could 378 * check for that, but we need to tell the 379 * process anyways. 380 */ 381 else if (kill_proc(tk, pfn, flags) < 0) 382 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 383 pfn, tk->tsk->comm, tk->tsk->pid); 384 } 385 put_task_struct(tk->tsk); 386 kfree(tk); 387 } 388 } 389 390 /* 391 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 392 * on behalf of the thread group. Return task_struct of the (first found) 393 * dedicated thread if found, and return NULL otherwise. 394 * 395 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 396 * have to call rcu_read_lock/unlock() in this function. 397 */ 398 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 399 { 400 struct task_struct *t; 401 402 for_each_thread(tsk, t) 403 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 404 return t; 405 return NULL; 406 } 407 408 /* 409 * Determine whether a given process is "early kill" process which expects 410 * to be signaled when some page under the process is hwpoisoned. 411 * Return task_struct of the dedicated thread (main thread unless explicitly 412 * specified) if the process is "early kill," and otherwise returns NULL. 413 */ 414 static struct task_struct *task_early_kill(struct task_struct *tsk, 415 int force_early) 416 { 417 struct task_struct *t; 418 if (!tsk->mm) 419 return NULL; 420 if (force_early) 421 return tsk; 422 t = find_early_kill_thread(tsk); 423 if (t) 424 return t; 425 if (sysctl_memory_failure_early_kill) 426 return tsk; 427 return NULL; 428 } 429 430 /* 431 * Collect processes when the error hit an anonymous page. 432 */ 433 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 434 int force_early) 435 { 436 struct vm_area_struct *vma; 437 struct task_struct *tsk; 438 struct anon_vma *av; 439 pgoff_t pgoff; 440 441 av = page_lock_anon_vma_read(page); 442 if (av == NULL) /* Not actually mapped anymore */ 443 return; 444 445 pgoff = page_to_pgoff(page); 446 read_lock(&tasklist_lock); 447 for_each_process (tsk) { 448 struct anon_vma_chain *vmac; 449 struct task_struct *t = task_early_kill(tsk, force_early); 450 451 if (!t) 452 continue; 453 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 454 pgoff, pgoff) { 455 vma = vmac->vma; 456 if (!page_mapped_in_vma(page, vma)) 457 continue; 458 if (vma->vm_mm == t->mm) 459 add_to_kill(t, page, vma, to_kill); 460 } 461 } 462 read_unlock(&tasklist_lock); 463 page_unlock_anon_vma_read(av); 464 } 465 466 /* 467 * Collect processes when the error hit a file mapped page. 468 */ 469 static void collect_procs_file(struct page *page, struct list_head *to_kill, 470 int force_early) 471 { 472 struct vm_area_struct *vma; 473 struct task_struct *tsk; 474 struct address_space *mapping = page->mapping; 475 476 i_mmap_lock_read(mapping); 477 read_lock(&tasklist_lock); 478 for_each_process(tsk) { 479 pgoff_t pgoff = page_to_pgoff(page); 480 struct task_struct *t = task_early_kill(tsk, force_early); 481 482 if (!t) 483 continue; 484 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 485 pgoff) { 486 /* 487 * Send early kill signal to tasks where a vma covers 488 * the page but the corrupted page is not necessarily 489 * mapped it in its pte. 490 * Assume applications who requested early kill want 491 * to be informed of all such data corruptions. 492 */ 493 if (vma->vm_mm == t->mm) 494 add_to_kill(t, page, vma, to_kill); 495 } 496 } 497 read_unlock(&tasklist_lock); 498 i_mmap_unlock_read(mapping); 499 } 500 501 /* 502 * Collect the processes who have the corrupted page mapped to kill. 503 */ 504 static void collect_procs(struct page *page, struct list_head *tokill, 505 int force_early) 506 { 507 if (!page->mapping) 508 return; 509 510 if (PageAnon(page)) 511 collect_procs_anon(page, tokill, force_early); 512 else 513 collect_procs_file(page, tokill, force_early); 514 } 515 516 static const char *action_name[] = { 517 [MF_IGNORED] = "Ignored", 518 [MF_FAILED] = "Failed", 519 [MF_DELAYED] = "Delayed", 520 [MF_RECOVERED] = "Recovered", 521 }; 522 523 static const char * const action_page_types[] = { 524 [MF_MSG_KERNEL] = "reserved kernel page", 525 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 526 [MF_MSG_SLAB] = "kernel slab page", 527 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 528 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 529 [MF_MSG_HUGE] = "huge page", 530 [MF_MSG_FREE_HUGE] = "free huge page", 531 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 532 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 533 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 534 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 535 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 536 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 537 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 538 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 539 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 540 [MF_MSG_CLEAN_LRU] = "clean LRU page", 541 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 542 [MF_MSG_BUDDY] = "free buddy page", 543 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 544 [MF_MSG_DAX] = "dax page", 545 [MF_MSG_UNKNOWN] = "unknown page", 546 }; 547 548 /* 549 * XXX: It is possible that a page is isolated from LRU cache, 550 * and then kept in swap cache or failed to remove from page cache. 551 * The page count will stop it from being freed by unpoison. 552 * Stress tests should be aware of this memory leak problem. 553 */ 554 static int delete_from_lru_cache(struct page *p) 555 { 556 if (!isolate_lru_page(p)) { 557 /* 558 * Clear sensible page flags, so that the buddy system won't 559 * complain when the page is unpoison-and-freed. 560 */ 561 ClearPageActive(p); 562 ClearPageUnevictable(p); 563 564 /* 565 * Poisoned page might never drop its ref count to 0 so we have 566 * to uncharge it manually from its memcg. 567 */ 568 mem_cgroup_uncharge(p); 569 570 /* 571 * drop the page count elevated by isolate_lru_page() 572 */ 573 put_page(p); 574 return 0; 575 } 576 return -EIO; 577 } 578 579 static int truncate_error_page(struct page *p, unsigned long pfn, 580 struct address_space *mapping) 581 { 582 int ret = MF_FAILED; 583 584 if (mapping->a_ops->error_remove_page) { 585 int err = mapping->a_ops->error_remove_page(mapping, p); 586 587 if (err != 0) { 588 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 589 pfn, err); 590 } else if (page_has_private(p) && 591 !try_to_release_page(p, GFP_NOIO)) { 592 pr_info("Memory failure: %#lx: failed to release buffers\n", 593 pfn); 594 } else { 595 ret = MF_RECOVERED; 596 } 597 } else { 598 /* 599 * If the file system doesn't support it just invalidate 600 * This fails on dirty or anything with private pages 601 */ 602 if (invalidate_inode_page(p)) 603 ret = MF_RECOVERED; 604 else 605 pr_info("Memory failure: %#lx: Failed to invalidate\n", 606 pfn); 607 } 608 609 return ret; 610 } 611 612 /* 613 * Error hit kernel page. 614 * Do nothing, try to be lucky and not touch this instead. For a few cases we 615 * could be more sophisticated. 616 */ 617 static int me_kernel(struct page *p, unsigned long pfn) 618 { 619 return MF_IGNORED; 620 } 621 622 /* 623 * Page in unknown state. Do nothing. 624 */ 625 static int me_unknown(struct page *p, unsigned long pfn) 626 { 627 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 628 return MF_FAILED; 629 } 630 631 /* 632 * Clean (or cleaned) page cache page. 633 */ 634 static int me_pagecache_clean(struct page *p, unsigned long pfn) 635 { 636 struct address_space *mapping; 637 638 delete_from_lru_cache(p); 639 640 /* 641 * For anonymous pages we're done the only reference left 642 * should be the one m_f() holds. 643 */ 644 if (PageAnon(p)) 645 return MF_RECOVERED; 646 647 /* 648 * Now truncate the page in the page cache. This is really 649 * more like a "temporary hole punch" 650 * Don't do this for block devices when someone else 651 * has a reference, because it could be file system metadata 652 * and that's not safe to truncate. 653 */ 654 mapping = page_mapping(p); 655 if (!mapping) { 656 /* 657 * Page has been teared down in the meanwhile 658 */ 659 return MF_FAILED; 660 } 661 662 /* 663 * Truncation is a bit tricky. Enable it per file system for now. 664 * 665 * Open: to take i_mutex or not for this? Right now we don't. 666 */ 667 return truncate_error_page(p, pfn, mapping); 668 } 669 670 /* 671 * Dirty pagecache page 672 * Issues: when the error hit a hole page the error is not properly 673 * propagated. 674 */ 675 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 676 { 677 struct address_space *mapping = page_mapping(p); 678 679 SetPageError(p); 680 /* TBD: print more information about the file. */ 681 if (mapping) { 682 /* 683 * IO error will be reported by write(), fsync(), etc. 684 * who check the mapping. 685 * This way the application knows that something went 686 * wrong with its dirty file data. 687 * 688 * There's one open issue: 689 * 690 * The EIO will be only reported on the next IO 691 * operation and then cleared through the IO map. 692 * Normally Linux has two mechanisms to pass IO error 693 * first through the AS_EIO flag in the address space 694 * and then through the PageError flag in the page. 695 * Since we drop pages on memory failure handling the 696 * only mechanism open to use is through AS_AIO. 697 * 698 * This has the disadvantage that it gets cleared on 699 * the first operation that returns an error, while 700 * the PageError bit is more sticky and only cleared 701 * when the page is reread or dropped. If an 702 * application assumes it will always get error on 703 * fsync, but does other operations on the fd before 704 * and the page is dropped between then the error 705 * will not be properly reported. 706 * 707 * This can already happen even without hwpoisoned 708 * pages: first on metadata IO errors (which only 709 * report through AS_EIO) or when the page is dropped 710 * at the wrong time. 711 * 712 * So right now we assume that the application DTRT on 713 * the first EIO, but we're not worse than other parts 714 * of the kernel. 715 */ 716 mapping_set_error(mapping, -EIO); 717 } 718 719 return me_pagecache_clean(p, pfn); 720 } 721 722 /* 723 * Clean and dirty swap cache. 724 * 725 * Dirty swap cache page is tricky to handle. The page could live both in page 726 * cache and swap cache(ie. page is freshly swapped in). So it could be 727 * referenced concurrently by 2 types of PTEs: 728 * normal PTEs and swap PTEs. We try to handle them consistently by calling 729 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 730 * and then 731 * - clear dirty bit to prevent IO 732 * - remove from LRU 733 * - but keep in the swap cache, so that when we return to it on 734 * a later page fault, we know the application is accessing 735 * corrupted data and shall be killed (we installed simple 736 * interception code in do_swap_page to catch it). 737 * 738 * Clean swap cache pages can be directly isolated. A later page fault will 739 * bring in the known good data from disk. 740 */ 741 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 742 { 743 ClearPageDirty(p); 744 /* Trigger EIO in shmem: */ 745 ClearPageUptodate(p); 746 747 if (!delete_from_lru_cache(p)) 748 return MF_DELAYED; 749 else 750 return MF_FAILED; 751 } 752 753 static int me_swapcache_clean(struct page *p, unsigned long pfn) 754 { 755 delete_from_swap_cache(p); 756 757 if (!delete_from_lru_cache(p)) 758 return MF_RECOVERED; 759 else 760 return MF_FAILED; 761 } 762 763 /* 764 * Huge pages. Needs work. 765 * Issues: 766 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 767 * To narrow down kill region to one page, we need to break up pmd. 768 */ 769 static int me_huge_page(struct page *p, unsigned long pfn) 770 { 771 int res = 0; 772 struct page *hpage = compound_head(p); 773 struct address_space *mapping; 774 775 if (!PageHuge(hpage)) 776 return MF_DELAYED; 777 778 mapping = page_mapping(hpage); 779 if (mapping) { 780 res = truncate_error_page(hpage, pfn, mapping); 781 } else { 782 unlock_page(hpage); 783 /* 784 * migration entry prevents later access on error anonymous 785 * hugepage, so we can free and dissolve it into buddy to 786 * save healthy subpages. 787 */ 788 if (PageAnon(hpage)) 789 put_page(hpage); 790 dissolve_free_huge_page(p); 791 res = MF_RECOVERED; 792 lock_page(hpage); 793 } 794 795 return res; 796 } 797 798 /* 799 * Various page states we can handle. 800 * 801 * A page state is defined by its current page->flags bits. 802 * The table matches them in order and calls the right handler. 803 * 804 * This is quite tricky because we can access page at any time 805 * in its live cycle, so all accesses have to be extremely careful. 806 * 807 * This is not complete. More states could be added. 808 * For any missing state don't attempt recovery. 809 */ 810 811 #define dirty (1UL << PG_dirty) 812 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 813 #define unevict (1UL << PG_unevictable) 814 #define mlock (1UL << PG_mlocked) 815 #define writeback (1UL << PG_writeback) 816 #define lru (1UL << PG_lru) 817 #define head (1UL << PG_head) 818 #define slab (1UL << PG_slab) 819 #define reserved (1UL << PG_reserved) 820 821 static struct page_state { 822 unsigned long mask; 823 unsigned long res; 824 enum mf_action_page_type type; 825 int (*action)(struct page *p, unsigned long pfn); 826 } error_states[] = { 827 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 828 /* 829 * free pages are specially detected outside this table: 830 * PG_buddy pages only make a small fraction of all free pages. 831 */ 832 833 /* 834 * Could in theory check if slab page is free or if we can drop 835 * currently unused objects without touching them. But just 836 * treat it as standard kernel for now. 837 */ 838 { slab, slab, MF_MSG_SLAB, me_kernel }, 839 840 { head, head, MF_MSG_HUGE, me_huge_page }, 841 842 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 843 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 844 845 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 846 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 847 848 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 849 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 850 851 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 852 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 853 854 /* 855 * Catchall entry: must be at end. 856 */ 857 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 858 }; 859 860 #undef dirty 861 #undef sc 862 #undef unevict 863 #undef mlock 864 #undef writeback 865 #undef lru 866 #undef head 867 #undef slab 868 #undef reserved 869 870 /* 871 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 872 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 873 */ 874 static void action_result(unsigned long pfn, enum mf_action_page_type type, 875 enum mf_result result) 876 { 877 trace_memory_failure_event(pfn, type, result); 878 879 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 880 pfn, action_page_types[type], action_name[result]); 881 } 882 883 static int page_action(struct page_state *ps, struct page *p, 884 unsigned long pfn) 885 { 886 int result; 887 int count; 888 889 result = ps->action(p, pfn); 890 891 count = page_count(p) - 1; 892 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 893 count--; 894 if (count > 0) { 895 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 896 pfn, action_page_types[ps->type], count); 897 result = MF_FAILED; 898 } 899 action_result(pfn, ps->type, result); 900 901 /* Could do more checks here if page looks ok */ 902 /* 903 * Could adjust zone counters here to correct for the missing page. 904 */ 905 906 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 907 } 908 909 /** 910 * get_hwpoison_page() - Get refcount for memory error handling: 911 * @page: raw error page (hit by memory error) 912 * 913 * Return: return 0 if failed to grab the refcount, otherwise true (some 914 * non-zero value.) 915 */ 916 int get_hwpoison_page(struct page *page) 917 { 918 struct page *head = compound_head(page); 919 920 if (!PageHuge(head) && PageTransHuge(head)) { 921 /* 922 * Non anonymous thp exists only in allocation/free time. We 923 * can't handle such a case correctly, so let's give it up. 924 * This should be better than triggering BUG_ON when kernel 925 * tries to touch the "partially handled" page. 926 */ 927 if (!PageAnon(head)) { 928 pr_err("Memory failure: %#lx: non anonymous thp\n", 929 page_to_pfn(page)); 930 return 0; 931 } 932 } 933 934 if (get_page_unless_zero(head)) { 935 if (head == compound_head(page)) 936 return 1; 937 938 pr_info("Memory failure: %#lx cannot catch tail\n", 939 page_to_pfn(page)); 940 put_page(head); 941 } 942 943 return 0; 944 } 945 EXPORT_SYMBOL_GPL(get_hwpoison_page); 946 947 /* 948 * Do all that is necessary to remove user space mappings. Unmap 949 * the pages and send SIGBUS to the processes if the data was dirty. 950 */ 951 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 952 int flags, struct page **hpagep) 953 { 954 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 955 struct address_space *mapping; 956 LIST_HEAD(tokill); 957 bool unmap_success = true; 958 int kill = 1, forcekill; 959 struct page *hpage = *hpagep; 960 bool mlocked = PageMlocked(hpage); 961 962 /* 963 * Here we are interested only in user-mapped pages, so skip any 964 * other types of pages. 965 */ 966 if (PageReserved(p) || PageSlab(p)) 967 return true; 968 if (!(PageLRU(hpage) || PageHuge(p))) 969 return true; 970 971 /* 972 * This check implies we don't kill processes if their pages 973 * are in the swap cache early. Those are always late kills. 974 */ 975 if (!page_mapped(hpage)) 976 return true; 977 978 if (PageKsm(p)) { 979 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 980 return false; 981 } 982 983 if (PageSwapCache(p)) { 984 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 985 pfn); 986 ttu |= TTU_IGNORE_HWPOISON; 987 } 988 989 /* 990 * Propagate the dirty bit from PTEs to struct page first, because we 991 * need this to decide if we should kill or just drop the page. 992 * XXX: the dirty test could be racy: set_page_dirty() may not always 993 * be called inside page lock (it's recommended but not enforced). 994 */ 995 mapping = page_mapping(hpage); 996 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 997 mapping_cap_writeback_dirty(mapping)) { 998 if (page_mkclean(hpage)) { 999 SetPageDirty(hpage); 1000 } else { 1001 kill = 0; 1002 ttu |= TTU_IGNORE_HWPOISON; 1003 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1004 pfn); 1005 } 1006 } 1007 1008 /* 1009 * First collect all the processes that have the page 1010 * mapped in dirty form. This has to be done before try_to_unmap, 1011 * because ttu takes the rmap data structures down. 1012 * 1013 * Error handling: We ignore errors here because 1014 * there's nothing that can be done. 1015 */ 1016 if (kill) 1017 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1018 1019 if (!PageHuge(hpage)) { 1020 unmap_success = try_to_unmap(hpage, ttu); 1021 } else { 1022 /* 1023 * For hugetlb pages, try_to_unmap could potentially call 1024 * huge_pmd_unshare. Because of this, take semaphore in 1025 * write mode here and set TTU_RMAP_LOCKED to indicate we 1026 * have taken the lock at this higer level. 1027 * 1028 * Note that the call to hugetlb_page_mapping_lock_write 1029 * is necessary even if mapping is already set. It handles 1030 * ugliness of potentially having to drop page lock to obtain 1031 * i_mmap_rwsem. 1032 */ 1033 mapping = hugetlb_page_mapping_lock_write(hpage); 1034 1035 if (mapping) { 1036 unmap_success = try_to_unmap(hpage, 1037 ttu|TTU_RMAP_LOCKED); 1038 i_mmap_unlock_write(mapping); 1039 } else { 1040 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n", 1041 pfn); 1042 unmap_success = false; 1043 } 1044 } 1045 if (!unmap_success) 1046 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1047 pfn, page_mapcount(hpage)); 1048 1049 /* 1050 * try_to_unmap() might put mlocked page in lru cache, so call 1051 * shake_page() again to ensure that it's flushed. 1052 */ 1053 if (mlocked) 1054 shake_page(hpage, 0); 1055 1056 /* 1057 * Now that the dirty bit has been propagated to the 1058 * struct page and all unmaps done we can decide if 1059 * killing is needed or not. Only kill when the page 1060 * was dirty or the process is not restartable, 1061 * otherwise the tokill list is merely 1062 * freed. When there was a problem unmapping earlier 1063 * use a more force-full uncatchable kill to prevent 1064 * any accesses to the poisoned memory. 1065 */ 1066 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1067 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1068 1069 return unmap_success; 1070 } 1071 1072 static int identify_page_state(unsigned long pfn, struct page *p, 1073 unsigned long page_flags) 1074 { 1075 struct page_state *ps; 1076 1077 /* 1078 * The first check uses the current page flags which may not have any 1079 * relevant information. The second check with the saved page flags is 1080 * carried out only if the first check can't determine the page status. 1081 */ 1082 for (ps = error_states;; ps++) 1083 if ((p->flags & ps->mask) == ps->res) 1084 break; 1085 1086 page_flags |= (p->flags & (1UL << PG_dirty)); 1087 1088 if (!ps->mask) 1089 for (ps = error_states;; ps++) 1090 if ((page_flags & ps->mask) == ps->res) 1091 break; 1092 return page_action(ps, p, pfn); 1093 } 1094 1095 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1096 { 1097 struct page *p = pfn_to_page(pfn); 1098 struct page *head = compound_head(p); 1099 int res; 1100 unsigned long page_flags; 1101 1102 if (TestSetPageHWPoison(head)) { 1103 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1104 pfn); 1105 return 0; 1106 } 1107 1108 num_poisoned_pages_inc(); 1109 1110 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1111 /* 1112 * Check "filter hit" and "race with other subpage." 1113 */ 1114 lock_page(head); 1115 if (PageHWPoison(head)) { 1116 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1117 || (p != head && TestSetPageHWPoison(head))) { 1118 num_poisoned_pages_dec(); 1119 unlock_page(head); 1120 return 0; 1121 } 1122 } 1123 unlock_page(head); 1124 dissolve_free_huge_page(p); 1125 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1126 return 0; 1127 } 1128 1129 lock_page(head); 1130 page_flags = head->flags; 1131 1132 if (!PageHWPoison(head)) { 1133 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1134 num_poisoned_pages_dec(); 1135 unlock_page(head); 1136 put_hwpoison_page(head); 1137 return 0; 1138 } 1139 1140 /* 1141 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1142 * simply disable it. In order to make it work properly, we need 1143 * make sure that: 1144 * - conversion of a pud that maps an error hugetlb into hwpoison 1145 * entry properly works, and 1146 * - other mm code walking over page table is aware of pud-aligned 1147 * hwpoison entries. 1148 */ 1149 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1150 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1151 res = -EBUSY; 1152 goto out; 1153 } 1154 1155 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1156 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1157 res = -EBUSY; 1158 goto out; 1159 } 1160 1161 res = identify_page_state(pfn, p, page_flags); 1162 out: 1163 unlock_page(head); 1164 return res; 1165 } 1166 1167 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1168 struct dev_pagemap *pgmap) 1169 { 1170 struct page *page = pfn_to_page(pfn); 1171 const bool unmap_success = true; 1172 unsigned long size = 0; 1173 struct to_kill *tk; 1174 LIST_HEAD(tokill); 1175 int rc = -EBUSY; 1176 loff_t start; 1177 dax_entry_t cookie; 1178 1179 /* 1180 * Prevent the inode from being freed while we are interrogating 1181 * the address_space, typically this would be handled by 1182 * lock_page(), but dax pages do not use the page lock. This 1183 * also prevents changes to the mapping of this pfn until 1184 * poison signaling is complete. 1185 */ 1186 cookie = dax_lock_page(page); 1187 if (!cookie) 1188 goto out; 1189 1190 if (hwpoison_filter(page)) { 1191 rc = 0; 1192 goto unlock; 1193 } 1194 1195 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1196 /* 1197 * TODO: Handle HMM pages which may need coordination 1198 * with device-side memory. 1199 */ 1200 goto unlock; 1201 } 1202 1203 /* 1204 * Use this flag as an indication that the dax page has been 1205 * remapped UC to prevent speculative consumption of poison. 1206 */ 1207 SetPageHWPoison(page); 1208 1209 /* 1210 * Unlike System-RAM there is no possibility to swap in a 1211 * different physical page at a given virtual address, so all 1212 * userspace consumption of ZONE_DEVICE memory necessitates 1213 * SIGBUS (i.e. MF_MUST_KILL) 1214 */ 1215 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1216 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1217 1218 list_for_each_entry(tk, &tokill, nd) 1219 if (tk->size_shift) 1220 size = max(size, 1UL << tk->size_shift); 1221 if (size) { 1222 /* 1223 * Unmap the largest mapping to avoid breaking up 1224 * device-dax mappings which are constant size. The 1225 * actual size of the mapping being torn down is 1226 * communicated in siginfo, see kill_proc() 1227 */ 1228 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1229 unmap_mapping_range(page->mapping, start, start + size, 0); 1230 } 1231 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1232 rc = 0; 1233 unlock: 1234 dax_unlock_page(page, cookie); 1235 out: 1236 /* drop pgmap ref acquired in caller */ 1237 put_dev_pagemap(pgmap); 1238 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1239 return rc; 1240 } 1241 1242 /** 1243 * memory_failure - Handle memory failure of a page. 1244 * @pfn: Page Number of the corrupted page 1245 * @flags: fine tune action taken 1246 * 1247 * This function is called by the low level machine check code 1248 * of an architecture when it detects hardware memory corruption 1249 * of a page. It tries its best to recover, which includes 1250 * dropping pages, killing processes etc. 1251 * 1252 * The function is primarily of use for corruptions that 1253 * happen outside the current execution context (e.g. when 1254 * detected by a background scrubber) 1255 * 1256 * Must run in process context (e.g. a work queue) with interrupts 1257 * enabled and no spinlocks hold. 1258 */ 1259 int memory_failure(unsigned long pfn, int flags) 1260 { 1261 struct page *p; 1262 struct page *hpage; 1263 struct page *orig_head; 1264 struct dev_pagemap *pgmap; 1265 int res; 1266 unsigned long page_flags; 1267 1268 if (!sysctl_memory_failure_recovery) 1269 panic("Memory failure on page %lx", pfn); 1270 1271 p = pfn_to_online_page(pfn); 1272 if (!p) { 1273 if (pfn_valid(pfn)) { 1274 pgmap = get_dev_pagemap(pfn, NULL); 1275 if (pgmap) 1276 return memory_failure_dev_pagemap(pfn, flags, 1277 pgmap); 1278 } 1279 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1280 pfn); 1281 return -ENXIO; 1282 } 1283 1284 if (PageHuge(p)) 1285 return memory_failure_hugetlb(pfn, flags); 1286 if (TestSetPageHWPoison(p)) { 1287 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1288 pfn); 1289 return 0; 1290 } 1291 1292 orig_head = hpage = compound_head(p); 1293 num_poisoned_pages_inc(); 1294 1295 /* 1296 * We need/can do nothing about count=0 pages. 1297 * 1) it's a free page, and therefore in safe hand: 1298 * prep_new_page() will be the gate keeper. 1299 * 2) it's part of a non-compound high order page. 1300 * Implies some kernel user: cannot stop them from 1301 * R/W the page; let's pray that the page has been 1302 * used and will be freed some time later. 1303 * In fact it's dangerous to directly bump up page count from 0, 1304 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1305 */ 1306 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1307 if (is_free_buddy_page(p)) { 1308 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1309 return 0; 1310 } else { 1311 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1312 return -EBUSY; 1313 } 1314 } 1315 1316 if (PageTransHuge(hpage)) { 1317 lock_page(p); 1318 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1319 unlock_page(p); 1320 if (!PageAnon(p)) 1321 pr_err("Memory failure: %#lx: non anonymous thp\n", 1322 pfn); 1323 else 1324 pr_err("Memory failure: %#lx: thp split failed\n", 1325 pfn); 1326 if (TestClearPageHWPoison(p)) 1327 num_poisoned_pages_dec(); 1328 put_hwpoison_page(p); 1329 return -EBUSY; 1330 } 1331 unlock_page(p); 1332 VM_BUG_ON_PAGE(!page_count(p), p); 1333 hpage = compound_head(p); 1334 } 1335 1336 /* 1337 * We ignore non-LRU pages for good reasons. 1338 * - PG_locked is only well defined for LRU pages and a few others 1339 * - to avoid races with __SetPageLocked() 1340 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1341 * The check (unnecessarily) ignores LRU pages being isolated and 1342 * walked by the page reclaim code, however that's not a big loss. 1343 */ 1344 shake_page(p, 0); 1345 /* shake_page could have turned it free. */ 1346 if (!PageLRU(p) && is_free_buddy_page(p)) { 1347 if (flags & MF_COUNT_INCREASED) 1348 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1349 else 1350 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1351 return 0; 1352 } 1353 1354 lock_page(p); 1355 1356 /* 1357 * The page could have changed compound pages during the locking. 1358 * If this happens just bail out. 1359 */ 1360 if (PageCompound(p) && compound_head(p) != orig_head) { 1361 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1362 res = -EBUSY; 1363 goto out; 1364 } 1365 1366 /* 1367 * We use page flags to determine what action should be taken, but 1368 * the flags can be modified by the error containment action. One 1369 * example is an mlocked page, where PG_mlocked is cleared by 1370 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1371 * correctly, we save a copy of the page flags at this time. 1372 */ 1373 if (PageHuge(p)) 1374 page_flags = hpage->flags; 1375 else 1376 page_flags = p->flags; 1377 1378 /* 1379 * unpoison always clear PG_hwpoison inside page lock 1380 */ 1381 if (!PageHWPoison(p)) { 1382 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1383 num_poisoned_pages_dec(); 1384 unlock_page(p); 1385 put_hwpoison_page(p); 1386 return 0; 1387 } 1388 if (hwpoison_filter(p)) { 1389 if (TestClearPageHWPoison(p)) 1390 num_poisoned_pages_dec(); 1391 unlock_page(p); 1392 put_hwpoison_page(p); 1393 return 0; 1394 } 1395 1396 if (!PageTransTail(p) && !PageLRU(p)) 1397 goto identify_page_state; 1398 1399 /* 1400 * It's very difficult to mess with pages currently under IO 1401 * and in many cases impossible, so we just avoid it here. 1402 */ 1403 wait_on_page_writeback(p); 1404 1405 /* 1406 * Now take care of user space mappings. 1407 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1408 * 1409 * When the raw error page is thp tail page, hpage points to the raw 1410 * page after thp split. 1411 */ 1412 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1413 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1414 res = -EBUSY; 1415 goto out; 1416 } 1417 1418 /* 1419 * Torn down by someone else? 1420 */ 1421 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1422 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1423 res = -EBUSY; 1424 goto out; 1425 } 1426 1427 identify_page_state: 1428 res = identify_page_state(pfn, p, page_flags); 1429 out: 1430 unlock_page(p); 1431 return res; 1432 } 1433 EXPORT_SYMBOL_GPL(memory_failure); 1434 1435 #define MEMORY_FAILURE_FIFO_ORDER 4 1436 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1437 1438 struct memory_failure_entry { 1439 unsigned long pfn; 1440 int flags; 1441 }; 1442 1443 struct memory_failure_cpu { 1444 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1445 MEMORY_FAILURE_FIFO_SIZE); 1446 spinlock_t lock; 1447 struct work_struct work; 1448 }; 1449 1450 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1451 1452 /** 1453 * memory_failure_queue - Schedule handling memory failure of a page. 1454 * @pfn: Page Number of the corrupted page 1455 * @flags: Flags for memory failure handling 1456 * 1457 * This function is called by the low level hardware error handler 1458 * when it detects hardware memory corruption of a page. It schedules 1459 * the recovering of error page, including dropping pages, killing 1460 * processes etc. 1461 * 1462 * The function is primarily of use for corruptions that 1463 * happen outside the current execution context (e.g. when 1464 * detected by a background scrubber) 1465 * 1466 * Can run in IRQ context. 1467 */ 1468 void memory_failure_queue(unsigned long pfn, int flags) 1469 { 1470 struct memory_failure_cpu *mf_cpu; 1471 unsigned long proc_flags; 1472 struct memory_failure_entry entry = { 1473 .pfn = pfn, 1474 .flags = flags, 1475 }; 1476 1477 mf_cpu = &get_cpu_var(memory_failure_cpu); 1478 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1479 if (kfifo_put(&mf_cpu->fifo, entry)) 1480 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1481 else 1482 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1483 pfn); 1484 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1485 put_cpu_var(memory_failure_cpu); 1486 } 1487 EXPORT_SYMBOL_GPL(memory_failure_queue); 1488 1489 static void memory_failure_work_func(struct work_struct *work) 1490 { 1491 struct memory_failure_cpu *mf_cpu; 1492 struct memory_failure_entry entry = { 0, }; 1493 unsigned long proc_flags; 1494 int gotten; 1495 1496 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1497 for (;;) { 1498 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1499 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1500 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1501 if (!gotten) 1502 break; 1503 if (entry.flags & MF_SOFT_OFFLINE) 1504 soft_offline_page(entry.pfn, entry.flags); 1505 else 1506 memory_failure(entry.pfn, entry.flags); 1507 } 1508 } 1509 1510 static int __init memory_failure_init(void) 1511 { 1512 struct memory_failure_cpu *mf_cpu; 1513 int cpu; 1514 1515 for_each_possible_cpu(cpu) { 1516 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1517 spin_lock_init(&mf_cpu->lock); 1518 INIT_KFIFO(mf_cpu->fifo); 1519 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1520 } 1521 1522 return 0; 1523 } 1524 core_initcall(memory_failure_init); 1525 1526 #define unpoison_pr_info(fmt, pfn, rs) \ 1527 ({ \ 1528 if (__ratelimit(rs)) \ 1529 pr_info(fmt, pfn); \ 1530 }) 1531 1532 /** 1533 * unpoison_memory - Unpoison a previously poisoned page 1534 * @pfn: Page number of the to be unpoisoned page 1535 * 1536 * Software-unpoison a page that has been poisoned by 1537 * memory_failure() earlier. 1538 * 1539 * This is only done on the software-level, so it only works 1540 * for linux injected failures, not real hardware failures 1541 * 1542 * Returns 0 for success, otherwise -errno. 1543 */ 1544 int unpoison_memory(unsigned long pfn) 1545 { 1546 struct page *page; 1547 struct page *p; 1548 int freeit = 0; 1549 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1550 DEFAULT_RATELIMIT_BURST); 1551 1552 if (!pfn_valid(pfn)) 1553 return -ENXIO; 1554 1555 p = pfn_to_page(pfn); 1556 page = compound_head(p); 1557 1558 if (!PageHWPoison(p)) { 1559 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1560 pfn, &unpoison_rs); 1561 return 0; 1562 } 1563 1564 if (page_count(page) > 1) { 1565 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1566 pfn, &unpoison_rs); 1567 return 0; 1568 } 1569 1570 if (page_mapped(page)) { 1571 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1572 pfn, &unpoison_rs); 1573 return 0; 1574 } 1575 1576 if (page_mapping(page)) { 1577 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1578 pfn, &unpoison_rs); 1579 return 0; 1580 } 1581 1582 /* 1583 * unpoison_memory() can encounter thp only when the thp is being 1584 * worked by memory_failure() and the page lock is not held yet. 1585 * In such case, we yield to memory_failure() and make unpoison fail. 1586 */ 1587 if (!PageHuge(page) && PageTransHuge(page)) { 1588 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1589 pfn, &unpoison_rs); 1590 return 0; 1591 } 1592 1593 if (!get_hwpoison_page(p)) { 1594 if (TestClearPageHWPoison(p)) 1595 num_poisoned_pages_dec(); 1596 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1597 pfn, &unpoison_rs); 1598 return 0; 1599 } 1600 1601 lock_page(page); 1602 /* 1603 * This test is racy because PG_hwpoison is set outside of page lock. 1604 * That's acceptable because that won't trigger kernel panic. Instead, 1605 * the PG_hwpoison page will be caught and isolated on the entrance to 1606 * the free buddy page pool. 1607 */ 1608 if (TestClearPageHWPoison(page)) { 1609 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1610 pfn, &unpoison_rs); 1611 num_poisoned_pages_dec(); 1612 freeit = 1; 1613 } 1614 unlock_page(page); 1615 1616 put_hwpoison_page(page); 1617 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1618 put_hwpoison_page(page); 1619 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(unpoison_memory); 1623 1624 static struct page *new_page(struct page *p, unsigned long private) 1625 { 1626 int nid = page_to_nid(p); 1627 1628 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1629 } 1630 1631 /* 1632 * Safely get reference count of an arbitrary page. 1633 * Returns 0 for a free page, -EIO for a zero refcount page 1634 * that is not free, and 1 for any other page type. 1635 * For 1 the page is returned with increased page count, otherwise not. 1636 */ 1637 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1638 { 1639 int ret; 1640 1641 if (flags & MF_COUNT_INCREASED) 1642 return 1; 1643 1644 /* 1645 * When the target page is a free hugepage, just remove it 1646 * from free hugepage list. 1647 */ 1648 if (!get_hwpoison_page(p)) { 1649 if (PageHuge(p)) { 1650 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1651 ret = 0; 1652 } else if (is_free_buddy_page(p)) { 1653 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1654 ret = 0; 1655 } else { 1656 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1657 __func__, pfn, p->flags); 1658 ret = -EIO; 1659 } 1660 } else { 1661 /* Not a free page */ 1662 ret = 1; 1663 } 1664 return ret; 1665 } 1666 1667 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1668 { 1669 int ret = __get_any_page(page, pfn, flags); 1670 1671 if (ret == 1 && !PageHuge(page) && 1672 !PageLRU(page) && !__PageMovable(page)) { 1673 /* 1674 * Try to free it. 1675 */ 1676 put_hwpoison_page(page); 1677 shake_page(page, 1); 1678 1679 /* 1680 * Did it turn free? 1681 */ 1682 ret = __get_any_page(page, pfn, 0); 1683 if (ret == 1 && !PageLRU(page)) { 1684 /* Drop page reference which is from __get_any_page() */ 1685 put_hwpoison_page(page); 1686 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1687 pfn, page->flags, &page->flags); 1688 return -EIO; 1689 } 1690 } 1691 return ret; 1692 } 1693 1694 static int soft_offline_huge_page(struct page *page, int flags) 1695 { 1696 int ret; 1697 unsigned long pfn = page_to_pfn(page); 1698 struct page *hpage = compound_head(page); 1699 LIST_HEAD(pagelist); 1700 1701 /* 1702 * This double-check of PageHWPoison is to avoid the race with 1703 * memory_failure(). See also comment in __soft_offline_page(). 1704 */ 1705 lock_page(hpage); 1706 if (PageHWPoison(hpage)) { 1707 unlock_page(hpage); 1708 put_hwpoison_page(hpage); 1709 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1710 return -EBUSY; 1711 } 1712 unlock_page(hpage); 1713 1714 ret = isolate_huge_page(hpage, &pagelist); 1715 /* 1716 * get_any_page() and isolate_huge_page() takes a refcount each, 1717 * so need to drop one here. 1718 */ 1719 put_hwpoison_page(hpage); 1720 if (!ret) { 1721 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1722 return -EBUSY; 1723 } 1724 1725 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1726 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1727 if (ret) { 1728 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1729 pfn, ret, page->flags, &page->flags); 1730 if (!list_empty(&pagelist)) 1731 putback_movable_pages(&pagelist); 1732 if (ret > 0) 1733 ret = -EIO; 1734 } else { 1735 /* 1736 * We set PG_hwpoison only when the migration source hugepage 1737 * was successfully dissolved, because otherwise hwpoisoned 1738 * hugepage remains on free hugepage list, then userspace will 1739 * find it as SIGBUS by allocation failure. That's not expected 1740 * in soft-offlining. 1741 */ 1742 ret = dissolve_free_huge_page(page); 1743 if (!ret) { 1744 if (set_hwpoison_free_buddy_page(page)) 1745 num_poisoned_pages_inc(); 1746 else 1747 ret = -EBUSY; 1748 } 1749 } 1750 return ret; 1751 } 1752 1753 static int __soft_offline_page(struct page *page, int flags) 1754 { 1755 int ret; 1756 unsigned long pfn = page_to_pfn(page); 1757 1758 /* 1759 * Check PageHWPoison again inside page lock because PageHWPoison 1760 * is set by memory_failure() outside page lock. Note that 1761 * memory_failure() also double-checks PageHWPoison inside page lock, 1762 * so there's no race between soft_offline_page() and memory_failure(). 1763 */ 1764 lock_page(page); 1765 wait_on_page_writeback(page); 1766 if (PageHWPoison(page)) { 1767 unlock_page(page); 1768 put_hwpoison_page(page); 1769 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1770 return -EBUSY; 1771 } 1772 /* 1773 * Try to invalidate first. This should work for 1774 * non dirty unmapped page cache pages. 1775 */ 1776 ret = invalidate_inode_page(page); 1777 unlock_page(page); 1778 /* 1779 * RED-PEN would be better to keep it isolated here, but we 1780 * would need to fix isolation locking first. 1781 */ 1782 if (ret == 1) { 1783 put_hwpoison_page(page); 1784 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1785 SetPageHWPoison(page); 1786 num_poisoned_pages_inc(); 1787 return 0; 1788 } 1789 1790 /* 1791 * Simple invalidation didn't work. 1792 * Try to migrate to a new page instead. migrate.c 1793 * handles a large number of cases for us. 1794 */ 1795 if (PageLRU(page)) 1796 ret = isolate_lru_page(page); 1797 else 1798 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1799 /* 1800 * Drop page reference which is came from get_any_page() 1801 * successful isolate_lru_page() already took another one. 1802 */ 1803 put_hwpoison_page(page); 1804 if (!ret) { 1805 LIST_HEAD(pagelist); 1806 /* 1807 * After isolated lru page, the PageLRU will be cleared, 1808 * so use !__PageMovable instead for LRU page's mapping 1809 * cannot have PAGE_MAPPING_MOVABLE. 1810 */ 1811 if (!__PageMovable(page)) 1812 inc_node_page_state(page, NR_ISOLATED_ANON + 1813 page_is_file_lru(page)); 1814 list_add(&page->lru, &pagelist); 1815 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1816 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1817 if (ret) { 1818 if (!list_empty(&pagelist)) 1819 putback_movable_pages(&pagelist); 1820 1821 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1822 pfn, ret, page->flags, &page->flags); 1823 if (ret > 0) 1824 ret = -EIO; 1825 } 1826 } else { 1827 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1828 pfn, ret, page_count(page), page->flags, &page->flags); 1829 } 1830 return ret; 1831 } 1832 1833 static int soft_offline_in_use_page(struct page *page, int flags) 1834 { 1835 int ret; 1836 int mt; 1837 struct page *hpage = compound_head(page); 1838 1839 if (!PageHuge(page) && PageTransHuge(hpage)) { 1840 lock_page(page); 1841 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1842 unlock_page(page); 1843 if (!PageAnon(page)) 1844 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1845 else 1846 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1847 put_hwpoison_page(page); 1848 return -EBUSY; 1849 } 1850 unlock_page(page); 1851 } 1852 1853 /* 1854 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1855 * to free list immediately (not via pcplist) when released after 1856 * successful page migration. Otherwise we can't guarantee that the 1857 * page is really free after put_page() returns, so 1858 * set_hwpoison_free_buddy_page() highly likely fails. 1859 */ 1860 mt = get_pageblock_migratetype(page); 1861 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1862 if (PageHuge(page)) 1863 ret = soft_offline_huge_page(page, flags); 1864 else 1865 ret = __soft_offline_page(page, flags); 1866 set_pageblock_migratetype(page, mt); 1867 return ret; 1868 } 1869 1870 static int soft_offline_free_page(struct page *page) 1871 { 1872 int rc = dissolve_free_huge_page(page); 1873 1874 if (!rc) { 1875 if (set_hwpoison_free_buddy_page(page)) 1876 num_poisoned_pages_inc(); 1877 else 1878 rc = -EBUSY; 1879 } 1880 return rc; 1881 } 1882 1883 /** 1884 * soft_offline_page - Soft offline a page. 1885 * @pfn: pfn to soft-offline 1886 * @flags: flags. Same as memory_failure(). 1887 * 1888 * Returns 0 on success, otherwise negated errno. 1889 * 1890 * Soft offline a page, by migration or invalidation, 1891 * without killing anything. This is for the case when 1892 * a page is not corrupted yet (so it's still valid to access), 1893 * but has had a number of corrected errors and is better taken 1894 * out. 1895 * 1896 * The actual policy on when to do that is maintained by 1897 * user space. 1898 * 1899 * This should never impact any application or cause data loss, 1900 * however it might take some time. 1901 * 1902 * This is not a 100% solution for all memory, but tries to be 1903 * ``good enough'' for the majority of memory. 1904 */ 1905 int soft_offline_page(unsigned long pfn, int flags) 1906 { 1907 int ret; 1908 struct page *page; 1909 1910 if (!pfn_valid(pfn)) 1911 return -ENXIO; 1912 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1913 page = pfn_to_online_page(pfn); 1914 if (!page) 1915 return -EIO; 1916 1917 if (PageHWPoison(page)) { 1918 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1919 if (flags & MF_COUNT_INCREASED) 1920 put_hwpoison_page(page); 1921 return -EBUSY; 1922 } 1923 1924 get_online_mems(); 1925 ret = get_any_page(page, pfn, flags); 1926 put_online_mems(); 1927 1928 if (ret > 0) 1929 ret = soft_offline_in_use_page(page, flags); 1930 else if (ret == 0) 1931 ret = soft_offline_free_page(page); 1932 1933 return ret; 1934 } 1935