xref: /openbmc/linux/mm/memory-failure.c (revision 305c8388)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret = 0;
214 
215 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 			pfn, t->comm, t->pid);
217 
218 	if (flags & MF_ACTION_REQUIRED) {
219 		WARN_ON_ONCE(t != current);
220 		ret = force_sig_mceerr(BUS_MCEERR_AR,
221 					 (void __user *)tk->addr, addr_lsb);
222 	} else {
223 		/*
224 		 * Don't use force here, it's convenient if the signal
225 		 * can be temporarily blocked.
226 		 * This could cause a loop when the user sets SIGBUS
227 		 * to SIG_IGN, but hopefully no one will do that?
228 		 */
229 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 				      addr_lsb, t);  /* synchronous? */
231 	}
232 	if (ret < 0)
233 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 			t->comm, t->pid, ret);
235 	return ret;
236 }
237 
238 /*
239  * When a unknown page type is encountered drain as many buffers as possible
240  * in the hope to turn the page into a LRU or free page, which we can handle.
241  */
242 void shake_page(struct page *p, int access)
243 {
244 	if (PageHuge(p))
245 		return;
246 
247 	if (!PageSlab(p)) {
248 		lru_add_drain_all();
249 		if (PageLRU(p))
250 			return;
251 		drain_all_pages(page_zone(p));
252 		if (PageLRU(p) || is_free_buddy_page(p))
253 			return;
254 	}
255 
256 	/*
257 	 * Only call shrink_node_slabs here (which would also shrink
258 	 * other caches) if access is not potentially fatal.
259 	 */
260 	if (access)
261 		drop_slab_node(page_to_nid(p));
262 }
263 EXPORT_SYMBOL_GPL(shake_page);
264 
265 static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 		struct vm_area_struct *vma)
267 {
268 	unsigned long address = vma_address(page, vma);
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 
275 	pgd = pgd_offset(vma->vm_mm, address);
276 	if (!pgd_present(*pgd))
277 		return 0;
278 	p4d = p4d_offset(pgd, address);
279 	if (!p4d_present(*p4d))
280 		return 0;
281 	pud = pud_offset(p4d, address);
282 	if (!pud_present(*pud))
283 		return 0;
284 	if (pud_devmap(*pud))
285 		return PUD_SHIFT;
286 	pmd = pmd_offset(pud, address);
287 	if (!pmd_present(*pmd))
288 		return 0;
289 	if (pmd_devmap(*pmd))
290 		return PMD_SHIFT;
291 	pte = pte_offset_map(pmd, address);
292 	if (!pte_present(*pte))
293 		return 0;
294 	if (pte_devmap(*pte))
295 		return PAGE_SHIFT;
296 	return 0;
297 }
298 
299 /*
300  * Failure handling: if we can't find or can't kill a process there's
301  * not much we can do.	We just print a message and ignore otherwise.
302  */
303 
304 /*
305  * Schedule a process for later kill.
306  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307  */
308 static void add_to_kill(struct task_struct *tsk, struct page *p,
309 		       struct vm_area_struct *vma,
310 		       struct list_head *to_kill)
311 {
312 	struct to_kill *tk;
313 
314 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 	if (!tk) {
316 		pr_err("Memory failure: Out of memory while machine check handling\n");
317 		return;
318 	}
319 
320 	tk->addr = page_address_in_vma(p, vma);
321 	if (is_zone_device_page(p))
322 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
323 	else
324 		tk->size_shift = page_shift(compound_head(p));
325 
326 	/*
327 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 	 * so "tk->size_shift == 0" effectively checks no mapping on
330 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 	 * to a process' address space, it's possible not all N VMAs
332 	 * contain mappings for the page, but at least one VMA does.
333 	 * Only deliver SIGBUS with payload derived from the VMA that
334 	 * has a mapping for the page.
335 	 */
336 	if (tk->addr == -EFAULT) {
337 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 			page_to_pfn(p), tsk->comm);
339 	} else if (tk->size_shift == 0) {
340 		kfree(tk);
341 		return;
342 	}
343 
344 	get_task_struct(tsk);
345 	tk->tsk = tsk;
346 	list_add_tail(&tk->nd, to_kill);
347 }
348 
349 /*
350  * Kill the processes that have been collected earlier.
351  *
352  * Only do anything when DOIT is set, otherwise just free the list
353  * (this is used for clean pages which do not need killing)
354  * Also when FAIL is set do a force kill because something went
355  * wrong earlier.
356  */
357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 		unsigned long pfn, int flags)
359 {
360 	struct to_kill *tk, *next;
361 
362 	list_for_each_entry_safe (tk, next, to_kill, nd) {
363 		if (forcekill) {
364 			/*
365 			 * In case something went wrong with munmapping
366 			 * make sure the process doesn't catch the
367 			 * signal and then access the memory. Just kill it.
368 			 */
369 			if (fail || tk->addr == -EFAULT) {
370 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 				       pfn, tk->tsk->comm, tk->tsk->pid);
372 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 						 tk->tsk, PIDTYPE_PID);
374 			}
375 
376 			/*
377 			 * In theory the process could have mapped
378 			 * something else on the address in-between. We could
379 			 * check for that, but we need to tell the
380 			 * process anyways.
381 			 */
382 			else if (kill_proc(tk, pfn, flags) < 0)
383 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 				       pfn, tk->tsk->comm, tk->tsk->pid);
385 		}
386 		put_task_struct(tk->tsk);
387 		kfree(tk);
388 	}
389 }
390 
391 /*
392  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393  * on behalf of the thread group. Return task_struct of the (first found)
394  * dedicated thread if found, and return NULL otherwise.
395  *
396  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397  * have to call rcu_read_lock/unlock() in this function.
398  */
399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 {
401 	struct task_struct *t;
402 
403 	for_each_thread(tsk, t) {
404 		if (t->flags & PF_MCE_PROCESS) {
405 			if (t->flags & PF_MCE_EARLY)
406 				return t;
407 		} else {
408 			if (sysctl_memory_failure_early_kill)
409 				return t;
410 		}
411 	}
412 	return NULL;
413 }
414 
415 /*
416  * Determine whether a given process is "early kill" process which expects
417  * to be signaled when some page under the process is hwpoisoned.
418  * Return task_struct of the dedicated thread (main thread unless explicitly
419  * specified) if the process is "early kill," and otherwise returns NULL.
420  *
421  * Note that the above is true for Action Optional case, but not for Action
422  * Required case where SIGBUS should sent only to the current thread.
423  */
424 static struct task_struct *task_early_kill(struct task_struct *tsk,
425 					   int force_early)
426 {
427 	if (!tsk->mm)
428 		return NULL;
429 	if (force_early) {
430 		/*
431 		 * Comparing ->mm here because current task might represent
432 		 * a subthread, while tsk always points to the main thread.
433 		 */
434 		if (tsk->mm == current->mm)
435 			return current;
436 		else
437 			return NULL;
438 	}
439 	return find_early_kill_thread(tsk);
440 }
441 
442 /*
443  * Collect processes when the error hit an anonymous page.
444  */
445 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446 				int force_early)
447 {
448 	struct vm_area_struct *vma;
449 	struct task_struct *tsk;
450 	struct anon_vma *av;
451 	pgoff_t pgoff;
452 
453 	av = page_lock_anon_vma_read(page);
454 	if (av == NULL)	/* Not actually mapped anymore */
455 		return;
456 
457 	pgoff = page_to_pgoff(page);
458 	read_lock(&tasklist_lock);
459 	for_each_process (tsk) {
460 		struct anon_vma_chain *vmac;
461 		struct task_struct *t = task_early_kill(tsk, force_early);
462 
463 		if (!t)
464 			continue;
465 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
466 					       pgoff, pgoff) {
467 			vma = vmac->vma;
468 			if (!page_mapped_in_vma(page, vma))
469 				continue;
470 			if (vma->vm_mm == t->mm)
471 				add_to_kill(t, page, vma, to_kill);
472 		}
473 	}
474 	read_unlock(&tasklist_lock);
475 	page_unlock_anon_vma_read(av);
476 }
477 
478 /*
479  * Collect processes when the error hit a file mapped page.
480  */
481 static void collect_procs_file(struct page *page, struct list_head *to_kill,
482 				int force_early)
483 {
484 	struct vm_area_struct *vma;
485 	struct task_struct *tsk;
486 	struct address_space *mapping = page->mapping;
487 
488 	i_mmap_lock_read(mapping);
489 	read_lock(&tasklist_lock);
490 	for_each_process(tsk) {
491 		pgoff_t pgoff = page_to_pgoff(page);
492 		struct task_struct *t = task_early_kill(tsk, force_early);
493 
494 		if (!t)
495 			continue;
496 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
497 				      pgoff) {
498 			/*
499 			 * Send early kill signal to tasks where a vma covers
500 			 * the page but the corrupted page is not necessarily
501 			 * mapped it in its pte.
502 			 * Assume applications who requested early kill want
503 			 * to be informed of all such data corruptions.
504 			 */
505 			if (vma->vm_mm == t->mm)
506 				add_to_kill(t, page, vma, to_kill);
507 		}
508 	}
509 	read_unlock(&tasklist_lock);
510 	i_mmap_unlock_read(mapping);
511 }
512 
513 /*
514  * Collect the processes who have the corrupted page mapped to kill.
515  */
516 static void collect_procs(struct page *page, struct list_head *tokill,
517 				int force_early)
518 {
519 	if (!page->mapping)
520 		return;
521 
522 	if (PageAnon(page))
523 		collect_procs_anon(page, tokill, force_early);
524 	else
525 		collect_procs_file(page, tokill, force_early);
526 }
527 
528 static const char *action_name[] = {
529 	[MF_IGNORED] = "Ignored",
530 	[MF_FAILED] = "Failed",
531 	[MF_DELAYED] = "Delayed",
532 	[MF_RECOVERED] = "Recovered",
533 };
534 
535 static const char * const action_page_types[] = {
536 	[MF_MSG_KERNEL]			= "reserved kernel page",
537 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
538 	[MF_MSG_SLAB]			= "kernel slab page",
539 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
540 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
541 	[MF_MSG_HUGE]			= "huge page",
542 	[MF_MSG_FREE_HUGE]		= "free huge page",
543 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
544 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
545 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
546 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
547 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
548 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
549 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
550 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
551 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
552 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
553 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
554 	[MF_MSG_BUDDY]			= "free buddy page",
555 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
556 	[MF_MSG_DAX]			= "dax page",
557 	[MF_MSG_UNKNOWN]		= "unknown page",
558 };
559 
560 /*
561  * XXX: It is possible that a page is isolated from LRU cache,
562  * and then kept in swap cache or failed to remove from page cache.
563  * The page count will stop it from being freed by unpoison.
564  * Stress tests should be aware of this memory leak problem.
565  */
566 static int delete_from_lru_cache(struct page *p)
567 {
568 	if (!isolate_lru_page(p)) {
569 		/*
570 		 * Clear sensible page flags, so that the buddy system won't
571 		 * complain when the page is unpoison-and-freed.
572 		 */
573 		ClearPageActive(p);
574 		ClearPageUnevictable(p);
575 
576 		/*
577 		 * Poisoned page might never drop its ref count to 0 so we have
578 		 * to uncharge it manually from its memcg.
579 		 */
580 		mem_cgroup_uncharge(p);
581 
582 		/*
583 		 * drop the page count elevated by isolate_lru_page()
584 		 */
585 		put_page(p);
586 		return 0;
587 	}
588 	return -EIO;
589 }
590 
591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 				struct address_space *mapping)
593 {
594 	int ret = MF_FAILED;
595 
596 	if (mapping->a_ops->error_remove_page) {
597 		int err = mapping->a_ops->error_remove_page(mapping, p);
598 
599 		if (err != 0) {
600 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 				pfn, err);
602 		} else if (page_has_private(p) &&
603 			   !try_to_release_page(p, GFP_NOIO)) {
604 			pr_info("Memory failure: %#lx: failed to release buffers\n",
605 				pfn);
606 		} else {
607 			ret = MF_RECOVERED;
608 		}
609 	} else {
610 		/*
611 		 * If the file system doesn't support it just invalidate
612 		 * This fails on dirty or anything with private pages
613 		 */
614 		if (invalidate_inode_page(p))
615 			ret = MF_RECOVERED;
616 		else
617 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 				pfn);
619 	}
620 
621 	return ret;
622 }
623 
624 /*
625  * Error hit kernel page.
626  * Do nothing, try to be lucky and not touch this instead. For a few cases we
627  * could be more sophisticated.
628  */
629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 	return MF_IGNORED;
632 }
633 
634 /*
635  * Page in unknown state. Do nothing.
636  */
637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 	return MF_FAILED;
641 }
642 
643 /*
644  * Clean (or cleaned) page cache page.
645  */
646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 	struct address_space *mapping;
649 
650 	delete_from_lru_cache(p);
651 
652 	/*
653 	 * For anonymous pages we're done the only reference left
654 	 * should be the one m_f() holds.
655 	 */
656 	if (PageAnon(p))
657 		return MF_RECOVERED;
658 
659 	/*
660 	 * Now truncate the page in the page cache. This is really
661 	 * more like a "temporary hole punch"
662 	 * Don't do this for block devices when someone else
663 	 * has a reference, because it could be file system metadata
664 	 * and that's not safe to truncate.
665 	 */
666 	mapping = page_mapping(p);
667 	if (!mapping) {
668 		/*
669 		 * Page has been teared down in the meanwhile
670 		 */
671 		return MF_FAILED;
672 	}
673 
674 	/*
675 	 * Truncation is a bit tricky. Enable it per file system for now.
676 	 *
677 	 * Open: to take i_mutex or not for this? Right now we don't.
678 	 */
679 	return truncate_error_page(p, pfn, mapping);
680 }
681 
682 /*
683  * Dirty pagecache page
684  * Issues: when the error hit a hole page the error is not properly
685  * propagated.
686  */
687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 	struct address_space *mapping = page_mapping(p);
690 
691 	SetPageError(p);
692 	/* TBD: print more information about the file. */
693 	if (mapping) {
694 		/*
695 		 * IO error will be reported by write(), fsync(), etc.
696 		 * who check the mapping.
697 		 * This way the application knows that something went
698 		 * wrong with its dirty file data.
699 		 *
700 		 * There's one open issue:
701 		 *
702 		 * The EIO will be only reported on the next IO
703 		 * operation and then cleared through the IO map.
704 		 * Normally Linux has two mechanisms to pass IO error
705 		 * first through the AS_EIO flag in the address space
706 		 * and then through the PageError flag in the page.
707 		 * Since we drop pages on memory failure handling the
708 		 * only mechanism open to use is through AS_AIO.
709 		 *
710 		 * This has the disadvantage that it gets cleared on
711 		 * the first operation that returns an error, while
712 		 * the PageError bit is more sticky and only cleared
713 		 * when the page is reread or dropped.  If an
714 		 * application assumes it will always get error on
715 		 * fsync, but does other operations on the fd before
716 		 * and the page is dropped between then the error
717 		 * will not be properly reported.
718 		 *
719 		 * This can already happen even without hwpoisoned
720 		 * pages: first on metadata IO errors (which only
721 		 * report through AS_EIO) or when the page is dropped
722 		 * at the wrong time.
723 		 *
724 		 * So right now we assume that the application DTRT on
725 		 * the first EIO, but we're not worse than other parts
726 		 * of the kernel.
727 		 */
728 		mapping_set_error(mapping, -EIO);
729 	}
730 
731 	return me_pagecache_clean(p, pfn);
732 }
733 
734 /*
735  * Clean and dirty swap cache.
736  *
737  * Dirty swap cache page is tricky to handle. The page could live both in page
738  * cache and swap cache(ie. page is freshly swapped in). So it could be
739  * referenced concurrently by 2 types of PTEs:
740  * normal PTEs and swap PTEs. We try to handle them consistently by calling
741  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742  * and then
743  *      - clear dirty bit to prevent IO
744  *      - remove from LRU
745  *      - but keep in the swap cache, so that when we return to it on
746  *        a later page fault, we know the application is accessing
747  *        corrupted data and shall be killed (we installed simple
748  *        interception code in do_swap_page to catch it).
749  *
750  * Clean swap cache pages can be directly isolated. A later page fault will
751  * bring in the known good data from disk.
752  */
753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 	ClearPageDirty(p);
756 	/* Trigger EIO in shmem: */
757 	ClearPageUptodate(p);
758 
759 	if (!delete_from_lru_cache(p))
760 		return MF_DELAYED;
761 	else
762 		return MF_FAILED;
763 }
764 
765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 	delete_from_swap_cache(p);
768 
769 	if (!delete_from_lru_cache(p))
770 		return MF_RECOVERED;
771 	else
772 		return MF_FAILED;
773 }
774 
775 /*
776  * Huge pages. Needs work.
777  * Issues:
778  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779  *   To narrow down kill region to one page, we need to break up pmd.
780  */
781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 	int res = 0;
784 	struct page *hpage = compound_head(p);
785 	struct address_space *mapping;
786 
787 	if (!PageHuge(hpage))
788 		return MF_DELAYED;
789 
790 	mapping = page_mapping(hpage);
791 	if (mapping) {
792 		res = truncate_error_page(hpage, pfn, mapping);
793 	} else {
794 		unlock_page(hpage);
795 		/*
796 		 * migration entry prevents later access on error anonymous
797 		 * hugepage, so we can free and dissolve it into buddy to
798 		 * save healthy subpages.
799 		 */
800 		if (PageAnon(hpage))
801 			put_page(hpage);
802 		dissolve_free_huge_page(p);
803 		res = MF_RECOVERED;
804 		lock_page(hpage);
805 	}
806 
807 	return res;
808 }
809 
810 /*
811  * Various page states we can handle.
812  *
813  * A page state is defined by its current page->flags bits.
814  * The table matches them in order and calls the right handler.
815  *
816  * This is quite tricky because we can access page at any time
817  * in its live cycle, so all accesses have to be extremely careful.
818  *
819  * This is not complete. More states could be added.
820  * For any missing state don't attempt recovery.
821  */
822 
823 #define dirty		(1UL << PG_dirty)
824 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict		(1UL << PG_unevictable)
826 #define mlock		(1UL << PG_mlocked)
827 #define writeback	(1UL << PG_writeback)
828 #define lru		(1UL << PG_lru)
829 #define head		(1UL << PG_head)
830 #define slab		(1UL << PG_slab)
831 #define reserved	(1UL << PG_reserved)
832 
833 static struct page_state {
834 	unsigned long mask;
835 	unsigned long res;
836 	enum mf_action_page_type type;
837 	int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 	/*
841 	 * free pages are specially detected outside this table:
842 	 * PG_buddy pages only make a small fraction of all free pages.
843 	 */
844 
845 	/*
846 	 * Could in theory check if slab page is free or if we can drop
847 	 * currently unused objects without touching them. But just
848 	 * treat it as standard kernel for now.
849 	 */
850 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851 
852 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853 
854 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
855 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856 
857 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
858 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859 
860 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
861 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862 
863 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
864 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 
866 	/*
867 	 * Catchall entry: must be at end.
868 	 */
869 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 };
871 
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881 
882 /*
883  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885  */
886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 			  enum mf_result result)
888 {
889 	trace_memory_failure_event(pfn, type, result);
890 
891 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 		pfn, action_page_types[type], action_name[result]);
893 }
894 
895 static int page_action(struct page_state *ps, struct page *p,
896 			unsigned long pfn)
897 {
898 	int result;
899 	int count;
900 
901 	result = ps->action(p, pfn);
902 
903 	count = page_count(p) - 1;
904 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 		count--;
906 	if (count > 0) {
907 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 		       pfn, action_page_types[ps->type], count);
909 		result = MF_FAILED;
910 	}
911 	action_result(pfn, ps->type, result);
912 
913 	/* Could do more checks here if page looks ok */
914 	/*
915 	 * Could adjust zone counters here to correct for the missing page.
916 	 */
917 
918 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920 
921 /**
922  * get_hwpoison_page() - Get refcount for memory error handling:
923  * @page:	raw error page (hit by memory error)
924  *
925  * Return: return 0 if failed to grab the refcount, otherwise true (some
926  * non-zero value.)
927  */
928 int get_hwpoison_page(struct page *page)
929 {
930 	struct page *head = compound_head(page);
931 
932 	if (!PageHuge(head) && PageTransHuge(head)) {
933 		/*
934 		 * Non anonymous thp exists only in allocation/free time. We
935 		 * can't handle such a case correctly, so let's give it up.
936 		 * This should be better than triggering BUG_ON when kernel
937 		 * tries to touch the "partially handled" page.
938 		 */
939 		if (!PageAnon(head)) {
940 			pr_err("Memory failure: %#lx: non anonymous thp\n",
941 				page_to_pfn(page));
942 			return 0;
943 		}
944 	}
945 
946 	if (get_page_unless_zero(head)) {
947 		if (head == compound_head(page))
948 			return 1;
949 
950 		pr_info("Memory failure: %#lx cannot catch tail\n",
951 			page_to_pfn(page));
952 		put_page(head);
953 	}
954 
955 	return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958 
959 /*
960  * Do all that is necessary to remove user space mappings. Unmap
961  * the pages and send SIGBUS to the processes if the data was dirty.
962  */
963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 				  int flags, struct page **hpagep)
965 {
966 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 	struct address_space *mapping;
968 	LIST_HEAD(tokill);
969 	bool unmap_success = true;
970 	int kill = 1, forcekill;
971 	struct page *hpage = *hpagep;
972 	bool mlocked = PageMlocked(hpage);
973 
974 	/*
975 	 * Here we are interested only in user-mapped pages, so skip any
976 	 * other types of pages.
977 	 */
978 	if (PageReserved(p) || PageSlab(p))
979 		return true;
980 	if (!(PageLRU(hpage) || PageHuge(p)))
981 		return true;
982 
983 	/*
984 	 * This check implies we don't kill processes if their pages
985 	 * are in the swap cache early. Those are always late kills.
986 	 */
987 	if (!page_mapped(hpage))
988 		return true;
989 
990 	if (PageKsm(p)) {
991 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 		return false;
993 	}
994 
995 	if (PageSwapCache(p)) {
996 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 			pfn);
998 		ttu |= TTU_IGNORE_HWPOISON;
999 	}
1000 
1001 	/*
1002 	 * Propagate the dirty bit from PTEs to struct page first, because we
1003 	 * need this to decide if we should kill or just drop the page.
1004 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 	 * be called inside page lock (it's recommended but not enforced).
1006 	 */
1007 	mapping = page_mapping(hpage);
1008 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 	    mapping_cap_writeback_dirty(mapping)) {
1010 		if (page_mkclean(hpage)) {
1011 			SetPageDirty(hpage);
1012 		} else {
1013 			kill = 0;
1014 			ttu |= TTU_IGNORE_HWPOISON;
1015 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 				pfn);
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * First collect all the processes that have the page
1022 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1023 	 * because ttu takes the rmap data structures down.
1024 	 *
1025 	 * Error handling: We ignore errors here because
1026 	 * there's nothing that can be done.
1027 	 */
1028 	if (kill)
1029 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030 
1031 	if (!PageHuge(hpage)) {
1032 		unmap_success = try_to_unmap(hpage, ttu);
1033 	} else {
1034 		/*
1035 		 * For hugetlb pages, try_to_unmap could potentially call
1036 		 * huge_pmd_unshare.  Because of this, take semaphore in
1037 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 		 * have taken the lock at this higer level.
1039 		 *
1040 		 * Note that the call to hugetlb_page_mapping_lock_write
1041 		 * is necessary even if mapping is already set.  It handles
1042 		 * ugliness of potentially having to drop page lock to obtain
1043 		 * i_mmap_rwsem.
1044 		 */
1045 		mapping = hugetlb_page_mapping_lock_write(hpage);
1046 
1047 		if (mapping) {
1048 			unmap_success = try_to_unmap(hpage,
1049 						     ttu|TTU_RMAP_LOCKED);
1050 			i_mmap_unlock_write(mapping);
1051 		} else {
1052 			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1053 				pfn);
1054 			unmap_success = false;
1055 		}
1056 	}
1057 	if (!unmap_success)
1058 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1059 		       pfn, page_mapcount(hpage));
1060 
1061 	/*
1062 	 * try_to_unmap() might put mlocked page in lru cache, so call
1063 	 * shake_page() again to ensure that it's flushed.
1064 	 */
1065 	if (mlocked)
1066 		shake_page(hpage, 0);
1067 
1068 	/*
1069 	 * Now that the dirty bit has been propagated to the
1070 	 * struct page and all unmaps done we can decide if
1071 	 * killing is needed or not.  Only kill when the page
1072 	 * was dirty or the process is not restartable,
1073 	 * otherwise the tokill list is merely
1074 	 * freed.  When there was a problem unmapping earlier
1075 	 * use a more force-full uncatchable kill to prevent
1076 	 * any accesses to the poisoned memory.
1077 	 */
1078 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1079 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1080 
1081 	return unmap_success;
1082 }
1083 
1084 static int identify_page_state(unsigned long pfn, struct page *p,
1085 				unsigned long page_flags)
1086 {
1087 	struct page_state *ps;
1088 
1089 	/*
1090 	 * The first check uses the current page flags which may not have any
1091 	 * relevant information. The second check with the saved page flags is
1092 	 * carried out only if the first check can't determine the page status.
1093 	 */
1094 	for (ps = error_states;; ps++)
1095 		if ((p->flags & ps->mask) == ps->res)
1096 			break;
1097 
1098 	page_flags |= (p->flags & (1UL << PG_dirty));
1099 
1100 	if (!ps->mask)
1101 		for (ps = error_states;; ps++)
1102 			if ((page_flags & ps->mask) == ps->res)
1103 				break;
1104 	return page_action(ps, p, pfn);
1105 }
1106 
1107 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1108 {
1109 	struct page *p = pfn_to_page(pfn);
1110 	struct page *head = compound_head(p);
1111 	int res;
1112 	unsigned long page_flags;
1113 
1114 	if (TestSetPageHWPoison(head)) {
1115 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1116 		       pfn);
1117 		return 0;
1118 	}
1119 
1120 	num_poisoned_pages_inc();
1121 
1122 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1123 		/*
1124 		 * Check "filter hit" and "race with other subpage."
1125 		 */
1126 		lock_page(head);
1127 		if (PageHWPoison(head)) {
1128 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1129 			    || (p != head && TestSetPageHWPoison(head))) {
1130 				num_poisoned_pages_dec();
1131 				unlock_page(head);
1132 				return 0;
1133 			}
1134 		}
1135 		unlock_page(head);
1136 		dissolve_free_huge_page(p);
1137 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1138 		return 0;
1139 	}
1140 
1141 	lock_page(head);
1142 	page_flags = head->flags;
1143 
1144 	if (!PageHWPoison(head)) {
1145 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1146 		num_poisoned_pages_dec();
1147 		unlock_page(head);
1148 		put_hwpoison_page(head);
1149 		return 0;
1150 	}
1151 
1152 	/*
1153 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1154 	 * simply disable it. In order to make it work properly, we need
1155 	 * make sure that:
1156 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1157 	 *    entry properly works, and
1158 	 *  - other mm code walking over page table is aware of pud-aligned
1159 	 *    hwpoison entries.
1160 	 */
1161 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1162 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1163 		res = -EBUSY;
1164 		goto out;
1165 	}
1166 
1167 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1168 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1169 		res = -EBUSY;
1170 		goto out;
1171 	}
1172 
1173 	res = identify_page_state(pfn, p, page_flags);
1174 out:
1175 	unlock_page(head);
1176 	return res;
1177 }
1178 
1179 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1180 		struct dev_pagemap *pgmap)
1181 {
1182 	struct page *page = pfn_to_page(pfn);
1183 	const bool unmap_success = true;
1184 	unsigned long size = 0;
1185 	struct to_kill *tk;
1186 	LIST_HEAD(tokill);
1187 	int rc = -EBUSY;
1188 	loff_t start;
1189 	dax_entry_t cookie;
1190 
1191 	/*
1192 	 * Prevent the inode from being freed while we are interrogating
1193 	 * the address_space, typically this would be handled by
1194 	 * lock_page(), but dax pages do not use the page lock. This
1195 	 * also prevents changes to the mapping of this pfn until
1196 	 * poison signaling is complete.
1197 	 */
1198 	cookie = dax_lock_page(page);
1199 	if (!cookie)
1200 		goto out;
1201 
1202 	if (hwpoison_filter(page)) {
1203 		rc = 0;
1204 		goto unlock;
1205 	}
1206 
1207 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1208 		/*
1209 		 * TODO: Handle HMM pages which may need coordination
1210 		 * with device-side memory.
1211 		 */
1212 		goto unlock;
1213 	}
1214 
1215 	/*
1216 	 * Use this flag as an indication that the dax page has been
1217 	 * remapped UC to prevent speculative consumption of poison.
1218 	 */
1219 	SetPageHWPoison(page);
1220 
1221 	/*
1222 	 * Unlike System-RAM there is no possibility to swap in a
1223 	 * different physical page at a given virtual address, so all
1224 	 * userspace consumption of ZONE_DEVICE memory necessitates
1225 	 * SIGBUS (i.e. MF_MUST_KILL)
1226 	 */
1227 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1228 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1229 
1230 	list_for_each_entry(tk, &tokill, nd)
1231 		if (tk->size_shift)
1232 			size = max(size, 1UL << tk->size_shift);
1233 	if (size) {
1234 		/*
1235 		 * Unmap the largest mapping to avoid breaking up
1236 		 * device-dax mappings which are constant size. The
1237 		 * actual size of the mapping being torn down is
1238 		 * communicated in siginfo, see kill_proc()
1239 		 */
1240 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1241 		unmap_mapping_range(page->mapping, start, start + size, 0);
1242 	}
1243 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1244 	rc = 0;
1245 unlock:
1246 	dax_unlock_page(page, cookie);
1247 out:
1248 	/* drop pgmap ref acquired in caller */
1249 	put_dev_pagemap(pgmap);
1250 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1251 	return rc;
1252 }
1253 
1254 /**
1255  * memory_failure - Handle memory failure of a page.
1256  * @pfn: Page Number of the corrupted page
1257  * @flags: fine tune action taken
1258  *
1259  * This function is called by the low level machine check code
1260  * of an architecture when it detects hardware memory corruption
1261  * of a page. It tries its best to recover, which includes
1262  * dropping pages, killing processes etc.
1263  *
1264  * The function is primarily of use for corruptions that
1265  * happen outside the current execution context (e.g. when
1266  * detected by a background scrubber)
1267  *
1268  * Must run in process context (e.g. a work queue) with interrupts
1269  * enabled and no spinlocks hold.
1270  */
1271 int memory_failure(unsigned long pfn, int flags)
1272 {
1273 	struct page *p;
1274 	struct page *hpage;
1275 	struct page *orig_head;
1276 	struct dev_pagemap *pgmap;
1277 	int res;
1278 	unsigned long page_flags;
1279 
1280 	if (!sysctl_memory_failure_recovery)
1281 		panic("Memory failure on page %lx", pfn);
1282 
1283 	p = pfn_to_online_page(pfn);
1284 	if (!p) {
1285 		if (pfn_valid(pfn)) {
1286 			pgmap = get_dev_pagemap(pfn, NULL);
1287 			if (pgmap)
1288 				return memory_failure_dev_pagemap(pfn, flags,
1289 								  pgmap);
1290 		}
1291 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1292 			pfn);
1293 		return -ENXIO;
1294 	}
1295 
1296 	if (PageHuge(p))
1297 		return memory_failure_hugetlb(pfn, flags);
1298 	if (TestSetPageHWPoison(p)) {
1299 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1300 			pfn);
1301 		return 0;
1302 	}
1303 
1304 	orig_head = hpage = compound_head(p);
1305 	num_poisoned_pages_inc();
1306 
1307 	/*
1308 	 * We need/can do nothing about count=0 pages.
1309 	 * 1) it's a free page, and therefore in safe hand:
1310 	 *    prep_new_page() will be the gate keeper.
1311 	 * 2) it's part of a non-compound high order page.
1312 	 *    Implies some kernel user: cannot stop them from
1313 	 *    R/W the page; let's pray that the page has been
1314 	 *    used and will be freed some time later.
1315 	 * In fact it's dangerous to directly bump up page count from 0,
1316 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1317 	 */
1318 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1319 		if (is_free_buddy_page(p)) {
1320 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1321 			return 0;
1322 		} else {
1323 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1324 			return -EBUSY;
1325 		}
1326 	}
1327 
1328 	if (PageTransHuge(hpage)) {
1329 		lock_page(p);
1330 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1331 			unlock_page(p);
1332 			if (!PageAnon(p))
1333 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1334 					pfn);
1335 			else
1336 				pr_err("Memory failure: %#lx: thp split failed\n",
1337 					pfn);
1338 			if (TestClearPageHWPoison(p))
1339 				num_poisoned_pages_dec();
1340 			put_hwpoison_page(p);
1341 			return -EBUSY;
1342 		}
1343 		unlock_page(p);
1344 		VM_BUG_ON_PAGE(!page_count(p), p);
1345 		hpage = compound_head(p);
1346 	}
1347 
1348 	/*
1349 	 * We ignore non-LRU pages for good reasons.
1350 	 * - PG_locked is only well defined for LRU pages and a few others
1351 	 * - to avoid races with __SetPageLocked()
1352 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1353 	 * The check (unnecessarily) ignores LRU pages being isolated and
1354 	 * walked by the page reclaim code, however that's not a big loss.
1355 	 */
1356 	shake_page(p, 0);
1357 	/* shake_page could have turned it free. */
1358 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1359 		if (flags & MF_COUNT_INCREASED)
1360 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1361 		else
1362 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1363 		return 0;
1364 	}
1365 
1366 	lock_page(p);
1367 
1368 	/*
1369 	 * The page could have changed compound pages during the locking.
1370 	 * If this happens just bail out.
1371 	 */
1372 	if (PageCompound(p) && compound_head(p) != orig_head) {
1373 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1374 		res = -EBUSY;
1375 		goto out;
1376 	}
1377 
1378 	/*
1379 	 * We use page flags to determine what action should be taken, but
1380 	 * the flags can be modified by the error containment action.  One
1381 	 * example is an mlocked page, where PG_mlocked is cleared by
1382 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1383 	 * correctly, we save a copy of the page flags at this time.
1384 	 */
1385 	if (PageHuge(p))
1386 		page_flags = hpage->flags;
1387 	else
1388 		page_flags = p->flags;
1389 
1390 	/*
1391 	 * unpoison always clear PG_hwpoison inside page lock
1392 	 */
1393 	if (!PageHWPoison(p)) {
1394 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1395 		num_poisoned_pages_dec();
1396 		unlock_page(p);
1397 		put_hwpoison_page(p);
1398 		return 0;
1399 	}
1400 	if (hwpoison_filter(p)) {
1401 		if (TestClearPageHWPoison(p))
1402 			num_poisoned_pages_dec();
1403 		unlock_page(p);
1404 		put_hwpoison_page(p);
1405 		return 0;
1406 	}
1407 
1408 	if (!PageTransTail(p) && !PageLRU(p))
1409 		goto identify_page_state;
1410 
1411 	/*
1412 	 * It's very difficult to mess with pages currently under IO
1413 	 * and in many cases impossible, so we just avoid it here.
1414 	 */
1415 	wait_on_page_writeback(p);
1416 
1417 	/*
1418 	 * Now take care of user space mappings.
1419 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1420 	 *
1421 	 * When the raw error page is thp tail page, hpage points to the raw
1422 	 * page after thp split.
1423 	 */
1424 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1425 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1426 		res = -EBUSY;
1427 		goto out;
1428 	}
1429 
1430 	/*
1431 	 * Torn down by someone else?
1432 	 */
1433 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1434 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1435 		res = -EBUSY;
1436 		goto out;
1437 	}
1438 
1439 identify_page_state:
1440 	res = identify_page_state(pfn, p, page_flags);
1441 out:
1442 	unlock_page(p);
1443 	return res;
1444 }
1445 EXPORT_SYMBOL_GPL(memory_failure);
1446 
1447 #define MEMORY_FAILURE_FIFO_ORDER	4
1448 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1449 
1450 struct memory_failure_entry {
1451 	unsigned long pfn;
1452 	int flags;
1453 };
1454 
1455 struct memory_failure_cpu {
1456 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1457 		      MEMORY_FAILURE_FIFO_SIZE);
1458 	spinlock_t lock;
1459 	struct work_struct work;
1460 };
1461 
1462 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1463 
1464 /**
1465  * memory_failure_queue - Schedule handling memory failure of a page.
1466  * @pfn: Page Number of the corrupted page
1467  * @flags: Flags for memory failure handling
1468  *
1469  * This function is called by the low level hardware error handler
1470  * when it detects hardware memory corruption of a page. It schedules
1471  * the recovering of error page, including dropping pages, killing
1472  * processes etc.
1473  *
1474  * The function is primarily of use for corruptions that
1475  * happen outside the current execution context (e.g. when
1476  * detected by a background scrubber)
1477  *
1478  * Can run in IRQ context.
1479  */
1480 void memory_failure_queue(unsigned long pfn, int flags)
1481 {
1482 	struct memory_failure_cpu *mf_cpu;
1483 	unsigned long proc_flags;
1484 	struct memory_failure_entry entry = {
1485 		.pfn =		pfn,
1486 		.flags =	flags,
1487 	};
1488 
1489 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1490 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1491 	if (kfifo_put(&mf_cpu->fifo, entry))
1492 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1493 	else
1494 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1495 		       pfn);
1496 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1497 	put_cpu_var(memory_failure_cpu);
1498 }
1499 EXPORT_SYMBOL_GPL(memory_failure_queue);
1500 
1501 static void memory_failure_work_func(struct work_struct *work)
1502 {
1503 	struct memory_failure_cpu *mf_cpu;
1504 	struct memory_failure_entry entry = { 0, };
1505 	unsigned long proc_flags;
1506 	int gotten;
1507 
1508 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1509 	for (;;) {
1510 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1511 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1512 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1513 		if (!gotten)
1514 			break;
1515 		if (entry.flags & MF_SOFT_OFFLINE)
1516 			soft_offline_page(entry.pfn, entry.flags);
1517 		else
1518 			memory_failure(entry.pfn, entry.flags);
1519 	}
1520 }
1521 
1522 /*
1523  * Process memory_failure work queued on the specified CPU.
1524  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1525  */
1526 void memory_failure_queue_kick(int cpu)
1527 {
1528 	struct memory_failure_cpu *mf_cpu;
1529 
1530 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1531 	cancel_work_sync(&mf_cpu->work);
1532 	memory_failure_work_func(&mf_cpu->work);
1533 }
1534 
1535 static int __init memory_failure_init(void)
1536 {
1537 	struct memory_failure_cpu *mf_cpu;
1538 	int cpu;
1539 
1540 	for_each_possible_cpu(cpu) {
1541 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1542 		spin_lock_init(&mf_cpu->lock);
1543 		INIT_KFIFO(mf_cpu->fifo);
1544 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1545 	}
1546 
1547 	return 0;
1548 }
1549 core_initcall(memory_failure_init);
1550 
1551 #define unpoison_pr_info(fmt, pfn, rs)			\
1552 ({							\
1553 	if (__ratelimit(rs))				\
1554 		pr_info(fmt, pfn);			\
1555 })
1556 
1557 /**
1558  * unpoison_memory - Unpoison a previously poisoned page
1559  * @pfn: Page number of the to be unpoisoned page
1560  *
1561  * Software-unpoison a page that has been poisoned by
1562  * memory_failure() earlier.
1563  *
1564  * This is only done on the software-level, so it only works
1565  * for linux injected failures, not real hardware failures
1566  *
1567  * Returns 0 for success, otherwise -errno.
1568  */
1569 int unpoison_memory(unsigned long pfn)
1570 {
1571 	struct page *page;
1572 	struct page *p;
1573 	int freeit = 0;
1574 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 					DEFAULT_RATELIMIT_BURST);
1576 
1577 	if (!pfn_valid(pfn))
1578 		return -ENXIO;
1579 
1580 	p = pfn_to_page(pfn);
1581 	page = compound_head(p);
1582 
1583 	if (!PageHWPoison(p)) {
1584 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1585 				 pfn, &unpoison_rs);
1586 		return 0;
1587 	}
1588 
1589 	if (page_count(page) > 1) {
1590 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1591 				 pfn, &unpoison_rs);
1592 		return 0;
1593 	}
1594 
1595 	if (page_mapped(page)) {
1596 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1597 				 pfn, &unpoison_rs);
1598 		return 0;
1599 	}
1600 
1601 	if (page_mapping(page)) {
1602 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1603 				 pfn, &unpoison_rs);
1604 		return 0;
1605 	}
1606 
1607 	/*
1608 	 * unpoison_memory() can encounter thp only when the thp is being
1609 	 * worked by memory_failure() and the page lock is not held yet.
1610 	 * In such case, we yield to memory_failure() and make unpoison fail.
1611 	 */
1612 	if (!PageHuge(page) && PageTransHuge(page)) {
1613 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1614 				 pfn, &unpoison_rs);
1615 		return 0;
1616 	}
1617 
1618 	if (!get_hwpoison_page(p)) {
1619 		if (TestClearPageHWPoison(p))
1620 			num_poisoned_pages_dec();
1621 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1622 				 pfn, &unpoison_rs);
1623 		return 0;
1624 	}
1625 
1626 	lock_page(page);
1627 	/*
1628 	 * This test is racy because PG_hwpoison is set outside of page lock.
1629 	 * That's acceptable because that won't trigger kernel panic. Instead,
1630 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1631 	 * the free buddy page pool.
1632 	 */
1633 	if (TestClearPageHWPoison(page)) {
1634 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1635 				 pfn, &unpoison_rs);
1636 		num_poisoned_pages_dec();
1637 		freeit = 1;
1638 	}
1639 	unlock_page(page);
1640 
1641 	put_hwpoison_page(page);
1642 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1643 		put_hwpoison_page(page);
1644 
1645 	return 0;
1646 }
1647 EXPORT_SYMBOL(unpoison_memory);
1648 
1649 static struct page *new_page(struct page *p, unsigned long private)
1650 {
1651 	int nid = page_to_nid(p);
1652 
1653 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1654 }
1655 
1656 /*
1657  * Safely get reference count of an arbitrary page.
1658  * Returns 0 for a free page, -EIO for a zero refcount page
1659  * that is not free, and 1 for any other page type.
1660  * For 1 the page is returned with increased page count, otherwise not.
1661  */
1662 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1663 {
1664 	int ret;
1665 
1666 	if (flags & MF_COUNT_INCREASED)
1667 		return 1;
1668 
1669 	/*
1670 	 * When the target page is a free hugepage, just remove it
1671 	 * from free hugepage list.
1672 	 */
1673 	if (!get_hwpoison_page(p)) {
1674 		if (PageHuge(p)) {
1675 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1676 			ret = 0;
1677 		} else if (is_free_buddy_page(p)) {
1678 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1679 			ret = 0;
1680 		} else {
1681 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1682 				__func__, pfn, p->flags);
1683 			ret = -EIO;
1684 		}
1685 	} else {
1686 		/* Not a free page */
1687 		ret = 1;
1688 	}
1689 	return ret;
1690 }
1691 
1692 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1693 {
1694 	int ret = __get_any_page(page, pfn, flags);
1695 
1696 	if (ret == 1 && !PageHuge(page) &&
1697 	    !PageLRU(page) && !__PageMovable(page)) {
1698 		/*
1699 		 * Try to free it.
1700 		 */
1701 		put_hwpoison_page(page);
1702 		shake_page(page, 1);
1703 
1704 		/*
1705 		 * Did it turn free?
1706 		 */
1707 		ret = __get_any_page(page, pfn, 0);
1708 		if (ret == 1 && !PageLRU(page)) {
1709 			/* Drop page reference which is from __get_any_page() */
1710 			put_hwpoison_page(page);
1711 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1712 				pfn, page->flags, &page->flags);
1713 			return -EIO;
1714 		}
1715 	}
1716 	return ret;
1717 }
1718 
1719 static int soft_offline_huge_page(struct page *page, int flags)
1720 {
1721 	int ret;
1722 	unsigned long pfn = page_to_pfn(page);
1723 	struct page *hpage = compound_head(page);
1724 	LIST_HEAD(pagelist);
1725 
1726 	/*
1727 	 * This double-check of PageHWPoison is to avoid the race with
1728 	 * memory_failure(). See also comment in __soft_offline_page().
1729 	 */
1730 	lock_page(hpage);
1731 	if (PageHWPoison(hpage)) {
1732 		unlock_page(hpage);
1733 		put_hwpoison_page(hpage);
1734 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1735 		return -EBUSY;
1736 	}
1737 	unlock_page(hpage);
1738 
1739 	ret = isolate_huge_page(hpage, &pagelist);
1740 	/*
1741 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1742 	 * so need to drop one here.
1743 	 */
1744 	put_hwpoison_page(hpage);
1745 	if (!ret) {
1746 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1747 		return -EBUSY;
1748 	}
1749 
1750 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1751 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1752 	if (ret) {
1753 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1754 			pfn, ret, page->flags, &page->flags);
1755 		if (!list_empty(&pagelist))
1756 			putback_movable_pages(&pagelist);
1757 		if (ret > 0)
1758 			ret = -EIO;
1759 	} else {
1760 		/*
1761 		 * We set PG_hwpoison only when the migration source hugepage
1762 		 * was successfully dissolved, because otherwise hwpoisoned
1763 		 * hugepage remains on free hugepage list, then userspace will
1764 		 * find it as SIGBUS by allocation failure. That's not expected
1765 		 * in soft-offlining.
1766 		 */
1767 		ret = dissolve_free_huge_page(page);
1768 		if (!ret) {
1769 			if (set_hwpoison_free_buddy_page(page))
1770 				num_poisoned_pages_inc();
1771 			else
1772 				ret = -EBUSY;
1773 		}
1774 	}
1775 	return ret;
1776 }
1777 
1778 static int __soft_offline_page(struct page *page, int flags)
1779 {
1780 	int ret;
1781 	unsigned long pfn = page_to_pfn(page);
1782 
1783 	/*
1784 	 * Check PageHWPoison again inside page lock because PageHWPoison
1785 	 * is set by memory_failure() outside page lock. Note that
1786 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1787 	 * so there's no race between soft_offline_page() and memory_failure().
1788 	 */
1789 	lock_page(page);
1790 	wait_on_page_writeback(page);
1791 	if (PageHWPoison(page)) {
1792 		unlock_page(page);
1793 		put_hwpoison_page(page);
1794 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1795 		return -EBUSY;
1796 	}
1797 	/*
1798 	 * Try to invalidate first. This should work for
1799 	 * non dirty unmapped page cache pages.
1800 	 */
1801 	ret = invalidate_inode_page(page);
1802 	unlock_page(page);
1803 	/*
1804 	 * RED-PEN would be better to keep it isolated here, but we
1805 	 * would need to fix isolation locking first.
1806 	 */
1807 	if (ret == 1) {
1808 		put_hwpoison_page(page);
1809 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1810 		SetPageHWPoison(page);
1811 		num_poisoned_pages_inc();
1812 		return 0;
1813 	}
1814 
1815 	/*
1816 	 * Simple invalidation didn't work.
1817 	 * Try to migrate to a new page instead. migrate.c
1818 	 * handles a large number of cases for us.
1819 	 */
1820 	if (PageLRU(page))
1821 		ret = isolate_lru_page(page);
1822 	else
1823 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1824 	/*
1825 	 * Drop page reference which is came from get_any_page()
1826 	 * successful isolate_lru_page() already took another one.
1827 	 */
1828 	put_hwpoison_page(page);
1829 	if (!ret) {
1830 		LIST_HEAD(pagelist);
1831 		/*
1832 		 * After isolated lru page, the PageLRU will be cleared,
1833 		 * so use !__PageMovable instead for LRU page's mapping
1834 		 * cannot have PAGE_MAPPING_MOVABLE.
1835 		 */
1836 		if (!__PageMovable(page))
1837 			inc_node_page_state(page, NR_ISOLATED_ANON +
1838 						page_is_file_lru(page));
1839 		list_add(&page->lru, &pagelist);
1840 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1841 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1842 		if (ret) {
1843 			if (!list_empty(&pagelist))
1844 				putback_movable_pages(&pagelist);
1845 
1846 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1847 				pfn, ret, page->flags, &page->flags);
1848 			if (ret > 0)
1849 				ret = -EIO;
1850 		}
1851 	} else {
1852 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1853 			pfn, ret, page_count(page), page->flags, &page->flags);
1854 	}
1855 	return ret;
1856 }
1857 
1858 static int soft_offline_in_use_page(struct page *page, int flags)
1859 {
1860 	int ret;
1861 	int mt;
1862 	struct page *hpage = compound_head(page);
1863 
1864 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1865 		lock_page(page);
1866 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1867 			unlock_page(page);
1868 			if (!PageAnon(page))
1869 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1870 			else
1871 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1872 			put_hwpoison_page(page);
1873 			return -EBUSY;
1874 		}
1875 		unlock_page(page);
1876 	}
1877 
1878 	/*
1879 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1880 	 * to free list immediately (not via pcplist) when released after
1881 	 * successful page migration. Otherwise we can't guarantee that the
1882 	 * page is really free after put_page() returns, so
1883 	 * set_hwpoison_free_buddy_page() highly likely fails.
1884 	 */
1885 	mt = get_pageblock_migratetype(page);
1886 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1887 	if (PageHuge(page))
1888 		ret = soft_offline_huge_page(page, flags);
1889 	else
1890 		ret = __soft_offline_page(page, flags);
1891 	set_pageblock_migratetype(page, mt);
1892 	return ret;
1893 }
1894 
1895 static int soft_offline_free_page(struct page *page)
1896 {
1897 	int rc = dissolve_free_huge_page(page);
1898 
1899 	if (!rc) {
1900 		if (set_hwpoison_free_buddy_page(page))
1901 			num_poisoned_pages_inc();
1902 		else
1903 			rc = -EBUSY;
1904 	}
1905 	return rc;
1906 }
1907 
1908 /**
1909  * soft_offline_page - Soft offline a page.
1910  * @pfn: pfn to soft-offline
1911  * @flags: flags. Same as memory_failure().
1912  *
1913  * Returns 0 on success, otherwise negated errno.
1914  *
1915  * Soft offline a page, by migration or invalidation,
1916  * without killing anything. This is for the case when
1917  * a page is not corrupted yet (so it's still valid to access),
1918  * but has had a number of corrected errors and is better taken
1919  * out.
1920  *
1921  * The actual policy on when to do that is maintained by
1922  * user space.
1923  *
1924  * This should never impact any application or cause data loss,
1925  * however it might take some time.
1926  *
1927  * This is not a 100% solution for all memory, but tries to be
1928  * ``good enough'' for the majority of memory.
1929  */
1930 int soft_offline_page(unsigned long pfn, int flags)
1931 {
1932 	int ret;
1933 	struct page *page;
1934 
1935 	if (!pfn_valid(pfn))
1936 		return -ENXIO;
1937 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1938 	page = pfn_to_online_page(pfn);
1939 	if (!page)
1940 		return -EIO;
1941 
1942 	if (PageHWPoison(page)) {
1943 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1944 		if (flags & MF_COUNT_INCREASED)
1945 			put_hwpoison_page(page);
1946 		return -EBUSY;
1947 	}
1948 
1949 	get_online_mems();
1950 	ret = get_any_page(page, pfn, flags);
1951 	put_online_mems();
1952 
1953 	if (ret > 0)
1954 		ret = soft_offline_in_use_page(page, flags);
1955 	else if (ret == 0)
1956 		ret = soft_offline_free_page(page);
1957 
1958 	return ret;
1959 }
1960