1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include "swap.h" 63 #include "internal.h" 64 #include "ras/ras_event.h" 65 66 int sysctl_memory_failure_early_kill __read_mostly = 0; 67 68 int sysctl_memory_failure_recovery __read_mostly = 1; 69 70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 71 72 static bool __page_handle_poison(struct page *page) 73 { 74 int ret; 75 76 zone_pcp_disable(page_zone(page)); 77 ret = dissolve_free_huge_page(page); 78 if (!ret) 79 ret = take_page_off_buddy(page); 80 zone_pcp_enable(page_zone(page)); 81 82 return ret > 0; 83 } 84 85 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 86 { 87 if (hugepage_or_freepage) { 88 /* 89 * Doing this check for free pages is also fine since dissolve_free_huge_page 90 * returns 0 for non-hugetlb pages as well. 91 */ 92 if (!__page_handle_poison(page)) 93 /* 94 * We could fail to take off the target page from buddy 95 * for example due to racy page allocation, but that's 96 * acceptable because soft-offlined page is not broken 97 * and if someone really want to use it, they should 98 * take it. 99 */ 100 return false; 101 } 102 103 SetPageHWPoison(page); 104 if (release) 105 put_page(page); 106 page_ref_inc(page); 107 num_poisoned_pages_inc(); 108 109 return true; 110 } 111 112 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 113 114 u32 hwpoison_filter_enable = 0; 115 u32 hwpoison_filter_dev_major = ~0U; 116 u32 hwpoison_filter_dev_minor = ~0U; 117 u64 hwpoison_filter_flags_mask; 118 u64 hwpoison_filter_flags_value; 119 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 122 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 123 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 124 125 static int hwpoison_filter_dev(struct page *p) 126 { 127 struct address_space *mapping; 128 dev_t dev; 129 130 if (hwpoison_filter_dev_major == ~0U && 131 hwpoison_filter_dev_minor == ~0U) 132 return 0; 133 134 mapping = page_mapping(p); 135 if (mapping == NULL || mapping->host == NULL) 136 return -EINVAL; 137 138 dev = mapping->host->i_sb->s_dev; 139 if (hwpoison_filter_dev_major != ~0U && 140 hwpoison_filter_dev_major != MAJOR(dev)) 141 return -EINVAL; 142 if (hwpoison_filter_dev_minor != ~0U && 143 hwpoison_filter_dev_minor != MINOR(dev)) 144 return -EINVAL; 145 146 return 0; 147 } 148 149 static int hwpoison_filter_flags(struct page *p) 150 { 151 if (!hwpoison_filter_flags_mask) 152 return 0; 153 154 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 155 hwpoison_filter_flags_value) 156 return 0; 157 else 158 return -EINVAL; 159 } 160 161 /* 162 * This allows stress tests to limit test scope to a collection of tasks 163 * by putting them under some memcg. This prevents killing unrelated/important 164 * processes such as /sbin/init. Note that the target task may share clean 165 * pages with init (eg. libc text), which is harmless. If the target task 166 * share _dirty_ pages with another task B, the test scheme must make sure B 167 * is also included in the memcg. At last, due to race conditions this filter 168 * can only guarantee that the page either belongs to the memcg tasks, or is 169 * a freed page. 170 */ 171 #ifdef CONFIG_MEMCG 172 u64 hwpoison_filter_memcg; 173 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 174 static int hwpoison_filter_task(struct page *p) 175 { 176 if (!hwpoison_filter_memcg) 177 return 0; 178 179 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 180 return -EINVAL; 181 182 return 0; 183 } 184 #else 185 static int hwpoison_filter_task(struct page *p) { return 0; } 186 #endif 187 188 int hwpoison_filter(struct page *p) 189 { 190 if (!hwpoison_filter_enable) 191 return 0; 192 193 if (hwpoison_filter_dev(p)) 194 return -EINVAL; 195 196 if (hwpoison_filter_flags(p)) 197 return -EINVAL; 198 199 if (hwpoison_filter_task(p)) 200 return -EINVAL; 201 202 return 0; 203 } 204 #else 205 int hwpoison_filter(struct page *p) 206 { 207 return 0; 208 } 209 #endif 210 211 EXPORT_SYMBOL_GPL(hwpoison_filter); 212 213 /* 214 * Kill all processes that have a poisoned page mapped and then isolate 215 * the page. 216 * 217 * General strategy: 218 * Find all processes having the page mapped and kill them. 219 * But we keep a page reference around so that the page is not 220 * actually freed yet. 221 * Then stash the page away 222 * 223 * There's no convenient way to get back to mapped processes 224 * from the VMAs. So do a brute-force search over all 225 * running processes. 226 * 227 * Remember that machine checks are not common (or rather 228 * if they are common you have other problems), so this shouldn't 229 * be a performance issue. 230 * 231 * Also there are some races possible while we get from the 232 * error detection to actually handle it. 233 */ 234 235 struct to_kill { 236 struct list_head nd; 237 struct task_struct *tsk; 238 unsigned long addr; 239 short size_shift; 240 }; 241 242 /* 243 * Send all the processes who have the page mapped a signal. 244 * ``action optional'' if they are not immediately affected by the error 245 * ``action required'' if error happened in current execution context 246 */ 247 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 248 { 249 struct task_struct *t = tk->tsk; 250 short addr_lsb = tk->size_shift; 251 int ret = 0; 252 253 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 254 pfn, t->comm, t->pid); 255 256 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 257 ret = force_sig_mceerr(BUS_MCEERR_AR, 258 (void __user *)tk->addr, addr_lsb); 259 else 260 /* 261 * Signal other processes sharing the page if they have 262 * PF_MCE_EARLY set. 263 * Don't use force here, it's convenient if the signal 264 * can be temporarily blocked. 265 * This could cause a loop when the user sets SIGBUS 266 * to SIG_IGN, but hopefully no one will do that? 267 */ 268 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 269 addr_lsb, t); /* synchronous? */ 270 if (ret < 0) 271 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 272 t->comm, t->pid, ret); 273 return ret; 274 } 275 276 /* 277 * Unknown page type encountered. Try to check whether it can turn PageLRU by 278 * lru_add_drain_all. 279 */ 280 void shake_page(struct page *p) 281 { 282 if (PageHuge(p)) 283 return; 284 285 if (!PageSlab(p)) { 286 lru_add_drain_all(); 287 if (PageLRU(p) || is_free_buddy_page(p)) 288 return; 289 } 290 291 /* 292 * TODO: Could shrink slab caches here if a lightweight range-based 293 * shrinker will be available. 294 */ 295 } 296 EXPORT_SYMBOL_GPL(shake_page); 297 298 static unsigned long dev_pagemap_mapping_shift(struct page *page, 299 struct vm_area_struct *vma) 300 { 301 unsigned long address = vma_address(page, vma); 302 unsigned long ret = 0; 303 pgd_t *pgd; 304 p4d_t *p4d; 305 pud_t *pud; 306 pmd_t *pmd; 307 pte_t *pte; 308 309 VM_BUG_ON_VMA(address == -EFAULT, vma); 310 pgd = pgd_offset(vma->vm_mm, address); 311 if (!pgd_present(*pgd)) 312 return 0; 313 p4d = p4d_offset(pgd, address); 314 if (!p4d_present(*p4d)) 315 return 0; 316 pud = pud_offset(p4d, address); 317 if (!pud_present(*pud)) 318 return 0; 319 if (pud_devmap(*pud)) 320 return PUD_SHIFT; 321 pmd = pmd_offset(pud, address); 322 if (!pmd_present(*pmd)) 323 return 0; 324 if (pmd_devmap(*pmd)) 325 return PMD_SHIFT; 326 pte = pte_offset_map(pmd, address); 327 if (pte_present(*pte) && pte_devmap(*pte)) 328 ret = PAGE_SHIFT; 329 pte_unmap(pte); 330 return ret; 331 } 332 333 /* 334 * Failure handling: if we can't find or can't kill a process there's 335 * not much we can do. We just print a message and ignore otherwise. 336 */ 337 338 /* 339 * Schedule a process for later kill. 340 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 341 */ 342 static void add_to_kill(struct task_struct *tsk, struct page *p, 343 struct vm_area_struct *vma, 344 struct list_head *to_kill) 345 { 346 struct to_kill *tk; 347 348 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 349 if (!tk) { 350 pr_err("Memory failure: Out of memory while machine check handling\n"); 351 return; 352 } 353 354 tk->addr = page_address_in_vma(p, vma); 355 if (is_zone_device_page(p)) 356 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 357 else 358 tk->size_shift = page_shift(compound_head(p)); 359 360 /* 361 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 362 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 363 * so "tk->size_shift == 0" effectively checks no mapping on 364 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 365 * to a process' address space, it's possible not all N VMAs 366 * contain mappings for the page, but at least one VMA does. 367 * Only deliver SIGBUS with payload derived from the VMA that 368 * has a mapping for the page. 369 */ 370 if (tk->addr == -EFAULT) { 371 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 372 page_to_pfn(p), tsk->comm); 373 } else if (tk->size_shift == 0) { 374 kfree(tk); 375 return; 376 } 377 378 get_task_struct(tsk); 379 tk->tsk = tsk; 380 list_add_tail(&tk->nd, to_kill); 381 } 382 383 /* 384 * Kill the processes that have been collected earlier. 385 * 386 * Only do anything when FORCEKILL is set, otherwise just free the 387 * list (this is used for clean pages which do not need killing) 388 * Also when FAIL is set do a force kill because something went 389 * wrong earlier. 390 */ 391 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 392 unsigned long pfn, int flags) 393 { 394 struct to_kill *tk, *next; 395 396 list_for_each_entry_safe (tk, next, to_kill, nd) { 397 if (forcekill) { 398 /* 399 * In case something went wrong with munmapping 400 * make sure the process doesn't catch the 401 * signal and then access the memory. Just kill it. 402 */ 403 if (fail || tk->addr == -EFAULT) { 404 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 405 pfn, tk->tsk->comm, tk->tsk->pid); 406 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 407 tk->tsk, PIDTYPE_PID); 408 } 409 410 /* 411 * In theory the process could have mapped 412 * something else on the address in-between. We could 413 * check for that, but we need to tell the 414 * process anyways. 415 */ 416 else if (kill_proc(tk, pfn, flags) < 0) 417 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 418 pfn, tk->tsk->comm, tk->tsk->pid); 419 } 420 put_task_struct(tk->tsk); 421 kfree(tk); 422 } 423 } 424 425 /* 426 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 427 * on behalf of the thread group. Return task_struct of the (first found) 428 * dedicated thread if found, and return NULL otherwise. 429 * 430 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 431 * have to call rcu_read_lock/unlock() in this function. 432 */ 433 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 434 { 435 struct task_struct *t; 436 437 for_each_thread(tsk, t) { 438 if (t->flags & PF_MCE_PROCESS) { 439 if (t->flags & PF_MCE_EARLY) 440 return t; 441 } else { 442 if (sysctl_memory_failure_early_kill) 443 return t; 444 } 445 } 446 return NULL; 447 } 448 449 /* 450 * Determine whether a given process is "early kill" process which expects 451 * to be signaled when some page under the process is hwpoisoned. 452 * Return task_struct of the dedicated thread (main thread unless explicitly 453 * specified) if the process is "early kill" and otherwise returns NULL. 454 * 455 * Note that the above is true for Action Optional case. For Action Required 456 * case, it's only meaningful to the current thread which need to be signaled 457 * with SIGBUS, this error is Action Optional for other non current 458 * processes sharing the same error page,if the process is "early kill", the 459 * task_struct of the dedicated thread will also be returned. 460 */ 461 static struct task_struct *task_early_kill(struct task_struct *tsk, 462 int force_early) 463 { 464 if (!tsk->mm) 465 return NULL; 466 /* 467 * Comparing ->mm here because current task might represent 468 * a subthread, while tsk always points to the main thread. 469 */ 470 if (force_early && tsk->mm == current->mm) 471 return current; 472 473 return find_early_kill_thread(tsk); 474 } 475 476 /* 477 * Collect processes when the error hit an anonymous page. 478 */ 479 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 480 int force_early) 481 { 482 struct folio *folio = page_folio(page); 483 struct vm_area_struct *vma; 484 struct task_struct *tsk; 485 struct anon_vma *av; 486 pgoff_t pgoff; 487 488 av = folio_lock_anon_vma_read(folio); 489 if (av == NULL) /* Not actually mapped anymore */ 490 return; 491 492 pgoff = page_to_pgoff(page); 493 read_lock(&tasklist_lock); 494 for_each_process (tsk) { 495 struct anon_vma_chain *vmac; 496 struct task_struct *t = task_early_kill(tsk, force_early); 497 498 if (!t) 499 continue; 500 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 501 pgoff, pgoff) { 502 vma = vmac->vma; 503 if (!page_mapped_in_vma(page, vma)) 504 continue; 505 if (vma->vm_mm == t->mm) 506 add_to_kill(t, page, vma, to_kill); 507 } 508 } 509 read_unlock(&tasklist_lock); 510 page_unlock_anon_vma_read(av); 511 } 512 513 /* 514 * Collect processes when the error hit a file mapped page. 515 */ 516 static void collect_procs_file(struct page *page, struct list_head *to_kill, 517 int force_early) 518 { 519 struct vm_area_struct *vma; 520 struct task_struct *tsk; 521 struct address_space *mapping = page->mapping; 522 pgoff_t pgoff; 523 524 i_mmap_lock_read(mapping); 525 read_lock(&tasklist_lock); 526 pgoff = page_to_pgoff(page); 527 for_each_process(tsk) { 528 struct task_struct *t = task_early_kill(tsk, force_early); 529 530 if (!t) 531 continue; 532 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 533 pgoff) { 534 /* 535 * Send early kill signal to tasks where a vma covers 536 * the page but the corrupted page is not necessarily 537 * mapped it in its pte. 538 * Assume applications who requested early kill want 539 * to be informed of all such data corruptions. 540 */ 541 if (vma->vm_mm == t->mm) 542 add_to_kill(t, page, vma, to_kill); 543 } 544 } 545 read_unlock(&tasklist_lock); 546 i_mmap_unlock_read(mapping); 547 } 548 549 /* 550 * Collect the processes who have the corrupted page mapped to kill. 551 */ 552 static void collect_procs(struct page *page, struct list_head *tokill, 553 int force_early) 554 { 555 if (!page->mapping) 556 return; 557 558 if (PageAnon(page)) 559 collect_procs_anon(page, tokill, force_early); 560 else 561 collect_procs_file(page, tokill, force_early); 562 } 563 564 struct hwp_walk { 565 struct to_kill tk; 566 unsigned long pfn; 567 int flags; 568 }; 569 570 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 571 { 572 tk->addr = addr; 573 tk->size_shift = shift; 574 } 575 576 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 577 unsigned long poisoned_pfn, struct to_kill *tk) 578 { 579 unsigned long pfn = 0; 580 581 if (pte_present(pte)) { 582 pfn = pte_pfn(pte); 583 } else { 584 swp_entry_t swp = pte_to_swp_entry(pte); 585 586 if (is_hwpoison_entry(swp)) 587 pfn = hwpoison_entry_to_pfn(swp); 588 } 589 590 if (!pfn || pfn != poisoned_pfn) 591 return 0; 592 593 set_to_kill(tk, addr, shift); 594 return 1; 595 } 596 597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 598 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 599 struct hwp_walk *hwp) 600 { 601 pmd_t pmd = *pmdp; 602 unsigned long pfn; 603 unsigned long hwpoison_vaddr; 604 605 if (!pmd_present(pmd)) 606 return 0; 607 pfn = pmd_pfn(pmd); 608 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 609 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 610 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 611 return 1; 612 } 613 return 0; 614 } 615 #else 616 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 617 struct hwp_walk *hwp) 618 { 619 return 0; 620 } 621 #endif 622 623 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 624 unsigned long end, struct mm_walk *walk) 625 { 626 struct hwp_walk *hwp = walk->private; 627 int ret = 0; 628 pte_t *ptep, *mapped_pte; 629 spinlock_t *ptl; 630 631 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 632 if (ptl) { 633 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 634 spin_unlock(ptl); 635 goto out; 636 } 637 638 if (pmd_trans_unstable(pmdp)) 639 goto out; 640 641 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 642 addr, &ptl); 643 for (; addr != end; ptep++, addr += PAGE_SIZE) { 644 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 645 hwp->pfn, &hwp->tk); 646 if (ret == 1) 647 break; 648 } 649 pte_unmap_unlock(mapped_pte, ptl); 650 out: 651 cond_resched(); 652 return ret; 653 } 654 655 #ifdef CONFIG_HUGETLB_PAGE 656 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 657 unsigned long addr, unsigned long end, 658 struct mm_walk *walk) 659 { 660 struct hwp_walk *hwp = walk->private; 661 pte_t pte = huge_ptep_get(ptep); 662 struct hstate *h = hstate_vma(walk->vma); 663 664 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 665 hwp->pfn, &hwp->tk); 666 } 667 #else 668 #define hwpoison_hugetlb_range NULL 669 #endif 670 671 static const struct mm_walk_ops hwp_walk_ops = { 672 .pmd_entry = hwpoison_pte_range, 673 .hugetlb_entry = hwpoison_hugetlb_range, 674 }; 675 676 /* 677 * Sends SIGBUS to the current process with error info. 678 * 679 * This function is intended to handle "Action Required" MCEs on already 680 * hardware poisoned pages. They could happen, for example, when 681 * memory_failure() failed to unmap the error page at the first call, or 682 * when multiple local machine checks happened on different CPUs. 683 * 684 * MCE handler currently has no easy access to the error virtual address, 685 * so this function walks page table to find it. The returned virtual address 686 * is proper in most cases, but it could be wrong when the application 687 * process has multiple entries mapping the error page. 688 */ 689 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 690 int flags) 691 { 692 int ret; 693 struct hwp_walk priv = { 694 .pfn = pfn, 695 }; 696 priv.tk.tsk = p; 697 698 mmap_read_lock(p->mm); 699 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 700 (void *)&priv); 701 if (ret == 1 && priv.tk.addr) 702 kill_proc(&priv.tk, pfn, flags); 703 else 704 ret = 0; 705 mmap_read_unlock(p->mm); 706 return ret > 0 ? -EHWPOISON : -EFAULT; 707 } 708 709 static const char *action_name[] = { 710 [MF_IGNORED] = "Ignored", 711 [MF_FAILED] = "Failed", 712 [MF_DELAYED] = "Delayed", 713 [MF_RECOVERED] = "Recovered", 714 }; 715 716 static const char * const action_page_types[] = { 717 [MF_MSG_KERNEL] = "reserved kernel page", 718 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 719 [MF_MSG_SLAB] = "kernel slab page", 720 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 721 [MF_MSG_HUGE] = "huge page", 722 [MF_MSG_FREE_HUGE] = "free huge page", 723 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 724 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 725 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 726 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 727 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 728 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 729 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 730 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 731 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 732 [MF_MSG_CLEAN_LRU] = "clean LRU page", 733 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 734 [MF_MSG_BUDDY] = "free buddy page", 735 [MF_MSG_DAX] = "dax page", 736 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 737 [MF_MSG_UNKNOWN] = "unknown page", 738 }; 739 740 /* 741 * XXX: It is possible that a page is isolated from LRU cache, 742 * and then kept in swap cache or failed to remove from page cache. 743 * The page count will stop it from being freed by unpoison. 744 * Stress tests should be aware of this memory leak problem. 745 */ 746 static int delete_from_lru_cache(struct page *p) 747 { 748 if (!isolate_lru_page(p)) { 749 /* 750 * Clear sensible page flags, so that the buddy system won't 751 * complain when the page is unpoison-and-freed. 752 */ 753 ClearPageActive(p); 754 ClearPageUnevictable(p); 755 756 /* 757 * Poisoned page might never drop its ref count to 0 so we have 758 * to uncharge it manually from its memcg. 759 */ 760 mem_cgroup_uncharge(page_folio(p)); 761 762 /* 763 * drop the page count elevated by isolate_lru_page() 764 */ 765 put_page(p); 766 return 0; 767 } 768 return -EIO; 769 } 770 771 static int truncate_error_page(struct page *p, unsigned long pfn, 772 struct address_space *mapping) 773 { 774 int ret = MF_FAILED; 775 776 if (mapping->a_ops->error_remove_page) { 777 int err = mapping->a_ops->error_remove_page(mapping, p); 778 779 if (err != 0) { 780 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 781 pfn, err); 782 } else if (page_has_private(p) && 783 !try_to_release_page(p, GFP_NOIO)) { 784 pr_info("Memory failure: %#lx: failed to release buffers\n", 785 pfn); 786 } else { 787 ret = MF_RECOVERED; 788 } 789 } else { 790 /* 791 * If the file system doesn't support it just invalidate 792 * This fails on dirty or anything with private pages 793 */ 794 if (invalidate_inode_page(p)) 795 ret = MF_RECOVERED; 796 else 797 pr_info("Memory failure: %#lx: Failed to invalidate\n", 798 pfn); 799 } 800 801 return ret; 802 } 803 804 struct page_state { 805 unsigned long mask; 806 unsigned long res; 807 enum mf_action_page_type type; 808 809 /* Callback ->action() has to unlock the relevant page inside it. */ 810 int (*action)(struct page_state *ps, struct page *p); 811 }; 812 813 /* 814 * Return true if page is still referenced by others, otherwise return 815 * false. 816 * 817 * The extra_pins is true when one extra refcount is expected. 818 */ 819 static bool has_extra_refcount(struct page_state *ps, struct page *p, 820 bool extra_pins) 821 { 822 int count = page_count(p) - 1; 823 824 if (extra_pins) 825 count -= 1; 826 827 if (count > 0) { 828 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 829 page_to_pfn(p), action_page_types[ps->type], count); 830 return true; 831 } 832 833 return false; 834 } 835 836 /* 837 * Error hit kernel page. 838 * Do nothing, try to be lucky and not touch this instead. For a few cases we 839 * could be more sophisticated. 840 */ 841 static int me_kernel(struct page_state *ps, struct page *p) 842 { 843 unlock_page(p); 844 return MF_IGNORED; 845 } 846 847 /* 848 * Page in unknown state. Do nothing. 849 */ 850 static int me_unknown(struct page_state *ps, struct page *p) 851 { 852 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 853 unlock_page(p); 854 return MF_FAILED; 855 } 856 857 /* 858 * Clean (or cleaned) page cache page. 859 */ 860 static int me_pagecache_clean(struct page_state *ps, struct page *p) 861 { 862 int ret; 863 struct address_space *mapping; 864 bool extra_pins; 865 866 delete_from_lru_cache(p); 867 868 /* 869 * For anonymous pages we're done the only reference left 870 * should be the one m_f() holds. 871 */ 872 if (PageAnon(p)) { 873 ret = MF_RECOVERED; 874 goto out; 875 } 876 877 /* 878 * Now truncate the page in the page cache. This is really 879 * more like a "temporary hole punch" 880 * Don't do this for block devices when someone else 881 * has a reference, because it could be file system metadata 882 * and that's not safe to truncate. 883 */ 884 mapping = page_mapping(p); 885 if (!mapping) { 886 /* 887 * Page has been teared down in the meanwhile 888 */ 889 ret = MF_FAILED; 890 goto out; 891 } 892 893 /* 894 * The shmem page is kept in page cache instead of truncating 895 * so is expected to have an extra refcount after error-handling. 896 */ 897 extra_pins = shmem_mapping(mapping); 898 899 /* 900 * Truncation is a bit tricky. Enable it per file system for now. 901 * 902 * Open: to take i_rwsem or not for this? Right now we don't. 903 */ 904 ret = truncate_error_page(p, page_to_pfn(p), mapping); 905 if (has_extra_refcount(ps, p, extra_pins)) 906 ret = MF_FAILED; 907 908 out: 909 unlock_page(p); 910 911 return ret; 912 } 913 914 /* 915 * Dirty pagecache page 916 * Issues: when the error hit a hole page the error is not properly 917 * propagated. 918 */ 919 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 920 { 921 struct address_space *mapping = page_mapping(p); 922 923 SetPageError(p); 924 /* TBD: print more information about the file. */ 925 if (mapping) { 926 /* 927 * IO error will be reported by write(), fsync(), etc. 928 * who check the mapping. 929 * This way the application knows that something went 930 * wrong with its dirty file data. 931 * 932 * There's one open issue: 933 * 934 * The EIO will be only reported on the next IO 935 * operation and then cleared through the IO map. 936 * Normally Linux has two mechanisms to pass IO error 937 * first through the AS_EIO flag in the address space 938 * and then through the PageError flag in the page. 939 * Since we drop pages on memory failure handling the 940 * only mechanism open to use is through AS_AIO. 941 * 942 * This has the disadvantage that it gets cleared on 943 * the first operation that returns an error, while 944 * the PageError bit is more sticky and only cleared 945 * when the page is reread or dropped. If an 946 * application assumes it will always get error on 947 * fsync, but does other operations on the fd before 948 * and the page is dropped between then the error 949 * will not be properly reported. 950 * 951 * This can already happen even without hwpoisoned 952 * pages: first on metadata IO errors (which only 953 * report through AS_EIO) or when the page is dropped 954 * at the wrong time. 955 * 956 * So right now we assume that the application DTRT on 957 * the first EIO, but we're not worse than other parts 958 * of the kernel. 959 */ 960 mapping_set_error(mapping, -EIO); 961 } 962 963 return me_pagecache_clean(ps, p); 964 } 965 966 /* 967 * Clean and dirty swap cache. 968 * 969 * Dirty swap cache page is tricky to handle. The page could live both in page 970 * cache and swap cache(ie. page is freshly swapped in). So it could be 971 * referenced concurrently by 2 types of PTEs: 972 * normal PTEs and swap PTEs. We try to handle them consistently by calling 973 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 974 * and then 975 * - clear dirty bit to prevent IO 976 * - remove from LRU 977 * - but keep in the swap cache, so that when we return to it on 978 * a later page fault, we know the application is accessing 979 * corrupted data and shall be killed (we installed simple 980 * interception code in do_swap_page to catch it). 981 * 982 * Clean swap cache pages can be directly isolated. A later page fault will 983 * bring in the known good data from disk. 984 */ 985 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 986 { 987 int ret; 988 bool extra_pins = false; 989 990 ClearPageDirty(p); 991 /* Trigger EIO in shmem: */ 992 ClearPageUptodate(p); 993 994 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 995 unlock_page(p); 996 997 if (ret == MF_DELAYED) 998 extra_pins = true; 999 1000 if (has_extra_refcount(ps, p, extra_pins)) 1001 ret = MF_FAILED; 1002 1003 return ret; 1004 } 1005 1006 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1007 { 1008 int ret; 1009 1010 delete_from_swap_cache(p); 1011 1012 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1013 unlock_page(p); 1014 1015 if (has_extra_refcount(ps, p, false)) 1016 ret = MF_FAILED; 1017 1018 return ret; 1019 } 1020 1021 /* 1022 * Huge pages. Needs work. 1023 * Issues: 1024 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1025 * To narrow down kill region to one page, we need to break up pmd. 1026 */ 1027 static int me_huge_page(struct page_state *ps, struct page *p) 1028 { 1029 int res; 1030 struct page *hpage = compound_head(p); 1031 struct address_space *mapping; 1032 1033 if (!PageHuge(hpage)) 1034 return MF_DELAYED; 1035 1036 mapping = page_mapping(hpage); 1037 if (mapping) { 1038 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1039 unlock_page(hpage); 1040 } else { 1041 res = MF_FAILED; 1042 unlock_page(hpage); 1043 /* 1044 * migration entry prevents later access on error hugepage, 1045 * so we can free and dissolve it into buddy to save healthy 1046 * subpages. 1047 */ 1048 put_page(hpage); 1049 if (__page_handle_poison(p)) { 1050 page_ref_inc(p); 1051 res = MF_RECOVERED; 1052 } 1053 } 1054 1055 if (has_extra_refcount(ps, p, false)) 1056 res = MF_FAILED; 1057 1058 return res; 1059 } 1060 1061 /* 1062 * Various page states we can handle. 1063 * 1064 * A page state is defined by its current page->flags bits. 1065 * The table matches them in order and calls the right handler. 1066 * 1067 * This is quite tricky because we can access page at any time 1068 * in its live cycle, so all accesses have to be extremely careful. 1069 * 1070 * This is not complete. More states could be added. 1071 * For any missing state don't attempt recovery. 1072 */ 1073 1074 #define dirty (1UL << PG_dirty) 1075 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1076 #define unevict (1UL << PG_unevictable) 1077 #define mlock (1UL << PG_mlocked) 1078 #define lru (1UL << PG_lru) 1079 #define head (1UL << PG_head) 1080 #define slab (1UL << PG_slab) 1081 #define reserved (1UL << PG_reserved) 1082 1083 static struct page_state error_states[] = { 1084 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1085 /* 1086 * free pages are specially detected outside this table: 1087 * PG_buddy pages only make a small fraction of all free pages. 1088 */ 1089 1090 /* 1091 * Could in theory check if slab page is free or if we can drop 1092 * currently unused objects without touching them. But just 1093 * treat it as standard kernel for now. 1094 */ 1095 { slab, slab, MF_MSG_SLAB, me_kernel }, 1096 1097 { head, head, MF_MSG_HUGE, me_huge_page }, 1098 1099 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1100 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1101 1102 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1103 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1104 1105 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1106 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1107 1108 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1109 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1110 1111 /* 1112 * Catchall entry: must be at end. 1113 */ 1114 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1115 }; 1116 1117 #undef dirty 1118 #undef sc 1119 #undef unevict 1120 #undef mlock 1121 #undef lru 1122 #undef head 1123 #undef slab 1124 #undef reserved 1125 1126 /* 1127 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1128 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1129 */ 1130 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1131 enum mf_result result) 1132 { 1133 trace_memory_failure_event(pfn, type, result); 1134 1135 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1136 pfn, action_page_types[type], action_name[result]); 1137 } 1138 1139 static int page_action(struct page_state *ps, struct page *p, 1140 unsigned long pfn) 1141 { 1142 int result; 1143 1144 /* page p should be unlocked after returning from ps->action(). */ 1145 result = ps->action(ps, p); 1146 1147 action_result(pfn, ps->type, result); 1148 1149 /* Could do more checks here if page looks ok */ 1150 /* 1151 * Could adjust zone counters here to correct for the missing page. 1152 */ 1153 1154 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1155 } 1156 1157 static inline bool PageHWPoisonTakenOff(struct page *page) 1158 { 1159 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1160 } 1161 1162 void SetPageHWPoisonTakenOff(struct page *page) 1163 { 1164 set_page_private(page, MAGIC_HWPOISON); 1165 } 1166 1167 void ClearPageHWPoisonTakenOff(struct page *page) 1168 { 1169 if (PageHWPoison(page)) 1170 set_page_private(page, 0); 1171 } 1172 1173 /* 1174 * Return true if a page type of a given page is supported by hwpoison 1175 * mechanism (while handling could fail), otherwise false. This function 1176 * does not return true for hugetlb or device memory pages, so it's assumed 1177 * to be called only in the context where we never have such pages. 1178 */ 1179 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1180 { 1181 /* Soft offline could migrate non-LRU movable pages */ 1182 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1183 return true; 1184 1185 return PageLRU(page) || is_free_buddy_page(page); 1186 } 1187 1188 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1189 { 1190 struct page *head = compound_head(page); 1191 int ret = 0; 1192 bool hugetlb = false; 1193 1194 ret = get_hwpoison_huge_page(head, &hugetlb); 1195 if (hugetlb) 1196 return ret; 1197 1198 /* 1199 * This check prevents from calling get_hwpoison_unless_zero() 1200 * for any unsupported type of page in order to reduce the risk of 1201 * unexpected races caused by taking a page refcount. 1202 */ 1203 if (!HWPoisonHandlable(head, flags)) 1204 return -EBUSY; 1205 1206 if (get_page_unless_zero(head)) { 1207 if (head == compound_head(page)) 1208 return 1; 1209 1210 pr_info("Memory failure: %#lx cannot catch tail\n", 1211 page_to_pfn(page)); 1212 put_page(head); 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int get_any_page(struct page *p, unsigned long flags) 1219 { 1220 int ret = 0, pass = 0; 1221 bool count_increased = false; 1222 1223 if (flags & MF_COUNT_INCREASED) 1224 count_increased = true; 1225 1226 try_again: 1227 if (!count_increased) { 1228 ret = __get_hwpoison_page(p, flags); 1229 if (!ret) { 1230 if (page_count(p)) { 1231 /* We raced with an allocation, retry. */ 1232 if (pass++ < 3) 1233 goto try_again; 1234 ret = -EBUSY; 1235 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1236 /* We raced with put_page, retry. */ 1237 if (pass++ < 3) 1238 goto try_again; 1239 ret = -EIO; 1240 } 1241 goto out; 1242 } else if (ret == -EBUSY) { 1243 /* 1244 * We raced with (possibly temporary) unhandlable 1245 * page, retry. 1246 */ 1247 if (pass++ < 3) { 1248 shake_page(p); 1249 goto try_again; 1250 } 1251 ret = -EIO; 1252 goto out; 1253 } 1254 } 1255 1256 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1257 ret = 1; 1258 } else { 1259 /* 1260 * A page we cannot handle. Check whether we can turn 1261 * it into something we can handle. 1262 */ 1263 if (pass++ < 3) { 1264 put_page(p); 1265 shake_page(p); 1266 count_increased = false; 1267 goto try_again; 1268 } 1269 put_page(p); 1270 ret = -EIO; 1271 } 1272 out: 1273 if (ret == -EIO) 1274 dump_page(p, "hwpoison: unhandlable page"); 1275 1276 return ret; 1277 } 1278 1279 static int __get_unpoison_page(struct page *page) 1280 { 1281 struct page *head = compound_head(page); 1282 int ret = 0; 1283 bool hugetlb = false; 1284 1285 ret = get_hwpoison_huge_page(head, &hugetlb); 1286 if (hugetlb) 1287 return ret; 1288 1289 /* 1290 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1291 * but also isolated from buddy freelist, so need to identify the 1292 * state and have to cancel both operations to unpoison. 1293 */ 1294 if (PageHWPoisonTakenOff(page)) 1295 return -EHWPOISON; 1296 1297 return get_page_unless_zero(page) ? 1 : 0; 1298 } 1299 1300 /** 1301 * get_hwpoison_page() - Get refcount for memory error handling 1302 * @p: Raw error page (hit by memory error) 1303 * @flags: Flags controlling behavior of error handling 1304 * 1305 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1306 * error on it, after checking that the error page is in a well-defined state 1307 * (defined as a page-type we can successfully handle the memory error on it, 1308 * such as LRU page and hugetlb page). 1309 * 1310 * Memory error handling could be triggered at any time on any type of page, 1311 * so it's prone to race with typical memory management lifecycle (like 1312 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1313 * extra care for the error page's state (as done in __get_hwpoison_page()), 1314 * and has some retry logic in get_any_page(). 1315 * 1316 * When called from unpoison_memory(), the caller should already ensure that 1317 * the given page has PG_hwpoison. So it's never reused for other page 1318 * allocations, and __get_unpoison_page() never races with them. 1319 * 1320 * Return: 0 on failure, 1321 * 1 on success for in-use pages in a well-defined state, 1322 * -EIO for pages on which we can not handle memory errors, 1323 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1324 * operations like allocation and free, 1325 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1326 */ 1327 static int get_hwpoison_page(struct page *p, unsigned long flags) 1328 { 1329 int ret; 1330 1331 zone_pcp_disable(page_zone(p)); 1332 if (flags & MF_UNPOISON) 1333 ret = __get_unpoison_page(p); 1334 else 1335 ret = get_any_page(p, flags); 1336 zone_pcp_enable(page_zone(p)); 1337 1338 return ret; 1339 } 1340 1341 /* 1342 * Do all that is necessary to remove user space mappings. Unmap 1343 * the pages and send SIGBUS to the processes if the data was dirty. 1344 */ 1345 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1346 int flags, struct page *hpage) 1347 { 1348 struct folio *folio = page_folio(hpage); 1349 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1350 struct address_space *mapping; 1351 LIST_HEAD(tokill); 1352 bool unmap_success; 1353 int kill = 1, forcekill; 1354 bool mlocked = PageMlocked(hpage); 1355 1356 /* 1357 * Here we are interested only in user-mapped pages, so skip any 1358 * other types of pages. 1359 */ 1360 if (PageReserved(p) || PageSlab(p)) 1361 return true; 1362 if (!(PageLRU(hpage) || PageHuge(p))) 1363 return true; 1364 1365 /* 1366 * This check implies we don't kill processes if their pages 1367 * are in the swap cache early. Those are always late kills. 1368 */ 1369 if (!page_mapped(hpage)) 1370 return true; 1371 1372 if (PageKsm(p)) { 1373 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1374 return false; 1375 } 1376 1377 if (PageSwapCache(p)) { 1378 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1379 pfn); 1380 ttu |= TTU_IGNORE_HWPOISON; 1381 } 1382 1383 /* 1384 * Propagate the dirty bit from PTEs to struct page first, because we 1385 * need this to decide if we should kill or just drop the page. 1386 * XXX: the dirty test could be racy: set_page_dirty() may not always 1387 * be called inside page lock (it's recommended but not enforced). 1388 */ 1389 mapping = page_mapping(hpage); 1390 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1391 mapping_can_writeback(mapping)) { 1392 if (page_mkclean(hpage)) { 1393 SetPageDirty(hpage); 1394 } else { 1395 kill = 0; 1396 ttu |= TTU_IGNORE_HWPOISON; 1397 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1398 pfn); 1399 } 1400 } 1401 1402 /* 1403 * First collect all the processes that have the page 1404 * mapped in dirty form. This has to be done before try_to_unmap, 1405 * because ttu takes the rmap data structures down. 1406 * 1407 * Error handling: We ignore errors here because 1408 * there's nothing that can be done. 1409 */ 1410 if (kill) 1411 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1412 1413 if (PageHuge(hpage) && !PageAnon(hpage)) { 1414 /* 1415 * For hugetlb pages in shared mappings, try_to_unmap 1416 * could potentially call huge_pmd_unshare. Because of 1417 * this, take semaphore in write mode here and set 1418 * TTU_RMAP_LOCKED to indicate we have taken the lock 1419 * at this higher level. 1420 */ 1421 mapping = hugetlb_page_mapping_lock_write(hpage); 1422 if (mapping) { 1423 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1424 i_mmap_unlock_write(mapping); 1425 } else 1426 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1427 } else { 1428 try_to_unmap(folio, ttu); 1429 } 1430 1431 unmap_success = !page_mapped(hpage); 1432 if (!unmap_success) 1433 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1434 pfn, page_mapcount(hpage)); 1435 1436 /* 1437 * try_to_unmap() might put mlocked page in lru cache, so call 1438 * shake_page() again to ensure that it's flushed. 1439 */ 1440 if (mlocked) 1441 shake_page(hpage); 1442 1443 /* 1444 * Now that the dirty bit has been propagated to the 1445 * struct page and all unmaps done we can decide if 1446 * killing is needed or not. Only kill when the page 1447 * was dirty or the process is not restartable, 1448 * otherwise the tokill list is merely 1449 * freed. When there was a problem unmapping earlier 1450 * use a more force-full uncatchable kill to prevent 1451 * any accesses to the poisoned memory. 1452 */ 1453 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1454 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1455 1456 return unmap_success; 1457 } 1458 1459 static int identify_page_state(unsigned long pfn, struct page *p, 1460 unsigned long page_flags) 1461 { 1462 struct page_state *ps; 1463 1464 /* 1465 * The first check uses the current page flags which may not have any 1466 * relevant information. The second check with the saved page flags is 1467 * carried out only if the first check can't determine the page status. 1468 */ 1469 for (ps = error_states;; ps++) 1470 if ((p->flags & ps->mask) == ps->res) 1471 break; 1472 1473 page_flags |= (p->flags & (1UL << PG_dirty)); 1474 1475 if (!ps->mask) 1476 for (ps = error_states;; ps++) 1477 if ((page_flags & ps->mask) == ps->res) 1478 break; 1479 return page_action(ps, p, pfn); 1480 } 1481 1482 static int try_to_split_thp_page(struct page *page, const char *msg) 1483 { 1484 lock_page(page); 1485 if (unlikely(split_huge_page(page))) { 1486 unsigned long pfn = page_to_pfn(page); 1487 1488 unlock_page(page); 1489 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1490 put_page(page); 1491 return -EBUSY; 1492 } 1493 unlock_page(page); 1494 1495 return 0; 1496 } 1497 1498 /* 1499 * Called from hugetlb code with hugetlb_lock held. 1500 * 1501 * Return values: 1502 * 0 - free hugepage 1503 * 1 - in-use hugepage 1504 * 2 - not a hugepage 1505 * -EBUSY - the hugepage is busy (try to retry) 1506 * -EHWPOISON - the hugepage is already hwpoisoned 1507 */ 1508 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1509 { 1510 struct page *page = pfn_to_page(pfn); 1511 struct page *head = compound_head(page); 1512 int ret = 2; /* fallback to normal page handling */ 1513 bool count_increased = false; 1514 1515 if (!PageHeadHuge(head)) 1516 goto out; 1517 1518 if (flags & MF_COUNT_INCREASED) { 1519 ret = 1; 1520 count_increased = true; 1521 } else if (HPageFreed(head)) { 1522 ret = 0; 1523 } else if (HPageMigratable(head)) { 1524 ret = get_page_unless_zero(head); 1525 if (ret) 1526 count_increased = true; 1527 } else { 1528 ret = -EBUSY; 1529 goto out; 1530 } 1531 1532 if (TestSetPageHWPoison(head)) { 1533 ret = -EHWPOISON; 1534 goto out; 1535 } 1536 1537 return ret; 1538 out: 1539 if (count_increased) 1540 put_page(head); 1541 return ret; 1542 } 1543 1544 #ifdef CONFIG_HUGETLB_PAGE 1545 /* 1546 * Taking refcount of hugetlb pages needs extra care about race conditions 1547 * with basic operations like hugepage allocation/free/demotion. 1548 * So some of prechecks for hwpoison (pinning, and testing/setting 1549 * PageHWPoison) should be done in single hugetlb_lock range. 1550 */ 1551 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1552 { 1553 int res; 1554 struct page *p = pfn_to_page(pfn); 1555 struct page *head; 1556 unsigned long page_flags; 1557 bool retry = true; 1558 1559 *hugetlb = 1; 1560 retry: 1561 res = get_huge_page_for_hwpoison(pfn, flags); 1562 if (res == 2) { /* fallback to normal page handling */ 1563 *hugetlb = 0; 1564 return 0; 1565 } else if (res == -EHWPOISON) { 1566 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); 1567 if (flags & MF_ACTION_REQUIRED) { 1568 head = compound_head(p); 1569 res = kill_accessing_process(current, page_to_pfn(head), flags); 1570 } 1571 return res; 1572 } else if (res == -EBUSY) { 1573 if (retry) { 1574 retry = false; 1575 goto retry; 1576 } 1577 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1578 return res; 1579 } 1580 1581 head = compound_head(p); 1582 lock_page(head); 1583 1584 if (hwpoison_filter(p)) { 1585 ClearPageHWPoison(head); 1586 res = -EOPNOTSUPP; 1587 goto out; 1588 } 1589 1590 num_poisoned_pages_inc(); 1591 1592 /* 1593 * Handling free hugepage. The possible race with hugepage allocation 1594 * or demotion can be prevented by PageHWPoison flag. 1595 */ 1596 if (res == 0) { 1597 unlock_page(head); 1598 res = MF_FAILED; 1599 if (__page_handle_poison(p)) { 1600 page_ref_inc(p); 1601 res = MF_RECOVERED; 1602 } 1603 action_result(pfn, MF_MSG_FREE_HUGE, res); 1604 return res == MF_RECOVERED ? 0 : -EBUSY; 1605 } 1606 1607 page_flags = head->flags; 1608 1609 /* 1610 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1611 * simply disable it. In order to make it work properly, we need 1612 * make sure that: 1613 * - conversion of a pud that maps an error hugetlb into hwpoison 1614 * entry properly works, and 1615 * - other mm code walking over page table is aware of pud-aligned 1616 * hwpoison entries. 1617 */ 1618 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1619 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1620 res = -EBUSY; 1621 goto out; 1622 } 1623 1624 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1625 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1626 res = -EBUSY; 1627 goto out; 1628 } 1629 1630 return identify_page_state(pfn, p, page_flags); 1631 out: 1632 unlock_page(head); 1633 return res; 1634 } 1635 #else 1636 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1637 { 1638 return 0; 1639 } 1640 #endif 1641 1642 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1643 struct dev_pagemap *pgmap) 1644 { 1645 struct page *page = pfn_to_page(pfn); 1646 unsigned long size = 0; 1647 struct to_kill *tk; 1648 LIST_HEAD(tokill); 1649 int rc = -EBUSY; 1650 loff_t start; 1651 dax_entry_t cookie; 1652 1653 if (flags & MF_COUNT_INCREASED) 1654 /* 1655 * Drop the extra refcount in case we come from madvise(). 1656 */ 1657 put_page(page); 1658 1659 /* device metadata space is not recoverable */ 1660 if (!pgmap_pfn_valid(pgmap, pfn)) { 1661 rc = -ENXIO; 1662 goto out; 1663 } 1664 1665 /* 1666 * Pages instantiated by device-dax (not filesystem-dax) 1667 * may be compound pages. 1668 */ 1669 page = compound_head(page); 1670 1671 /* 1672 * Prevent the inode from being freed while we are interrogating 1673 * the address_space, typically this would be handled by 1674 * lock_page(), but dax pages do not use the page lock. This 1675 * also prevents changes to the mapping of this pfn until 1676 * poison signaling is complete. 1677 */ 1678 cookie = dax_lock_page(page); 1679 if (!cookie) 1680 goto out; 1681 1682 if (hwpoison_filter(page)) { 1683 rc = -EOPNOTSUPP; 1684 goto unlock; 1685 } 1686 1687 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1688 /* 1689 * TODO: Handle HMM pages which may need coordination 1690 * with device-side memory. 1691 */ 1692 goto unlock; 1693 } 1694 1695 /* 1696 * Use this flag as an indication that the dax page has been 1697 * remapped UC to prevent speculative consumption of poison. 1698 */ 1699 SetPageHWPoison(page); 1700 1701 /* 1702 * Unlike System-RAM there is no possibility to swap in a 1703 * different physical page at a given virtual address, so all 1704 * userspace consumption of ZONE_DEVICE memory necessitates 1705 * SIGBUS (i.e. MF_MUST_KILL) 1706 */ 1707 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1708 collect_procs(page, &tokill, true); 1709 1710 list_for_each_entry(tk, &tokill, nd) 1711 if (tk->size_shift) 1712 size = max(size, 1UL << tk->size_shift); 1713 if (size) { 1714 /* 1715 * Unmap the largest mapping to avoid breaking up 1716 * device-dax mappings which are constant size. The 1717 * actual size of the mapping being torn down is 1718 * communicated in siginfo, see kill_proc() 1719 */ 1720 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1721 unmap_mapping_range(page->mapping, start, size, 0); 1722 } 1723 kill_procs(&tokill, true, false, pfn, flags); 1724 rc = 0; 1725 unlock: 1726 dax_unlock_page(page, cookie); 1727 out: 1728 /* drop pgmap ref acquired in caller */ 1729 put_dev_pagemap(pgmap); 1730 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1731 return rc; 1732 } 1733 1734 static DEFINE_MUTEX(mf_mutex); 1735 1736 /** 1737 * memory_failure - Handle memory failure of a page. 1738 * @pfn: Page Number of the corrupted page 1739 * @flags: fine tune action taken 1740 * 1741 * This function is called by the low level machine check code 1742 * of an architecture when it detects hardware memory corruption 1743 * of a page. It tries its best to recover, which includes 1744 * dropping pages, killing processes etc. 1745 * 1746 * The function is primarily of use for corruptions that 1747 * happen outside the current execution context (e.g. when 1748 * detected by a background scrubber) 1749 * 1750 * Must run in process context (e.g. a work queue) with interrupts 1751 * enabled and no spinlocks hold. 1752 * 1753 * Return: 0 for successfully handled the memory error, 1754 * -EOPNOTSUPP for memory_filter() filtered the error event, 1755 * < 0(except -EOPNOTSUPP) on failure. 1756 */ 1757 int memory_failure(unsigned long pfn, int flags) 1758 { 1759 struct page *p; 1760 struct page *hpage; 1761 struct dev_pagemap *pgmap; 1762 int res = 0; 1763 unsigned long page_flags; 1764 bool retry = true; 1765 int hugetlb = 0; 1766 1767 if (!sysctl_memory_failure_recovery) 1768 panic("Memory failure on page %lx", pfn); 1769 1770 mutex_lock(&mf_mutex); 1771 1772 p = pfn_to_online_page(pfn); 1773 if (!p) { 1774 res = arch_memory_failure(pfn, flags); 1775 if (res == 0) 1776 goto unlock_mutex; 1777 1778 if (pfn_valid(pfn)) { 1779 pgmap = get_dev_pagemap(pfn, NULL); 1780 if (pgmap) { 1781 res = memory_failure_dev_pagemap(pfn, flags, 1782 pgmap); 1783 goto unlock_mutex; 1784 } 1785 } 1786 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1787 pfn); 1788 res = -ENXIO; 1789 goto unlock_mutex; 1790 } 1791 1792 try_again: 1793 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 1794 if (hugetlb) 1795 goto unlock_mutex; 1796 1797 if (TestSetPageHWPoison(p)) { 1798 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1799 pfn); 1800 res = -EHWPOISON; 1801 if (flags & MF_ACTION_REQUIRED) 1802 res = kill_accessing_process(current, pfn, flags); 1803 if (flags & MF_COUNT_INCREASED) 1804 put_page(p); 1805 goto unlock_mutex; 1806 } 1807 1808 hpage = compound_head(p); 1809 num_poisoned_pages_inc(); 1810 1811 /* 1812 * We need/can do nothing about count=0 pages. 1813 * 1) it's a free page, and therefore in safe hand: 1814 * prep_new_page() will be the gate keeper. 1815 * 2) it's part of a non-compound high order page. 1816 * Implies some kernel user: cannot stop them from 1817 * R/W the page; let's pray that the page has been 1818 * used and will be freed some time later. 1819 * In fact it's dangerous to directly bump up page count from 0, 1820 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1821 */ 1822 if (!(flags & MF_COUNT_INCREASED)) { 1823 res = get_hwpoison_page(p, flags); 1824 if (!res) { 1825 if (is_free_buddy_page(p)) { 1826 if (take_page_off_buddy(p)) { 1827 page_ref_inc(p); 1828 res = MF_RECOVERED; 1829 } else { 1830 /* We lost the race, try again */ 1831 if (retry) { 1832 ClearPageHWPoison(p); 1833 num_poisoned_pages_dec(); 1834 retry = false; 1835 goto try_again; 1836 } 1837 res = MF_FAILED; 1838 } 1839 action_result(pfn, MF_MSG_BUDDY, res); 1840 res = res == MF_RECOVERED ? 0 : -EBUSY; 1841 } else { 1842 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1843 res = -EBUSY; 1844 } 1845 goto unlock_mutex; 1846 } else if (res < 0) { 1847 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1848 res = -EBUSY; 1849 goto unlock_mutex; 1850 } 1851 } 1852 1853 if (PageTransHuge(hpage)) { 1854 /* 1855 * Bail out before SetPageHasHWPoisoned() if hpage is 1856 * huge_zero_page, although PG_has_hwpoisoned is not 1857 * checked in set_huge_zero_page(). 1858 * 1859 * TODO: Handle memory failure of huge_zero_page thoroughly. 1860 */ 1861 if (is_huge_zero_page(hpage)) { 1862 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1863 res = -EBUSY; 1864 goto unlock_mutex; 1865 } 1866 1867 /* 1868 * The flag must be set after the refcount is bumped 1869 * otherwise it may race with THP split. 1870 * And the flag can't be set in get_hwpoison_page() since 1871 * it is called by soft offline too and it is just called 1872 * for !MF_COUNT_INCREASE. So here seems to be the best 1873 * place. 1874 * 1875 * Don't need care about the above error handling paths for 1876 * get_hwpoison_page() since they handle either free page 1877 * or unhandlable page. The refcount is bumped iff the 1878 * page is a valid handlable page. 1879 */ 1880 SetPageHasHWPoisoned(hpage); 1881 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1882 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1883 res = -EBUSY; 1884 goto unlock_mutex; 1885 } 1886 VM_BUG_ON_PAGE(!page_count(p), p); 1887 } 1888 1889 /* 1890 * We ignore non-LRU pages for good reasons. 1891 * - PG_locked is only well defined for LRU pages and a few others 1892 * - to avoid races with __SetPageLocked() 1893 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1894 * The check (unnecessarily) ignores LRU pages being isolated and 1895 * walked by the page reclaim code, however that's not a big loss. 1896 */ 1897 shake_page(p); 1898 1899 lock_page(p); 1900 1901 /* 1902 * We're only intended to deal with the non-Compound page here. 1903 * However, the page could have changed compound pages due to 1904 * race window. If this happens, we could try again to hopefully 1905 * handle the page next round. 1906 */ 1907 if (PageCompound(p)) { 1908 if (retry) { 1909 if (TestClearPageHWPoison(p)) 1910 num_poisoned_pages_dec(); 1911 unlock_page(p); 1912 put_page(p); 1913 flags &= ~MF_COUNT_INCREASED; 1914 retry = false; 1915 goto try_again; 1916 } 1917 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1918 res = -EBUSY; 1919 goto unlock_page; 1920 } 1921 1922 /* 1923 * We use page flags to determine what action should be taken, but 1924 * the flags can be modified by the error containment action. One 1925 * example is an mlocked page, where PG_mlocked is cleared by 1926 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1927 * correctly, we save a copy of the page flags at this time. 1928 */ 1929 page_flags = p->flags; 1930 1931 if (hwpoison_filter(p)) { 1932 if (TestClearPageHWPoison(p)) 1933 num_poisoned_pages_dec(); 1934 unlock_page(p); 1935 put_page(p); 1936 res = -EOPNOTSUPP; 1937 goto unlock_mutex; 1938 } 1939 1940 /* 1941 * __munlock_pagevec may clear a writeback page's LRU flag without 1942 * page_lock. We need wait writeback completion for this page or it 1943 * may trigger vfs BUG while evict inode. 1944 */ 1945 if (!PageLRU(p) && !PageWriteback(p)) 1946 goto identify_page_state; 1947 1948 /* 1949 * It's very difficult to mess with pages currently under IO 1950 * and in many cases impossible, so we just avoid it here. 1951 */ 1952 wait_on_page_writeback(p); 1953 1954 /* 1955 * Now take care of user space mappings. 1956 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1957 */ 1958 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1959 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1960 res = -EBUSY; 1961 goto unlock_page; 1962 } 1963 1964 /* 1965 * Torn down by someone else? 1966 */ 1967 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1968 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1969 res = -EBUSY; 1970 goto unlock_page; 1971 } 1972 1973 identify_page_state: 1974 res = identify_page_state(pfn, p, page_flags); 1975 mutex_unlock(&mf_mutex); 1976 return res; 1977 unlock_page: 1978 unlock_page(p); 1979 unlock_mutex: 1980 mutex_unlock(&mf_mutex); 1981 return res; 1982 } 1983 EXPORT_SYMBOL_GPL(memory_failure); 1984 1985 #define MEMORY_FAILURE_FIFO_ORDER 4 1986 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1987 1988 struct memory_failure_entry { 1989 unsigned long pfn; 1990 int flags; 1991 }; 1992 1993 struct memory_failure_cpu { 1994 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1995 MEMORY_FAILURE_FIFO_SIZE); 1996 spinlock_t lock; 1997 struct work_struct work; 1998 }; 1999 2000 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2001 2002 /** 2003 * memory_failure_queue - Schedule handling memory failure of a page. 2004 * @pfn: Page Number of the corrupted page 2005 * @flags: Flags for memory failure handling 2006 * 2007 * This function is called by the low level hardware error handler 2008 * when it detects hardware memory corruption of a page. It schedules 2009 * the recovering of error page, including dropping pages, killing 2010 * processes etc. 2011 * 2012 * The function is primarily of use for corruptions that 2013 * happen outside the current execution context (e.g. when 2014 * detected by a background scrubber) 2015 * 2016 * Can run in IRQ context. 2017 */ 2018 void memory_failure_queue(unsigned long pfn, int flags) 2019 { 2020 struct memory_failure_cpu *mf_cpu; 2021 unsigned long proc_flags; 2022 struct memory_failure_entry entry = { 2023 .pfn = pfn, 2024 .flags = flags, 2025 }; 2026 2027 mf_cpu = &get_cpu_var(memory_failure_cpu); 2028 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2029 if (kfifo_put(&mf_cpu->fifo, entry)) 2030 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2031 else 2032 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 2033 pfn); 2034 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2035 put_cpu_var(memory_failure_cpu); 2036 } 2037 EXPORT_SYMBOL_GPL(memory_failure_queue); 2038 2039 static void memory_failure_work_func(struct work_struct *work) 2040 { 2041 struct memory_failure_cpu *mf_cpu; 2042 struct memory_failure_entry entry = { 0, }; 2043 unsigned long proc_flags; 2044 int gotten; 2045 2046 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2047 for (;;) { 2048 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2049 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2050 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2051 if (!gotten) 2052 break; 2053 if (entry.flags & MF_SOFT_OFFLINE) 2054 soft_offline_page(entry.pfn, entry.flags); 2055 else 2056 memory_failure(entry.pfn, entry.flags); 2057 } 2058 } 2059 2060 /* 2061 * Process memory_failure work queued on the specified CPU. 2062 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2063 */ 2064 void memory_failure_queue_kick(int cpu) 2065 { 2066 struct memory_failure_cpu *mf_cpu; 2067 2068 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2069 cancel_work_sync(&mf_cpu->work); 2070 memory_failure_work_func(&mf_cpu->work); 2071 } 2072 2073 static int __init memory_failure_init(void) 2074 { 2075 struct memory_failure_cpu *mf_cpu; 2076 int cpu; 2077 2078 for_each_possible_cpu(cpu) { 2079 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2080 spin_lock_init(&mf_cpu->lock); 2081 INIT_KFIFO(mf_cpu->fifo); 2082 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2083 } 2084 2085 return 0; 2086 } 2087 core_initcall(memory_failure_init); 2088 2089 #define unpoison_pr_info(fmt, pfn, rs) \ 2090 ({ \ 2091 if (__ratelimit(rs)) \ 2092 pr_info(fmt, pfn); \ 2093 }) 2094 2095 static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p) 2096 { 2097 if (TestClearPageHWPoison(p)) { 2098 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2099 page_to_pfn(p), rs); 2100 num_poisoned_pages_dec(); 2101 return 1; 2102 } 2103 return 0; 2104 } 2105 2106 static inline int unpoison_taken_off_page(struct ratelimit_state *rs, 2107 struct page *p) 2108 { 2109 if (put_page_back_buddy(p)) { 2110 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2111 page_to_pfn(p), rs); 2112 return 0; 2113 } 2114 return -EBUSY; 2115 } 2116 2117 /** 2118 * unpoison_memory - Unpoison a previously poisoned page 2119 * @pfn: Page number of the to be unpoisoned page 2120 * 2121 * Software-unpoison a page that has been poisoned by 2122 * memory_failure() earlier. 2123 * 2124 * This is only done on the software-level, so it only works 2125 * for linux injected failures, not real hardware failures 2126 * 2127 * Returns 0 for success, otherwise -errno. 2128 */ 2129 int unpoison_memory(unsigned long pfn) 2130 { 2131 struct page *page; 2132 struct page *p; 2133 int ret = -EBUSY; 2134 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2135 DEFAULT_RATELIMIT_BURST); 2136 2137 if (!pfn_valid(pfn)) 2138 return -ENXIO; 2139 2140 p = pfn_to_page(pfn); 2141 page = compound_head(p); 2142 2143 mutex_lock(&mf_mutex); 2144 2145 if (!PageHWPoison(p)) { 2146 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2147 pfn, &unpoison_rs); 2148 goto unlock_mutex; 2149 } 2150 2151 if (page_count(page) > 1) { 2152 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2153 pfn, &unpoison_rs); 2154 goto unlock_mutex; 2155 } 2156 2157 if (page_mapped(page)) { 2158 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2159 pfn, &unpoison_rs); 2160 goto unlock_mutex; 2161 } 2162 2163 if (page_mapping(page)) { 2164 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2165 pfn, &unpoison_rs); 2166 goto unlock_mutex; 2167 } 2168 2169 if (PageSlab(page) || PageTable(page)) 2170 goto unlock_mutex; 2171 2172 ret = get_hwpoison_page(p, MF_UNPOISON); 2173 if (!ret) { 2174 if (clear_page_hwpoison(&unpoison_rs, page)) 2175 ret = 0; 2176 else 2177 ret = -EBUSY; 2178 } else if (ret < 0) { 2179 if (ret == -EHWPOISON) { 2180 ret = unpoison_taken_off_page(&unpoison_rs, p); 2181 } else 2182 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2183 pfn, &unpoison_rs); 2184 } else { 2185 int freeit = clear_page_hwpoison(&unpoison_rs, p); 2186 2187 put_page(page); 2188 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2189 put_page(page); 2190 ret = 0; 2191 } 2192 } 2193 2194 unlock_mutex: 2195 mutex_unlock(&mf_mutex); 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(unpoison_memory); 2199 2200 static bool isolate_page(struct page *page, struct list_head *pagelist) 2201 { 2202 bool isolated = false; 2203 bool lru = PageLRU(page); 2204 2205 if (PageHuge(page)) { 2206 isolated = isolate_huge_page(page, pagelist); 2207 } else { 2208 if (lru) 2209 isolated = !isolate_lru_page(page); 2210 else 2211 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2212 2213 if (isolated) 2214 list_add(&page->lru, pagelist); 2215 } 2216 2217 if (isolated && lru) 2218 inc_node_page_state(page, NR_ISOLATED_ANON + 2219 page_is_file_lru(page)); 2220 2221 /* 2222 * If we succeed to isolate the page, we grabbed another refcount on 2223 * the page, so we can safely drop the one we got from get_any_pages(). 2224 * If we failed to isolate the page, it means that we cannot go further 2225 * and we will return an error, so drop the reference we got from 2226 * get_any_pages() as well. 2227 */ 2228 put_page(page); 2229 return isolated; 2230 } 2231 2232 /* 2233 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2234 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2235 * If the page is mapped, it migrates the contents over. 2236 */ 2237 static int __soft_offline_page(struct page *page) 2238 { 2239 long ret = 0; 2240 unsigned long pfn = page_to_pfn(page); 2241 struct page *hpage = compound_head(page); 2242 char const *msg_page[] = {"page", "hugepage"}; 2243 bool huge = PageHuge(page); 2244 LIST_HEAD(pagelist); 2245 struct migration_target_control mtc = { 2246 .nid = NUMA_NO_NODE, 2247 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2248 }; 2249 2250 lock_page(page); 2251 if (!PageHuge(page)) 2252 wait_on_page_writeback(page); 2253 if (PageHWPoison(page)) { 2254 unlock_page(page); 2255 put_page(page); 2256 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2257 return 0; 2258 } 2259 2260 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2261 /* 2262 * Try to invalidate first. This should work for 2263 * non dirty unmapped page cache pages. 2264 */ 2265 ret = invalidate_inode_page(page); 2266 unlock_page(page); 2267 2268 if (ret) { 2269 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2270 page_handle_poison(page, false, true); 2271 return 0; 2272 } 2273 2274 if (isolate_page(hpage, &pagelist)) { 2275 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2276 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2277 if (!ret) { 2278 bool release = !huge; 2279 2280 if (!page_handle_poison(page, huge, release)) 2281 ret = -EBUSY; 2282 } else { 2283 if (!list_empty(&pagelist)) 2284 putback_movable_pages(&pagelist); 2285 2286 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2287 pfn, msg_page[huge], ret, &page->flags); 2288 if (ret > 0) 2289 ret = -EBUSY; 2290 } 2291 } else { 2292 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2293 pfn, msg_page[huge], page_count(page), &page->flags); 2294 ret = -EBUSY; 2295 } 2296 return ret; 2297 } 2298 2299 static int soft_offline_in_use_page(struct page *page) 2300 { 2301 struct page *hpage = compound_head(page); 2302 2303 if (!PageHuge(page) && PageTransHuge(hpage)) 2304 if (try_to_split_thp_page(page, "soft offline") < 0) 2305 return -EBUSY; 2306 return __soft_offline_page(page); 2307 } 2308 2309 static int soft_offline_free_page(struct page *page) 2310 { 2311 int rc = 0; 2312 2313 if (!page_handle_poison(page, true, false)) 2314 rc = -EBUSY; 2315 2316 return rc; 2317 } 2318 2319 static void put_ref_page(struct page *page) 2320 { 2321 if (page) 2322 put_page(page); 2323 } 2324 2325 /** 2326 * soft_offline_page - Soft offline a page. 2327 * @pfn: pfn to soft-offline 2328 * @flags: flags. Same as memory_failure(). 2329 * 2330 * Returns 0 on success, otherwise negated errno. 2331 * 2332 * Soft offline a page, by migration or invalidation, 2333 * without killing anything. This is for the case when 2334 * a page is not corrupted yet (so it's still valid to access), 2335 * but has had a number of corrected errors and is better taken 2336 * out. 2337 * 2338 * The actual policy on when to do that is maintained by 2339 * user space. 2340 * 2341 * This should never impact any application or cause data loss, 2342 * however it might take some time. 2343 * 2344 * This is not a 100% solution for all memory, but tries to be 2345 * ``good enough'' for the majority of memory. 2346 */ 2347 int soft_offline_page(unsigned long pfn, int flags) 2348 { 2349 int ret; 2350 bool try_again = true; 2351 struct page *page, *ref_page = NULL; 2352 2353 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2354 2355 if (!pfn_valid(pfn)) 2356 return -ENXIO; 2357 if (flags & MF_COUNT_INCREASED) 2358 ref_page = pfn_to_page(pfn); 2359 2360 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2361 page = pfn_to_online_page(pfn); 2362 if (!page) { 2363 put_ref_page(ref_page); 2364 return -EIO; 2365 } 2366 2367 mutex_lock(&mf_mutex); 2368 2369 if (PageHWPoison(page)) { 2370 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2371 put_ref_page(ref_page); 2372 mutex_unlock(&mf_mutex); 2373 return 0; 2374 } 2375 2376 retry: 2377 get_online_mems(); 2378 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2379 put_online_mems(); 2380 2381 if (ret > 0) { 2382 ret = soft_offline_in_use_page(page); 2383 } else if (ret == 0) { 2384 if (soft_offline_free_page(page) && try_again) { 2385 try_again = false; 2386 flags &= ~MF_COUNT_INCREASED; 2387 goto retry; 2388 } 2389 } 2390 2391 mutex_unlock(&mf_mutex); 2392 2393 return ret; 2394 } 2395