1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include "swap.h" 66 #include "internal.h" 67 #include "ras/ras_event.h" 68 69 int sysctl_memory_failure_early_kill __read_mostly = 0; 70 71 int sysctl_memory_failure_recovery __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 inline void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 inline void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 /* 126 * Return values: 127 * 1: the page is dissolved (if needed) and taken off from buddy, 128 * 0: the page is dissolved (if needed) and not taken off from buddy, 129 * < 0: failed to dissolve. 130 */ 131 static int __page_handle_poison(struct page *page) 132 { 133 int ret; 134 135 zone_pcp_disable(page_zone(page)); 136 ret = dissolve_free_huge_page(page); 137 if (!ret) 138 ret = take_page_off_buddy(page); 139 zone_pcp_enable(page_zone(page)); 140 141 return ret; 142 } 143 144 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 145 { 146 if (hugepage_or_freepage) { 147 /* 148 * Doing this check for free pages is also fine since dissolve_free_huge_page 149 * returns 0 for non-hugetlb pages as well. 150 */ 151 if (__page_handle_poison(page) <= 0) 152 /* 153 * We could fail to take off the target page from buddy 154 * for example due to racy page allocation, but that's 155 * acceptable because soft-offlined page is not broken 156 * and if someone really want to use it, they should 157 * take it. 158 */ 159 return false; 160 } 161 162 SetPageHWPoison(page); 163 if (release) 164 put_page(page); 165 page_ref_inc(page); 166 num_poisoned_pages_inc(page_to_pfn(page)); 167 168 return true; 169 } 170 171 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 172 173 u32 hwpoison_filter_enable = 0; 174 u32 hwpoison_filter_dev_major = ~0U; 175 u32 hwpoison_filter_dev_minor = ~0U; 176 u64 hwpoison_filter_flags_mask; 177 u64 hwpoison_filter_flags_value; 178 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 179 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 180 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 181 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 182 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 183 184 static int hwpoison_filter_dev(struct page *p) 185 { 186 struct address_space *mapping; 187 dev_t dev; 188 189 if (hwpoison_filter_dev_major == ~0U && 190 hwpoison_filter_dev_minor == ~0U) 191 return 0; 192 193 mapping = page_mapping(p); 194 if (mapping == NULL || mapping->host == NULL) 195 return -EINVAL; 196 197 dev = mapping->host->i_sb->s_dev; 198 if (hwpoison_filter_dev_major != ~0U && 199 hwpoison_filter_dev_major != MAJOR(dev)) 200 return -EINVAL; 201 if (hwpoison_filter_dev_minor != ~0U && 202 hwpoison_filter_dev_minor != MINOR(dev)) 203 return -EINVAL; 204 205 return 0; 206 } 207 208 static int hwpoison_filter_flags(struct page *p) 209 { 210 if (!hwpoison_filter_flags_mask) 211 return 0; 212 213 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 214 hwpoison_filter_flags_value) 215 return 0; 216 else 217 return -EINVAL; 218 } 219 220 /* 221 * This allows stress tests to limit test scope to a collection of tasks 222 * by putting them under some memcg. This prevents killing unrelated/important 223 * processes such as /sbin/init. Note that the target task may share clean 224 * pages with init (eg. libc text), which is harmless. If the target task 225 * share _dirty_ pages with another task B, the test scheme must make sure B 226 * is also included in the memcg. At last, due to race conditions this filter 227 * can only guarantee that the page either belongs to the memcg tasks, or is 228 * a freed page. 229 */ 230 #ifdef CONFIG_MEMCG 231 u64 hwpoison_filter_memcg; 232 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 233 static int hwpoison_filter_task(struct page *p) 234 { 235 if (!hwpoison_filter_memcg) 236 return 0; 237 238 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 239 return -EINVAL; 240 241 return 0; 242 } 243 #else 244 static int hwpoison_filter_task(struct page *p) { return 0; } 245 #endif 246 247 int hwpoison_filter(struct page *p) 248 { 249 if (!hwpoison_filter_enable) 250 return 0; 251 252 if (hwpoison_filter_dev(p)) 253 return -EINVAL; 254 255 if (hwpoison_filter_flags(p)) 256 return -EINVAL; 257 258 if (hwpoison_filter_task(p)) 259 return -EINVAL; 260 261 return 0; 262 } 263 #else 264 int hwpoison_filter(struct page *p) 265 { 266 return 0; 267 } 268 #endif 269 270 EXPORT_SYMBOL_GPL(hwpoison_filter); 271 272 /* 273 * Kill all processes that have a poisoned page mapped and then isolate 274 * the page. 275 * 276 * General strategy: 277 * Find all processes having the page mapped and kill them. 278 * But we keep a page reference around so that the page is not 279 * actually freed yet. 280 * Then stash the page away 281 * 282 * There's no convenient way to get back to mapped processes 283 * from the VMAs. So do a brute-force search over all 284 * running processes. 285 * 286 * Remember that machine checks are not common (or rather 287 * if they are common you have other problems), so this shouldn't 288 * be a performance issue. 289 * 290 * Also there are some races possible while we get from the 291 * error detection to actually handle it. 292 */ 293 294 struct to_kill { 295 struct list_head nd; 296 struct task_struct *tsk; 297 unsigned long addr; 298 short size_shift; 299 }; 300 301 /* 302 * Send all the processes who have the page mapped a signal. 303 * ``action optional'' if they are not immediately affected by the error 304 * ``action required'' if error happened in current execution context 305 */ 306 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 307 { 308 struct task_struct *t = tk->tsk; 309 short addr_lsb = tk->size_shift; 310 int ret = 0; 311 312 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 313 pfn, t->comm, t->pid); 314 315 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 316 ret = force_sig_mceerr(BUS_MCEERR_AR, 317 (void __user *)tk->addr, addr_lsb); 318 else 319 /* 320 * Signal other processes sharing the page if they have 321 * PF_MCE_EARLY set. 322 * Don't use force here, it's convenient if the signal 323 * can be temporarily blocked. 324 * This could cause a loop when the user sets SIGBUS 325 * to SIG_IGN, but hopefully no one will do that? 326 */ 327 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 328 addr_lsb, t); 329 if (ret < 0) 330 pr_info("Error sending signal to %s:%d: %d\n", 331 t->comm, t->pid, ret); 332 return ret; 333 } 334 335 /* 336 * Unknown page type encountered. Try to check whether it can turn PageLRU by 337 * lru_add_drain_all. 338 */ 339 void shake_page(struct page *p) 340 { 341 if (PageHuge(p)) 342 return; 343 344 if (!PageSlab(p)) { 345 lru_add_drain_all(); 346 if (PageLRU(p) || is_free_buddy_page(p)) 347 return; 348 } 349 350 /* 351 * TODO: Could shrink slab caches here if a lightweight range-based 352 * shrinker will be available. 353 */ 354 } 355 EXPORT_SYMBOL_GPL(shake_page); 356 357 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 358 unsigned long address) 359 { 360 unsigned long ret = 0; 361 pgd_t *pgd; 362 p4d_t *p4d; 363 pud_t *pud; 364 pmd_t *pmd; 365 pte_t *pte; 366 367 VM_BUG_ON_VMA(address == -EFAULT, vma); 368 pgd = pgd_offset(vma->vm_mm, address); 369 if (!pgd_present(*pgd)) 370 return 0; 371 p4d = p4d_offset(pgd, address); 372 if (!p4d_present(*p4d)) 373 return 0; 374 pud = pud_offset(p4d, address); 375 if (!pud_present(*pud)) 376 return 0; 377 if (pud_devmap(*pud)) 378 return PUD_SHIFT; 379 pmd = pmd_offset(pud, address); 380 if (!pmd_present(*pmd)) 381 return 0; 382 if (pmd_devmap(*pmd)) 383 return PMD_SHIFT; 384 pte = pte_offset_map(pmd, address); 385 if (pte_present(*pte) && pte_devmap(*pte)) 386 ret = PAGE_SHIFT; 387 pte_unmap(pte); 388 return ret; 389 } 390 391 /* 392 * Failure handling: if we can't find or can't kill a process there's 393 * not much we can do. We just print a message and ignore otherwise. 394 */ 395 396 #define FSDAX_INVALID_PGOFF ULONG_MAX 397 398 /* 399 * Schedule a process for later kill. 400 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 401 * 402 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 403 * filesystem with a memory failure handler has claimed the 404 * memory_failure event. In all other cases, page->index and 405 * page->mapping are sufficient for mapping the page back to its 406 * corresponding user virtual address. 407 */ 408 static void add_to_kill(struct task_struct *tsk, struct page *p, 409 pgoff_t fsdax_pgoff, struct vm_area_struct *vma, 410 struct list_head *to_kill) 411 { 412 struct to_kill *tk; 413 414 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 415 if (!tk) { 416 pr_err("Out of memory while machine check handling\n"); 417 return; 418 } 419 420 tk->addr = page_address_in_vma(p, vma); 421 if (is_zone_device_page(p)) { 422 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 423 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 424 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 425 } else 426 tk->size_shift = page_shift(compound_head(p)); 427 428 /* 429 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 430 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 431 * so "tk->size_shift == 0" effectively checks no mapping on 432 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 433 * to a process' address space, it's possible not all N VMAs 434 * contain mappings for the page, but at least one VMA does. 435 * Only deliver SIGBUS with payload derived from the VMA that 436 * has a mapping for the page. 437 */ 438 if (tk->addr == -EFAULT) { 439 pr_info("Unable to find user space address %lx in %s\n", 440 page_to_pfn(p), tsk->comm); 441 } else if (tk->size_shift == 0) { 442 kfree(tk); 443 return; 444 } 445 446 get_task_struct(tsk); 447 tk->tsk = tsk; 448 list_add_tail(&tk->nd, to_kill); 449 } 450 451 /* 452 * Kill the processes that have been collected earlier. 453 * 454 * Only do anything when FORCEKILL is set, otherwise just free the 455 * list (this is used for clean pages which do not need killing) 456 * Also when FAIL is set do a force kill because something went 457 * wrong earlier. 458 */ 459 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 460 unsigned long pfn, int flags) 461 { 462 struct to_kill *tk, *next; 463 464 list_for_each_entry_safe(tk, next, to_kill, nd) { 465 if (forcekill) { 466 /* 467 * In case something went wrong with munmapping 468 * make sure the process doesn't catch the 469 * signal and then access the memory. Just kill it. 470 */ 471 if (fail || tk->addr == -EFAULT) { 472 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 473 pfn, tk->tsk->comm, tk->tsk->pid); 474 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 475 tk->tsk, PIDTYPE_PID); 476 } 477 478 /* 479 * In theory the process could have mapped 480 * something else on the address in-between. We could 481 * check for that, but we need to tell the 482 * process anyways. 483 */ 484 else if (kill_proc(tk, pfn, flags) < 0) 485 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 486 pfn, tk->tsk->comm, tk->tsk->pid); 487 } 488 list_del(&tk->nd); 489 put_task_struct(tk->tsk); 490 kfree(tk); 491 } 492 } 493 494 /* 495 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 496 * on behalf of the thread group. Return task_struct of the (first found) 497 * dedicated thread if found, and return NULL otherwise. 498 * 499 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 500 * have to call rcu_read_lock/unlock() in this function. 501 */ 502 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 503 { 504 struct task_struct *t; 505 506 for_each_thread(tsk, t) { 507 if (t->flags & PF_MCE_PROCESS) { 508 if (t->flags & PF_MCE_EARLY) 509 return t; 510 } else { 511 if (sysctl_memory_failure_early_kill) 512 return t; 513 } 514 } 515 return NULL; 516 } 517 518 /* 519 * Determine whether a given process is "early kill" process which expects 520 * to be signaled when some page under the process is hwpoisoned. 521 * Return task_struct of the dedicated thread (main thread unless explicitly 522 * specified) if the process is "early kill" and otherwise returns NULL. 523 * 524 * Note that the above is true for Action Optional case. For Action Required 525 * case, it's only meaningful to the current thread which need to be signaled 526 * with SIGBUS, this error is Action Optional for other non current 527 * processes sharing the same error page,if the process is "early kill", the 528 * task_struct of the dedicated thread will also be returned. 529 */ 530 static struct task_struct *task_early_kill(struct task_struct *tsk, 531 int force_early) 532 { 533 if (!tsk->mm) 534 return NULL; 535 /* 536 * Comparing ->mm here because current task might represent 537 * a subthread, while tsk always points to the main thread. 538 */ 539 if (force_early && tsk->mm == current->mm) 540 return current; 541 542 return find_early_kill_thread(tsk); 543 } 544 545 /* 546 * Collect processes when the error hit an anonymous page. 547 */ 548 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 549 int force_early) 550 { 551 struct folio *folio = page_folio(page); 552 struct vm_area_struct *vma; 553 struct task_struct *tsk; 554 struct anon_vma *av; 555 pgoff_t pgoff; 556 557 av = folio_lock_anon_vma_read(folio, NULL); 558 if (av == NULL) /* Not actually mapped anymore */ 559 return; 560 561 pgoff = page_to_pgoff(page); 562 read_lock(&tasklist_lock); 563 for_each_process (tsk) { 564 struct anon_vma_chain *vmac; 565 struct task_struct *t = task_early_kill(tsk, force_early); 566 567 if (!t) 568 continue; 569 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 570 pgoff, pgoff) { 571 vma = vmac->vma; 572 if (vma->vm_mm != t->mm) 573 continue; 574 if (!page_mapped_in_vma(page, vma)) 575 continue; 576 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill); 577 } 578 } 579 read_unlock(&tasklist_lock); 580 anon_vma_unlock_read(av); 581 } 582 583 /* 584 * Collect processes when the error hit a file mapped page. 585 */ 586 static void collect_procs_file(struct page *page, struct list_head *to_kill, 587 int force_early) 588 { 589 struct vm_area_struct *vma; 590 struct task_struct *tsk; 591 struct address_space *mapping = page->mapping; 592 pgoff_t pgoff; 593 594 i_mmap_lock_read(mapping); 595 read_lock(&tasklist_lock); 596 pgoff = page_to_pgoff(page); 597 for_each_process(tsk) { 598 struct task_struct *t = task_early_kill(tsk, force_early); 599 600 if (!t) 601 continue; 602 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 603 pgoff) { 604 /* 605 * Send early kill signal to tasks where a vma covers 606 * the page but the corrupted page is not necessarily 607 * mapped it in its pte. 608 * Assume applications who requested early kill want 609 * to be informed of all such data corruptions. 610 */ 611 if (vma->vm_mm == t->mm) 612 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, 613 to_kill); 614 } 615 } 616 read_unlock(&tasklist_lock); 617 i_mmap_unlock_read(mapping); 618 } 619 620 #ifdef CONFIG_FS_DAX 621 /* 622 * Collect processes when the error hit a fsdax page. 623 */ 624 static void collect_procs_fsdax(struct page *page, 625 struct address_space *mapping, pgoff_t pgoff, 626 struct list_head *to_kill) 627 { 628 struct vm_area_struct *vma; 629 struct task_struct *tsk; 630 631 i_mmap_lock_read(mapping); 632 read_lock(&tasklist_lock); 633 for_each_process(tsk) { 634 struct task_struct *t = task_early_kill(tsk, true); 635 636 if (!t) 637 continue; 638 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 639 if (vma->vm_mm == t->mm) 640 add_to_kill(t, page, pgoff, vma, to_kill); 641 } 642 } 643 read_unlock(&tasklist_lock); 644 i_mmap_unlock_read(mapping); 645 } 646 #endif /* CONFIG_FS_DAX */ 647 648 /* 649 * Collect the processes who have the corrupted page mapped to kill. 650 */ 651 static void collect_procs(struct page *page, struct list_head *tokill, 652 int force_early) 653 { 654 if (!page->mapping) 655 return; 656 657 if (PageAnon(page)) 658 collect_procs_anon(page, tokill, force_early); 659 else 660 collect_procs_file(page, tokill, force_early); 661 } 662 663 struct hwp_walk { 664 struct to_kill tk; 665 unsigned long pfn; 666 int flags; 667 }; 668 669 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 670 { 671 tk->addr = addr; 672 tk->size_shift = shift; 673 } 674 675 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 676 unsigned long poisoned_pfn, struct to_kill *tk) 677 { 678 unsigned long pfn = 0; 679 680 if (pte_present(pte)) { 681 pfn = pte_pfn(pte); 682 } else { 683 swp_entry_t swp = pte_to_swp_entry(pte); 684 685 if (is_hwpoison_entry(swp)) 686 pfn = swp_offset_pfn(swp); 687 } 688 689 if (!pfn || pfn != poisoned_pfn) 690 return 0; 691 692 set_to_kill(tk, addr, shift); 693 return 1; 694 } 695 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 698 struct hwp_walk *hwp) 699 { 700 pmd_t pmd = *pmdp; 701 unsigned long pfn; 702 unsigned long hwpoison_vaddr; 703 704 if (!pmd_present(pmd)) 705 return 0; 706 pfn = pmd_pfn(pmd); 707 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 708 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 709 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 710 return 1; 711 } 712 return 0; 713 } 714 #else 715 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 716 struct hwp_walk *hwp) 717 { 718 return 0; 719 } 720 #endif 721 722 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 723 unsigned long end, struct mm_walk *walk) 724 { 725 struct hwp_walk *hwp = walk->private; 726 int ret = 0; 727 pte_t *ptep, *mapped_pte; 728 spinlock_t *ptl; 729 730 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 731 if (ptl) { 732 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 733 spin_unlock(ptl); 734 goto out; 735 } 736 737 if (pmd_trans_unstable(pmdp)) 738 goto out; 739 740 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 741 addr, &ptl); 742 for (; addr != end; ptep++, addr += PAGE_SIZE) { 743 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 744 hwp->pfn, &hwp->tk); 745 if (ret == 1) 746 break; 747 } 748 pte_unmap_unlock(mapped_pte, ptl); 749 out: 750 cond_resched(); 751 return ret; 752 } 753 754 #ifdef CONFIG_HUGETLB_PAGE 755 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 756 unsigned long addr, unsigned long end, 757 struct mm_walk *walk) 758 { 759 struct hwp_walk *hwp = walk->private; 760 pte_t pte = huge_ptep_get(ptep); 761 struct hstate *h = hstate_vma(walk->vma); 762 763 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 764 hwp->pfn, &hwp->tk); 765 } 766 #else 767 #define hwpoison_hugetlb_range NULL 768 #endif 769 770 static const struct mm_walk_ops hwp_walk_ops = { 771 .pmd_entry = hwpoison_pte_range, 772 .hugetlb_entry = hwpoison_hugetlb_range, 773 }; 774 775 /* 776 * Sends SIGBUS to the current process with error info. 777 * 778 * This function is intended to handle "Action Required" MCEs on already 779 * hardware poisoned pages. They could happen, for example, when 780 * memory_failure() failed to unmap the error page at the first call, or 781 * when multiple local machine checks happened on different CPUs. 782 * 783 * MCE handler currently has no easy access to the error virtual address, 784 * so this function walks page table to find it. The returned virtual address 785 * is proper in most cases, but it could be wrong when the application 786 * process has multiple entries mapping the error page. 787 */ 788 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 789 int flags) 790 { 791 int ret; 792 struct hwp_walk priv = { 793 .pfn = pfn, 794 }; 795 priv.tk.tsk = p; 796 797 if (!p->mm) 798 return -EFAULT; 799 800 mmap_read_lock(p->mm); 801 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 802 (void *)&priv); 803 if (ret == 1 && priv.tk.addr) 804 kill_proc(&priv.tk, pfn, flags); 805 else 806 ret = 0; 807 mmap_read_unlock(p->mm); 808 return ret > 0 ? -EHWPOISON : -EFAULT; 809 } 810 811 static const char *action_name[] = { 812 [MF_IGNORED] = "Ignored", 813 [MF_FAILED] = "Failed", 814 [MF_DELAYED] = "Delayed", 815 [MF_RECOVERED] = "Recovered", 816 }; 817 818 static const char * const action_page_types[] = { 819 [MF_MSG_KERNEL] = "reserved kernel page", 820 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 821 [MF_MSG_SLAB] = "kernel slab page", 822 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 823 [MF_MSG_HUGE] = "huge page", 824 [MF_MSG_FREE_HUGE] = "free huge page", 825 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 826 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 827 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 828 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 829 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 830 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 831 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 832 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 833 [MF_MSG_CLEAN_LRU] = "clean LRU page", 834 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 835 [MF_MSG_BUDDY] = "free buddy page", 836 [MF_MSG_DAX] = "dax page", 837 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 838 [MF_MSG_UNKNOWN] = "unknown page", 839 }; 840 841 /* 842 * XXX: It is possible that a page is isolated from LRU cache, 843 * and then kept in swap cache or failed to remove from page cache. 844 * The page count will stop it from being freed by unpoison. 845 * Stress tests should be aware of this memory leak problem. 846 */ 847 static int delete_from_lru_cache(struct page *p) 848 { 849 if (isolate_lru_page(p)) { 850 /* 851 * Clear sensible page flags, so that the buddy system won't 852 * complain when the page is unpoison-and-freed. 853 */ 854 ClearPageActive(p); 855 ClearPageUnevictable(p); 856 857 /* 858 * Poisoned page might never drop its ref count to 0 so we have 859 * to uncharge it manually from its memcg. 860 */ 861 mem_cgroup_uncharge(page_folio(p)); 862 863 /* 864 * drop the page count elevated by isolate_lru_page() 865 */ 866 put_page(p); 867 return 0; 868 } 869 return -EIO; 870 } 871 872 static int truncate_error_page(struct page *p, unsigned long pfn, 873 struct address_space *mapping) 874 { 875 int ret = MF_FAILED; 876 877 if (mapping->a_ops->error_remove_page) { 878 struct folio *folio = page_folio(p); 879 int err = mapping->a_ops->error_remove_page(mapping, p); 880 881 if (err != 0) { 882 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 883 } else if (folio_has_private(folio) && 884 !filemap_release_folio(folio, GFP_NOIO)) { 885 pr_info("%#lx: failed to release buffers\n", pfn); 886 } else { 887 ret = MF_RECOVERED; 888 } 889 } else { 890 /* 891 * If the file system doesn't support it just invalidate 892 * This fails on dirty or anything with private pages 893 */ 894 if (invalidate_inode_page(p)) 895 ret = MF_RECOVERED; 896 else 897 pr_info("%#lx: Failed to invalidate\n", pfn); 898 } 899 900 return ret; 901 } 902 903 struct page_state { 904 unsigned long mask; 905 unsigned long res; 906 enum mf_action_page_type type; 907 908 /* Callback ->action() has to unlock the relevant page inside it. */ 909 int (*action)(struct page_state *ps, struct page *p); 910 }; 911 912 /* 913 * Return true if page is still referenced by others, otherwise return 914 * false. 915 * 916 * The extra_pins is true when one extra refcount is expected. 917 */ 918 static bool has_extra_refcount(struct page_state *ps, struct page *p, 919 bool extra_pins) 920 { 921 int count = page_count(p) - 1; 922 923 if (extra_pins) 924 count -= 1; 925 926 if (count > 0) { 927 pr_err("%#lx: %s still referenced by %d users\n", 928 page_to_pfn(p), action_page_types[ps->type], count); 929 return true; 930 } 931 932 return false; 933 } 934 935 /* 936 * Error hit kernel page. 937 * Do nothing, try to be lucky and not touch this instead. For a few cases we 938 * could be more sophisticated. 939 */ 940 static int me_kernel(struct page_state *ps, struct page *p) 941 { 942 unlock_page(p); 943 return MF_IGNORED; 944 } 945 946 /* 947 * Page in unknown state. Do nothing. 948 */ 949 static int me_unknown(struct page_state *ps, struct page *p) 950 { 951 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 952 unlock_page(p); 953 return MF_FAILED; 954 } 955 956 /* 957 * Clean (or cleaned) page cache page. 958 */ 959 static int me_pagecache_clean(struct page_state *ps, struct page *p) 960 { 961 int ret; 962 struct address_space *mapping; 963 bool extra_pins; 964 965 delete_from_lru_cache(p); 966 967 /* 968 * For anonymous pages we're done the only reference left 969 * should be the one m_f() holds. 970 */ 971 if (PageAnon(p)) { 972 ret = MF_RECOVERED; 973 goto out; 974 } 975 976 /* 977 * Now truncate the page in the page cache. This is really 978 * more like a "temporary hole punch" 979 * Don't do this for block devices when someone else 980 * has a reference, because it could be file system metadata 981 * and that's not safe to truncate. 982 */ 983 mapping = page_mapping(p); 984 if (!mapping) { 985 /* 986 * Page has been teared down in the meanwhile 987 */ 988 ret = MF_FAILED; 989 goto out; 990 } 991 992 /* 993 * The shmem page is kept in page cache instead of truncating 994 * so is expected to have an extra refcount after error-handling. 995 */ 996 extra_pins = shmem_mapping(mapping); 997 998 /* 999 * Truncation is a bit tricky. Enable it per file system for now. 1000 * 1001 * Open: to take i_rwsem or not for this? Right now we don't. 1002 */ 1003 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1004 if (has_extra_refcount(ps, p, extra_pins)) 1005 ret = MF_FAILED; 1006 1007 out: 1008 unlock_page(p); 1009 1010 return ret; 1011 } 1012 1013 /* 1014 * Dirty pagecache page 1015 * Issues: when the error hit a hole page the error is not properly 1016 * propagated. 1017 */ 1018 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1019 { 1020 struct address_space *mapping = page_mapping(p); 1021 1022 SetPageError(p); 1023 /* TBD: print more information about the file. */ 1024 if (mapping) { 1025 /* 1026 * IO error will be reported by write(), fsync(), etc. 1027 * who check the mapping. 1028 * This way the application knows that something went 1029 * wrong with its dirty file data. 1030 * 1031 * There's one open issue: 1032 * 1033 * The EIO will be only reported on the next IO 1034 * operation and then cleared through the IO map. 1035 * Normally Linux has two mechanisms to pass IO error 1036 * first through the AS_EIO flag in the address space 1037 * and then through the PageError flag in the page. 1038 * Since we drop pages on memory failure handling the 1039 * only mechanism open to use is through AS_AIO. 1040 * 1041 * This has the disadvantage that it gets cleared on 1042 * the first operation that returns an error, while 1043 * the PageError bit is more sticky and only cleared 1044 * when the page is reread or dropped. If an 1045 * application assumes it will always get error on 1046 * fsync, but does other operations on the fd before 1047 * and the page is dropped between then the error 1048 * will not be properly reported. 1049 * 1050 * This can already happen even without hwpoisoned 1051 * pages: first on metadata IO errors (which only 1052 * report through AS_EIO) or when the page is dropped 1053 * at the wrong time. 1054 * 1055 * So right now we assume that the application DTRT on 1056 * the first EIO, but we're not worse than other parts 1057 * of the kernel. 1058 */ 1059 mapping_set_error(mapping, -EIO); 1060 } 1061 1062 return me_pagecache_clean(ps, p); 1063 } 1064 1065 /* 1066 * Clean and dirty swap cache. 1067 * 1068 * Dirty swap cache page is tricky to handle. The page could live both in page 1069 * cache and swap cache(ie. page is freshly swapped in). So it could be 1070 * referenced concurrently by 2 types of PTEs: 1071 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1072 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1073 * and then 1074 * - clear dirty bit to prevent IO 1075 * - remove from LRU 1076 * - but keep in the swap cache, so that when we return to it on 1077 * a later page fault, we know the application is accessing 1078 * corrupted data and shall be killed (we installed simple 1079 * interception code in do_swap_page to catch it). 1080 * 1081 * Clean swap cache pages can be directly isolated. A later page fault will 1082 * bring in the known good data from disk. 1083 */ 1084 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1085 { 1086 int ret; 1087 bool extra_pins = false; 1088 1089 ClearPageDirty(p); 1090 /* Trigger EIO in shmem: */ 1091 ClearPageUptodate(p); 1092 1093 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1094 unlock_page(p); 1095 1096 if (ret == MF_DELAYED) 1097 extra_pins = true; 1098 1099 if (has_extra_refcount(ps, p, extra_pins)) 1100 ret = MF_FAILED; 1101 1102 return ret; 1103 } 1104 1105 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1106 { 1107 struct folio *folio = page_folio(p); 1108 int ret; 1109 1110 delete_from_swap_cache(folio); 1111 1112 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1113 folio_unlock(folio); 1114 1115 if (has_extra_refcount(ps, p, false)) 1116 ret = MF_FAILED; 1117 1118 return ret; 1119 } 1120 1121 /* 1122 * Huge pages. Needs work. 1123 * Issues: 1124 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1125 * To narrow down kill region to one page, we need to break up pmd. 1126 */ 1127 static int me_huge_page(struct page_state *ps, struct page *p) 1128 { 1129 int res; 1130 struct page *hpage = compound_head(p); 1131 struct address_space *mapping; 1132 bool extra_pins = false; 1133 1134 if (!PageHuge(hpage)) 1135 return MF_DELAYED; 1136 1137 mapping = page_mapping(hpage); 1138 if (mapping) { 1139 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1140 /* The page is kept in page cache. */ 1141 extra_pins = true; 1142 unlock_page(hpage); 1143 } else { 1144 unlock_page(hpage); 1145 /* 1146 * migration entry prevents later access on error hugepage, 1147 * so we can free and dissolve it into buddy to save healthy 1148 * subpages. 1149 */ 1150 put_page(hpage); 1151 if (__page_handle_poison(p) >= 0) { 1152 page_ref_inc(p); 1153 res = MF_RECOVERED; 1154 } else { 1155 res = MF_FAILED; 1156 } 1157 } 1158 1159 if (has_extra_refcount(ps, p, extra_pins)) 1160 res = MF_FAILED; 1161 1162 return res; 1163 } 1164 1165 /* 1166 * Various page states we can handle. 1167 * 1168 * A page state is defined by its current page->flags bits. 1169 * The table matches them in order and calls the right handler. 1170 * 1171 * This is quite tricky because we can access page at any time 1172 * in its live cycle, so all accesses have to be extremely careful. 1173 * 1174 * This is not complete. More states could be added. 1175 * For any missing state don't attempt recovery. 1176 */ 1177 1178 #define dirty (1UL << PG_dirty) 1179 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1180 #define unevict (1UL << PG_unevictable) 1181 #define mlock (1UL << PG_mlocked) 1182 #define lru (1UL << PG_lru) 1183 #define head (1UL << PG_head) 1184 #define slab (1UL << PG_slab) 1185 #define reserved (1UL << PG_reserved) 1186 1187 static struct page_state error_states[] = { 1188 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1189 /* 1190 * free pages are specially detected outside this table: 1191 * PG_buddy pages only make a small fraction of all free pages. 1192 */ 1193 1194 /* 1195 * Could in theory check if slab page is free or if we can drop 1196 * currently unused objects without touching them. But just 1197 * treat it as standard kernel for now. 1198 */ 1199 { slab, slab, MF_MSG_SLAB, me_kernel }, 1200 1201 { head, head, MF_MSG_HUGE, me_huge_page }, 1202 1203 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1204 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1205 1206 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1207 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1208 1209 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1210 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1211 1212 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1213 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1214 1215 /* 1216 * Catchall entry: must be at end. 1217 */ 1218 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1219 }; 1220 1221 #undef dirty 1222 #undef sc 1223 #undef unevict 1224 #undef mlock 1225 #undef lru 1226 #undef head 1227 #undef slab 1228 #undef reserved 1229 1230 static void update_per_node_mf_stats(unsigned long pfn, 1231 enum mf_result result) 1232 { 1233 int nid = MAX_NUMNODES; 1234 struct memory_failure_stats *mf_stats = NULL; 1235 1236 nid = pfn_to_nid(pfn); 1237 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1238 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1239 return; 1240 } 1241 1242 mf_stats = &NODE_DATA(nid)->mf_stats; 1243 switch (result) { 1244 case MF_IGNORED: 1245 ++mf_stats->ignored; 1246 break; 1247 case MF_FAILED: 1248 ++mf_stats->failed; 1249 break; 1250 case MF_DELAYED: 1251 ++mf_stats->delayed; 1252 break; 1253 case MF_RECOVERED: 1254 ++mf_stats->recovered; 1255 break; 1256 default: 1257 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1258 break; 1259 } 1260 ++mf_stats->total; 1261 } 1262 1263 /* 1264 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1265 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1266 */ 1267 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1268 enum mf_result result) 1269 { 1270 trace_memory_failure_event(pfn, type, result); 1271 1272 num_poisoned_pages_inc(pfn); 1273 1274 update_per_node_mf_stats(pfn, result); 1275 1276 pr_err("%#lx: recovery action for %s: %s\n", 1277 pfn, action_page_types[type], action_name[result]); 1278 1279 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1280 } 1281 1282 static int page_action(struct page_state *ps, struct page *p, 1283 unsigned long pfn) 1284 { 1285 int result; 1286 1287 /* page p should be unlocked after returning from ps->action(). */ 1288 result = ps->action(ps, p); 1289 1290 /* Could do more checks here if page looks ok */ 1291 /* 1292 * Could adjust zone counters here to correct for the missing page. 1293 */ 1294 1295 return action_result(pfn, ps->type, result); 1296 } 1297 1298 static inline bool PageHWPoisonTakenOff(struct page *page) 1299 { 1300 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1301 } 1302 1303 void SetPageHWPoisonTakenOff(struct page *page) 1304 { 1305 set_page_private(page, MAGIC_HWPOISON); 1306 } 1307 1308 void ClearPageHWPoisonTakenOff(struct page *page) 1309 { 1310 if (PageHWPoison(page)) 1311 set_page_private(page, 0); 1312 } 1313 1314 /* 1315 * Return true if a page type of a given page is supported by hwpoison 1316 * mechanism (while handling could fail), otherwise false. This function 1317 * does not return true for hugetlb or device memory pages, so it's assumed 1318 * to be called only in the context where we never have such pages. 1319 */ 1320 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1321 { 1322 /* Soft offline could migrate non-LRU movable pages */ 1323 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1324 return true; 1325 1326 return PageLRU(page) || is_free_buddy_page(page); 1327 } 1328 1329 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1330 { 1331 struct folio *folio = page_folio(page); 1332 int ret = 0; 1333 bool hugetlb = false; 1334 1335 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1336 if (hugetlb) 1337 return ret; 1338 1339 /* 1340 * This check prevents from calling folio_try_get() for any 1341 * unsupported type of folio in order to reduce the risk of unexpected 1342 * races caused by taking a folio refcount. 1343 */ 1344 if (!HWPoisonHandlable(&folio->page, flags)) 1345 return -EBUSY; 1346 1347 if (folio_try_get(folio)) { 1348 if (folio == page_folio(page)) 1349 return 1; 1350 1351 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1352 folio_put(folio); 1353 } 1354 1355 return 0; 1356 } 1357 1358 static int get_any_page(struct page *p, unsigned long flags) 1359 { 1360 int ret = 0, pass = 0; 1361 bool count_increased = false; 1362 1363 if (flags & MF_COUNT_INCREASED) 1364 count_increased = true; 1365 1366 try_again: 1367 if (!count_increased) { 1368 ret = __get_hwpoison_page(p, flags); 1369 if (!ret) { 1370 if (page_count(p)) { 1371 /* We raced with an allocation, retry. */ 1372 if (pass++ < 3) 1373 goto try_again; 1374 ret = -EBUSY; 1375 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1376 /* We raced with put_page, retry. */ 1377 if (pass++ < 3) 1378 goto try_again; 1379 ret = -EIO; 1380 } 1381 goto out; 1382 } else if (ret == -EBUSY) { 1383 /* 1384 * We raced with (possibly temporary) unhandlable 1385 * page, retry. 1386 */ 1387 if (pass++ < 3) { 1388 shake_page(p); 1389 goto try_again; 1390 } 1391 ret = -EIO; 1392 goto out; 1393 } 1394 } 1395 1396 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1397 ret = 1; 1398 } else { 1399 /* 1400 * A page we cannot handle. Check whether we can turn 1401 * it into something we can handle. 1402 */ 1403 if (pass++ < 3) { 1404 put_page(p); 1405 shake_page(p); 1406 count_increased = false; 1407 goto try_again; 1408 } 1409 put_page(p); 1410 ret = -EIO; 1411 } 1412 out: 1413 if (ret == -EIO) 1414 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1415 1416 return ret; 1417 } 1418 1419 static int __get_unpoison_page(struct page *page) 1420 { 1421 struct folio *folio = page_folio(page); 1422 int ret = 0; 1423 bool hugetlb = false; 1424 1425 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1426 if (hugetlb) 1427 return ret; 1428 1429 /* 1430 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1431 * but also isolated from buddy freelist, so need to identify the 1432 * state and have to cancel both operations to unpoison. 1433 */ 1434 if (PageHWPoisonTakenOff(page)) 1435 return -EHWPOISON; 1436 1437 return get_page_unless_zero(page) ? 1 : 0; 1438 } 1439 1440 /** 1441 * get_hwpoison_page() - Get refcount for memory error handling 1442 * @p: Raw error page (hit by memory error) 1443 * @flags: Flags controlling behavior of error handling 1444 * 1445 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1446 * error on it, after checking that the error page is in a well-defined state 1447 * (defined as a page-type we can successfully handle the memory error on it, 1448 * such as LRU page and hugetlb page). 1449 * 1450 * Memory error handling could be triggered at any time on any type of page, 1451 * so it's prone to race with typical memory management lifecycle (like 1452 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1453 * extra care for the error page's state (as done in __get_hwpoison_page()), 1454 * and has some retry logic in get_any_page(). 1455 * 1456 * When called from unpoison_memory(), the caller should already ensure that 1457 * the given page has PG_hwpoison. So it's never reused for other page 1458 * allocations, and __get_unpoison_page() never races with them. 1459 * 1460 * Return: 0 on failure, 1461 * 1 on success for in-use pages in a well-defined state, 1462 * -EIO for pages on which we can not handle memory errors, 1463 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1464 * operations like allocation and free, 1465 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1466 */ 1467 static int get_hwpoison_page(struct page *p, unsigned long flags) 1468 { 1469 int ret; 1470 1471 zone_pcp_disable(page_zone(p)); 1472 if (flags & MF_UNPOISON) 1473 ret = __get_unpoison_page(p); 1474 else 1475 ret = get_any_page(p, flags); 1476 zone_pcp_enable(page_zone(p)); 1477 1478 return ret; 1479 } 1480 1481 /* 1482 * Do all that is necessary to remove user space mappings. Unmap 1483 * the pages and send SIGBUS to the processes if the data was dirty. 1484 */ 1485 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1486 int flags, struct page *hpage) 1487 { 1488 struct folio *folio = page_folio(hpage); 1489 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1490 struct address_space *mapping; 1491 LIST_HEAD(tokill); 1492 bool unmap_success; 1493 int forcekill; 1494 bool mlocked = PageMlocked(hpage); 1495 1496 /* 1497 * Here we are interested only in user-mapped pages, so skip any 1498 * other types of pages. 1499 */ 1500 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1501 return true; 1502 if (!(PageLRU(hpage) || PageHuge(p))) 1503 return true; 1504 1505 /* 1506 * This check implies we don't kill processes if their pages 1507 * are in the swap cache early. Those are always late kills. 1508 */ 1509 if (!page_mapped(hpage)) 1510 return true; 1511 1512 if (PageKsm(p)) { 1513 pr_err("%#lx: can't handle KSM pages.\n", pfn); 1514 return false; 1515 } 1516 1517 if (PageSwapCache(p)) { 1518 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1519 ttu &= ~TTU_HWPOISON; 1520 } 1521 1522 /* 1523 * Propagate the dirty bit from PTEs to struct page first, because we 1524 * need this to decide if we should kill or just drop the page. 1525 * XXX: the dirty test could be racy: set_page_dirty() may not always 1526 * be called inside page lock (it's recommended but not enforced). 1527 */ 1528 mapping = page_mapping(hpage); 1529 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1530 mapping_can_writeback(mapping)) { 1531 if (page_mkclean(hpage)) { 1532 SetPageDirty(hpage); 1533 } else { 1534 ttu &= ~TTU_HWPOISON; 1535 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1536 pfn); 1537 } 1538 } 1539 1540 /* 1541 * First collect all the processes that have the page 1542 * mapped in dirty form. This has to be done before try_to_unmap, 1543 * because ttu takes the rmap data structures down. 1544 */ 1545 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1546 1547 if (PageHuge(hpage) && !PageAnon(hpage)) { 1548 /* 1549 * For hugetlb pages in shared mappings, try_to_unmap 1550 * could potentially call huge_pmd_unshare. Because of 1551 * this, take semaphore in write mode here and set 1552 * TTU_RMAP_LOCKED to indicate we have taken the lock 1553 * at this higher level. 1554 */ 1555 mapping = hugetlb_page_mapping_lock_write(hpage); 1556 if (mapping) { 1557 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1558 i_mmap_unlock_write(mapping); 1559 } else 1560 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1561 } else { 1562 try_to_unmap(folio, ttu); 1563 } 1564 1565 unmap_success = !page_mapped(hpage); 1566 if (!unmap_success) 1567 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1568 pfn, page_mapcount(hpage)); 1569 1570 /* 1571 * try_to_unmap() might put mlocked page in lru cache, so call 1572 * shake_page() again to ensure that it's flushed. 1573 */ 1574 if (mlocked) 1575 shake_page(hpage); 1576 1577 /* 1578 * Now that the dirty bit has been propagated to the 1579 * struct page and all unmaps done we can decide if 1580 * killing is needed or not. Only kill when the page 1581 * was dirty or the process is not restartable, 1582 * otherwise the tokill list is merely 1583 * freed. When there was a problem unmapping earlier 1584 * use a more force-full uncatchable kill to prevent 1585 * any accesses to the poisoned memory. 1586 */ 1587 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1588 !unmap_success; 1589 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1590 1591 return unmap_success; 1592 } 1593 1594 static int identify_page_state(unsigned long pfn, struct page *p, 1595 unsigned long page_flags) 1596 { 1597 struct page_state *ps; 1598 1599 /* 1600 * The first check uses the current page flags which may not have any 1601 * relevant information. The second check with the saved page flags is 1602 * carried out only if the first check can't determine the page status. 1603 */ 1604 for (ps = error_states;; ps++) 1605 if ((p->flags & ps->mask) == ps->res) 1606 break; 1607 1608 page_flags |= (p->flags & (1UL << PG_dirty)); 1609 1610 if (!ps->mask) 1611 for (ps = error_states;; ps++) 1612 if ((page_flags & ps->mask) == ps->res) 1613 break; 1614 return page_action(ps, p, pfn); 1615 } 1616 1617 static int try_to_split_thp_page(struct page *page) 1618 { 1619 int ret; 1620 1621 lock_page(page); 1622 ret = split_huge_page(page); 1623 unlock_page(page); 1624 1625 if (unlikely(ret)) 1626 put_page(page); 1627 1628 return ret; 1629 } 1630 1631 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1632 struct address_space *mapping, pgoff_t index, int flags) 1633 { 1634 struct to_kill *tk; 1635 unsigned long size = 0; 1636 1637 list_for_each_entry(tk, to_kill, nd) 1638 if (tk->size_shift) 1639 size = max(size, 1UL << tk->size_shift); 1640 1641 if (size) { 1642 /* 1643 * Unmap the largest mapping to avoid breaking up device-dax 1644 * mappings which are constant size. The actual size of the 1645 * mapping being torn down is communicated in siginfo, see 1646 * kill_proc() 1647 */ 1648 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1649 1650 unmap_mapping_range(mapping, start, size, 0); 1651 } 1652 1653 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1654 } 1655 1656 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1657 struct dev_pagemap *pgmap) 1658 { 1659 struct page *page = pfn_to_page(pfn); 1660 LIST_HEAD(to_kill); 1661 dax_entry_t cookie; 1662 int rc = 0; 1663 1664 /* 1665 * Pages instantiated by device-dax (not filesystem-dax) 1666 * may be compound pages. 1667 */ 1668 page = compound_head(page); 1669 1670 /* 1671 * Prevent the inode from being freed while we are interrogating 1672 * the address_space, typically this would be handled by 1673 * lock_page(), but dax pages do not use the page lock. This 1674 * also prevents changes to the mapping of this pfn until 1675 * poison signaling is complete. 1676 */ 1677 cookie = dax_lock_page(page); 1678 if (!cookie) 1679 return -EBUSY; 1680 1681 if (hwpoison_filter(page)) { 1682 rc = -EOPNOTSUPP; 1683 goto unlock; 1684 } 1685 1686 switch (pgmap->type) { 1687 case MEMORY_DEVICE_PRIVATE: 1688 case MEMORY_DEVICE_COHERENT: 1689 /* 1690 * TODO: Handle device pages which may need coordination 1691 * with device-side memory. 1692 */ 1693 rc = -ENXIO; 1694 goto unlock; 1695 default: 1696 break; 1697 } 1698 1699 /* 1700 * Use this flag as an indication that the dax page has been 1701 * remapped UC to prevent speculative consumption of poison. 1702 */ 1703 SetPageHWPoison(page); 1704 1705 /* 1706 * Unlike System-RAM there is no possibility to swap in a 1707 * different physical page at a given virtual address, so all 1708 * userspace consumption of ZONE_DEVICE memory necessitates 1709 * SIGBUS (i.e. MF_MUST_KILL) 1710 */ 1711 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1712 collect_procs(page, &to_kill, true); 1713 1714 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1715 unlock: 1716 dax_unlock_page(page, cookie); 1717 return rc; 1718 } 1719 1720 #ifdef CONFIG_FS_DAX 1721 /** 1722 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1723 * @mapping: address_space of the file in use 1724 * @index: start pgoff of the range within the file 1725 * @count: length of the range, in unit of PAGE_SIZE 1726 * @mf_flags: memory failure flags 1727 */ 1728 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1729 unsigned long count, int mf_flags) 1730 { 1731 LIST_HEAD(to_kill); 1732 dax_entry_t cookie; 1733 struct page *page; 1734 size_t end = index + count; 1735 1736 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1737 1738 for (; index < end; index++) { 1739 page = NULL; 1740 cookie = dax_lock_mapping_entry(mapping, index, &page); 1741 if (!cookie) 1742 return -EBUSY; 1743 if (!page) 1744 goto unlock; 1745 1746 SetPageHWPoison(page); 1747 1748 collect_procs_fsdax(page, mapping, index, &to_kill); 1749 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1750 index, mf_flags); 1751 unlock: 1752 dax_unlock_mapping_entry(mapping, index, cookie); 1753 } 1754 return 0; 1755 } 1756 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1757 #endif /* CONFIG_FS_DAX */ 1758 1759 #ifdef CONFIG_HUGETLB_PAGE 1760 /* 1761 * Struct raw_hwp_page represents information about "raw error page", 1762 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1763 */ 1764 struct raw_hwp_page { 1765 struct llist_node node; 1766 struct page *page; 1767 }; 1768 1769 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1770 { 1771 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1772 } 1773 1774 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1775 { 1776 struct llist_head *head; 1777 struct llist_node *t, *tnode; 1778 unsigned long count = 0; 1779 1780 head = raw_hwp_list_head(folio); 1781 llist_for_each_safe(tnode, t, head->first) { 1782 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1783 1784 if (move_flag) 1785 SetPageHWPoison(p->page); 1786 else 1787 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1788 kfree(p); 1789 count++; 1790 } 1791 llist_del_all(head); 1792 return count; 1793 } 1794 1795 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1796 { 1797 struct llist_head *head; 1798 struct raw_hwp_page *raw_hwp; 1799 struct llist_node *t, *tnode; 1800 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1801 1802 /* 1803 * Once the hwpoison hugepage has lost reliable raw error info, 1804 * there is little meaning to keep additional error info precisely, 1805 * so skip to add additional raw error info. 1806 */ 1807 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1808 return -EHWPOISON; 1809 head = raw_hwp_list_head(folio); 1810 llist_for_each_safe(tnode, t, head->first) { 1811 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1812 1813 if (p->page == page) 1814 return -EHWPOISON; 1815 } 1816 1817 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1818 if (raw_hwp) { 1819 raw_hwp->page = page; 1820 llist_add(&raw_hwp->node, head); 1821 /* the first error event will be counted in action_result(). */ 1822 if (ret) 1823 num_poisoned_pages_inc(page_to_pfn(page)); 1824 } else { 1825 /* 1826 * Failed to save raw error info. We no longer trace all 1827 * hwpoisoned subpages, and we need refuse to free/dissolve 1828 * this hwpoisoned hugepage. 1829 */ 1830 folio_set_hugetlb_raw_hwp_unreliable(folio); 1831 /* 1832 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1833 * used any more, so free it. 1834 */ 1835 __folio_free_raw_hwp(folio, false); 1836 } 1837 return ret; 1838 } 1839 1840 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1841 { 1842 /* 1843 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1844 * pages for tail pages are required but they don't exist. 1845 */ 1846 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1847 return 0; 1848 1849 /* 1850 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1851 * definition. 1852 */ 1853 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1854 return 0; 1855 1856 return __folio_free_raw_hwp(folio, move_flag); 1857 } 1858 1859 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1860 { 1861 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1862 return; 1863 folio_clear_hwpoison(folio); 1864 folio_free_raw_hwp(folio, true); 1865 } 1866 1867 /* 1868 * Called from hugetlb code with hugetlb_lock held. 1869 * 1870 * Return values: 1871 * 0 - free hugepage 1872 * 1 - in-use hugepage 1873 * 2 - not a hugepage 1874 * -EBUSY - the hugepage is busy (try to retry) 1875 * -EHWPOISON - the hugepage is already hwpoisoned 1876 */ 1877 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1878 bool *migratable_cleared) 1879 { 1880 struct page *page = pfn_to_page(pfn); 1881 struct folio *folio = page_folio(page); 1882 int ret = 2; /* fallback to normal page handling */ 1883 bool count_increased = false; 1884 1885 if (!folio_test_hugetlb(folio)) 1886 goto out; 1887 1888 if (flags & MF_COUNT_INCREASED) { 1889 ret = 1; 1890 count_increased = true; 1891 } else if (folio_test_hugetlb_freed(folio)) { 1892 ret = 0; 1893 } else if (folio_test_hugetlb_migratable(folio)) { 1894 ret = folio_try_get(folio); 1895 if (ret) 1896 count_increased = true; 1897 } else { 1898 ret = -EBUSY; 1899 if (!(flags & MF_NO_RETRY)) 1900 goto out; 1901 } 1902 1903 if (folio_set_hugetlb_hwpoison(folio, page)) { 1904 ret = -EHWPOISON; 1905 goto out; 1906 } 1907 1908 /* 1909 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1910 * from being migrated by memory hotremove. 1911 */ 1912 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1913 folio_clear_hugetlb_migratable(folio); 1914 *migratable_cleared = true; 1915 } 1916 1917 return ret; 1918 out: 1919 if (count_increased) 1920 folio_put(folio); 1921 return ret; 1922 } 1923 1924 /* 1925 * Taking refcount of hugetlb pages needs extra care about race conditions 1926 * with basic operations like hugepage allocation/free/demotion. 1927 * So some of prechecks for hwpoison (pinning, and testing/setting 1928 * PageHWPoison) should be done in single hugetlb_lock range. 1929 */ 1930 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1931 { 1932 int res; 1933 struct page *p = pfn_to_page(pfn); 1934 struct folio *folio; 1935 unsigned long page_flags; 1936 bool migratable_cleared = false; 1937 1938 *hugetlb = 1; 1939 retry: 1940 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 1941 if (res == 2) { /* fallback to normal page handling */ 1942 *hugetlb = 0; 1943 return 0; 1944 } else if (res == -EHWPOISON) { 1945 pr_err("%#lx: already hardware poisoned\n", pfn); 1946 if (flags & MF_ACTION_REQUIRED) { 1947 folio = page_folio(p); 1948 res = kill_accessing_process(current, folio_pfn(folio), flags); 1949 } 1950 return res; 1951 } else if (res == -EBUSY) { 1952 if (!(flags & MF_NO_RETRY)) { 1953 flags |= MF_NO_RETRY; 1954 goto retry; 1955 } 1956 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1957 } 1958 1959 folio = page_folio(p); 1960 folio_lock(folio); 1961 1962 if (hwpoison_filter(p)) { 1963 folio_clear_hugetlb_hwpoison(folio); 1964 if (migratable_cleared) 1965 folio_set_hugetlb_migratable(folio); 1966 folio_unlock(folio); 1967 if (res == 1) 1968 folio_put(folio); 1969 return -EOPNOTSUPP; 1970 } 1971 1972 /* 1973 * Handling free hugepage. The possible race with hugepage allocation 1974 * or demotion can be prevented by PageHWPoison flag. 1975 */ 1976 if (res == 0) { 1977 folio_unlock(folio); 1978 if (__page_handle_poison(p) >= 0) { 1979 page_ref_inc(p); 1980 res = MF_RECOVERED; 1981 } else { 1982 res = MF_FAILED; 1983 } 1984 return action_result(pfn, MF_MSG_FREE_HUGE, res); 1985 } 1986 1987 page_flags = folio->flags; 1988 1989 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 1990 folio_unlock(folio); 1991 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1992 } 1993 1994 return identify_page_state(pfn, p, page_flags); 1995 } 1996 1997 #else 1998 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1999 { 2000 return 0; 2001 } 2002 2003 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2004 { 2005 return 0; 2006 } 2007 #endif /* CONFIG_HUGETLB_PAGE */ 2008 2009 /* Drop the extra refcount in case we come from madvise() */ 2010 static void put_ref_page(unsigned long pfn, int flags) 2011 { 2012 struct page *page; 2013 2014 if (!(flags & MF_COUNT_INCREASED)) 2015 return; 2016 2017 page = pfn_to_page(pfn); 2018 if (page) 2019 put_page(page); 2020 } 2021 2022 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2023 struct dev_pagemap *pgmap) 2024 { 2025 int rc = -ENXIO; 2026 2027 put_ref_page(pfn, flags); 2028 2029 /* device metadata space is not recoverable */ 2030 if (!pgmap_pfn_valid(pgmap, pfn)) 2031 goto out; 2032 2033 /* 2034 * Call driver's implementation to handle the memory failure, otherwise 2035 * fall back to generic handler. 2036 */ 2037 if (pgmap_has_memory_failure(pgmap)) { 2038 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2039 /* 2040 * Fall back to generic handler too if operation is not 2041 * supported inside the driver/device/filesystem. 2042 */ 2043 if (rc != -EOPNOTSUPP) 2044 goto out; 2045 } 2046 2047 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2048 out: 2049 /* drop pgmap ref acquired in caller */ 2050 put_dev_pagemap(pgmap); 2051 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2052 return rc; 2053 } 2054 2055 static DEFINE_MUTEX(mf_mutex); 2056 2057 /** 2058 * memory_failure - Handle memory failure of a page. 2059 * @pfn: Page Number of the corrupted page 2060 * @flags: fine tune action taken 2061 * 2062 * This function is called by the low level machine check code 2063 * of an architecture when it detects hardware memory corruption 2064 * of a page. It tries its best to recover, which includes 2065 * dropping pages, killing processes etc. 2066 * 2067 * The function is primarily of use for corruptions that 2068 * happen outside the current execution context (e.g. when 2069 * detected by a background scrubber) 2070 * 2071 * Must run in process context (e.g. a work queue) with interrupts 2072 * enabled and no spinlocks hold. 2073 * 2074 * Return: 0 for successfully handled the memory error, 2075 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2076 * < 0(except -EOPNOTSUPP) on failure. 2077 */ 2078 int memory_failure(unsigned long pfn, int flags) 2079 { 2080 struct page *p; 2081 struct page *hpage; 2082 struct dev_pagemap *pgmap; 2083 int res = 0; 2084 unsigned long page_flags; 2085 bool retry = true; 2086 int hugetlb = 0; 2087 2088 if (!sysctl_memory_failure_recovery) 2089 panic("Memory failure on page %lx", pfn); 2090 2091 mutex_lock(&mf_mutex); 2092 2093 if (!(flags & MF_SW_SIMULATED)) 2094 hw_memory_failure = true; 2095 2096 p = pfn_to_online_page(pfn); 2097 if (!p) { 2098 res = arch_memory_failure(pfn, flags); 2099 if (res == 0) 2100 goto unlock_mutex; 2101 2102 if (pfn_valid(pfn)) { 2103 pgmap = get_dev_pagemap(pfn, NULL); 2104 if (pgmap) { 2105 res = memory_failure_dev_pagemap(pfn, flags, 2106 pgmap); 2107 goto unlock_mutex; 2108 } 2109 } 2110 pr_err("%#lx: memory outside kernel control\n", pfn); 2111 res = -ENXIO; 2112 goto unlock_mutex; 2113 } 2114 2115 try_again: 2116 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2117 if (hugetlb) 2118 goto unlock_mutex; 2119 2120 if (TestSetPageHWPoison(p)) { 2121 pr_err("%#lx: already hardware poisoned\n", pfn); 2122 res = -EHWPOISON; 2123 if (flags & MF_ACTION_REQUIRED) 2124 res = kill_accessing_process(current, pfn, flags); 2125 if (flags & MF_COUNT_INCREASED) 2126 put_page(p); 2127 goto unlock_mutex; 2128 } 2129 2130 hpage = compound_head(p); 2131 2132 /* 2133 * We need/can do nothing about count=0 pages. 2134 * 1) it's a free page, and therefore in safe hand: 2135 * check_new_page() will be the gate keeper. 2136 * 2) it's part of a non-compound high order page. 2137 * Implies some kernel user: cannot stop them from 2138 * R/W the page; let's pray that the page has been 2139 * used and will be freed some time later. 2140 * In fact it's dangerous to directly bump up page count from 0, 2141 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2142 */ 2143 if (!(flags & MF_COUNT_INCREASED)) { 2144 res = get_hwpoison_page(p, flags); 2145 if (!res) { 2146 if (is_free_buddy_page(p)) { 2147 if (take_page_off_buddy(p)) { 2148 page_ref_inc(p); 2149 res = MF_RECOVERED; 2150 } else { 2151 /* We lost the race, try again */ 2152 if (retry) { 2153 ClearPageHWPoison(p); 2154 retry = false; 2155 goto try_again; 2156 } 2157 res = MF_FAILED; 2158 } 2159 res = action_result(pfn, MF_MSG_BUDDY, res); 2160 } else { 2161 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2162 } 2163 goto unlock_mutex; 2164 } else if (res < 0) { 2165 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2166 goto unlock_mutex; 2167 } 2168 } 2169 2170 if (PageTransHuge(hpage)) { 2171 /* 2172 * The flag must be set after the refcount is bumped 2173 * otherwise it may race with THP split. 2174 * And the flag can't be set in get_hwpoison_page() since 2175 * it is called by soft offline too and it is just called 2176 * for !MF_COUNT_INCREASE. So here seems to be the best 2177 * place. 2178 * 2179 * Don't need care about the above error handling paths for 2180 * get_hwpoison_page() since they handle either free page 2181 * or unhandlable page. The refcount is bumped iff the 2182 * page is a valid handlable page. 2183 */ 2184 SetPageHasHWPoisoned(hpage); 2185 if (try_to_split_thp_page(p) < 0) { 2186 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2187 goto unlock_mutex; 2188 } 2189 VM_BUG_ON_PAGE(!page_count(p), p); 2190 } 2191 2192 /* 2193 * We ignore non-LRU pages for good reasons. 2194 * - PG_locked is only well defined for LRU pages and a few others 2195 * - to avoid races with __SetPageLocked() 2196 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2197 * The check (unnecessarily) ignores LRU pages being isolated and 2198 * walked by the page reclaim code, however that's not a big loss. 2199 */ 2200 shake_page(p); 2201 2202 lock_page(p); 2203 2204 /* 2205 * We're only intended to deal with the non-Compound page here. 2206 * However, the page could have changed compound pages due to 2207 * race window. If this happens, we could try again to hopefully 2208 * handle the page next round. 2209 */ 2210 if (PageCompound(p)) { 2211 if (retry) { 2212 ClearPageHWPoison(p); 2213 unlock_page(p); 2214 put_page(p); 2215 flags &= ~MF_COUNT_INCREASED; 2216 retry = false; 2217 goto try_again; 2218 } 2219 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2220 goto unlock_page; 2221 } 2222 2223 /* 2224 * We use page flags to determine what action should be taken, but 2225 * the flags can be modified by the error containment action. One 2226 * example is an mlocked page, where PG_mlocked is cleared by 2227 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2228 * correctly, we save a copy of the page flags at this time. 2229 */ 2230 page_flags = p->flags; 2231 2232 if (hwpoison_filter(p)) { 2233 ClearPageHWPoison(p); 2234 unlock_page(p); 2235 put_page(p); 2236 res = -EOPNOTSUPP; 2237 goto unlock_mutex; 2238 } 2239 2240 /* 2241 * __munlock_folio() may clear a writeback page's LRU flag without 2242 * page_lock. We need wait writeback completion for this page or it 2243 * may trigger vfs BUG while evict inode. 2244 */ 2245 if (!PageLRU(p) && !PageWriteback(p)) 2246 goto identify_page_state; 2247 2248 /* 2249 * It's very difficult to mess with pages currently under IO 2250 * and in many cases impossible, so we just avoid it here. 2251 */ 2252 wait_on_page_writeback(p); 2253 2254 /* 2255 * Now take care of user space mappings. 2256 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2257 */ 2258 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2259 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2260 goto unlock_page; 2261 } 2262 2263 /* 2264 * Torn down by someone else? 2265 */ 2266 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2267 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2268 goto unlock_page; 2269 } 2270 2271 identify_page_state: 2272 res = identify_page_state(pfn, p, page_flags); 2273 mutex_unlock(&mf_mutex); 2274 return res; 2275 unlock_page: 2276 unlock_page(p); 2277 unlock_mutex: 2278 mutex_unlock(&mf_mutex); 2279 return res; 2280 } 2281 EXPORT_SYMBOL_GPL(memory_failure); 2282 2283 #define MEMORY_FAILURE_FIFO_ORDER 4 2284 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2285 2286 struct memory_failure_entry { 2287 unsigned long pfn; 2288 int flags; 2289 }; 2290 2291 struct memory_failure_cpu { 2292 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2293 MEMORY_FAILURE_FIFO_SIZE); 2294 spinlock_t lock; 2295 struct work_struct work; 2296 }; 2297 2298 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2299 2300 /** 2301 * memory_failure_queue - Schedule handling memory failure of a page. 2302 * @pfn: Page Number of the corrupted page 2303 * @flags: Flags for memory failure handling 2304 * 2305 * This function is called by the low level hardware error handler 2306 * when it detects hardware memory corruption of a page. It schedules 2307 * the recovering of error page, including dropping pages, killing 2308 * processes etc. 2309 * 2310 * The function is primarily of use for corruptions that 2311 * happen outside the current execution context (e.g. when 2312 * detected by a background scrubber) 2313 * 2314 * Can run in IRQ context. 2315 */ 2316 void memory_failure_queue(unsigned long pfn, int flags) 2317 { 2318 struct memory_failure_cpu *mf_cpu; 2319 unsigned long proc_flags; 2320 struct memory_failure_entry entry = { 2321 .pfn = pfn, 2322 .flags = flags, 2323 }; 2324 2325 mf_cpu = &get_cpu_var(memory_failure_cpu); 2326 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2327 if (kfifo_put(&mf_cpu->fifo, entry)) 2328 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2329 else 2330 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2331 pfn); 2332 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2333 put_cpu_var(memory_failure_cpu); 2334 } 2335 EXPORT_SYMBOL_GPL(memory_failure_queue); 2336 2337 static void memory_failure_work_func(struct work_struct *work) 2338 { 2339 struct memory_failure_cpu *mf_cpu; 2340 struct memory_failure_entry entry = { 0, }; 2341 unsigned long proc_flags; 2342 int gotten; 2343 2344 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2345 for (;;) { 2346 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2347 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2348 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2349 if (!gotten) 2350 break; 2351 if (entry.flags & MF_SOFT_OFFLINE) 2352 soft_offline_page(entry.pfn, entry.flags); 2353 else 2354 memory_failure(entry.pfn, entry.flags); 2355 } 2356 } 2357 2358 /* 2359 * Process memory_failure work queued on the specified CPU. 2360 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2361 */ 2362 void memory_failure_queue_kick(int cpu) 2363 { 2364 struct memory_failure_cpu *mf_cpu; 2365 2366 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2367 cancel_work_sync(&mf_cpu->work); 2368 memory_failure_work_func(&mf_cpu->work); 2369 } 2370 2371 static int __init memory_failure_init(void) 2372 { 2373 struct memory_failure_cpu *mf_cpu; 2374 int cpu; 2375 2376 for_each_possible_cpu(cpu) { 2377 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2378 spin_lock_init(&mf_cpu->lock); 2379 INIT_KFIFO(mf_cpu->fifo); 2380 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2381 } 2382 2383 return 0; 2384 } 2385 core_initcall(memory_failure_init); 2386 2387 #undef pr_fmt 2388 #define pr_fmt(fmt) "" fmt 2389 #define unpoison_pr_info(fmt, pfn, rs) \ 2390 ({ \ 2391 if (__ratelimit(rs)) \ 2392 pr_info(fmt, pfn); \ 2393 }) 2394 2395 /** 2396 * unpoison_memory - Unpoison a previously poisoned page 2397 * @pfn: Page number of the to be unpoisoned page 2398 * 2399 * Software-unpoison a page that has been poisoned by 2400 * memory_failure() earlier. 2401 * 2402 * This is only done on the software-level, so it only works 2403 * for linux injected failures, not real hardware failures 2404 * 2405 * Returns 0 for success, otherwise -errno. 2406 */ 2407 int unpoison_memory(unsigned long pfn) 2408 { 2409 struct folio *folio; 2410 struct page *p; 2411 int ret = -EBUSY; 2412 unsigned long count = 1; 2413 bool huge = false; 2414 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2415 DEFAULT_RATELIMIT_BURST); 2416 2417 if (!pfn_valid(pfn)) 2418 return -ENXIO; 2419 2420 p = pfn_to_page(pfn); 2421 folio = page_folio(p); 2422 2423 mutex_lock(&mf_mutex); 2424 2425 if (hw_memory_failure) { 2426 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2427 pfn, &unpoison_rs); 2428 ret = -EOPNOTSUPP; 2429 goto unlock_mutex; 2430 } 2431 2432 if (!folio_test_hwpoison(folio)) { 2433 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2434 pfn, &unpoison_rs); 2435 goto unlock_mutex; 2436 } 2437 2438 if (folio_ref_count(folio) > 1) { 2439 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2440 pfn, &unpoison_rs); 2441 goto unlock_mutex; 2442 } 2443 2444 if (folio_mapped(folio)) { 2445 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2446 pfn, &unpoison_rs); 2447 goto unlock_mutex; 2448 } 2449 2450 if (folio_mapping(folio)) { 2451 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2452 pfn, &unpoison_rs); 2453 goto unlock_mutex; 2454 } 2455 2456 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2457 goto unlock_mutex; 2458 2459 ret = get_hwpoison_page(p, MF_UNPOISON); 2460 if (!ret) { 2461 if (PageHuge(p)) { 2462 huge = true; 2463 count = folio_free_raw_hwp(folio, false); 2464 if (count == 0) { 2465 ret = -EBUSY; 2466 goto unlock_mutex; 2467 } 2468 } 2469 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2470 } else if (ret < 0) { 2471 if (ret == -EHWPOISON) { 2472 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2473 } else 2474 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2475 pfn, &unpoison_rs); 2476 } else { 2477 if (PageHuge(p)) { 2478 huge = true; 2479 count = folio_free_raw_hwp(folio, false); 2480 if (count == 0) { 2481 ret = -EBUSY; 2482 folio_put(folio); 2483 goto unlock_mutex; 2484 } 2485 } 2486 2487 folio_put(folio); 2488 if (TestClearPageHWPoison(p)) { 2489 folio_put(folio); 2490 ret = 0; 2491 } 2492 } 2493 2494 unlock_mutex: 2495 mutex_unlock(&mf_mutex); 2496 if (!ret) { 2497 if (!huge) 2498 num_poisoned_pages_sub(pfn, 1); 2499 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2500 page_to_pfn(p), &unpoison_rs); 2501 } 2502 return ret; 2503 } 2504 EXPORT_SYMBOL(unpoison_memory); 2505 2506 static bool isolate_page(struct page *page, struct list_head *pagelist) 2507 { 2508 bool isolated = false; 2509 2510 if (PageHuge(page)) { 2511 isolated = isolate_hugetlb(page_folio(page), pagelist); 2512 } else { 2513 bool lru = !__PageMovable(page); 2514 2515 if (lru) 2516 isolated = isolate_lru_page(page); 2517 else 2518 isolated = isolate_movable_page(page, 2519 ISOLATE_UNEVICTABLE); 2520 2521 if (isolated) { 2522 list_add(&page->lru, pagelist); 2523 if (lru) 2524 inc_node_page_state(page, NR_ISOLATED_ANON + 2525 page_is_file_lru(page)); 2526 } 2527 } 2528 2529 /* 2530 * If we succeed to isolate the page, we grabbed another refcount on 2531 * the page, so we can safely drop the one we got from get_any_pages(). 2532 * If we failed to isolate the page, it means that we cannot go further 2533 * and we will return an error, so drop the reference we got from 2534 * get_any_pages() as well. 2535 */ 2536 put_page(page); 2537 return isolated; 2538 } 2539 2540 /* 2541 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2542 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2543 * If the page is mapped, it migrates the contents over. 2544 */ 2545 static int soft_offline_in_use_page(struct page *page) 2546 { 2547 long ret = 0; 2548 unsigned long pfn = page_to_pfn(page); 2549 struct page *hpage = compound_head(page); 2550 char const *msg_page[] = {"page", "hugepage"}; 2551 bool huge = PageHuge(page); 2552 LIST_HEAD(pagelist); 2553 struct migration_target_control mtc = { 2554 .nid = NUMA_NO_NODE, 2555 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2556 }; 2557 2558 if (!huge && PageTransHuge(hpage)) { 2559 if (try_to_split_thp_page(page)) { 2560 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2561 return -EBUSY; 2562 } 2563 hpage = page; 2564 } 2565 2566 lock_page(page); 2567 if (!PageHuge(page)) 2568 wait_on_page_writeback(page); 2569 if (PageHWPoison(page)) { 2570 unlock_page(page); 2571 put_page(page); 2572 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2573 return 0; 2574 } 2575 2576 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2577 /* 2578 * Try to invalidate first. This should work for 2579 * non dirty unmapped page cache pages. 2580 */ 2581 ret = invalidate_inode_page(page); 2582 unlock_page(page); 2583 2584 if (ret) { 2585 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2586 page_handle_poison(page, false, true); 2587 return 0; 2588 } 2589 2590 if (isolate_page(hpage, &pagelist)) { 2591 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2592 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2593 if (!ret) { 2594 bool release = !huge; 2595 2596 if (!page_handle_poison(page, huge, release)) 2597 ret = -EBUSY; 2598 } else { 2599 if (!list_empty(&pagelist)) 2600 putback_movable_pages(&pagelist); 2601 2602 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2603 pfn, msg_page[huge], ret, &page->flags); 2604 if (ret > 0) 2605 ret = -EBUSY; 2606 } 2607 } else { 2608 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2609 pfn, msg_page[huge], page_count(page), &page->flags); 2610 ret = -EBUSY; 2611 } 2612 return ret; 2613 } 2614 2615 /** 2616 * soft_offline_page - Soft offline a page. 2617 * @pfn: pfn to soft-offline 2618 * @flags: flags. Same as memory_failure(). 2619 * 2620 * Returns 0 on success 2621 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2622 * < 0 otherwise negated errno. 2623 * 2624 * Soft offline a page, by migration or invalidation, 2625 * without killing anything. This is for the case when 2626 * a page is not corrupted yet (so it's still valid to access), 2627 * but has had a number of corrected errors and is better taken 2628 * out. 2629 * 2630 * The actual policy on when to do that is maintained by 2631 * user space. 2632 * 2633 * This should never impact any application or cause data loss, 2634 * however it might take some time. 2635 * 2636 * This is not a 100% solution for all memory, but tries to be 2637 * ``good enough'' for the majority of memory. 2638 */ 2639 int soft_offline_page(unsigned long pfn, int flags) 2640 { 2641 int ret; 2642 bool try_again = true; 2643 struct page *page; 2644 2645 if (!pfn_valid(pfn)) { 2646 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2647 return -ENXIO; 2648 } 2649 2650 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2651 page = pfn_to_online_page(pfn); 2652 if (!page) { 2653 put_ref_page(pfn, flags); 2654 return -EIO; 2655 } 2656 2657 mutex_lock(&mf_mutex); 2658 2659 if (PageHWPoison(page)) { 2660 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2661 put_ref_page(pfn, flags); 2662 mutex_unlock(&mf_mutex); 2663 return 0; 2664 } 2665 2666 retry: 2667 get_online_mems(); 2668 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2669 put_online_mems(); 2670 2671 if (hwpoison_filter(page)) { 2672 if (ret > 0) 2673 put_page(page); 2674 2675 mutex_unlock(&mf_mutex); 2676 return -EOPNOTSUPP; 2677 } 2678 2679 if (ret > 0) { 2680 ret = soft_offline_in_use_page(page); 2681 } else if (ret == 0) { 2682 if (!page_handle_poison(page, true, false) && try_again) { 2683 try_again = false; 2684 flags &= ~MF_COUNT_INCREASED; 2685 goto retry; 2686 } 2687 } 2688 2689 mutex_unlock(&mf_mutex); 2690 2691 return ret; 2692 } 2693