1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * There are several operations here with exponential complexity because 25 * of unsuitable VM data structures. For example the operation to map back 26 * from RMAP chains to processes has to walk the complete process list and 27 * has non linear complexity with the number. But since memory corruptions 28 * are rare we hope to get away with this. This avoids impacting the core 29 * VM. 30 */ 31 32 /* 33 * Notebook: 34 * - hugetlb needs more code 35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 36 * - pass bad pages to kdump next kernel 37 */ 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/page-flags.h> 41 #include <linux/kernel-page-flags.h> 42 #include <linux/sched.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/page-isolation.h> 51 #include <linux/suspend.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/kfifo.h> 58 #include "internal.h" 59 60 int sysctl_memory_failure_early_kill __read_mostly = 0; 61 62 int sysctl_memory_failure_recovery __read_mostly = 1; 63 64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 65 66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 67 68 u32 hwpoison_filter_enable = 0; 69 u32 hwpoison_filter_dev_major = ~0U; 70 u32 hwpoison_filter_dev_minor = ~0U; 71 u64 hwpoison_filter_flags_mask; 72 u64 hwpoison_filter_flags_value; 73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 78 79 static int hwpoison_filter_dev(struct page *p) 80 { 81 struct address_space *mapping; 82 dev_t dev; 83 84 if (hwpoison_filter_dev_major == ~0U && 85 hwpoison_filter_dev_minor == ~0U) 86 return 0; 87 88 /* 89 * page_mapping() does not accept slab pages. 90 */ 91 if (PageSlab(p)) 92 return -EINVAL; 93 94 mapping = page_mapping(p); 95 if (mapping == NULL || mapping->host == NULL) 96 return -EINVAL; 97 98 dev = mapping->host->i_sb->s_dev; 99 if (hwpoison_filter_dev_major != ~0U && 100 hwpoison_filter_dev_major != MAJOR(dev)) 101 return -EINVAL; 102 if (hwpoison_filter_dev_minor != ~0U && 103 hwpoison_filter_dev_minor != MINOR(dev)) 104 return -EINVAL; 105 106 return 0; 107 } 108 109 static int hwpoison_filter_flags(struct page *p) 110 { 111 if (!hwpoison_filter_flags_mask) 112 return 0; 113 114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 115 hwpoison_filter_flags_value) 116 return 0; 117 else 118 return -EINVAL; 119 } 120 121 /* 122 * This allows stress tests to limit test scope to a collection of tasks 123 * by putting them under some memcg. This prevents killing unrelated/important 124 * processes such as /sbin/init. Note that the target task may share clean 125 * pages with init (eg. libc text), which is harmless. If the target task 126 * share _dirty_ pages with another task B, the test scheme must make sure B 127 * is also included in the memcg. At last, due to race conditions this filter 128 * can only guarantee that the page either belongs to the memcg tasks, or is 129 * a freed page. 130 */ 131 #ifdef CONFIG_MEMCG_SWAP 132 u64 hwpoison_filter_memcg; 133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 134 static int hwpoison_filter_task(struct page *p) 135 { 136 struct mem_cgroup *mem; 137 struct cgroup_subsys_state *css; 138 unsigned long ino; 139 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 mem = try_get_mem_cgroup_from_page(p); 144 if (!mem) 145 return -EINVAL; 146 147 css = mem_cgroup_css(mem); 148 ino = cgroup_ino(css->cgroup); 149 css_put(css); 150 151 if (!ino || ino != hwpoison_filter_memcg) 152 return -EINVAL; 153 154 return 0; 155 } 156 #else 157 static int hwpoison_filter_task(struct page *p) { return 0; } 158 #endif 159 160 int hwpoison_filter(struct page *p) 161 { 162 if (!hwpoison_filter_enable) 163 return 0; 164 165 if (hwpoison_filter_dev(p)) 166 return -EINVAL; 167 168 if (hwpoison_filter_flags(p)) 169 return -EINVAL; 170 171 if (hwpoison_filter_task(p)) 172 return -EINVAL; 173 174 return 0; 175 } 176 #else 177 int hwpoison_filter(struct page *p) 178 { 179 return 0; 180 } 181 #endif 182 183 EXPORT_SYMBOL_GPL(hwpoison_filter); 184 185 /* 186 * Send all the processes who have the page mapped a signal. 187 * ``action optional'' if they are not immediately affected by the error 188 * ``action required'' if error happened in current execution context 189 */ 190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 191 unsigned long pfn, struct page *page, int flags) 192 { 193 struct siginfo si; 194 int ret; 195 196 printk(KERN_ERR 197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 198 pfn, t->comm, t->pid); 199 si.si_signo = SIGBUS; 200 si.si_errno = 0; 201 si.si_addr = (void *)addr; 202 #ifdef __ARCH_SI_TRAPNO 203 si.si_trapno = trapno; 204 #endif 205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 206 207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 208 si.si_code = BUS_MCEERR_AR; 209 ret = force_sig_info(SIGBUS, &si, current); 210 } else { 211 /* 212 * Don't use force here, it's convenient if the signal 213 * can be temporarily blocked. 214 * This could cause a loop when the user sets SIGBUS 215 * to SIG_IGN, but hopefully no one will do that? 216 */ 217 si.si_code = BUS_MCEERR_AO; 218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 219 } 220 if (ret < 0) 221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 222 t->comm, t->pid, ret); 223 return ret; 224 } 225 226 /* 227 * When a unknown page type is encountered drain as many buffers as possible 228 * in the hope to turn the page into a LRU or free page, which we can handle. 229 */ 230 void shake_page(struct page *p, int access) 231 { 232 if (!PageSlab(p)) { 233 lru_add_drain_all(); 234 if (PageLRU(p)) 235 return; 236 drain_all_pages(); 237 if (PageLRU(p) || is_free_buddy_page(p)) 238 return; 239 } 240 241 /* 242 * Only call shrink_slab here (which would also shrink other caches) if 243 * access is not potentially fatal. 244 */ 245 if (access) { 246 int nr; 247 int nid = page_to_nid(p); 248 do { 249 struct shrink_control shrink = { 250 .gfp_mask = GFP_KERNEL, 251 }; 252 node_set(nid, shrink.nodes_to_scan); 253 254 nr = shrink_slab(&shrink, 1000, 1000); 255 if (page_count(p) == 1) 256 break; 257 } while (nr > 10); 258 } 259 } 260 EXPORT_SYMBOL_GPL(shake_page); 261 262 /* 263 * Kill all processes that have a poisoned page mapped and then isolate 264 * the page. 265 * 266 * General strategy: 267 * Find all processes having the page mapped and kill them. 268 * But we keep a page reference around so that the page is not 269 * actually freed yet. 270 * Then stash the page away 271 * 272 * There's no convenient way to get back to mapped processes 273 * from the VMAs. So do a brute-force search over all 274 * running processes. 275 * 276 * Remember that machine checks are not common (or rather 277 * if they are common you have other problems), so this shouldn't 278 * be a performance issue. 279 * 280 * Also there are some races possible while we get from the 281 * error detection to actually handle it. 282 */ 283 284 struct to_kill { 285 struct list_head nd; 286 struct task_struct *tsk; 287 unsigned long addr; 288 char addr_valid; 289 }; 290 291 /* 292 * Failure handling: if we can't find or can't kill a process there's 293 * not much we can do. We just print a message and ignore otherwise. 294 */ 295 296 /* 297 * Schedule a process for later kill. 298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 299 * TBD would GFP_NOIO be enough? 300 */ 301 static void add_to_kill(struct task_struct *tsk, struct page *p, 302 struct vm_area_struct *vma, 303 struct list_head *to_kill, 304 struct to_kill **tkc) 305 { 306 struct to_kill *tk; 307 308 if (*tkc) { 309 tk = *tkc; 310 *tkc = NULL; 311 } else { 312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 313 if (!tk) { 314 printk(KERN_ERR 315 "MCE: Out of memory while machine check handling\n"); 316 return; 317 } 318 } 319 tk->addr = page_address_in_vma(p, vma); 320 tk->addr_valid = 1; 321 322 /* 323 * In theory we don't have to kill when the page was 324 * munmaped. But it could be also a mremap. Since that's 325 * likely very rare kill anyways just out of paranoia, but use 326 * a SIGKILL because the error is not contained anymore. 327 */ 328 if (tk->addr == -EFAULT) { 329 pr_info("MCE: Unable to find user space address %lx in %s\n", 330 page_to_pfn(p), tsk->comm); 331 tk->addr_valid = 0; 332 } 333 get_task_struct(tsk); 334 tk->tsk = tsk; 335 list_add_tail(&tk->nd, to_kill); 336 } 337 338 /* 339 * Kill the processes that have been collected earlier. 340 * 341 * Only do anything when DOIT is set, otherwise just free the list 342 * (this is used for clean pages which do not need killing) 343 * Also when FAIL is set do a force kill because something went 344 * wrong earlier. 345 */ 346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 347 int fail, struct page *page, unsigned long pfn, 348 int flags) 349 { 350 struct to_kill *tk, *next; 351 352 list_for_each_entry_safe (tk, next, to_kill, nd) { 353 if (forcekill) { 354 /* 355 * In case something went wrong with munmapping 356 * make sure the process doesn't catch the 357 * signal and then access the memory. Just kill it. 358 */ 359 if (fail || tk->addr_valid == 0) { 360 printk(KERN_ERR 361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 362 pfn, tk->tsk->comm, tk->tsk->pid); 363 force_sig(SIGKILL, tk->tsk); 364 } 365 366 /* 367 * In theory the process could have mapped 368 * something else on the address in-between. We could 369 * check for that, but we need to tell the 370 * process anyways. 371 */ 372 else if (kill_proc(tk->tsk, tk->addr, trapno, 373 pfn, page, flags) < 0) 374 printk(KERN_ERR 375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 376 pfn, tk->tsk->comm, tk->tsk->pid); 377 } 378 put_task_struct(tk->tsk); 379 kfree(tk); 380 } 381 } 382 383 /* 384 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 385 * on behalf of the thread group. Return task_struct of the (first found) 386 * dedicated thread if found, and return NULL otherwise. 387 * 388 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 389 * have to call rcu_read_lock/unlock() in this function. 390 */ 391 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 392 { 393 struct task_struct *t; 394 395 for_each_thread(tsk, t) 396 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 397 return t; 398 return NULL; 399 } 400 401 /* 402 * Determine whether a given process is "early kill" process which expects 403 * to be signaled when some page under the process is hwpoisoned. 404 * Return task_struct of the dedicated thread (main thread unless explicitly 405 * specified) if the process is "early kill," and otherwise returns NULL. 406 */ 407 static struct task_struct *task_early_kill(struct task_struct *tsk, 408 int force_early) 409 { 410 struct task_struct *t; 411 if (!tsk->mm) 412 return NULL; 413 if (force_early) 414 return tsk; 415 t = find_early_kill_thread(tsk); 416 if (t) 417 return t; 418 if (sysctl_memory_failure_early_kill) 419 return tsk; 420 return NULL; 421 } 422 423 /* 424 * Collect processes when the error hit an anonymous page. 425 */ 426 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 427 struct to_kill **tkc, int force_early) 428 { 429 struct vm_area_struct *vma; 430 struct task_struct *tsk; 431 struct anon_vma *av; 432 pgoff_t pgoff; 433 434 av = page_lock_anon_vma_read(page); 435 if (av == NULL) /* Not actually mapped anymore */ 436 return; 437 438 pgoff = page_to_pgoff(page); 439 read_lock(&tasklist_lock); 440 for_each_process (tsk) { 441 struct anon_vma_chain *vmac; 442 struct task_struct *t = task_early_kill(tsk, force_early); 443 444 if (!t) 445 continue; 446 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 447 pgoff, pgoff) { 448 vma = vmac->vma; 449 if (!page_mapped_in_vma(page, vma)) 450 continue; 451 if (vma->vm_mm == t->mm) 452 add_to_kill(t, page, vma, to_kill, tkc); 453 } 454 } 455 read_unlock(&tasklist_lock); 456 page_unlock_anon_vma_read(av); 457 } 458 459 /* 460 * Collect processes when the error hit a file mapped page. 461 */ 462 static void collect_procs_file(struct page *page, struct list_head *to_kill, 463 struct to_kill **tkc, int force_early) 464 { 465 struct vm_area_struct *vma; 466 struct task_struct *tsk; 467 struct address_space *mapping = page->mapping; 468 469 mutex_lock(&mapping->i_mmap_mutex); 470 read_lock(&tasklist_lock); 471 for_each_process(tsk) { 472 pgoff_t pgoff = page_to_pgoff(page); 473 struct task_struct *t = task_early_kill(tsk, force_early); 474 475 if (!t) 476 continue; 477 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 478 pgoff) { 479 /* 480 * Send early kill signal to tasks where a vma covers 481 * the page but the corrupted page is not necessarily 482 * mapped it in its pte. 483 * Assume applications who requested early kill want 484 * to be informed of all such data corruptions. 485 */ 486 if (vma->vm_mm == t->mm) 487 add_to_kill(t, page, vma, to_kill, tkc); 488 } 489 } 490 read_unlock(&tasklist_lock); 491 mutex_unlock(&mapping->i_mmap_mutex); 492 } 493 494 /* 495 * Collect the processes who have the corrupted page mapped to kill. 496 * This is done in two steps for locking reasons. 497 * First preallocate one tokill structure outside the spin locks, 498 * so that we can kill at least one process reasonably reliable. 499 */ 500 static void collect_procs(struct page *page, struct list_head *tokill, 501 int force_early) 502 { 503 struct to_kill *tk; 504 505 if (!page->mapping) 506 return; 507 508 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 509 if (!tk) 510 return; 511 if (PageAnon(page)) 512 collect_procs_anon(page, tokill, &tk, force_early); 513 else 514 collect_procs_file(page, tokill, &tk, force_early); 515 kfree(tk); 516 } 517 518 /* 519 * Error handlers for various types of pages. 520 */ 521 522 enum outcome { 523 IGNORED, /* Error: cannot be handled */ 524 FAILED, /* Error: handling failed */ 525 DELAYED, /* Will be handled later */ 526 RECOVERED, /* Successfully recovered */ 527 }; 528 529 static const char *action_name[] = { 530 [IGNORED] = "Ignored", 531 [FAILED] = "Failed", 532 [DELAYED] = "Delayed", 533 [RECOVERED] = "Recovered", 534 }; 535 536 /* 537 * XXX: It is possible that a page is isolated from LRU cache, 538 * and then kept in swap cache or failed to remove from page cache. 539 * The page count will stop it from being freed by unpoison. 540 * Stress tests should be aware of this memory leak problem. 541 */ 542 static int delete_from_lru_cache(struct page *p) 543 { 544 if (!isolate_lru_page(p)) { 545 /* 546 * Clear sensible page flags, so that the buddy system won't 547 * complain when the page is unpoison-and-freed. 548 */ 549 ClearPageActive(p); 550 ClearPageUnevictable(p); 551 /* 552 * drop the page count elevated by isolate_lru_page() 553 */ 554 page_cache_release(p); 555 return 0; 556 } 557 return -EIO; 558 } 559 560 /* 561 * Error hit kernel page. 562 * Do nothing, try to be lucky and not touch this instead. For a few cases we 563 * could be more sophisticated. 564 */ 565 static int me_kernel(struct page *p, unsigned long pfn) 566 { 567 return IGNORED; 568 } 569 570 /* 571 * Page in unknown state. Do nothing. 572 */ 573 static int me_unknown(struct page *p, unsigned long pfn) 574 { 575 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 576 return FAILED; 577 } 578 579 /* 580 * Clean (or cleaned) page cache page. 581 */ 582 static int me_pagecache_clean(struct page *p, unsigned long pfn) 583 { 584 int err; 585 int ret = FAILED; 586 struct address_space *mapping; 587 588 delete_from_lru_cache(p); 589 590 /* 591 * For anonymous pages we're done the only reference left 592 * should be the one m_f() holds. 593 */ 594 if (PageAnon(p)) 595 return RECOVERED; 596 597 /* 598 * Now truncate the page in the page cache. This is really 599 * more like a "temporary hole punch" 600 * Don't do this for block devices when someone else 601 * has a reference, because it could be file system metadata 602 * and that's not safe to truncate. 603 */ 604 mapping = page_mapping(p); 605 if (!mapping) { 606 /* 607 * Page has been teared down in the meanwhile 608 */ 609 return FAILED; 610 } 611 612 /* 613 * Truncation is a bit tricky. Enable it per file system for now. 614 * 615 * Open: to take i_mutex or not for this? Right now we don't. 616 */ 617 if (mapping->a_ops->error_remove_page) { 618 err = mapping->a_ops->error_remove_page(mapping, p); 619 if (err != 0) { 620 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 621 pfn, err); 622 } else if (page_has_private(p) && 623 !try_to_release_page(p, GFP_NOIO)) { 624 pr_info("MCE %#lx: failed to release buffers\n", pfn); 625 } else { 626 ret = RECOVERED; 627 } 628 } else { 629 /* 630 * If the file system doesn't support it just invalidate 631 * This fails on dirty or anything with private pages 632 */ 633 if (invalidate_inode_page(p)) 634 ret = RECOVERED; 635 else 636 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 637 pfn); 638 } 639 return ret; 640 } 641 642 /* 643 * Dirty pagecache page 644 * Issues: when the error hit a hole page the error is not properly 645 * propagated. 646 */ 647 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 648 { 649 struct address_space *mapping = page_mapping(p); 650 651 SetPageError(p); 652 /* TBD: print more information about the file. */ 653 if (mapping) { 654 /* 655 * IO error will be reported by write(), fsync(), etc. 656 * who check the mapping. 657 * This way the application knows that something went 658 * wrong with its dirty file data. 659 * 660 * There's one open issue: 661 * 662 * The EIO will be only reported on the next IO 663 * operation and then cleared through the IO map. 664 * Normally Linux has two mechanisms to pass IO error 665 * first through the AS_EIO flag in the address space 666 * and then through the PageError flag in the page. 667 * Since we drop pages on memory failure handling the 668 * only mechanism open to use is through AS_AIO. 669 * 670 * This has the disadvantage that it gets cleared on 671 * the first operation that returns an error, while 672 * the PageError bit is more sticky and only cleared 673 * when the page is reread or dropped. If an 674 * application assumes it will always get error on 675 * fsync, but does other operations on the fd before 676 * and the page is dropped between then the error 677 * will not be properly reported. 678 * 679 * This can already happen even without hwpoisoned 680 * pages: first on metadata IO errors (which only 681 * report through AS_EIO) or when the page is dropped 682 * at the wrong time. 683 * 684 * So right now we assume that the application DTRT on 685 * the first EIO, but we're not worse than other parts 686 * of the kernel. 687 */ 688 mapping_set_error(mapping, EIO); 689 } 690 691 return me_pagecache_clean(p, pfn); 692 } 693 694 /* 695 * Clean and dirty swap cache. 696 * 697 * Dirty swap cache page is tricky to handle. The page could live both in page 698 * cache and swap cache(ie. page is freshly swapped in). So it could be 699 * referenced concurrently by 2 types of PTEs: 700 * normal PTEs and swap PTEs. We try to handle them consistently by calling 701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 702 * and then 703 * - clear dirty bit to prevent IO 704 * - remove from LRU 705 * - but keep in the swap cache, so that when we return to it on 706 * a later page fault, we know the application is accessing 707 * corrupted data and shall be killed (we installed simple 708 * interception code in do_swap_page to catch it). 709 * 710 * Clean swap cache pages can be directly isolated. A later page fault will 711 * bring in the known good data from disk. 712 */ 713 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 714 { 715 ClearPageDirty(p); 716 /* Trigger EIO in shmem: */ 717 ClearPageUptodate(p); 718 719 if (!delete_from_lru_cache(p)) 720 return DELAYED; 721 else 722 return FAILED; 723 } 724 725 static int me_swapcache_clean(struct page *p, unsigned long pfn) 726 { 727 delete_from_swap_cache(p); 728 729 if (!delete_from_lru_cache(p)) 730 return RECOVERED; 731 else 732 return FAILED; 733 } 734 735 /* 736 * Huge pages. Needs work. 737 * Issues: 738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 739 * To narrow down kill region to one page, we need to break up pmd. 740 */ 741 static int me_huge_page(struct page *p, unsigned long pfn) 742 { 743 int res = 0; 744 struct page *hpage = compound_head(p); 745 /* 746 * We can safely recover from error on free or reserved (i.e. 747 * not in-use) hugepage by dequeuing it from freelist. 748 * To check whether a hugepage is in-use or not, we can't use 749 * page->lru because it can be used in other hugepage operations, 750 * such as __unmap_hugepage_range() and gather_surplus_pages(). 751 * So instead we use page_mapping() and PageAnon(). 752 * We assume that this function is called with page lock held, 753 * so there is no race between isolation and mapping/unmapping. 754 */ 755 if (!(page_mapping(hpage) || PageAnon(hpage))) { 756 res = dequeue_hwpoisoned_huge_page(hpage); 757 if (!res) 758 return RECOVERED; 759 } 760 return DELAYED; 761 } 762 763 /* 764 * Various page states we can handle. 765 * 766 * A page state is defined by its current page->flags bits. 767 * The table matches them in order and calls the right handler. 768 * 769 * This is quite tricky because we can access page at any time 770 * in its live cycle, so all accesses have to be extremely careful. 771 * 772 * This is not complete. More states could be added. 773 * For any missing state don't attempt recovery. 774 */ 775 776 #define dirty (1UL << PG_dirty) 777 #define sc (1UL << PG_swapcache) 778 #define unevict (1UL << PG_unevictable) 779 #define mlock (1UL << PG_mlocked) 780 #define writeback (1UL << PG_writeback) 781 #define lru (1UL << PG_lru) 782 #define swapbacked (1UL << PG_swapbacked) 783 #define head (1UL << PG_head) 784 #define tail (1UL << PG_tail) 785 #define compound (1UL << PG_compound) 786 #define slab (1UL << PG_slab) 787 #define reserved (1UL << PG_reserved) 788 789 static struct page_state { 790 unsigned long mask; 791 unsigned long res; 792 char *msg; 793 int (*action)(struct page *p, unsigned long pfn); 794 } error_states[] = { 795 { reserved, reserved, "reserved kernel", me_kernel }, 796 /* 797 * free pages are specially detected outside this table: 798 * PG_buddy pages only make a small fraction of all free pages. 799 */ 800 801 /* 802 * Could in theory check if slab page is free or if we can drop 803 * currently unused objects without touching them. But just 804 * treat it as standard kernel for now. 805 */ 806 { slab, slab, "kernel slab", me_kernel }, 807 808 #ifdef CONFIG_PAGEFLAGS_EXTENDED 809 { head, head, "huge", me_huge_page }, 810 { tail, tail, "huge", me_huge_page }, 811 #else 812 { compound, compound, "huge", me_huge_page }, 813 #endif 814 815 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty }, 816 { sc|dirty, sc, "clean swapcache", me_swapcache_clean }, 817 818 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty }, 819 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean }, 820 821 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty }, 822 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean }, 823 824 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty }, 825 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 826 827 /* 828 * Catchall entry: must be at end. 829 */ 830 { 0, 0, "unknown page state", me_unknown }, 831 }; 832 833 #undef dirty 834 #undef sc 835 #undef unevict 836 #undef mlock 837 #undef writeback 838 #undef lru 839 #undef swapbacked 840 #undef head 841 #undef tail 842 #undef compound 843 #undef slab 844 #undef reserved 845 846 /* 847 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 848 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 849 */ 850 static void action_result(unsigned long pfn, char *msg, int result) 851 { 852 pr_err("MCE %#lx: %s page recovery: %s\n", 853 pfn, msg, action_name[result]); 854 } 855 856 static int page_action(struct page_state *ps, struct page *p, 857 unsigned long pfn) 858 { 859 int result; 860 int count; 861 862 result = ps->action(p, pfn); 863 action_result(pfn, ps->msg, result); 864 865 count = page_count(p) - 1; 866 if (ps->action == me_swapcache_dirty && result == DELAYED) 867 count--; 868 if (count != 0) { 869 printk(KERN_ERR 870 "MCE %#lx: %s page still referenced by %d users\n", 871 pfn, ps->msg, count); 872 result = FAILED; 873 } 874 875 /* Could do more checks here if page looks ok */ 876 /* 877 * Could adjust zone counters here to correct for the missing page. 878 */ 879 880 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 881 } 882 883 /* 884 * Do all that is necessary to remove user space mappings. Unmap 885 * the pages and send SIGBUS to the processes if the data was dirty. 886 */ 887 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 888 int trapno, int flags, struct page **hpagep) 889 { 890 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 891 struct address_space *mapping; 892 LIST_HEAD(tokill); 893 int ret; 894 int kill = 1, forcekill; 895 struct page *hpage = *hpagep; 896 struct page *ppage; 897 898 /* 899 * Here we are interested only in user-mapped pages, so skip any 900 * other types of pages. 901 */ 902 if (PageReserved(p) || PageSlab(p)) 903 return SWAP_SUCCESS; 904 if (!(PageLRU(hpage) || PageHuge(p))) 905 return SWAP_SUCCESS; 906 907 /* 908 * This check implies we don't kill processes if their pages 909 * are in the swap cache early. Those are always late kills. 910 */ 911 if (!page_mapped(hpage)) 912 return SWAP_SUCCESS; 913 914 if (PageKsm(p)) { 915 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); 916 return SWAP_FAIL; 917 } 918 919 if (PageSwapCache(p)) { 920 printk(KERN_ERR 921 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 922 ttu |= TTU_IGNORE_HWPOISON; 923 } 924 925 /* 926 * Propagate the dirty bit from PTEs to struct page first, because we 927 * need this to decide if we should kill or just drop the page. 928 * XXX: the dirty test could be racy: set_page_dirty() may not always 929 * be called inside page lock (it's recommended but not enforced). 930 */ 931 mapping = page_mapping(hpage); 932 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 933 mapping_cap_writeback_dirty(mapping)) { 934 if (page_mkclean(hpage)) { 935 SetPageDirty(hpage); 936 } else { 937 kill = 0; 938 ttu |= TTU_IGNORE_HWPOISON; 939 printk(KERN_INFO 940 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 941 pfn); 942 } 943 } 944 945 /* 946 * ppage: poisoned page 947 * if p is regular page(4k page) 948 * ppage == real poisoned page; 949 * else p is hugetlb or THP, ppage == head page. 950 */ 951 ppage = hpage; 952 953 if (PageTransHuge(hpage)) { 954 /* 955 * Verify that this isn't a hugetlbfs head page, the check for 956 * PageAnon is just for avoid tripping a split_huge_page 957 * internal debug check, as split_huge_page refuses to deal with 958 * anything that isn't an anon page. PageAnon can't go away fro 959 * under us because we hold a refcount on the hpage, without a 960 * refcount on the hpage. split_huge_page can't be safely called 961 * in the first place, having a refcount on the tail isn't 962 * enough * to be safe. 963 */ 964 if (!PageHuge(hpage) && PageAnon(hpage)) { 965 if (unlikely(split_huge_page(hpage))) { 966 /* 967 * FIXME: if splitting THP is failed, it is 968 * better to stop the following operation rather 969 * than causing panic by unmapping. System might 970 * survive if the page is freed later. 971 */ 972 printk(KERN_INFO 973 "MCE %#lx: failed to split THP\n", pfn); 974 975 BUG_ON(!PageHWPoison(p)); 976 return SWAP_FAIL; 977 } 978 /* 979 * We pinned the head page for hwpoison handling, 980 * now we split the thp and we are interested in 981 * the hwpoisoned raw page, so move the refcount 982 * to it. Similarly, page lock is shifted. 983 */ 984 if (hpage != p) { 985 if (!(flags & MF_COUNT_INCREASED)) { 986 put_page(hpage); 987 get_page(p); 988 } 989 lock_page(p); 990 unlock_page(hpage); 991 *hpagep = p; 992 } 993 /* THP is split, so ppage should be the real poisoned page. */ 994 ppage = p; 995 } 996 } 997 998 /* 999 * First collect all the processes that have the page 1000 * mapped in dirty form. This has to be done before try_to_unmap, 1001 * because ttu takes the rmap data structures down. 1002 * 1003 * Error handling: We ignore errors here because 1004 * there's nothing that can be done. 1005 */ 1006 if (kill) 1007 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED); 1008 1009 ret = try_to_unmap(ppage, ttu); 1010 if (ret != SWAP_SUCCESS) 1011 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 1012 pfn, page_mapcount(ppage)); 1013 1014 /* 1015 * Now that the dirty bit has been propagated to the 1016 * struct page and all unmaps done we can decide if 1017 * killing is needed or not. Only kill when the page 1018 * was dirty or the process is not restartable, 1019 * otherwise the tokill list is merely 1020 * freed. When there was a problem unmapping earlier 1021 * use a more force-full uncatchable kill to prevent 1022 * any accesses to the poisoned memory. 1023 */ 1024 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); 1025 kill_procs(&tokill, forcekill, trapno, 1026 ret != SWAP_SUCCESS, p, pfn, flags); 1027 1028 return ret; 1029 } 1030 1031 static void set_page_hwpoison_huge_page(struct page *hpage) 1032 { 1033 int i; 1034 int nr_pages = 1 << compound_order(hpage); 1035 for (i = 0; i < nr_pages; i++) 1036 SetPageHWPoison(hpage + i); 1037 } 1038 1039 static void clear_page_hwpoison_huge_page(struct page *hpage) 1040 { 1041 int i; 1042 int nr_pages = 1 << compound_order(hpage); 1043 for (i = 0; i < nr_pages; i++) 1044 ClearPageHWPoison(hpage + i); 1045 } 1046 1047 /** 1048 * memory_failure - Handle memory failure of a page. 1049 * @pfn: Page Number of the corrupted page 1050 * @trapno: Trap number reported in the signal to user space. 1051 * @flags: fine tune action taken 1052 * 1053 * This function is called by the low level machine check code 1054 * of an architecture when it detects hardware memory corruption 1055 * of a page. It tries its best to recover, which includes 1056 * dropping pages, killing processes etc. 1057 * 1058 * The function is primarily of use for corruptions that 1059 * happen outside the current execution context (e.g. when 1060 * detected by a background scrubber) 1061 * 1062 * Must run in process context (e.g. a work queue) with interrupts 1063 * enabled and no spinlocks hold. 1064 */ 1065 int memory_failure(unsigned long pfn, int trapno, int flags) 1066 { 1067 struct page_state *ps; 1068 struct page *p; 1069 struct page *hpage; 1070 int res; 1071 unsigned int nr_pages; 1072 unsigned long page_flags; 1073 1074 if (!sysctl_memory_failure_recovery) 1075 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1076 1077 if (!pfn_valid(pfn)) { 1078 printk(KERN_ERR 1079 "MCE %#lx: memory outside kernel control\n", 1080 pfn); 1081 return -ENXIO; 1082 } 1083 1084 p = pfn_to_page(pfn); 1085 hpage = compound_head(p); 1086 if (TestSetPageHWPoison(p)) { 1087 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1088 return 0; 1089 } 1090 1091 /* 1092 * Currently errors on hugetlbfs pages are measured in hugepage units, 1093 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1094 * transparent hugepages, they are supposed to be split and error 1095 * measurement is done in normal page units. So nr_pages should be one 1096 * in this case. 1097 */ 1098 if (PageHuge(p)) 1099 nr_pages = 1 << compound_order(hpage); 1100 else /* normal page or thp */ 1101 nr_pages = 1; 1102 atomic_long_add(nr_pages, &num_poisoned_pages); 1103 1104 /* 1105 * We need/can do nothing about count=0 pages. 1106 * 1) it's a free page, and therefore in safe hand: 1107 * prep_new_page() will be the gate keeper. 1108 * 2) it's a free hugepage, which is also safe: 1109 * an affected hugepage will be dequeued from hugepage freelist, 1110 * so there's no concern about reusing it ever after. 1111 * 3) it's part of a non-compound high order page. 1112 * Implies some kernel user: cannot stop them from 1113 * R/W the page; let's pray that the page has been 1114 * used and will be freed some time later. 1115 * In fact it's dangerous to directly bump up page count from 0, 1116 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1117 */ 1118 if (!(flags & MF_COUNT_INCREASED) && 1119 !get_page_unless_zero(hpage)) { 1120 if (is_free_buddy_page(p)) { 1121 action_result(pfn, "free buddy", DELAYED); 1122 return 0; 1123 } else if (PageHuge(hpage)) { 1124 /* 1125 * Check "filter hit" and "race with other subpage." 1126 */ 1127 lock_page(hpage); 1128 if (PageHWPoison(hpage)) { 1129 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1130 || (p != hpage && TestSetPageHWPoison(hpage))) { 1131 atomic_long_sub(nr_pages, &num_poisoned_pages); 1132 unlock_page(hpage); 1133 return 0; 1134 } 1135 } 1136 set_page_hwpoison_huge_page(hpage); 1137 res = dequeue_hwpoisoned_huge_page(hpage); 1138 action_result(pfn, "free huge", 1139 res ? IGNORED : DELAYED); 1140 unlock_page(hpage); 1141 return res; 1142 } else { 1143 action_result(pfn, "high order kernel", IGNORED); 1144 return -EBUSY; 1145 } 1146 } 1147 1148 /* 1149 * We ignore non-LRU pages for good reasons. 1150 * - PG_locked is only well defined for LRU pages and a few others 1151 * - to avoid races with __set_page_locked() 1152 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1153 * The check (unnecessarily) ignores LRU pages being isolated and 1154 * walked by the page reclaim code, however that's not a big loss. 1155 */ 1156 if (!PageHuge(p) && !PageTransTail(p)) { 1157 if (!PageLRU(p)) 1158 shake_page(p, 0); 1159 if (!PageLRU(p)) { 1160 /* 1161 * shake_page could have turned it free. 1162 */ 1163 if (is_free_buddy_page(p)) { 1164 if (flags & MF_COUNT_INCREASED) 1165 action_result(pfn, "free buddy", DELAYED); 1166 else 1167 action_result(pfn, "free buddy, 2nd try", DELAYED); 1168 return 0; 1169 } 1170 } 1171 } 1172 1173 lock_page(hpage); 1174 1175 /* 1176 * The page could have changed compound pages during the locking. 1177 * If this happens just bail out. 1178 */ 1179 if (compound_head(p) != hpage) { 1180 action_result(pfn, "different compound page after locking", IGNORED); 1181 res = -EBUSY; 1182 goto out; 1183 } 1184 1185 /* 1186 * We use page flags to determine what action should be taken, but 1187 * the flags can be modified by the error containment action. One 1188 * example is an mlocked page, where PG_mlocked is cleared by 1189 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1190 * correctly, we save a copy of the page flags at this time. 1191 */ 1192 page_flags = p->flags; 1193 1194 /* 1195 * unpoison always clear PG_hwpoison inside page lock 1196 */ 1197 if (!PageHWPoison(p)) { 1198 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1199 atomic_long_sub(nr_pages, &num_poisoned_pages); 1200 put_page(hpage); 1201 res = 0; 1202 goto out; 1203 } 1204 if (hwpoison_filter(p)) { 1205 if (TestClearPageHWPoison(p)) 1206 atomic_long_sub(nr_pages, &num_poisoned_pages); 1207 unlock_page(hpage); 1208 put_page(hpage); 1209 return 0; 1210 } 1211 1212 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1213 goto identify_page_state; 1214 1215 /* 1216 * For error on the tail page, we should set PG_hwpoison 1217 * on the head page to show that the hugepage is hwpoisoned 1218 */ 1219 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1220 action_result(pfn, "hugepage already hardware poisoned", 1221 IGNORED); 1222 unlock_page(hpage); 1223 put_page(hpage); 1224 return 0; 1225 } 1226 /* 1227 * Set PG_hwpoison on all pages in an error hugepage, 1228 * because containment is done in hugepage unit for now. 1229 * Since we have done TestSetPageHWPoison() for the head page with 1230 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1231 */ 1232 if (PageHuge(p)) 1233 set_page_hwpoison_huge_page(hpage); 1234 1235 /* 1236 * It's very difficult to mess with pages currently under IO 1237 * and in many cases impossible, so we just avoid it here. 1238 */ 1239 wait_on_page_writeback(p); 1240 1241 /* 1242 * Now take care of user space mappings. 1243 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1244 * 1245 * When the raw error page is thp tail page, hpage points to the raw 1246 * page after thp split. 1247 */ 1248 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1249 != SWAP_SUCCESS) { 1250 action_result(pfn, "unmapping failed", IGNORED); 1251 res = -EBUSY; 1252 goto out; 1253 } 1254 1255 /* 1256 * Torn down by someone else? 1257 */ 1258 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1259 action_result(pfn, "already truncated LRU", IGNORED); 1260 res = -EBUSY; 1261 goto out; 1262 } 1263 1264 identify_page_state: 1265 res = -EBUSY; 1266 /* 1267 * The first check uses the current page flags which may not have any 1268 * relevant information. The second check with the saved page flagss is 1269 * carried out only if the first check can't determine the page status. 1270 */ 1271 for (ps = error_states;; ps++) 1272 if ((p->flags & ps->mask) == ps->res) 1273 break; 1274 1275 page_flags |= (p->flags & (1UL << PG_dirty)); 1276 1277 if (!ps->mask) 1278 for (ps = error_states;; ps++) 1279 if ((page_flags & ps->mask) == ps->res) 1280 break; 1281 res = page_action(ps, p, pfn); 1282 out: 1283 unlock_page(hpage); 1284 return res; 1285 } 1286 EXPORT_SYMBOL_GPL(memory_failure); 1287 1288 #define MEMORY_FAILURE_FIFO_ORDER 4 1289 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1290 1291 struct memory_failure_entry { 1292 unsigned long pfn; 1293 int trapno; 1294 int flags; 1295 }; 1296 1297 struct memory_failure_cpu { 1298 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1299 MEMORY_FAILURE_FIFO_SIZE); 1300 spinlock_t lock; 1301 struct work_struct work; 1302 }; 1303 1304 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1305 1306 /** 1307 * memory_failure_queue - Schedule handling memory failure of a page. 1308 * @pfn: Page Number of the corrupted page 1309 * @trapno: Trap number reported in the signal to user space. 1310 * @flags: Flags for memory failure handling 1311 * 1312 * This function is called by the low level hardware error handler 1313 * when it detects hardware memory corruption of a page. It schedules 1314 * the recovering of error page, including dropping pages, killing 1315 * processes etc. 1316 * 1317 * The function is primarily of use for corruptions that 1318 * happen outside the current execution context (e.g. when 1319 * detected by a background scrubber) 1320 * 1321 * Can run in IRQ context. 1322 */ 1323 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1324 { 1325 struct memory_failure_cpu *mf_cpu; 1326 unsigned long proc_flags; 1327 struct memory_failure_entry entry = { 1328 .pfn = pfn, 1329 .trapno = trapno, 1330 .flags = flags, 1331 }; 1332 1333 mf_cpu = &get_cpu_var(memory_failure_cpu); 1334 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1335 if (kfifo_put(&mf_cpu->fifo, entry)) 1336 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1337 else 1338 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1339 pfn); 1340 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1341 put_cpu_var(memory_failure_cpu); 1342 } 1343 EXPORT_SYMBOL_GPL(memory_failure_queue); 1344 1345 static void memory_failure_work_func(struct work_struct *work) 1346 { 1347 struct memory_failure_cpu *mf_cpu; 1348 struct memory_failure_entry entry = { 0, }; 1349 unsigned long proc_flags; 1350 int gotten; 1351 1352 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1353 for (;;) { 1354 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1355 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1356 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1357 if (!gotten) 1358 break; 1359 if (entry.flags & MF_SOFT_OFFLINE) 1360 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1361 else 1362 memory_failure(entry.pfn, entry.trapno, entry.flags); 1363 } 1364 } 1365 1366 static int __init memory_failure_init(void) 1367 { 1368 struct memory_failure_cpu *mf_cpu; 1369 int cpu; 1370 1371 for_each_possible_cpu(cpu) { 1372 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1373 spin_lock_init(&mf_cpu->lock); 1374 INIT_KFIFO(mf_cpu->fifo); 1375 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1376 } 1377 1378 return 0; 1379 } 1380 core_initcall(memory_failure_init); 1381 1382 /** 1383 * unpoison_memory - Unpoison a previously poisoned page 1384 * @pfn: Page number of the to be unpoisoned page 1385 * 1386 * Software-unpoison a page that has been poisoned by 1387 * memory_failure() earlier. 1388 * 1389 * This is only done on the software-level, so it only works 1390 * for linux injected failures, not real hardware failures 1391 * 1392 * Returns 0 for success, otherwise -errno. 1393 */ 1394 int unpoison_memory(unsigned long pfn) 1395 { 1396 struct page *page; 1397 struct page *p; 1398 int freeit = 0; 1399 unsigned int nr_pages; 1400 1401 if (!pfn_valid(pfn)) 1402 return -ENXIO; 1403 1404 p = pfn_to_page(pfn); 1405 page = compound_head(p); 1406 1407 if (!PageHWPoison(p)) { 1408 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1409 return 0; 1410 } 1411 1412 /* 1413 * unpoison_memory() can encounter thp only when the thp is being 1414 * worked by memory_failure() and the page lock is not held yet. 1415 * In such case, we yield to memory_failure() and make unpoison fail. 1416 */ 1417 if (!PageHuge(page) && PageTransHuge(page)) { 1418 pr_info("MCE: Memory failure is now running on %#lx\n", pfn); 1419 return 0; 1420 } 1421 1422 nr_pages = 1 << compound_order(page); 1423 1424 if (!get_page_unless_zero(page)) { 1425 /* 1426 * Since HWPoisoned hugepage should have non-zero refcount, 1427 * race between memory failure and unpoison seems to happen. 1428 * In such case unpoison fails and memory failure runs 1429 * to the end. 1430 */ 1431 if (PageHuge(page)) { 1432 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1433 return 0; 1434 } 1435 if (TestClearPageHWPoison(p)) 1436 atomic_long_dec(&num_poisoned_pages); 1437 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1438 return 0; 1439 } 1440 1441 lock_page(page); 1442 /* 1443 * This test is racy because PG_hwpoison is set outside of page lock. 1444 * That's acceptable because that won't trigger kernel panic. Instead, 1445 * the PG_hwpoison page will be caught and isolated on the entrance to 1446 * the free buddy page pool. 1447 */ 1448 if (TestClearPageHWPoison(page)) { 1449 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1450 atomic_long_sub(nr_pages, &num_poisoned_pages); 1451 freeit = 1; 1452 if (PageHuge(page)) 1453 clear_page_hwpoison_huge_page(page); 1454 } 1455 unlock_page(page); 1456 1457 put_page(page); 1458 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1459 put_page(page); 1460 1461 return 0; 1462 } 1463 EXPORT_SYMBOL(unpoison_memory); 1464 1465 static struct page *new_page(struct page *p, unsigned long private, int **x) 1466 { 1467 int nid = page_to_nid(p); 1468 if (PageHuge(p)) 1469 return alloc_huge_page_node(page_hstate(compound_head(p)), 1470 nid); 1471 else 1472 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1473 } 1474 1475 /* 1476 * Safely get reference count of an arbitrary page. 1477 * Returns 0 for a free page, -EIO for a zero refcount page 1478 * that is not free, and 1 for any other page type. 1479 * For 1 the page is returned with increased page count, otherwise not. 1480 */ 1481 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1482 { 1483 int ret; 1484 1485 if (flags & MF_COUNT_INCREASED) 1486 return 1; 1487 1488 /* 1489 * When the target page is a free hugepage, just remove it 1490 * from free hugepage list. 1491 */ 1492 if (!get_page_unless_zero(compound_head(p))) { 1493 if (PageHuge(p)) { 1494 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1495 ret = 0; 1496 } else if (is_free_buddy_page(p)) { 1497 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1498 ret = 0; 1499 } else { 1500 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1501 __func__, pfn, p->flags); 1502 ret = -EIO; 1503 } 1504 } else { 1505 /* Not a free page */ 1506 ret = 1; 1507 } 1508 return ret; 1509 } 1510 1511 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1512 { 1513 int ret = __get_any_page(page, pfn, flags); 1514 1515 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1516 /* 1517 * Try to free it. 1518 */ 1519 put_page(page); 1520 shake_page(page, 1); 1521 1522 /* 1523 * Did it turn free? 1524 */ 1525 ret = __get_any_page(page, pfn, 0); 1526 if (!PageLRU(page)) { 1527 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1528 pfn, page->flags); 1529 return -EIO; 1530 } 1531 } 1532 return ret; 1533 } 1534 1535 static int soft_offline_huge_page(struct page *page, int flags) 1536 { 1537 int ret; 1538 unsigned long pfn = page_to_pfn(page); 1539 struct page *hpage = compound_head(page); 1540 LIST_HEAD(pagelist); 1541 1542 /* 1543 * This double-check of PageHWPoison is to avoid the race with 1544 * memory_failure(). See also comment in __soft_offline_page(). 1545 */ 1546 lock_page(hpage); 1547 if (PageHWPoison(hpage)) { 1548 unlock_page(hpage); 1549 put_page(hpage); 1550 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1551 return -EBUSY; 1552 } 1553 unlock_page(hpage); 1554 1555 /* Keep page count to indicate a given hugepage is isolated. */ 1556 list_move(&hpage->lru, &pagelist); 1557 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1558 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1559 if (ret) { 1560 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1561 pfn, ret, page->flags); 1562 /* 1563 * We know that soft_offline_huge_page() tries to migrate 1564 * only one hugepage pointed to by hpage, so we need not 1565 * run through the pagelist here. 1566 */ 1567 putback_active_hugepage(hpage); 1568 if (ret > 0) 1569 ret = -EIO; 1570 } else { 1571 /* overcommit hugetlb page will be freed to buddy */ 1572 if (PageHuge(page)) { 1573 set_page_hwpoison_huge_page(hpage); 1574 dequeue_hwpoisoned_huge_page(hpage); 1575 atomic_long_add(1 << compound_order(hpage), 1576 &num_poisoned_pages); 1577 } else { 1578 SetPageHWPoison(page); 1579 atomic_long_inc(&num_poisoned_pages); 1580 } 1581 } 1582 return ret; 1583 } 1584 1585 static int __soft_offline_page(struct page *page, int flags) 1586 { 1587 int ret; 1588 unsigned long pfn = page_to_pfn(page); 1589 1590 /* 1591 * Check PageHWPoison again inside page lock because PageHWPoison 1592 * is set by memory_failure() outside page lock. Note that 1593 * memory_failure() also double-checks PageHWPoison inside page lock, 1594 * so there's no race between soft_offline_page() and memory_failure(). 1595 */ 1596 lock_page(page); 1597 wait_on_page_writeback(page); 1598 if (PageHWPoison(page)) { 1599 unlock_page(page); 1600 put_page(page); 1601 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1602 return -EBUSY; 1603 } 1604 /* 1605 * Try to invalidate first. This should work for 1606 * non dirty unmapped page cache pages. 1607 */ 1608 ret = invalidate_inode_page(page); 1609 unlock_page(page); 1610 /* 1611 * RED-PEN would be better to keep it isolated here, but we 1612 * would need to fix isolation locking first. 1613 */ 1614 if (ret == 1) { 1615 put_page(page); 1616 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1617 SetPageHWPoison(page); 1618 atomic_long_inc(&num_poisoned_pages); 1619 return 0; 1620 } 1621 1622 /* 1623 * Simple invalidation didn't work. 1624 * Try to migrate to a new page instead. migrate.c 1625 * handles a large number of cases for us. 1626 */ 1627 ret = isolate_lru_page(page); 1628 /* 1629 * Drop page reference which is came from get_any_page() 1630 * successful isolate_lru_page() already took another one. 1631 */ 1632 put_page(page); 1633 if (!ret) { 1634 LIST_HEAD(pagelist); 1635 inc_zone_page_state(page, NR_ISOLATED_ANON + 1636 page_is_file_cache(page)); 1637 list_add(&page->lru, &pagelist); 1638 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1639 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1640 if (ret) { 1641 if (!list_empty(&pagelist)) { 1642 list_del(&page->lru); 1643 dec_zone_page_state(page, NR_ISOLATED_ANON + 1644 page_is_file_cache(page)); 1645 putback_lru_page(page); 1646 } 1647 1648 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1649 pfn, ret, page->flags); 1650 if (ret > 0) 1651 ret = -EIO; 1652 } else { 1653 /* 1654 * After page migration succeeds, the source page can 1655 * be trapped in pagevec and actual freeing is delayed. 1656 * Freeing code works differently based on PG_hwpoison, 1657 * so there's a race. We need to make sure that the 1658 * source page should be freed back to buddy before 1659 * setting PG_hwpoison. 1660 */ 1661 if (!is_free_buddy_page(page)) 1662 lru_add_drain_all(); 1663 if (!is_free_buddy_page(page)) 1664 drain_all_pages(); 1665 SetPageHWPoison(page); 1666 if (!is_free_buddy_page(page)) 1667 pr_info("soft offline: %#lx: page leaked\n", 1668 pfn); 1669 atomic_long_inc(&num_poisoned_pages); 1670 } 1671 } else { 1672 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1673 pfn, ret, page_count(page), page->flags); 1674 } 1675 return ret; 1676 } 1677 1678 /** 1679 * soft_offline_page - Soft offline a page. 1680 * @page: page to offline 1681 * @flags: flags. Same as memory_failure(). 1682 * 1683 * Returns 0 on success, otherwise negated errno. 1684 * 1685 * Soft offline a page, by migration or invalidation, 1686 * without killing anything. This is for the case when 1687 * a page is not corrupted yet (so it's still valid to access), 1688 * but has had a number of corrected errors and is better taken 1689 * out. 1690 * 1691 * The actual policy on when to do that is maintained by 1692 * user space. 1693 * 1694 * This should never impact any application or cause data loss, 1695 * however it might take some time. 1696 * 1697 * This is not a 100% solution for all memory, but tries to be 1698 * ``good enough'' for the majority of memory. 1699 */ 1700 int soft_offline_page(struct page *page, int flags) 1701 { 1702 int ret; 1703 unsigned long pfn = page_to_pfn(page); 1704 struct page *hpage = compound_head(page); 1705 1706 if (PageHWPoison(page)) { 1707 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1708 return -EBUSY; 1709 } 1710 if (!PageHuge(page) && PageTransHuge(hpage)) { 1711 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1712 pr_info("soft offline: %#lx: failed to split THP\n", 1713 pfn); 1714 return -EBUSY; 1715 } 1716 } 1717 1718 get_online_mems(); 1719 1720 /* 1721 * Isolate the page, so that it doesn't get reallocated if it 1722 * was free. This flag should be kept set until the source page 1723 * is freed and PG_hwpoison on it is set. 1724 */ 1725 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 1726 set_migratetype_isolate(page, true); 1727 1728 ret = get_any_page(page, pfn, flags); 1729 put_online_mems(); 1730 if (ret > 0) { /* for in-use pages */ 1731 if (PageHuge(page)) 1732 ret = soft_offline_huge_page(page, flags); 1733 else 1734 ret = __soft_offline_page(page, flags); 1735 } else if (ret == 0) { /* for free pages */ 1736 if (PageHuge(page)) { 1737 set_page_hwpoison_huge_page(hpage); 1738 dequeue_hwpoisoned_huge_page(hpage); 1739 atomic_long_add(1 << compound_order(hpage), 1740 &num_poisoned_pages); 1741 } else { 1742 SetPageHWPoison(page); 1743 atomic_long_inc(&num_poisoned_pages); 1744 } 1745 } 1746 unset_migratetype_isolate(page, MIGRATE_MOVABLE); 1747 return ret; 1748 } 1749