xref: /openbmc/linux/mm/memory-failure.c (revision 25985edc)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include "internal.h"
56 
57 int sysctl_memory_failure_early_kill __read_mostly = 0;
58 
59 int sysctl_memory_failure_recovery __read_mostly = 1;
60 
61 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62 
63 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64 
65 u32 hwpoison_filter_enable = 0;
66 u32 hwpoison_filter_dev_major = ~0U;
67 u32 hwpoison_filter_dev_minor = ~0U;
68 u64 hwpoison_filter_flags_mask;
69 u64 hwpoison_filter_flags_value;
70 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75 
76 static int hwpoison_filter_dev(struct page *p)
77 {
78 	struct address_space *mapping;
79 	dev_t dev;
80 
81 	if (hwpoison_filter_dev_major == ~0U &&
82 	    hwpoison_filter_dev_minor == ~0U)
83 		return 0;
84 
85 	/*
86 	 * page_mapping() does not accept slab pages.
87 	 */
88 	if (PageSlab(p))
89 		return -EINVAL;
90 
91 	mapping = page_mapping(p);
92 	if (mapping == NULL || mapping->host == NULL)
93 		return -EINVAL;
94 
95 	dev = mapping->host->i_sb->s_dev;
96 	if (hwpoison_filter_dev_major != ~0U &&
97 	    hwpoison_filter_dev_major != MAJOR(dev))
98 		return -EINVAL;
99 	if (hwpoison_filter_dev_minor != ~0U &&
100 	    hwpoison_filter_dev_minor != MINOR(dev))
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
106 static int hwpoison_filter_flags(struct page *p)
107 {
108 	if (!hwpoison_filter_flags_mask)
109 		return 0;
110 
111 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 				    hwpoison_filter_flags_value)
113 		return 0;
114 	else
115 		return -EINVAL;
116 }
117 
118 /*
119  * This allows stress tests to limit test scope to a collection of tasks
120  * by putting them under some memcg. This prevents killing unrelated/important
121  * processes such as /sbin/init. Note that the target task may share clean
122  * pages with init (eg. libc text), which is harmless. If the target task
123  * share _dirty_ pages with another task B, the test scheme must make sure B
124  * is also included in the memcg. At last, due to race conditions this filter
125  * can only guarantee that the page either belongs to the memcg tasks, or is
126  * a freed page.
127  */
128 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129 u64 hwpoison_filter_memcg;
130 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131 static int hwpoison_filter_task(struct page *p)
132 {
133 	struct mem_cgroup *mem;
134 	struct cgroup_subsys_state *css;
135 	unsigned long ino;
136 
137 	if (!hwpoison_filter_memcg)
138 		return 0;
139 
140 	mem = try_get_mem_cgroup_from_page(p);
141 	if (!mem)
142 		return -EINVAL;
143 
144 	css = mem_cgroup_css(mem);
145 	/* root_mem_cgroup has NULL dentries */
146 	if (!css->cgroup->dentry)
147 		return -EINVAL;
148 
149 	ino = css->cgroup->dentry->d_inode->i_ino;
150 	css_put(css);
151 
152 	if (ino != hwpoison_filter_memcg)
153 		return -EINVAL;
154 
155 	return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160 
161 int hwpoison_filter(struct page *p)
162 {
163 	if (!hwpoison_filter_enable)
164 		return 0;
165 
166 	if (hwpoison_filter_dev(p))
167 		return -EINVAL;
168 
169 	if (hwpoison_filter_flags(p))
170 		return -EINVAL;
171 
172 	if (hwpoison_filter_task(p))
173 		return -EINVAL;
174 
175 	return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 	return 0;
181 }
182 #endif
183 
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185 
186 /*
187  * Send all the processes who have the page mapped an ``action optional''
188  * signal.
189  */
190 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_code = BUS_MCEERR_AO;
202 	si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 	si.si_trapno = trapno;
205 #endif
206 	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207 	/*
208 	 * Don't use force here, it's convenient if the signal
209 	 * can be temporarily blocked.
210 	 * This could cause a loop when the user sets SIGBUS
211 	 * to SIG_IGN, but hopefully no one will do that?
212 	 */
213 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214 	if (ret < 0)
215 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 		       t->comm, t->pid, ret);
217 	return ret;
218 }
219 
220 /*
221  * When a unknown page type is encountered drain as many buffers as possible
222  * in the hope to turn the page into a LRU or free page, which we can handle.
223  */
224 void shake_page(struct page *p, int access)
225 {
226 	if (!PageSlab(p)) {
227 		lru_add_drain_all();
228 		if (PageLRU(p))
229 			return;
230 		drain_all_pages();
231 		if (PageLRU(p) || is_free_buddy_page(p))
232 			return;
233 	}
234 
235 	/*
236 	 * Only call shrink_slab here (which would also shrink other caches) if
237 	 * access is not potentially fatal.
238 	 */
239 	if (access) {
240 		int nr;
241 		do {
242 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
243 			if (page_count(p) == 1)
244 				break;
245 		} while (nr > 10);
246 	}
247 }
248 EXPORT_SYMBOL_GPL(shake_page);
249 
250 /*
251  * Kill all processes that have a poisoned page mapped and then isolate
252  * the page.
253  *
254  * General strategy:
255  * Find all processes having the page mapped and kill them.
256  * But we keep a page reference around so that the page is not
257  * actually freed yet.
258  * Then stash the page away
259  *
260  * There's no convenient way to get back to mapped processes
261  * from the VMAs. So do a brute-force search over all
262  * running processes.
263  *
264  * Remember that machine checks are not common (or rather
265  * if they are common you have other problems), so this shouldn't
266  * be a performance issue.
267  *
268  * Also there are some races possible while we get from the
269  * error detection to actually handle it.
270  */
271 
272 struct to_kill {
273 	struct list_head nd;
274 	struct task_struct *tsk;
275 	unsigned long addr;
276 	char addr_valid;
277 };
278 
279 /*
280  * Failure handling: if we can't find or can't kill a process there's
281  * not much we can do.	We just print a message and ignore otherwise.
282  */
283 
284 /*
285  * Schedule a process for later kill.
286  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287  * TBD would GFP_NOIO be enough?
288  */
289 static void add_to_kill(struct task_struct *tsk, struct page *p,
290 		       struct vm_area_struct *vma,
291 		       struct list_head *to_kill,
292 		       struct to_kill **tkc)
293 {
294 	struct to_kill *tk;
295 
296 	if (*tkc) {
297 		tk = *tkc;
298 		*tkc = NULL;
299 	} else {
300 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 		if (!tk) {
302 			printk(KERN_ERR
303 		"MCE: Out of memory while machine check handling\n");
304 			return;
305 		}
306 	}
307 	tk->addr = page_address_in_vma(p, vma);
308 	tk->addr_valid = 1;
309 
310 	/*
311 	 * In theory we don't have to kill when the page was
312 	 * munmaped. But it could be also a mremap. Since that's
313 	 * likely very rare kill anyways just out of paranoia, but use
314 	 * a SIGKILL because the error is not contained anymore.
315 	 */
316 	if (tk->addr == -EFAULT) {
317 		pr_info("MCE: Unable to find user space address %lx in %s\n",
318 			page_to_pfn(p), tsk->comm);
319 		tk->addr_valid = 0;
320 	}
321 	get_task_struct(tsk);
322 	tk->tsk = tsk;
323 	list_add_tail(&tk->nd, to_kill);
324 }
325 
326 /*
327  * Kill the processes that have been collected earlier.
328  *
329  * Only do anything when DOIT is set, otherwise just free the list
330  * (this is used for clean pages which do not need killing)
331  * Also when FAIL is set do a force kill because something went
332  * wrong earlier.
333  */
334 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
335 			  int fail, struct page *page, unsigned long pfn)
336 {
337 	struct to_kill *tk, *next;
338 
339 	list_for_each_entry_safe (tk, next, to_kill, nd) {
340 		if (doit) {
341 			/*
342 			 * In case something went wrong with munmapping
343 			 * make sure the process doesn't catch the
344 			 * signal and then access the memory. Just kill it.
345 			 */
346 			if (fail || tk->addr_valid == 0) {
347 				printk(KERN_ERR
348 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349 					pfn, tk->tsk->comm, tk->tsk->pid);
350 				force_sig(SIGKILL, tk->tsk);
351 			}
352 
353 			/*
354 			 * In theory the process could have mapped
355 			 * something else on the address in-between. We could
356 			 * check for that, but we need to tell the
357 			 * process anyways.
358 			 */
359 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
360 					      pfn, page) < 0)
361 				printk(KERN_ERR
362 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363 					pfn, tk->tsk->comm, tk->tsk->pid);
364 		}
365 		put_task_struct(tk->tsk);
366 		kfree(tk);
367 	}
368 }
369 
370 static int task_early_kill(struct task_struct *tsk)
371 {
372 	if (!tsk->mm)
373 		return 0;
374 	if (tsk->flags & PF_MCE_PROCESS)
375 		return !!(tsk->flags & PF_MCE_EARLY);
376 	return sysctl_memory_failure_early_kill;
377 }
378 
379 /*
380  * Collect processes when the error hit an anonymous page.
381  */
382 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383 			      struct to_kill **tkc)
384 {
385 	struct vm_area_struct *vma;
386 	struct task_struct *tsk;
387 	struct anon_vma *av;
388 
389 	read_lock(&tasklist_lock);
390 	av = page_lock_anon_vma(page);
391 	if (av == NULL)	/* Not actually mapped anymore */
392 		goto out;
393 	for_each_process (tsk) {
394 		struct anon_vma_chain *vmac;
395 
396 		if (!task_early_kill(tsk))
397 			continue;
398 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
399 			vma = vmac->vma;
400 			if (!page_mapped_in_vma(page, vma))
401 				continue;
402 			if (vma->vm_mm == tsk->mm)
403 				add_to_kill(tsk, page, vma, to_kill, tkc);
404 		}
405 	}
406 	page_unlock_anon_vma(av);
407 out:
408 	read_unlock(&tasklist_lock);
409 }
410 
411 /*
412  * Collect processes when the error hit a file mapped page.
413  */
414 static void collect_procs_file(struct page *page, struct list_head *to_kill,
415 			      struct to_kill **tkc)
416 {
417 	struct vm_area_struct *vma;
418 	struct task_struct *tsk;
419 	struct prio_tree_iter iter;
420 	struct address_space *mapping = page->mapping;
421 
422 	/*
423 	 * A note on the locking order between the two locks.
424 	 * We don't rely on this particular order.
425 	 * If you have some other code that needs a different order
426 	 * feel free to switch them around. Or add a reverse link
427 	 * from mm_struct to task_struct, then this could be all
428 	 * done without taking tasklist_lock and looping over all tasks.
429 	 */
430 
431 	read_lock(&tasklist_lock);
432 	spin_lock(&mapping->i_mmap_lock);
433 	for_each_process(tsk) {
434 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435 
436 		if (!task_early_kill(tsk))
437 			continue;
438 
439 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
440 				      pgoff) {
441 			/*
442 			 * Send early kill signal to tasks where a vma covers
443 			 * the page but the corrupted page is not necessarily
444 			 * mapped it in its pte.
445 			 * Assume applications who requested early kill want
446 			 * to be informed of all such data corruptions.
447 			 */
448 			if (vma->vm_mm == tsk->mm)
449 				add_to_kill(tsk, page, vma, to_kill, tkc);
450 		}
451 	}
452 	spin_unlock(&mapping->i_mmap_lock);
453 	read_unlock(&tasklist_lock);
454 }
455 
456 /*
457  * Collect the processes who have the corrupted page mapped to kill.
458  * This is done in two steps for locking reasons.
459  * First preallocate one tokill structure outside the spin locks,
460  * so that we can kill at least one process reasonably reliable.
461  */
462 static void collect_procs(struct page *page, struct list_head *tokill)
463 {
464 	struct to_kill *tk;
465 
466 	if (!page->mapping)
467 		return;
468 
469 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
470 	if (!tk)
471 		return;
472 	if (PageAnon(page))
473 		collect_procs_anon(page, tokill, &tk);
474 	else
475 		collect_procs_file(page, tokill, &tk);
476 	kfree(tk);
477 }
478 
479 /*
480  * Error handlers for various types of pages.
481  */
482 
483 enum outcome {
484 	IGNORED,	/* Error: cannot be handled */
485 	FAILED,		/* Error: handling failed */
486 	DELAYED,	/* Will be handled later */
487 	RECOVERED,	/* Successfully recovered */
488 };
489 
490 static const char *action_name[] = {
491 	[IGNORED] = "Ignored",
492 	[FAILED] = "Failed",
493 	[DELAYED] = "Delayed",
494 	[RECOVERED] = "Recovered",
495 };
496 
497 /*
498  * XXX: It is possible that a page is isolated from LRU cache,
499  * and then kept in swap cache or failed to remove from page cache.
500  * The page count will stop it from being freed by unpoison.
501  * Stress tests should be aware of this memory leak problem.
502  */
503 static int delete_from_lru_cache(struct page *p)
504 {
505 	if (!isolate_lru_page(p)) {
506 		/*
507 		 * Clear sensible page flags, so that the buddy system won't
508 		 * complain when the page is unpoison-and-freed.
509 		 */
510 		ClearPageActive(p);
511 		ClearPageUnevictable(p);
512 		/*
513 		 * drop the page count elevated by isolate_lru_page()
514 		 */
515 		page_cache_release(p);
516 		return 0;
517 	}
518 	return -EIO;
519 }
520 
521 /*
522  * Error hit kernel page.
523  * Do nothing, try to be lucky and not touch this instead. For a few cases we
524  * could be more sophisticated.
525  */
526 static int me_kernel(struct page *p, unsigned long pfn)
527 {
528 	return IGNORED;
529 }
530 
531 /*
532  * Page in unknown state. Do nothing.
533  */
534 static int me_unknown(struct page *p, unsigned long pfn)
535 {
536 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
537 	return FAILED;
538 }
539 
540 /*
541  * Clean (or cleaned) page cache page.
542  */
543 static int me_pagecache_clean(struct page *p, unsigned long pfn)
544 {
545 	int err;
546 	int ret = FAILED;
547 	struct address_space *mapping;
548 
549 	delete_from_lru_cache(p);
550 
551 	/*
552 	 * For anonymous pages we're done the only reference left
553 	 * should be the one m_f() holds.
554 	 */
555 	if (PageAnon(p))
556 		return RECOVERED;
557 
558 	/*
559 	 * Now truncate the page in the page cache. This is really
560 	 * more like a "temporary hole punch"
561 	 * Don't do this for block devices when someone else
562 	 * has a reference, because it could be file system metadata
563 	 * and that's not safe to truncate.
564 	 */
565 	mapping = page_mapping(p);
566 	if (!mapping) {
567 		/*
568 		 * Page has been teared down in the meanwhile
569 		 */
570 		return FAILED;
571 	}
572 
573 	/*
574 	 * Truncation is a bit tricky. Enable it per file system for now.
575 	 *
576 	 * Open: to take i_mutex or not for this? Right now we don't.
577 	 */
578 	if (mapping->a_ops->error_remove_page) {
579 		err = mapping->a_ops->error_remove_page(mapping, p);
580 		if (err != 0) {
581 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
582 					pfn, err);
583 		} else if (page_has_private(p) &&
584 				!try_to_release_page(p, GFP_NOIO)) {
585 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
586 		} else {
587 			ret = RECOVERED;
588 		}
589 	} else {
590 		/*
591 		 * If the file system doesn't support it just invalidate
592 		 * This fails on dirty or anything with private pages
593 		 */
594 		if (invalidate_inode_page(p))
595 			ret = RECOVERED;
596 		else
597 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
598 				pfn);
599 	}
600 	return ret;
601 }
602 
603 /*
604  * Dirty cache page page
605  * Issues: when the error hit a hole page the error is not properly
606  * propagated.
607  */
608 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
609 {
610 	struct address_space *mapping = page_mapping(p);
611 
612 	SetPageError(p);
613 	/* TBD: print more information about the file. */
614 	if (mapping) {
615 		/*
616 		 * IO error will be reported by write(), fsync(), etc.
617 		 * who check the mapping.
618 		 * This way the application knows that something went
619 		 * wrong with its dirty file data.
620 		 *
621 		 * There's one open issue:
622 		 *
623 		 * The EIO will be only reported on the next IO
624 		 * operation and then cleared through the IO map.
625 		 * Normally Linux has two mechanisms to pass IO error
626 		 * first through the AS_EIO flag in the address space
627 		 * and then through the PageError flag in the page.
628 		 * Since we drop pages on memory failure handling the
629 		 * only mechanism open to use is through AS_AIO.
630 		 *
631 		 * This has the disadvantage that it gets cleared on
632 		 * the first operation that returns an error, while
633 		 * the PageError bit is more sticky and only cleared
634 		 * when the page is reread or dropped.  If an
635 		 * application assumes it will always get error on
636 		 * fsync, but does other operations on the fd before
637 		 * and the page is dropped between then the error
638 		 * will not be properly reported.
639 		 *
640 		 * This can already happen even without hwpoisoned
641 		 * pages: first on metadata IO errors (which only
642 		 * report through AS_EIO) or when the page is dropped
643 		 * at the wrong time.
644 		 *
645 		 * So right now we assume that the application DTRT on
646 		 * the first EIO, but we're not worse than other parts
647 		 * of the kernel.
648 		 */
649 		mapping_set_error(mapping, EIO);
650 	}
651 
652 	return me_pagecache_clean(p, pfn);
653 }
654 
655 /*
656  * Clean and dirty swap cache.
657  *
658  * Dirty swap cache page is tricky to handle. The page could live both in page
659  * cache and swap cache(ie. page is freshly swapped in). So it could be
660  * referenced concurrently by 2 types of PTEs:
661  * normal PTEs and swap PTEs. We try to handle them consistently by calling
662  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
663  * and then
664  *      - clear dirty bit to prevent IO
665  *      - remove from LRU
666  *      - but keep in the swap cache, so that when we return to it on
667  *        a later page fault, we know the application is accessing
668  *        corrupted data and shall be killed (we installed simple
669  *        interception code in do_swap_page to catch it).
670  *
671  * Clean swap cache pages can be directly isolated. A later page fault will
672  * bring in the known good data from disk.
673  */
674 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
675 {
676 	ClearPageDirty(p);
677 	/* Trigger EIO in shmem: */
678 	ClearPageUptodate(p);
679 
680 	if (!delete_from_lru_cache(p))
681 		return DELAYED;
682 	else
683 		return FAILED;
684 }
685 
686 static int me_swapcache_clean(struct page *p, unsigned long pfn)
687 {
688 	delete_from_swap_cache(p);
689 
690 	if (!delete_from_lru_cache(p))
691 		return RECOVERED;
692 	else
693 		return FAILED;
694 }
695 
696 /*
697  * Huge pages. Needs work.
698  * Issues:
699  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
700  *   To narrow down kill region to one page, we need to break up pmd.
701  */
702 static int me_huge_page(struct page *p, unsigned long pfn)
703 {
704 	int res = 0;
705 	struct page *hpage = compound_head(p);
706 	/*
707 	 * We can safely recover from error on free or reserved (i.e.
708 	 * not in-use) hugepage by dequeuing it from freelist.
709 	 * To check whether a hugepage is in-use or not, we can't use
710 	 * page->lru because it can be used in other hugepage operations,
711 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
712 	 * So instead we use page_mapping() and PageAnon().
713 	 * We assume that this function is called with page lock held,
714 	 * so there is no race between isolation and mapping/unmapping.
715 	 */
716 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
717 		res = dequeue_hwpoisoned_huge_page(hpage);
718 		if (!res)
719 			return RECOVERED;
720 	}
721 	return DELAYED;
722 }
723 
724 /*
725  * Various page states we can handle.
726  *
727  * A page state is defined by its current page->flags bits.
728  * The table matches them in order and calls the right handler.
729  *
730  * This is quite tricky because we can access page at any time
731  * in its live cycle, so all accesses have to be extremely careful.
732  *
733  * This is not complete. More states could be added.
734  * For any missing state don't attempt recovery.
735  */
736 
737 #define dirty		(1UL << PG_dirty)
738 #define sc		(1UL << PG_swapcache)
739 #define unevict		(1UL << PG_unevictable)
740 #define mlock		(1UL << PG_mlocked)
741 #define writeback	(1UL << PG_writeback)
742 #define lru		(1UL << PG_lru)
743 #define swapbacked	(1UL << PG_swapbacked)
744 #define head		(1UL << PG_head)
745 #define tail		(1UL << PG_tail)
746 #define compound	(1UL << PG_compound)
747 #define slab		(1UL << PG_slab)
748 #define reserved	(1UL << PG_reserved)
749 
750 static struct page_state {
751 	unsigned long mask;
752 	unsigned long res;
753 	char *msg;
754 	int (*action)(struct page *p, unsigned long pfn);
755 } error_states[] = {
756 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
757 	/*
758 	 * free pages are specially detected outside this table:
759 	 * PG_buddy pages only make a small fraction of all free pages.
760 	 */
761 
762 	/*
763 	 * Could in theory check if slab page is free or if we can drop
764 	 * currently unused objects without touching them. But just
765 	 * treat it as standard kernel for now.
766 	 */
767 	{ slab,		slab,		"kernel slab",	me_kernel },
768 
769 #ifdef CONFIG_PAGEFLAGS_EXTENDED
770 	{ head,		head,		"huge",		me_huge_page },
771 	{ tail,		tail,		"huge",		me_huge_page },
772 #else
773 	{ compound,	compound,	"huge",		me_huge_page },
774 #endif
775 
776 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
777 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
778 
779 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
780 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
781 
782 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
783 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
784 
785 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
786 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
787 
788 	/*
789 	 * Catchall entry: must be at end.
790 	 */
791 	{ 0,		0,		"unknown page state",	me_unknown },
792 };
793 
794 #undef dirty
795 #undef sc
796 #undef unevict
797 #undef mlock
798 #undef writeback
799 #undef lru
800 #undef swapbacked
801 #undef head
802 #undef tail
803 #undef compound
804 #undef slab
805 #undef reserved
806 
807 static void action_result(unsigned long pfn, char *msg, int result)
808 {
809 	struct page *page = pfn_to_page(pfn);
810 
811 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
812 		pfn,
813 		PageDirty(page) ? "dirty " : "",
814 		msg, action_name[result]);
815 }
816 
817 static int page_action(struct page_state *ps, struct page *p,
818 			unsigned long pfn)
819 {
820 	int result;
821 	int count;
822 
823 	result = ps->action(p, pfn);
824 	action_result(pfn, ps->msg, result);
825 
826 	count = page_count(p) - 1;
827 	if (ps->action == me_swapcache_dirty && result == DELAYED)
828 		count--;
829 	if (count != 0) {
830 		printk(KERN_ERR
831 		       "MCE %#lx: %s page still referenced by %d users\n",
832 		       pfn, ps->msg, count);
833 		result = FAILED;
834 	}
835 
836 	/* Could do more checks here if page looks ok */
837 	/*
838 	 * Could adjust zone counters here to correct for the missing page.
839 	 */
840 
841 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
842 }
843 
844 /*
845  * Do all that is necessary to remove user space mappings. Unmap
846  * the pages and send SIGBUS to the processes if the data was dirty.
847  */
848 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
849 				  int trapno)
850 {
851 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
852 	struct address_space *mapping;
853 	LIST_HEAD(tokill);
854 	int ret;
855 	int kill = 1;
856 	struct page *hpage = compound_head(p);
857 	struct page *ppage;
858 
859 	if (PageReserved(p) || PageSlab(p))
860 		return SWAP_SUCCESS;
861 
862 	/*
863 	 * This check implies we don't kill processes if their pages
864 	 * are in the swap cache early. Those are always late kills.
865 	 */
866 	if (!page_mapped(hpage))
867 		return SWAP_SUCCESS;
868 
869 	if (PageKsm(p))
870 		return SWAP_FAIL;
871 
872 	if (PageSwapCache(p)) {
873 		printk(KERN_ERR
874 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
875 		ttu |= TTU_IGNORE_HWPOISON;
876 	}
877 
878 	/*
879 	 * Propagate the dirty bit from PTEs to struct page first, because we
880 	 * need this to decide if we should kill or just drop the page.
881 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
882 	 * be called inside page lock (it's recommended but not enforced).
883 	 */
884 	mapping = page_mapping(hpage);
885 	if (!PageDirty(hpage) && mapping &&
886 	    mapping_cap_writeback_dirty(mapping)) {
887 		if (page_mkclean(hpage)) {
888 			SetPageDirty(hpage);
889 		} else {
890 			kill = 0;
891 			ttu |= TTU_IGNORE_HWPOISON;
892 			printk(KERN_INFO
893 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
894 				pfn);
895 		}
896 	}
897 
898 	/*
899 	 * ppage: poisoned page
900 	 *   if p is regular page(4k page)
901 	 *        ppage == real poisoned page;
902 	 *   else p is hugetlb or THP, ppage == head page.
903 	 */
904 	ppage = hpage;
905 
906 	if (PageTransHuge(hpage)) {
907 		/*
908 		 * Verify that this isn't a hugetlbfs head page, the check for
909 		 * PageAnon is just for avoid tripping a split_huge_page
910 		 * internal debug check, as split_huge_page refuses to deal with
911 		 * anything that isn't an anon page. PageAnon can't go away fro
912 		 * under us because we hold a refcount on the hpage, without a
913 		 * refcount on the hpage. split_huge_page can't be safely called
914 		 * in the first place, having a refcount on the tail isn't
915 		 * enough * to be safe.
916 		 */
917 		if (!PageHuge(hpage) && PageAnon(hpage)) {
918 			if (unlikely(split_huge_page(hpage))) {
919 				/*
920 				 * FIXME: if splitting THP is failed, it is
921 				 * better to stop the following operation rather
922 				 * than causing panic by unmapping. System might
923 				 * survive if the page is freed later.
924 				 */
925 				printk(KERN_INFO
926 					"MCE %#lx: failed to split THP\n", pfn);
927 
928 				BUG_ON(!PageHWPoison(p));
929 				return SWAP_FAIL;
930 			}
931 			/* THP is split, so ppage should be the real poisoned page. */
932 			ppage = p;
933 		}
934 	}
935 
936 	/*
937 	 * First collect all the processes that have the page
938 	 * mapped in dirty form.  This has to be done before try_to_unmap,
939 	 * because ttu takes the rmap data structures down.
940 	 *
941 	 * Error handling: We ignore errors here because
942 	 * there's nothing that can be done.
943 	 */
944 	if (kill)
945 		collect_procs(ppage, &tokill);
946 
947 	if (hpage != ppage)
948 		lock_page(ppage);
949 
950 	ret = try_to_unmap(ppage, ttu);
951 	if (ret != SWAP_SUCCESS)
952 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
953 				pfn, page_mapcount(ppage));
954 
955 	if (hpage != ppage)
956 		unlock_page(ppage);
957 
958 	/*
959 	 * Now that the dirty bit has been propagated to the
960 	 * struct page and all unmaps done we can decide if
961 	 * killing is needed or not.  Only kill when the page
962 	 * was dirty, otherwise the tokill list is merely
963 	 * freed.  When there was a problem unmapping earlier
964 	 * use a more force-full uncatchable kill to prevent
965 	 * any accesses to the poisoned memory.
966 	 */
967 	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
968 		      ret != SWAP_SUCCESS, p, pfn);
969 
970 	return ret;
971 }
972 
973 static void set_page_hwpoison_huge_page(struct page *hpage)
974 {
975 	int i;
976 	int nr_pages = 1 << compound_trans_order(hpage);
977 	for (i = 0; i < nr_pages; i++)
978 		SetPageHWPoison(hpage + i);
979 }
980 
981 static void clear_page_hwpoison_huge_page(struct page *hpage)
982 {
983 	int i;
984 	int nr_pages = 1 << compound_trans_order(hpage);
985 	for (i = 0; i < nr_pages; i++)
986 		ClearPageHWPoison(hpage + i);
987 }
988 
989 int __memory_failure(unsigned long pfn, int trapno, int flags)
990 {
991 	struct page_state *ps;
992 	struct page *p;
993 	struct page *hpage;
994 	int res;
995 	unsigned int nr_pages;
996 
997 	if (!sysctl_memory_failure_recovery)
998 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
999 
1000 	if (!pfn_valid(pfn)) {
1001 		printk(KERN_ERR
1002 		       "MCE %#lx: memory outside kernel control\n",
1003 		       pfn);
1004 		return -ENXIO;
1005 	}
1006 
1007 	p = pfn_to_page(pfn);
1008 	hpage = compound_head(p);
1009 	if (TestSetPageHWPoison(p)) {
1010 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1011 		return 0;
1012 	}
1013 
1014 	nr_pages = 1 << compound_trans_order(hpage);
1015 	atomic_long_add(nr_pages, &mce_bad_pages);
1016 
1017 	/*
1018 	 * We need/can do nothing about count=0 pages.
1019 	 * 1) it's a free page, and therefore in safe hand:
1020 	 *    prep_new_page() will be the gate keeper.
1021 	 * 2) it's a free hugepage, which is also safe:
1022 	 *    an affected hugepage will be dequeued from hugepage freelist,
1023 	 *    so there's no concern about reusing it ever after.
1024 	 * 3) it's part of a non-compound high order page.
1025 	 *    Implies some kernel user: cannot stop them from
1026 	 *    R/W the page; let's pray that the page has been
1027 	 *    used and will be freed some time later.
1028 	 * In fact it's dangerous to directly bump up page count from 0,
1029 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1030 	 */
1031 	if (!(flags & MF_COUNT_INCREASED) &&
1032 		!get_page_unless_zero(hpage)) {
1033 		if (is_free_buddy_page(p)) {
1034 			action_result(pfn, "free buddy", DELAYED);
1035 			return 0;
1036 		} else if (PageHuge(hpage)) {
1037 			/*
1038 			 * Check "just unpoisoned", "filter hit", and
1039 			 * "race with other subpage."
1040 			 */
1041 			lock_page(hpage);
1042 			if (!PageHWPoison(hpage)
1043 			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1044 			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1045 				atomic_long_sub(nr_pages, &mce_bad_pages);
1046 				return 0;
1047 			}
1048 			set_page_hwpoison_huge_page(hpage);
1049 			res = dequeue_hwpoisoned_huge_page(hpage);
1050 			action_result(pfn, "free huge",
1051 				      res ? IGNORED : DELAYED);
1052 			unlock_page(hpage);
1053 			return res;
1054 		} else {
1055 			action_result(pfn, "high order kernel", IGNORED);
1056 			return -EBUSY;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * We ignore non-LRU pages for good reasons.
1062 	 * - PG_locked is only well defined for LRU pages and a few others
1063 	 * - to avoid races with __set_page_locked()
1064 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1065 	 * The check (unnecessarily) ignores LRU pages being isolated and
1066 	 * walked by the page reclaim code, however that's not a big loss.
1067 	 */
1068 	if (!PageHuge(p) && !PageTransCompound(p)) {
1069 		if (!PageLRU(p))
1070 			shake_page(p, 0);
1071 		if (!PageLRU(p)) {
1072 			/*
1073 			 * shake_page could have turned it free.
1074 			 */
1075 			if (is_free_buddy_page(p)) {
1076 				action_result(pfn, "free buddy, 2nd try",
1077 						DELAYED);
1078 				return 0;
1079 			}
1080 			action_result(pfn, "non LRU", IGNORED);
1081 			put_page(p);
1082 			return -EBUSY;
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Lock the page and wait for writeback to finish.
1088 	 * It's very difficult to mess with pages currently under IO
1089 	 * and in many cases impossible, so we just avoid it here.
1090 	 */
1091 	lock_page(hpage);
1092 
1093 	/*
1094 	 * unpoison always clear PG_hwpoison inside page lock
1095 	 */
1096 	if (!PageHWPoison(p)) {
1097 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1098 		res = 0;
1099 		goto out;
1100 	}
1101 	if (hwpoison_filter(p)) {
1102 		if (TestClearPageHWPoison(p))
1103 			atomic_long_sub(nr_pages, &mce_bad_pages);
1104 		unlock_page(hpage);
1105 		put_page(hpage);
1106 		return 0;
1107 	}
1108 
1109 	/*
1110 	 * For error on the tail page, we should set PG_hwpoison
1111 	 * on the head page to show that the hugepage is hwpoisoned
1112 	 */
1113 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1114 		action_result(pfn, "hugepage already hardware poisoned",
1115 				IGNORED);
1116 		unlock_page(hpage);
1117 		put_page(hpage);
1118 		return 0;
1119 	}
1120 	/*
1121 	 * Set PG_hwpoison on all pages in an error hugepage,
1122 	 * because containment is done in hugepage unit for now.
1123 	 * Since we have done TestSetPageHWPoison() for the head page with
1124 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1125 	 */
1126 	if (PageHuge(p))
1127 		set_page_hwpoison_huge_page(hpage);
1128 
1129 	wait_on_page_writeback(p);
1130 
1131 	/*
1132 	 * Now take care of user space mappings.
1133 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1134 	 */
1135 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1136 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1137 		res = -EBUSY;
1138 		goto out;
1139 	}
1140 
1141 	/*
1142 	 * Torn down by someone else?
1143 	 */
1144 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1145 		action_result(pfn, "already truncated LRU", IGNORED);
1146 		res = -EBUSY;
1147 		goto out;
1148 	}
1149 
1150 	res = -EBUSY;
1151 	for (ps = error_states;; ps++) {
1152 		if ((p->flags & ps->mask) == ps->res) {
1153 			res = page_action(ps, p, pfn);
1154 			break;
1155 		}
1156 	}
1157 out:
1158 	unlock_page(hpage);
1159 	return res;
1160 }
1161 EXPORT_SYMBOL_GPL(__memory_failure);
1162 
1163 /**
1164  * memory_failure - Handle memory failure of a page.
1165  * @pfn: Page Number of the corrupted page
1166  * @trapno: Trap number reported in the signal to user space.
1167  *
1168  * This function is called by the low level machine check code
1169  * of an architecture when it detects hardware memory corruption
1170  * of a page. It tries its best to recover, which includes
1171  * dropping pages, killing processes etc.
1172  *
1173  * The function is primarily of use for corruptions that
1174  * happen outside the current execution context (e.g. when
1175  * detected by a background scrubber)
1176  *
1177  * Must run in process context (e.g. a work queue) with interrupts
1178  * enabled and no spinlocks hold.
1179  */
1180 void memory_failure(unsigned long pfn, int trapno)
1181 {
1182 	__memory_failure(pfn, trapno, 0);
1183 }
1184 
1185 /**
1186  * unpoison_memory - Unpoison a previously poisoned page
1187  * @pfn: Page number of the to be unpoisoned page
1188  *
1189  * Software-unpoison a page that has been poisoned by
1190  * memory_failure() earlier.
1191  *
1192  * This is only done on the software-level, so it only works
1193  * for linux injected failures, not real hardware failures
1194  *
1195  * Returns 0 for success, otherwise -errno.
1196  */
1197 int unpoison_memory(unsigned long pfn)
1198 {
1199 	struct page *page;
1200 	struct page *p;
1201 	int freeit = 0;
1202 	unsigned int nr_pages;
1203 
1204 	if (!pfn_valid(pfn))
1205 		return -ENXIO;
1206 
1207 	p = pfn_to_page(pfn);
1208 	page = compound_head(p);
1209 
1210 	if (!PageHWPoison(p)) {
1211 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1212 		return 0;
1213 	}
1214 
1215 	nr_pages = 1 << compound_trans_order(page);
1216 
1217 	if (!get_page_unless_zero(page)) {
1218 		/*
1219 		 * Since HWPoisoned hugepage should have non-zero refcount,
1220 		 * race between memory failure and unpoison seems to happen.
1221 		 * In such case unpoison fails and memory failure runs
1222 		 * to the end.
1223 		 */
1224 		if (PageHuge(page)) {
1225 			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1226 			return 0;
1227 		}
1228 		if (TestClearPageHWPoison(p))
1229 			atomic_long_sub(nr_pages, &mce_bad_pages);
1230 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1231 		return 0;
1232 	}
1233 
1234 	lock_page(page);
1235 	/*
1236 	 * This test is racy because PG_hwpoison is set outside of page lock.
1237 	 * That's acceptable because that won't trigger kernel panic. Instead,
1238 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1239 	 * the free buddy page pool.
1240 	 */
1241 	if (TestClearPageHWPoison(page)) {
1242 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1243 		atomic_long_sub(nr_pages, &mce_bad_pages);
1244 		freeit = 1;
1245 		if (PageHuge(page))
1246 			clear_page_hwpoison_huge_page(page);
1247 	}
1248 	unlock_page(page);
1249 
1250 	put_page(page);
1251 	if (freeit)
1252 		put_page(page);
1253 
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(unpoison_memory);
1257 
1258 static struct page *new_page(struct page *p, unsigned long private, int **x)
1259 {
1260 	int nid = page_to_nid(p);
1261 	if (PageHuge(p))
1262 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1263 						   nid);
1264 	else
1265 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1266 }
1267 
1268 /*
1269  * Safely get reference count of an arbitrary page.
1270  * Returns 0 for a free page, -EIO for a zero refcount page
1271  * that is not free, and 1 for any other page type.
1272  * For 1 the page is returned with increased page count, otherwise not.
1273  */
1274 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1275 {
1276 	int ret;
1277 
1278 	if (flags & MF_COUNT_INCREASED)
1279 		return 1;
1280 
1281 	/*
1282 	 * The lock_memory_hotplug prevents a race with memory hotplug.
1283 	 * This is a big hammer, a better would be nicer.
1284 	 */
1285 	lock_memory_hotplug();
1286 
1287 	/*
1288 	 * Isolate the page, so that it doesn't get reallocated if it
1289 	 * was free.
1290 	 */
1291 	set_migratetype_isolate(p);
1292 	/*
1293 	 * When the target page is a free hugepage, just remove it
1294 	 * from free hugepage list.
1295 	 */
1296 	if (!get_page_unless_zero(compound_head(p))) {
1297 		if (PageHuge(p)) {
1298 			pr_info("get_any_page: %#lx free huge page\n", pfn);
1299 			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1300 		} else if (is_free_buddy_page(p)) {
1301 			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1302 			/* Set hwpoison bit while page is still isolated */
1303 			SetPageHWPoison(p);
1304 			ret = 0;
1305 		} else {
1306 			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1307 				pfn, p->flags);
1308 			ret = -EIO;
1309 		}
1310 	} else {
1311 		/* Not a free page */
1312 		ret = 1;
1313 	}
1314 	unset_migratetype_isolate(p);
1315 	unlock_memory_hotplug();
1316 	return ret;
1317 }
1318 
1319 static int soft_offline_huge_page(struct page *page, int flags)
1320 {
1321 	int ret;
1322 	unsigned long pfn = page_to_pfn(page);
1323 	struct page *hpage = compound_head(page);
1324 	LIST_HEAD(pagelist);
1325 
1326 	ret = get_any_page(page, pfn, flags);
1327 	if (ret < 0)
1328 		return ret;
1329 	if (ret == 0)
1330 		goto done;
1331 
1332 	if (PageHWPoison(hpage)) {
1333 		put_page(hpage);
1334 		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1335 		return -EBUSY;
1336 	}
1337 
1338 	/* Keep page count to indicate a given hugepage is isolated. */
1339 
1340 	list_add(&hpage->lru, &pagelist);
1341 	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1342 				true);
1343 	if (ret) {
1344 		struct page *page1, *page2;
1345 		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1346 			put_page(page1);
1347 
1348 		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1349 			 pfn, ret, page->flags);
1350 		if (ret > 0)
1351 			ret = -EIO;
1352 		return ret;
1353 	}
1354 done:
1355 	if (!PageHWPoison(hpage))
1356 		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1357 	set_page_hwpoison_huge_page(hpage);
1358 	dequeue_hwpoisoned_huge_page(hpage);
1359 	/* keep elevated page count for bad page */
1360 	return ret;
1361 }
1362 
1363 /**
1364  * soft_offline_page - Soft offline a page.
1365  * @page: page to offline
1366  * @flags: flags. Same as memory_failure().
1367  *
1368  * Returns 0 on success, otherwise negated errno.
1369  *
1370  * Soft offline a page, by migration or invalidation,
1371  * without killing anything. This is for the case when
1372  * a page is not corrupted yet (so it's still valid to access),
1373  * but has had a number of corrected errors and is better taken
1374  * out.
1375  *
1376  * The actual policy on when to do that is maintained by
1377  * user space.
1378  *
1379  * This should never impact any application or cause data loss,
1380  * however it might take some time.
1381  *
1382  * This is not a 100% solution for all memory, but tries to be
1383  * ``good enough'' for the majority of memory.
1384  */
1385 int soft_offline_page(struct page *page, int flags)
1386 {
1387 	int ret;
1388 	unsigned long pfn = page_to_pfn(page);
1389 
1390 	if (PageHuge(page))
1391 		return soft_offline_huge_page(page, flags);
1392 
1393 	ret = get_any_page(page, pfn, flags);
1394 	if (ret < 0)
1395 		return ret;
1396 	if (ret == 0)
1397 		goto done;
1398 
1399 	/*
1400 	 * Page cache page we can handle?
1401 	 */
1402 	if (!PageLRU(page)) {
1403 		/*
1404 		 * Try to free it.
1405 		 */
1406 		put_page(page);
1407 		shake_page(page, 1);
1408 
1409 		/*
1410 		 * Did it turn free?
1411 		 */
1412 		ret = get_any_page(page, pfn, 0);
1413 		if (ret < 0)
1414 			return ret;
1415 		if (ret == 0)
1416 			goto done;
1417 	}
1418 	if (!PageLRU(page)) {
1419 		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1420 				pfn, page->flags);
1421 		return -EIO;
1422 	}
1423 
1424 	lock_page(page);
1425 	wait_on_page_writeback(page);
1426 
1427 	/*
1428 	 * Synchronized using the page lock with memory_failure()
1429 	 */
1430 	if (PageHWPoison(page)) {
1431 		unlock_page(page);
1432 		put_page(page);
1433 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1434 		return -EBUSY;
1435 	}
1436 
1437 	/*
1438 	 * Try to invalidate first. This should work for
1439 	 * non dirty unmapped page cache pages.
1440 	 */
1441 	ret = invalidate_inode_page(page);
1442 	unlock_page(page);
1443 
1444 	/*
1445 	 * Drop count because page migration doesn't like raised
1446 	 * counts. The page could get re-allocated, but if it becomes
1447 	 * LRU the isolation will just fail.
1448 	 * RED-PEN would be better to keep it isolated here, but we
1449 	 * would need to fix isolation locking first.
1450 	 */
1451 	put_page(page);
1452 	if (ret == 1) {
1453 		ret = 0;
1454 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1455 		goto done;
1456 	}
1457 
1458 	/*
1459 	 * Simple invalidation didn't work.
1460 	 * Try to migrate to a new page instead. migrate.c
1461 	 * handles a large number of cases for us.
1462 	 */
1463 	ret = isolate_lru_page(page);
1464 	if (!ret) {
1465 		LIST_HEAD(pagelist);
1466 
1467 		list_add(&page->lru, &pagelist);
1468 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1469 								0, true);
1470 		if (ret) {
1471 			putback_lru_pages(&pagelist);
1472 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1473 				pfn, ret, page->flags);
1474 			if (ret > 0)
1475 				ret = -EIO;
1476 		}
1477 	} else {
1478 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1479 				pfn, ret, page_count(page), page->flags);
1480 	}
1481 	if (ret)
1482 		return ret;
1483 
1484 done:
1485 	atomic_long_add(1, &mce_bad_pages);
1486 	SetPageHWPoison(page);
1487 	/* keep elevated page count for bad page */
1488 	return ret;
1489 }
1490