1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/page-isolation.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/kfifo.h> 60 #include <linux/ratelimit.h> 61 #include "internal.h" 62 #include "ras/ras_event.h" 63 64 int sysctl_memory_failure_early_kill __read_mostly = 0; 65 66 int sysctl_memory_failure_recovery __read_mostly = 1; 67 68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 69 70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 71 72 u32 hwpoison_filter_enable = 0; 73 u32 hwpoison_filter_dev_major = ~0U; 74 u32 hwpoison_filter_dev_minor = ~0U; 75 u64 hwpoison_filter_flags_mask; 76 u64 hwpoison_filter_flags_value; 77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 82 83 static int hwpoison_filter_dev(struct page *p) 84 { 85 struct address_space *mapping; 86 dev_t dev; 87 88 if (hwpoison_filter_dev_major == ~0U && 89 hwpoison_filter_dev_minor == ~0U) 90 return 0; 91 92 /* 93 * page_mapping() does not accept slab pages. 94 */ 95 if (PageSlab(p)) 96 return -EINVAL; 97 98 mapping = page_mapping(p); 99 if (mapping == NULL || mapping->host == NULL) 100 return -EINVAL; 101 102 dev = mapping->host->i_sb->s_dev; 103 if (hwpoison_filter_dev_major != ~0U && 104 hwpoison_filter_dev_major != MAJOR(dev)) 105 return -EINVAL; 106 if (hwpoison_filter_dev_minor != ~0U && 107 hwpoison_filter_dev_minor != MINOR(dev)) 108 return -EINVAL; 109 110 return 0; 111 } 112 113 static int hwpoison_filter_flags(struct page *p) 114 { 115 if (!hwpoison_filter_flags_mask) 116 return 0; 117 118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 119 hwpoison_filter_flags_value) 120 return 0; 121 else 122 return -EINVAL; 123 } 124 125 /* 126 * This allows stress tests to limit test scope to a collection of tasks 127 * by putting them under some memcg. This prevents killing unrelated/important 128 * processes such as /sbin/init. Note that the target task may share clean 129 * pages with init (eg. libc text), which is harmless. If the target task 130 * share _dirty_ pages with another task B, the test scheme must make sure B 131 * is also included in the memcg. At last, due to race conditions this filter 132 * can only guarantee that the page either belongs to the memcg tasks, or is 133 * a freed page. 134 */ 135 #ifdef CONFIG_MEMCG 136 u64 hwpoison_filter_memcg; 137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 138 static int hwpoison_filter_task(struct page *p) 139 { 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 144 return -EINVAL; 145 146 return 0; 147 } 148 #else 149 static int hwpoison_filter_task(struct page *p) { return 0; } 150 #endif 151 152 int hwpoison_filter(struct page *p) 153 { 154 if (!hwpoison_filter_enable) 155 return 0; 156 157 if (hwpoison_filter_dev(p)) 158 return -EINVAL; 159 160 if (hwpoison_filter_flags(p)) 161 return -EINVAL; 162 163 if (hwpoison_filter_task(p)) 164 return -EINVAL; 165 166 return 0; 167 } 168 #else 169 int hwpoison_filter(struct page *p) 170 { 171 return 0; 172 } 173 #endif 174 175 EXPORT_SYMBOL_GPL(hwpoison_filter); 176 177 /* 178 * Send all the processes who have the page mapped a signal. 179 * ``action optional'' if they are not immediately affected by the error 180 * ``action required'' if error happened in current execution context 181 */ 182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 183 unsigned long pfn, struct page *page, int flags) 184 { 185 struct siginfo si; 186 int ret; 187 188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 si.si_signo = SIGBUS; 191 si.si_errno = 0; 192 si.si_addr = (void *)addr; 193 #ifdef __ARCH_SI_TRAPNO 194 si.si_trapno = trapno; 195 #endif 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 197 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 199 si.si_code = BUS_MCEERR_AR; 200 ret = force_sig_info(SIGBUS, &si, current); 201 } else { 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully no one will do that? 207 */ 208 si.si_code = BUS_MCEERR_AO; 209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 210 } 211 if (ret < 0) 212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 213 t->comm, t->pid, ret); 214 return ret; 215 } 216 217 /* 218 * When a unknown page type is encountered drain as many buffers as possible 219 * in the hope to turn the page into a LRU or free page, which we can handle. 220 */ 221 void shake_page(struct page *p, int access) 222 { 223 if (PageHuge(p)) 224 return; 225 226 if (!PageSlab(p)) { 227 lru_add_drain_all(); 228 if (PageLRU(p)) 229 return; 230 drain_all_pages(page_zone(p)); 231 if (PageLRU(p) || is_free_buddy_page(p)) 232 return; 233 } 234 235 /* 236 * Only call shrink_node_slabs here (which would also shrink 237 * other caches) if access is not potentially fatal. 238 */ 239 if (access) 240 drop_slab_node(page_to_nid(p)); 241 } 242 EXPORT_SYMBOL_GPL(shake_page); 243 244 /* 245 * Kill all processes that have a poisoned page mapped and then isolate 246 * the page. 247 * 248 * General strategy: 249 * Find all processes having the page mapped and kill them. 250 * But we keep a page reference around so that the page is not 251 * actually freed yet. 252 * Then stash the page away 253 * 254 * There's no convenient way to get back to mapped processes 255 * from the VMAs. So do a brute-force search over all 256 * running processes. 257 * 258 * Remember that machine checks are not common (or rather 259 * if they are common you have other problems), so this shouldn't 260 * be a performance issue. 261 * 262 * Also there are some races possible while we get from the 263 * error detection to actually handle it. 264 */ 265 266 struct to_kill { 267 struct list_head nd; 268 struct task_struct *tsk; 269 unsigned long addr; 270 char addr_valid; 271 }; 272 273 /* 274 * Failure handling: if we can't find or can't kill a process there's 275 * not much we can do. We just print a message and ignore otherwise. 276 */ 277 278 /* 279 * Schedule a process for later kill. 280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 281 * TBD would GFP_NOIO be enough? 282 */ 283 static void add_to_kill(struct task_struct *tsk, struct page *p, 284 struct vm_area_struct *vma, 285 struct list_head *to_kill, 286 struct to_kill **tkc) 287 { 288 struct to_kill *tk; 289 290 if (*tkc) { 291 tk = *tkc; 292 *tkc = NULL; 293 } else { 294 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 295 if (!tk) { 296 pr_err("Memory failure: Out of memory while machine check handling\n"); 297 return; 298 } 299 } 300 tk->addr = page_address_in_vma(p, vma); 301 tk->addr_valid = 1; 302 303 /* 304 * In theory we don't have to kill when the page was 305 * munmaped. But it could be also a mremap. Since that's 306 * likely very rare kill anyways just out of paranoia, but use 307 * a SIGKILL because the error is not contained anymore. 308 */ 309 if (tk->addr == -EFAULT) { 310 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 311 page_to_pfn(p), tsk->comm); 312 tk->addr_valid = 0; 313 } 314 get_task_struct(tsk); 315 tk->tsk = tsk; 316 list_add_tail(&tk->nd, to_kill); 317 } 318 319 /* 320 * Kill the processes that have been collected earlier. 321 * 322 * Only do anything when DOIT is set, otherwise just free the list 323 * (this is used for clean pages which do not need killing) 324 * Also when FAIL is set do a force kill because something went 325 * wrong earlier. 326 */ 327 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 328 bool fail, struct page *page, unsigned long pfn, 329 int flags) 330 { 331 struct to_kill *tk, *next; 332 333 list_for_each_entry_safe (tk, next, to_kill, nd) { 334 if (forcekill) { 335 /* 336 * In case something went wrong with munmapping 337 * make sure the process doesn't catch the 338 * signal and then access the memory. Just kill it. 339 */ 340 if (fail || tk->addr_valid == 0) { 341 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 342 pfn, tk->tsk->comm, tk->tsk->pid); 343 force_sig(SIGKILL, tk->tsk); 344 } 345 346 /* 347 * In theory the process could have mapped 348 * something else on the address in-between. We could 349 * check for that, but we need to tell the 350 * process anyways. 351 */ 352 else if (kill_proc(tk->tsk, tk->addr, trapno, 353 pfn, page, flags) < 0) 354 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 } 357 put_task_struct(tk->tsk); 358 kfree(tk); 359 } 360 } 361 362 /* 363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 364 * on behalf of the thread group. Return task_struct of the (first found) 365 * dedicated thread if found, and return NULL otherwise. 366 * 367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 368 * have to call rcu_read_lock/unlock() in this function. 369 */ 370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 371 { 372 struct task_struct *t; 373 374 for_each_thread(tsk, t) 375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 376 return t; 377 return NULL; 378 } 379 380 /* 381 * Determine whether a given process is "early kill" process which expects 382 * to be signaled when some page under the process is hwpoisoned. 383 * Return task_struct of the dedicated thread (main thread unless explicitly 384 * specified) if the process is "early kill," and otherwise returns NULL. 385 */ 386 static struct task_struct *task_early_kill(struct task_struct *tsk, 387 int force_early) 388 { 389 struct task_struct *t; 390 if (!tsk->mm) 391 return NULL; 392 if (force_early) 393 return tsk; 394 t = find_early_kill_thread(tsk); 395 if (t) 396 return t; 397 if (sysctl_memory_failure_early_kill) 398 return tsk; 399 return NULL; 400 } 401 402 /* 403 * Collect processes when the error hit an anonymous page. 404 */ 405 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 406 struct to_kill **tkc, int force_early) 407 { 408 struct vm_area_struct *vma; 409 struct task_struct *tsk; 410 struct anon_vma *av; 411 pgoff_t pgoff; 412 413 av = page_lock_anon_vma_read(page); 414 if (av == NULL) /* Not actually mapped anymore */ 415 return; 416 417 pgoff = page_to_pgoff(page); 418 read_lock(&tasklist_lock); 419 for_each_process (tsk) { 420 struct anon_vma_chain *vmac; 421 struct task_struct *t = task_early_kill(tsk, force_early); 422 423 if (!t) 424 continue; 425 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 426 pgoff, pgoff) { 427 vma = vmac->vma; 428 if (!page_mapped_in_vma(page, vma)) 429 continue; 430 if (vma->vm_mm == t->mm) 431 add_to_kill(t, page, vma, to_kill, tkc); 432 } 433 } 434 read_unlock(&tasklist_lock); 435 page_unlock_anon_vma_read(av); 436 } 437 438 /* 439 * Collect processes when the error hit a file mapped page. 440 */ 441 static void collect_procs_file(struct page *page, struct list_head *to_kill, 442 struct to_kill **tkc, int force_early) 443 { 444 struct vm_area_struct *vma; 445 struct task_struct *tsk; 446 struct address_space *mapping = page->mapping; 447 448 i_mmap_lock_read(mapping); 449 read_lock(&tasklist_lock); 450 for_each_process(tsk) { 451 pgoff_t pgoff = page_to_pgoff(page); 452 struct task_struct *t = task_early_kill(tsk, force_early); 453 454 if (!t) 455 continue; 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 457 pgoff) { 458 /* 459 * Send early kill signal to tasks where a vma covers 460 * the page but the corrupted page is not necessarily 461 * mapped it in its pte. 462 * Assume applications who requested early kill want 463 * to be informed of all such data corruptions. 464 */ 465 if (vma->vm_mm == t->mm) 466 add_to_kill(t, page, vma, to_kill, tkc); 467 } 468 } 469 read_unlock(&tasklist_lock); 470 i_mmap_unlock_read(mapping); 471 } 472 473 /* 474 * Collect the processes who have the corrupted page mapped to kill. 475 * This is done in two steps for locking reasons. 476 * First preallocate one tokill structure outside the spin locks, 477 * so that we can kill at least one process reasonably reliable. 478 */ 479 static void collect_procs(struct page *page, struct list_head *tokill, 480 int force_early) 481 { 482 struct to_kill *tk; 483 484 if (!page->mapping) 485 return; 486 487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 488 if (!tk) 489 return; 490 if (PageAnon(page)) 491 collect_procs_anon(page, tokill, &tk, force_early); 492 else 493 collect_procs_file(page, tokill, &tk, force_early); 494 kfree(tk); 495 } 496 497 static const char *action_name[] = { 498 [MF_IGNORED] = "Ignored", 499 [MF_FAILED] = "Failed", 500 [MF_DELAYED] = "Delayed", 501 [MF_RECOVERED] = "Recovered", 502 }; 503 504 static const char * const action_page_types[] = { 505 [MF_MSG_KERNEL] = "reserved kernel page", 506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 507 [MF_MSG_SLAB] = "kernel slab page", 508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 510 [MF_MSG_HUGE] = "huge page", 511 [MF_MSG_FREE_HUGE] = "free huge page", 512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 519 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 520 [MF_MSG_CLEAN_LRU] = "clean LRU page", 521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 522 [MF_MSG_BUDDY] = "free buddy page", 523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 524 [MF_MSG_UNKNOWN] = "unknown page", 525 }; 526 527 /* 528 * XXX: It is possible that a page is isolated from LRU cache, 529 * and then kept in swap cache or failed to remove from page cache. 530 * The page count will stop it from being freed by unpoison. 531 * Stress tests should be aware of this memory leak problem. 532 */ 533 static int delete_from_lru_cache(struct page *p) 534 { 535 if (!isolate_lru_page(p)) { 536 /* 537 * Clear sensible page flags, so that the buddy system won't 538 * complain when the page is unpoison-and-freed. 539 */ 540 ClearPageActive(p); 541 ClearPageUnevictable(p); 542 543 /* 544 * Poisoned page might never drop its ref count to 0 so we have 545 * to uncharge it manually from its memcg. 546 */ 547 mem_cgroup_uncharge(p); 548 549 /* 550 * drop the page count elevated by isolate_lru_page() 551 */ 552 put_page(p); 553 return 0; 554 } 555 return -EIO; 556 } 557 558 /* 559 * Error hit kernel page. 560 * Do nothing, try to be lucky and not touch this instead. For a few cases we 561 * could be more sophisticated. 562 */ 563 static int me_kernel(struct page *p, unsigned long pfn) 564 { 565 return MF_IGNORED; 566 } 567 568 /* 569 * Page in unknown state. Do nothing. 570 */ 571 static int me_unknown(struct page *p, unsigned long pfn) 572 { 573 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 574 return MF_FAILED; 575 } 576 577 /* 578 * Clean (or cleaned) page cache page. 579 */ 580 static int me_pagecache_clean(struct page *p, unsigned long pfn) 581 { 582 int err; 583 int ret = MF_FAILED; 584 struct address_space *mapping; 585 586 delete_from_lru_cache(p); 587 588 /* 589 * For anonymous pages we're done the only reference left 590 * should be the one m_f() holds. 591 */ 592 if (PageAnon(p)) 593 return MF_RECOVERED; 594 595 /* 596 * Now truncate the page in the page cache. This is really 597 * more like a "temporary hole punch" 598 * Don't do this for block devices when someone else 599 * has a reference, because it could be file system metadata 600 * and that's not safe to truncate. 601 */ 602 mapping = page_mapping(p); 603 if (!mapping) { 604 /* 605 * Page has been teared down in the meanwhile 606 */ 607 return MF_FAILED; 608 } 609 610 /* 611 * Truncation is a bit tricky. Enable it per file system for now. 612 * 613 * Open: to take i_mutex or not for this? Right now we don't. 614 */ 615 if (mapping->a_ops->error_remove_page) { 616 err = mapping->a_ops->error_remove_page(mapping, p); 617 if (err != 0) { 618 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 619 pfn, err); 620 } else if (page_has_private(p) && 621 !try_to_release_page(p, GFP_NOIO)) { 622 pr_info("Memory failure: %#lx: failed to release buffers\n", 623 pfn); 624 } else { 625 ret = MF_RECOVERED; 626 } 627 } else { 628 /* 629 * If the file system doesn't support it just invalidate 630 * This fails on dirty or anything with private pages 631 */ 632 if (invalidate_inode_page(p)) 633 ret = MF_RECOVERED; 634 else 635 pr_info("Memory failure: %#lx: Failed to invalidate\n", 636 pfn); 637 } 638 return ret; 639 } 640 641 /* 642 * Dirty pagecache page 643 * Issues: when the error hit a hole page the error is not properly 644 * propagated. 645 */ 646 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 647 { 648 struct address_space *mapping = page_mapping(p); 649 650 SetPageError(p); 651 /* TBD: print more information about the file. */ 652 if (mapping) { 653 /* 654 * IO error will be reported by write(), fsync(), etc. 655 * who check the mapping. 656 * This way the application knows that something went 657 * wrong with its dirty file data. 658 * 659 * There's one open issue: 660 * 661 * The EIO will be only reported on the next IO 662 * operation and then cleared through the IO map. 663 * Normally Linux has two mechanisms to pass IO error 664 * first through the AS_EIO flag in the address space 665 * and then through the PageError flag in the page. 666 * Since we drop pages on memory failure handling the 667 * only mechanism open to use is through AS_AIO. 668 * 669 * This has the disadvantage that it gets cleared on 670 * the first operation that returns an error, while 671 * the PageError bit is more sticky and only cleared 672 * when the page is reread or dropped. If an 673 * application assumes it will always get error on 674 * fsync, but does other operations on the fd before 675 * and the page is dropped between then the error 676 * will not be properly reported. 677 * 678 * This can already happen even without hwpoisoned 679 * pages: first on metadata IO errors (which only 680 * report through AS_EIO) or when the page is dropped 681 * at the wrong time. 682 * 683 * So right now we assume that the application DTRT on 684 * the first EIO, but we're not worse than other parts 685 * of the kernel. 686 */ 687 mapping_set_error(mapping, EIO); 688 } 689 690 return me_pagecache_clean(p, pfn); 691 } 692 693 /* 694 * Clean and dirty swap cache. 695 * 696 * Dirty swap cache page is tricky to handle. The page could live both in page 697 * cache and swap cache(ie. page is freshly swapped in). So it could be 698 * referenced concurrently by 2 types of PTEs: 699 * normal PTEs and swap PTEs. We try to handle them consistently by calling 700 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 701 * and then 702 * - clear dirty bit to prevent IO 703 * - remove from LRU 704 * - but keep in the swap cache, so that when we return to it on 705 * a later page fault, we know the application is accessing 706 * corrupted data and shall be killed (we installed simple 707 * interception code in do_swap_page to catch it). 708 * 709 * Clean swap cache pages can be directly isolated. A later page fault will 710 * bring in the known good data from disk. 711 */ 712 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 713 { 714 ClearPageDirty(p); 715 /* Trigger EIO in shmem: */ 716 ClearPageUptodate(p); 717 718 if (!delete_from_lru_cache(p)) 719 return MF_DELAYED; 720 else 721 return MF_FAILED; 722 } 723 724 static int me_swapcache_clean(struct page *p, unsigned long pfn) 725 { 726 delete_from_swap_cache(p); 727 728 if (!delete_from_lru_cache(p)) 729 return MF_RECOVERED; 730 else 731 return MF_FAILED; 732 } 733 734 /* 735 * Huge pages. Needs work. 736 * Issues: 737 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 738 * To narrow down kill region to one page, we need to break up pmd. 739 */ 740 static int me_huge_page(struct page *p, unsigned long pfn) 741 { 742 int res = 0; 743 struct page *hpage = compound_head(p); 744 745 if (!PageHuge(hpage)) 746 return MF_DELAYED; 747 748 /* 749 * We can safely recover from error on free or reserved (i.e. 750 * not in-use) hugepage by dequeuing it from freelist. 751 * To check whether a hugepage is in-use or not, we can't use 752 * page->lru because it can be used in other hugepage operations, 753 * such as __unmap_hugepage_range() and gather_surplus_pages(). 754 * So instead we use page_mapping() and PageAnon(). 755 */ 756 if (!(page_mapping(hpage) || PageAnon(hpage))) { 757 res = dequeue_hwpoisoned_huge_page(hpage); 758 if (!res) 759 return MF_RECOVERED; 760 } 761 return MF_DELAYED; 762 } 763 764 /* 765 * Various page states we can handle. 766 * 767 * A page state is defined by its current page->flags bits. 768 * The table matches them in order and calls the right handler. 769 * 770 * This is quite tricky because we can access page at any time 771 * in its live cycle, so all accesses have to be extremely careful. 772 * 773 * This is not complete. More states could be added. 774 * For any missing state don't attempt recovery. 775 */ 776 777 #define dirty (1UL << PG_dirty) 778 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 779 #define unevict (1UL << PG_unevictable) 780 #define mlock (1UL << PG_mlocked) 781 #define writeback (1UL << PG_writeback) 782 #define lru (1UL << PG_lru) 783 #define head (1UL << PG_head) 784 #define slab (1UL << PG_slab) 785 #define reserved (1UL << PG_reserved) 786 787 static struct page_state { 788 unsigned long mask; 789 unsigned long res; 790 enum mf_action_page_type type; 791 int (*action)(struct page *p, unsigned long pfn); 792 } error_states[] = { 793 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 794 /* 795 * free pages are specially detected outside this table: 796 * PG_buddy pages only make a small fraction of all free pages. 797 */ 798 799 /* 800 * Could in theory check if slab page is free or if we can drop 801 * currently unused objects without touching them. But just 802 * treat it as standard kernel for now. 803 */ 804 { slab, slab, MF_MSG_SLAB, me_kernel }, 805 806 { head, head, MF_MSG_HUGE, me_huge_page }, 807 808 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 809 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 810 811 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 812 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 813 814 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 815 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 816 817 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 818 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 819 820 /* 821 * Catchall entry: must be at end. 822 */ 823 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 824 }; 825 826 #undef dirty 827 #undef sc 828 #undef unevict 829 #undef mlock 830 #undef writeback 831 #undef lru 832 #undef head 833 #undef slab 834 #undef reserved 835 836 /* 837 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 838 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 839 */ 840 static void action_result(unsigned long pfn, enum mf_action_page_type type, 841 enum mf_result result) 842 { 843 trace_memory_failure_event(pfn, type, result); 844 845 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 846 pfn, action_page_types[type], action_name[result]); 847 } 848 849 static int page_action(struct page_state *ps, struct page *p, 850 unsigned long pfn) 851 { 852 int result; 853 int count; 854 855 result = ps->action(p, pfn); 856 857 count = page_count(p) - 1; 858 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 859 count--; 860 if (count != 0) { 861 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 862 pfn, action_page_types[ps->type], count); 863 result = MF_FAILED; 864 } 865 action_result(pfn, ps->type, result); 866 867 /* Could do more checks here if page looks ok */ 868 /* 869 * Could adjust zone counters here to correct for the missing page. 870 */ 871 872 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 873 } 874 875 /** 876 * get_hwpoison_page() - Get refcount for memory error handling: 877 * @page: raw error page (hit by memory error) 878 * 879 * Return: return 0 if failed to grab the refcount, otherwise true (some 880 * non-zero value.) 881 */ 882 int get_hwpoison_page(struct page *page) 883 { 884 struct page *head = compound_head(page); 885 886 if (!PageHuge(head) && PageTransHuge(head)) { 887 /* 888 * Non anonymous thp exists only in allocation/free time. We 889 * can't handle such a case correctly, so let's give it up. 890 * This should be better than triggering BUG_ON when kernel 891 * tries to touch the "partially handled" page. 892 */ 893 if (!PageAnon(head)) { 894 pr_err("Memory failure: %#lx: non anonymous thp\n", 895 page_to_pfn(page)); 896 return 0; 897 } 898 } 899 900 if (get_page_unless_zero(head)) { 901 if (head == compound_head(page)) 902 return 1; 903 904 pr_info("Memory failure: %#lx cannot catch tail\n", 905 page_to_pfn(page)); 906 put_page(head); 907 } 908 909 return 0; 910 } 911 EXPORT_SYMBOL_GPL(get_hwpoison_page); 912 913 /* 914 * Do all that is necessary to remove user space mappings. Unmap 915 * the pages and send SIGBUS to the processes if the data was dirty. 916 */ 917 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 918 int trapno, int flags, struct page **hpagep) 919 { 920 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 921 struct address_space *mapping; 922 LIST_HEAD(tokill); 923 bool unmap_success; 924 int kill = 1, forcekill; 925 struct page *hpage = *hpagep; 926 bool mlocked = PageMlocked(hpage); 927 928 /* 929 * Here we are interested only in user-mapped pages, so skip any 930 * other types of pages. 931 */ 932 if (PageReserved(p) || PageSlab(p)) 933 return true; 934 if (!(PageLRU(hpage) || PageHuge(p))) 935 return true; 936 937 /* 938 * This check implies we don't kill processes if their pages 939 * are in the swap cache early. Those are always late kills. 940 */ 941 if (!page_mapped(hpage)) 942 return true; 943 944 if (PageKsm(p)) { 945 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 946 return false; 947 } 948 949 if (PageSwapCache(p)) { 950 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 951 pfn); 952 ttu |= TTU_IGNORE_HWPOISON; 953 } 954 955 /* 956 * Propagate the dirty bit from PTEs to struct page first, because we 957 * need this to decide if we should kill or just drop the page. 958 * XXX: the dirty test could be racy: set_page_dirty() may not always 959 * be called inside page lock (it's recommended but not enforced). 960 */ 961 mapping = page_mapping(hpage); 962 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 963 mapping_cap_writeback_dirty(mapping)) { 964 if (page_mkclean(hpage)) { 965 SetPageDirty(hpage); 966 } else { 967 kill = 0; 968 ttu |= TTU_IGNORE_HWPOISON; 969 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 970 pfn); 971 } 972 } 973 974 /* 975 * First collect all the processes that have the page 976 * mapped in dirty form. This has to be done before try_to_unmap, 977 * because ttu takes the rmap data structures down. 978 * 979 * Error handling: We ignore errors here because 980 * there's nothing that can be done. 981 */ 982 if (kill) 983 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 984 985 unmap_success = try_to_unmap(hpage, ttu); 986 if (!unmap_success) 987 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 988 pfn, page_mapcount(hpage)); 989 990 /* 991 * try_to_unmap() might put mlocked page in lru cache, so call 992 * shake_page() again to ensure that it's flushed. 993 */ 994 if (mlocked) 995 shake_page(hpage, 0); 996 997 /* 998 * Now that the dirty bit has been propagated to the 999 * struct page and all unmaps done we can decide if 1000 * killing is needed or not. Only kill when the page 1001 * was dirty or the process is not restartable, 1002 * otherwise the tokill list is merely 1003 * freed. When there was a problem unmapping earlier 1004 * use a more force-full uncatchable kill to prevent 1005 * any accesses to the poisoned memory. 1006 */ 1007 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1008 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags); 1009 1010 return unmap_success; 1011 } 1012 1013 static void set_page_hwpoison_huge_page(struct page *hpage) 1014 { 1015 int i; 1016 int nr_pages = 1 << compound_order(hpage); 1017 for (i = 0; i < nr_pages; i++) 1018 SetPageHWPoison(hpage + i); 1019 } 1020 1021 static void clear_page_hwpoison_huge_page(struct page *hpage) 1022 { 1023 int i; 1024 int nr_pages = 1 << compound_order(hpage); 1025 for (i = 0; i < nr_pages; i++) 1026 ClearPageHWPoison(hpage + i); 1027 } 1028 1029 /** 1030 * memory_failure - Handle memory failure of a page. 1031 * @pfn: Page Number of the corrupted page 1032 * @trapno: Trap number reported in the signal to user space. 1033 * @flags: fine tune action taken 1034 * 1035 * This function is called by the low level machine check code 1036 * of an architecture when it detects hardware memory corruption 1037 * of a page. It tries its best to recover, which includes 1038 * dropping pages, killing processes etc. 1039 * 1040 * The function is primarily of use for corruptions that 1041 * happen outside the current execution context (e.g. when 1042 * detected by a background scrubber) 1043 * 1044 * Must run in process context (e.g. a work queue) with interrupts 1045 * enabled and no spinlocks hold. 1046 */ 1047 int memory_failure(unsigned long pfn, int trapno, int flags) 1048 { 1049 struct page_state *ps; 1050 struct page *p; 1051 struct page *hpage; 1052 struct page *orig_head; 1053 int res; 1054 unsigned int nr_pages; 1055 unsigned long page_flags; 1056 1057 if (!sysctl_memory_failure_recovery) 1058 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1059 1060 if (!pfn_valid(pfn)) { 1061 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1062 pfn); 1063 return -ENXIO; 1064 } 1065 1066 p = pfn_to_page(pfn); 1067 orig_head = hpage = compound_head(p); 1068 if (TestSetPageHWPoison(p)) { 1069 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1070 pfn); 1071 return 0; 1072 } 1073 1074 /* 1075 * Currently errors on hugetlbfs pages are measured in hugepage units, 1076 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1077 * transparent hugepages, they are supposed to be split and error 1078 * measurement is done in normal page units. So nr_pages should be one 1079 * in this case. 1080 */ 1081 if (PageHuge(p)) 1082 nr_pages = 1 << compound_order(hpage); 1083 else /* normal page or thp */ 1084 nr_pages = 1; 1085 num_poisoned_pages_add(nr_pages); 1086 1087 /* 1088 * We need/can do nothing about count=0 pages. 1089 * 1) it's a free page, and therefore in safe hand: 1090 * prep_new_page() will be the gate keeper. 1091 * 2) it's a free hugepage, which is also safe: 1092 * an affected hugepage will be dequeued from hugepage freelist, 1093 * so there's no concern about reusing it ever after. 1094 * 3) it's part of a non-compound high order page. 1095 * Implies some kernel user: cannot stop them from 1096 * R/W the page; let's pray that the page has been 1097 * used and will be freed some time later. 1098 * In fact it's dangerous to directly bump up page count from 0, 1099 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1100 */ 1101 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1102 if (is_free_buddy_page(p)) { 1103 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1104 return 0; 1105 } else if (PageHuge(hpage)) { 1106 /* 1107 * Check "filter hit" and "race with other subpage." 1108 */ 1109 lock_page(hpage); 1110 if (PageHWPoison(hpage)) { 1111 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1112 || (p != hpage && TestSetPageHWPoison(hpage))) { 1113 num_poisoned_pages_sub(nr_pages); 1114 unlock_page(hpage); 1115 return 0; 1116 } 1117 } 1118 set_page_hwpoison_huge_page(hpage); 1119 res = dequeue_hwpoisoned_huge_page(hpage); 1120 action_result(pfn, MF_MSG_FREE_HUGE, 1121 res ? MF_IGNORED : MF_DELAYED); 1122 unlock_page(hpage); 1123 return res; 1124 } else { 1125 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1126 return -EBUSY; 1127 } 1128 } 1129 1130 if (!PageHuge(p) && PageTransHuge(hpage)) { 1131 lock_page(p); 1132 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1133 unlock_page(p); 1134 if (!PageAnon(p)) 1135 pr_err("Memory failure: %#lx: non anonymous thp\n", 1136 pfn); 1137 else 1138 pr_err("Memory failure: %#lx: thp split failed\n", 1139 pfn); 1140 if (TestClearPageHWPoison(p)) 1141 num_poisoned_pages_sub(nr_pages); 1142 put_hwpoison_page(p); 1143 return -EBUSY; 1144 } 1145 unlock_page(p); 1146 VM_BUG_ON_PAGE(!page_count(p), p); 1147 hpage = compound_head(p); 1148 } 1149 1150 /* 1151 * We ignore non-LRU pages for good reasons. 1152 * - PG_locked is only well defined for LRU pages and a few others 1153 * - to avoid races with __SetPageLocked() 1154 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1155 * The check (unnecessarily) ignores LRU pages being isolated and 1156 * walked by the page reclaim code, however that's not a big loss. 1157 */ 1158 shake_page(p, 0); 1159 /* shake_page could have turned it free. */ 1160 if (!PageLRU(p) && is_free_buddy_page(p)) { 1161 if (flags & MF_COUNT_INCREASED) 1162 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1163 else 1164 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1165 return 0; 1166 } 1167 1168 lock_page(hpage); 1169 1170 /* 1171 * The page could have changed compound pages during the locking. 1172 * If this happens just bail out. 1173 */ 1174 if (PageCompound(p) && compound_head(p) != orig_head) { 1175 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1176 res = -EBUSY; 1177 goto out; 1178 } 1179 1180 /* 1181 * We use page flags to determine what action should be taken, but 1182 * the flags can be modified by the error containment action. One 1183 * example is an mlocked page, where PG_mlocked is cleared by 1184 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1185 * correctly, we save a copy of the page flags at this time. 1186 */ 1187 page_flags = p->flags; 1188 1189 /* 1190 * unpoison always clear PG_hwpoison inside page lock 1191 */ 1192 if (!PageHWPoison(p)) { 1193 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1194 num_poisoned_pages_sub(nr_pages); 1195 unlock_page(hpage); 1196 put_hwpoison_page(hpage); 1197 return 0; 1198 } 1199 if (hwpoison_filter(p)) { 1200 if (TestClearPageHWPoison(p)) 1201 num_poisoned_pages_sub(nr_pages); 1202 unlock_page(hpage); 1203 put_hwpoison_page(hpage); 1204 return 0; 1205 } 1206 1207 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1208 goto identify_page_state; 1209 1210 /* 1211 * For error on the tail page, we should set PG_hwpoison 1212 * on the head page to show that the hugepage is hwpoisoned 1213 */ 1214 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1215 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1216 unlock_page(hpage); 1217 put_hwpoison_page(hpage); 1218 return 0; 1219 } 1220 /* 1221 * Set PG_hwpoison on all pages in an error hugepage, 1222 * because containment is done in hugepage unit for now. 1223 * Since we have done TestSetPageHWPoison() for the head page with 1224 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1225 */ 1226 if (PageHuge(p)) 1227 set_page_hwpoison_huge_page(hpage); 1228 1229 /* 1230 * It's very difficult to mess with pages currently under IO 1231 * and in many cases impossible, so we just avoid it here. 1232 */ 1233 wait_on_page_writeback(p); 1234 1235 /* 1236 * Now take care of user space mappings. 1237 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1238 * 1239 * When the raw error page is thp tail page, hpage points to the raw 1240 * page after thp split. 1241 */ 1242 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) { 1243 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1244 res = -EBUSY; 1245 goto out; 1246 } 1247 1248 /* 1249 * Torn down by someone else? 1250 */ 1251 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1252 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1253 res = -EBUSY; 1254 goto out; 1255 } 1256 1257 identify_page_state: 1258 res = -EBUSY; 1259 /* 1260 * The first check uses the current page flags which may not have any 1261 * relevant information. The second check with the saved page flagss is 1262 * carried out only if the first check can't determine the page status. 1263 */ 1264 for (ps = error_states;; ps++) 1265 if ((p->flags & ps->mask) == ps->res) 1266 break; 1267 1268 page_flags |= (p->flags & (1UL << PG_dirty)); 1269 1270 if (!ps->mask) 1271 for (ps = error_states;; ps++) 1272 if ((page_flags & ps->mask) == ps->res) 1273 break; 1274 res = page_action(ps, p, pfn); 1275 out: 1276 unlock_page(hpage); 1277 return res; 1278 } 1279 EXPORT_SYMBOL_GPL(memory_failure); 1280 1281 #define MEMORY_FAILURE_FIFO_ORDER 4 1282 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1283 1284 struct memory_failure_entry { 1285 unsigned long pfn; 1286 int trapno; 1287 int flags; 1288 }; 1289 1290 struct memory_failure_cpu { 1291 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1292 MEMORY_FAILURE_FIFO_SIZE); 1293 spinlock_t lock; 1294 struct work_struct work; 1295 }; 1296 1297 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1298 1299 /** 1300 * memory_failure_queue - Schedule handling memory failure of a page. 1301 * @pfn: Page Number of the corrupted page 1302 * @trapno: Trap number reported in the signal to user space. 1303 * @flags: Flags for memory failure handling 1304 * 1305 * This function is called by the low level hardware error handler 1306 * when it detects hardware memory corruption of a page. It schedules 1307 * the recovering of error page, including dropping pages, killing 1308 * processes etc. 1309 * 1310 * The function is primarily of use for corruptions that 1311 * happen outside the current execution context (e.g. when 1312 * detected by a background scrubber) 1313 * 1314 * Can run in IRQ context. 1315 */ 1316 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1317 { 1318 struct memory_failure_cpu *mf_cpu; 1319 unsigned long proc_flags; 1320 struct memory_failure_entry entry = { 1321 .pfn = pfn, 1322 .trapno = trapno, 1323 .flags = flags, 1324 }; 1325 1326 mf_cpu = &get_cpu_var(memory_failure_cpu); 1327 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1328 if (kfifo_put(&mf_cpu->fifo, entry)) 1329 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1330 else 1331 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1332 pfn); 1333 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1334 put_cpu_var(memory_failure_cpu); 1335 } 1336 EXPORT_SYMBOL_GPL(memory_failure_queue); 1337 1338 static void memory_failure_work_func(struct work_struct *work) 1339 { 1340 struct memory_failure_cpu *mf_cpu; 1341 struct memory_failure_entry entry = { 0, }; 1342 unsigned long proc_flags; 1343 int gotten; 1344 1345 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1346 for (;;) { 1347 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1348 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1349 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1350 if (!gotten) 1351 break; 1352 if (entry.flags & MF_SOFT_OFFLINE) 1353 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1354 else 1355 memory_failure(entry.pfn, entry.trapno, entry.flags); 1356 } 1357 } 1358 1359 static int __init memory_failure_init(void) 1360 { 1361 struct memory_failure_cpu *mf_cpu; 1362 int cpu; 1363 1364 for_each_possible_cpu(cpu) { 1365 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1366 spin_lock_init(&mf_cpu->lock); 1367 INIT_KFIFO(mf_cpu->fifo); 1368 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1369 } 1370 1371 return 0; 1372 } 1373 core_initcall(memory_failure_init); 1374 1375 #define unpoison_pr_info(fmt, pfn, rs) \ 1376 ({ \ 1377 if (__ratelimit(rs)) \ 1378 pr_info(fmt, pfn); \ 1379 }) 1380 1381 /** 1382 * unpoison_memory - Unpoison a previously poisoned page 1383 * @pfn: Page number of the to be unpoisoned page 1384 * 1385 * Software-unpoison a page that has been poisoned by 1386 * memory_failure() earlier. 1387 * 1388 * This is only done on the software-level, so it only works 1389 * for linux injected failures, not real hardware failures 1390 * 1391 * Returns 0 for success, otherwise -errno. 1392 */ 1393 int unpoison_memory(unsigned long pfn) 1394 { 1395 struct page *page; 1396 struct page *p; 1397 int freeit = 0; 1398 unsigned int nr_pages; 1399 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1400 DEFAULT_RATELIMIT_BURST); 1401 1402 if (!pfn_valid(pfn)) 1403 return -ENXIO; 1404 1405 p = pfn_to_page(pfn); 1406 page = compound_head(p); 1407 1408 if (!PageHWPoison(p)) { 1409 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1410 pfn, &unpoison_rs); 1411 return 0; 1412 } 1413 1414 if (page_count(page) > 1) { 1415 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1416 pfn, &unpoison_rs); 1417 return 0; 1418 } 1419 1420 if (page_mapped(page)) { 1421 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1422 pfn, &unpoison_rs); 1423 return 0; 1424 } 1425 1426 if (page_mapping(page)) { 1427 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1428 pfn, &unpoison_rs); 1429 return 0; 1430 } 1431 1432 /* 1433 * unpoison_memory() can encounter thp only when the thp is being 1434 * worked by memory_failure() and the page lock is not held yet. 1435 * In such case, we yield to memory_failure() and make unpoison fail. 1436 */ 1437 if (!PageHuge(page) && PageTransHuge(page)) { 1438 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1439 pfn, &unpoison_rs); 1440 return 0; 1441 } 1442 1443 nr_pages = 1 << compound_order(page); 1444 1445 if (!get_hwpoison_page(p)) { 1446 /* 1447 * Since HWPoisoned hugepage should have non-zero refcount, 1448 * race between memory failure and unpoison seems to happen. 1449 * In such case unpoison fails and memory failure runs 1450 * to the end. 1451 */ 1452 if (PageHuge(page)) { 1453 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n", 1454 pfn, &unpoison_rs); 1455 return 0; 1456 } 1457 if (TestClearPageHWPoison(p)) 1458 num_poisoned_pages_dec(); 1459 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1460 pfn, &unpoison_rs); 1461 return 0; 1462 } 1463 1464 lock_page(page); 1465 /* 1466 * This test is racy because PG_hwpoison is set outside of page lock. 1467 * That's acceptable because that won't trigger kernel panic. Instead, 1468 * the PG_hwpoison page will be caught and isolated on the entrance to 1469 * the free buddy page pool. 1470 */ 1471 if (TestClearPageHWPoison(page)) { 1472 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1473 pfn, &unpoison_rs); 1474 num_poisoned_pages_sub(nr_pages); 1475 freeit = 1; 1476 if (PageHuge(page)) 1477 clear_page_hwpoison_huge_page(page); 1478 } 1479 unlock_page(page); 1480 1481 put_hwpoison_page(page); 1482 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1483 put_hwpoison_page(page); 1484 1485 return 0; 1486 } 1487 EXPORT_SYMBOL(unpoison_memory); 1488 1489 static struct page *new_page(struct page *p, unsigned long private, int **x) 1490 { 1491 int nid = page_to_nid(p); 1492 if (PageHuge(p)) 1493 return alloc_huge_page_node(page_hstate(compound_head(p)), 1494 nid); 1495 else 1496 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1497 } 1498 1499 /* 1500 * Safely get reference count of an arbitrary page. 1501 * Returns 0 for a free page, -EIO for a zero refcount page 1502 * that is not free, and 1 for any other page type. 1503 * For 1 the page is returned with increased page count, otherwise not. 1504 */ 1505 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1506 { 1507 int ret; 1508 1509 if (flags & MF_COUNT_INCREASED) 1510 return 1; 1511 1512 /* 1513 * When the target page is a free hugepage, just remove it 1514 * from free hugepage list. 1515 */ 1516 if (!get_hwpoison_page(p)) { 1517 if (PageHuge(p)) { 1518 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1519 ret = 0; 1520 } else if (is_free_buddy_page(p)) { 1521 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1522 ret = 0; 1523 } else { 1524 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1525 __func__, pfn, p->flags); 1526 ret = -EIO; 1527 } 1528 } else { 1529 /* Not a free page */ 1530 ret = 1; 1531 } 1532 return ret; 1533 } 1534 1535 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1536 { 1537 int ret = __get_any_page(page, pfn, flags); 1538 1539 if (ret == 1 && !PageHuge(page) && 1540 !PageLRU(page) && !__PageMovable(page)) { 1541 /* 1542 * Try to free it. 1543 */ 1544 put_hwpoison_page(page); 1545 shake_page(page, 1); 1546 1547 /* 1548 * Did it turn free? 1549 */ 1550 ret = __get_any_page(page, pfn, 0); 1551 if (ret == 1 && !PageLRU(page)) { 1552 /* Drop page reference which is from __get_any_page() */ 1553 put_hwpoison_page(page); 1554 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1555 pfn, page->flags, &page->flags); 1556 return -EIO; 1557 } 1558 } 1559 return ret; 1560 } 1561 1562 static int soft_offline_huge_page(struct page *page, int flags) 1563 { 1564 int ret; 1565 unsigned long pfn = page_to_pfn(page); 1566 struct page *hpage = compound_head(page); 1567 LIST_HEAD(pagelist); 1568 1569 /* 1570 * This double-check of PageHWPoison is to avoid the race with 1571 * memory_failure(). See also comment in __soft_offline_page(). 1572 */ 1573 lock_page(hpage); 1574 if (PageHWPoison(hpage)) { 1575 unlock_page(hpage); 1576 put_hwpoison_page(hpage); 1577 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1578 return -EBUSY; 1579 } 1580 unlock_page(hpage); 1581 1582 ret = isolate_huge_page(hpage, &pagelist); 1583 /* 1584 * get_any_page() and isolate_huge_page() takes a refcount each, 1585 * so need to drop one here. 1586 */ 1587 put_hwpoison_page(hpage); 1588 if (!ret) { 1589 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1590 return -EBUSY; 1591 } 1592 1593 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1594 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1595 if (ret) { 1596 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1597 pfn, ret, page->flags, &page->flags); 1598 /* 1599 * We know that soft_offline_huge_page() tries to migrate 1600 * only one hugepage pointed to by hpage, so we need not 1601 * run through the pagelist here. 1602 */ 1603 putback_active_hugepage(hpage); 1604 if (ret > 0) 1605 ret = -EIO; 1606 } else { 1607 /* overcommit hugetlb page will be freed to buddy */ 1608 if (PageHuge(page)) { 1609 set_page_hwpoison_huge_page(hpage); 1610 dequeue_hwpoisoned_huge_page(hpage); 1611 num_poisoned_pages_add(1 << compound_order(hpage)); 1612 } else { 1613 SetPageHWPoison(page); 1614 num_poisoned_pages_inc(); 1615 } 1616 } 1617 return ret; 1618 } 1619 1620 static int __soft_offline_page(struct page *page, int flags) 1621 { 1622 int ret; 1623 unsigned long pfn = page_to_pfn(page); 1624 1625 /* 1626 * Check PageHWPoison again inside page lock because PageHWPoison 1627 * is set by memory_failure() outside page lock. Note that 1628 * memory_failure() also double-checks PageHWPoison inside page lock, 1629 * so there's no race between soft_offline_page() and memory_failure(). 1630 */ 1631 lock_page(page); 1632 wait_on_page_writeback(page); 1633 if (PageHWPoison(page)) { 1634 unlock_page(page); 1635 put_hwpoison_page(page); 1636 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1637 return -EBUSY; 1638 } 1639 /* 1640 * Try to invalidate first. This should work for 1641 * non dirty unmapped page cache pages. 1642 */ 1643 ret = invalidate_inode_page(page); 1644 unlock_page(page); 1645 /* 1646 * RED-PEN would be better to keep it isolated here, but we 1647 * would need to fix isolation locking first. 1648 */ 1649 if (ret == 1) { 1650 put_hwpoison_page(page); 1651 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1652 SetPageHWPoison(page); 1653 num_poisoned_pages_inc(); 1654 return 0; 1655 } 1656 1657 /* 1658 * Simple invalidation didn't work. 1659 * Try to migrate to a new page instead. migrate.c 1660 * handles a large number of cases for us. 1661 */ 1662 if (PageLRU(page)) 1663 ret = isolate_lru_page(page); 1664 else 1665 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1666 /* 1667 * Drop page reference which is came from get_any_page() 1668 * successful isolate_lru_page() already took another one. 1669 */ 1670 put_hwpoison_page(page); 1671 if (!ret) { 1672 LIST_HEAD(pagelist); 1673 /* 1674 * After isolated lru page, the PageLRU will be cleared, 1675 * so use !__PageMovable instead for LRU page's mapping 1676 * cannot have PAGE_MAPPING_MOVABLE. 1677 */ 1678 if (!__PageMovable(page)) 1679 inc_node_page_state(page, NR_ISOLATED_ANON + 1680 page_is_file_cache(page)); 1681 list_add(&page->lru, &pagelist); 1682 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1683 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1684 if (ret) { 1685 if (!list_empty(&pagelist)) 1686 putback_movable_pages(&pagelist); 1687 1688 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1689 pfn, ret, page->flags, &page->flags); 1690 if (ret > 0) 1691 ret = -EIO; 1692 } 1693 } else { 1694 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1695 pfn, ret, page_count(page), page->flags, &page->flags); 1696 } 1697 return ret; 1698 } 1699 1700 static int soft_offline_in_use_page(struct page *page, int flags) 1701 { 1702 int ret; 1703 struct page *hpage = compound_head(page); 1704 1705 if (!PageHuge(page) && PageTransHuge(hpage)) { 1706 lock_page(hpage); 1707 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1708 unlock_page(hpage); 1709 if (!PageAnon(hpage)) 1710 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1711 else 1712 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1713 put_hwpoison_page(hpage); 1714 return -EBUSY; 1715 } 1716 unlock_page(hpage); 1717 get_hwpoison_page(page); 1718 put_hwpoison_page(hpage); 1719 } 1720 1721 if (PageHuge(page)) 1722 ret = soft_offline_huge_page(page, flags); 1723 else 1724 ret = __soft_offline_page(page, flags); 1725 1726 return ret; 1727 } 1728 1729 static void soft_offline_free_page(struct page *page) 1730 { 1731 if (PageHuge(page)) { 1732 struct page *hpage = compound_head(page); 1733 1734 set_page_hwpoison_huge_page(hpage); 1735 if (!dequeue_hwpoisoned_huge_page(hpage)) 1736 num_poisoned_pages_add(1 << compound_order(hpage)); 1737 } else { 1738 if (!TestSetPageHWPoison(page)) 1739 num_poisoned_pages_inc(); 1740 } 1741 } 1742 1743 /** 1744 * soft_offline_page - Soft offline a page. 1745 * @page: page to offline 1746 * @flags: flags. Same as memory_failure(). 1747 * 1748 * Returns 0 on success, otherwise negated errno. 1749 * 1750 * Soft offline a page, by migration or invalidation, 1751 * without killing anything. This is for the case when 1752 * a page is not corrupted yet (so it's still valid to access), 1753 * but has had a number of corrected errors and is better taken 1754 * out. 1755 * 1756 * The actual policy on when to do that is maintained by 1757 * user space. 1758 * 1759 * This should never impact any application or cause data loss, 1760 * however it might take some time. 1761 * 1762 * This is not a 100% solution for all memory, but tries to be 1763 * ``good enough'' for the majority of memory. 1764 */ 1765 int soft_offline_page(struct page *page, int flags) 1766 { 1767 int ret; 1768 unsigned long pfn = page_to_pfn(page); 1769 1770 if (PageHWPoison(page)) { 1771 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1772 if (flags & MF_COUNT_INCREASED) 1773 put_hwpoison_page(page); 1774 return -EBUSY; 1775 } 1776 1777 get_online_mems(); 1778 ret = get_any_page(page, pfn, flags); 1779 put_online_mems(); 1780 1781 if (ret > 0) 1782 ret = soft_offline_in_use_page(page, flags); 1783 else if (ret == 0) 1784 soft_offline_free_page(page); 1785 1786 return ret; 1787 } 1788