xref: /openbmc/linux/mm/memory-failure.c (revision 239480ab)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/page-isolation.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63 
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67 
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 	struct address_space *mapping;
86 	dev_t dev;
87 
88 	if (hwpoison_filter_dev_major == ~0U &&
89 	    hwpoison_filter_dev_minor == ~0U)
90 		return 0;
91 
92 	/*
93 	 * page_mapping() does not accept slab pages.
94 	 */
95 	if (PageSlab(p))
96 		return -EINVAL;
97 
98 	mapping = page_mapping(p);
99 	if (mapping == NULL || mapping->host == NULL)
100 		return -EINVAL;
101 
102 	dev = mapping->host->i_sb->s_dev;
103 	if (hwpoison_filter_dev_major != ~0U &&
104 	    hwpoison_filter_dev_major != MAJOR(dev))
105 		return -EINVAL;
106 	if (hwpoison_filter_dev_minor != ~0U &&
107 	    hwpoison_filter_dev_minor != MINOR(dev))
108 		return -EINVAL;
109 
110 	return 0;
111 }
112 
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 	if (!hwpoison_filter_flags_mask)
116 		return 0;
117 
118 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 				    hwpoison_filter_flags_value)
120 		return 0;
121 	else
122 		return -EINVAL;
123 }
124 
125 /*
126  * This allows stress tests to limit test scope to a collection of tasks
127  * by putting them under some memcg. This prevents killing unrelated/important
128  * processes such as /sbin/init. Note that the target task may share clean
129  * pages with init (eg. libc text), which is harmless. If the target task
130  * share _dirty_ pages with another task B, the test scheme must make sure B
131  * is also included in the memcg. At last, due to race conditions this filter
132  * can only guarantee that the page either belongs to the memcg tasks, or is
133  * a freed page.
134  */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 		return -EINVAL;
145 
146 	return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151 
152 int hwpoison_filter(struct page *p)
153 {
154 	if (!hwpoison_filter_enable)
155 		return 0;
156 
157 	if (hwpoison_filter_dev(p))
158 		return -EINVAL;
159 
160 	if (hwpoison_filter_flags(p))
161 		return -EINVAL;
162 
163 	if (hwpoison_filter_task(p))
164 		return -EINVAL;
165 
166 	return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 	return 0;
172 }
173 #endif
174 
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176 
177 /*
178  * Send all the processes who have the page mapped a signal.
179  * ``action optional'' if they are not immediately affected by the error
180  * ``action required'' if error happened in current execution context
181  */
182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 			unsigned long pfn, struct page *page, int flags)
184 {
185 	struct siginfo si;
186 	int ret;
187 
188 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 		pfn, t->comm, t->pid);
190 	si.si_signo = SIGBUS;
191 	si.si_errno = 0;
192 	si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 	si.si_trapno = trapno;
195 #endif
196 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197 
198 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 		si.si_code = BUS_MCEERR_AR;
200 		ret = force_sig_info(SIGBUS, &si, current);
201 	} else {
202 		/*
203 		 * Don't use force here, it's convenient if the signal
204 		 * can be temporarily blocked.
205 		 * This could cause a loop when the user sets SIGBUS
206 		 * to SIG_IGN, but hopefully no one will do that?
207 		 */
208 		si.si_code = BUS_MCEERR_AO;
209 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
210 	}
211 	if (ret < 0)
212 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213 			t->comm, t->pid, ret);
214 	return ret;
215 }
216 
217 /*
218  * When a unknown page type is encountered drain as many buffers as possible
219  * in the hope to turn the page into a LRU or free page, which we can handle.
220  */
221 void shake_page(struct page *p, int access)
222 {
223 	if (PageHuge(p))
224 		return;
225 
226 	if (!PageSlab(p)) {
227 		lru_add_drain_all();
228 		if (PageLRU(p))
229 			return;
230 		drain_all_pages(page_zone(p));
231 		if (PageLRU(p) || is_free_buddy_page(p))
232 			return;
233 	}
234 
235 	/*
236 	 * Only call shrink_node_slabs here (which would also shrink
237 	 * other caches) if access is not potentially fatal.
238 	 */
239 	if (access)
240 		drop_slab_node(page_to_nid(p));
241 }
242 EXPORT_SYMBOL_GPL(shake_page);
243 
244 /*
245  * Kill all processes that have a poisoned page mapped and then isolate
246  * the page.
247  *
248  * General strategy:
249  * Find all processes having the page mapped and kill them.
250  * But we keep a page reference around so that the page is not
251  * actually freed yet.
252  * Then stash the page away
253  *
254  * There's no convenient way to get back to mapped processes
255  * from the VMAs. So do a brute-force search over all
256  * running processes.
257  *
258  * Remember that machine checks are not common (or rather
259  * if they are common you have other problems), so this shouldn't
260  * be a performance issue.
261  *
262  * Also there are some races possible while we get from the
263  * error detection to actually handle it.
264  */
265 
266 struct to_kill {
267 	struct list_head nd;
268 	struct task_struct *tsk;
269 	unsigned long addr;
270 	char addr_valid;
271 };
272 
273 /*
274  * Failure handling: if we can't find or can't kill a process there's
275  * not much we can do.	We just print a message and ignore otherwise.
276  */
277 
278 /*
279  * Schedule a process for later kill.
280  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
281  * TBD would GFP_NOIO be enough?
282  */
283 static void add_to_kill(struct task_struct *tsk, struct page *p,
284 		       struct vm_area_struct *vma,
285 		       struct list_head *to_kill,
286 		       struct to_kill **tkc)
287 {
288 	struct to_kill *tk;
289 
290 	if (*tkc) {
291 		tk = *tkc;
292 		*tkc = NULL;
293 	} else {
294 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
295 		if (!tk) {
296 			pr_err("Memory failure: Out of memory while machine check handling\n");
297 			return;
298 		}
299 	}
300 	tk->addr = page_address_in_vma(p, vma);
301 	tk->addr_valid = 1;
302 
303 	/*
304 	 * In theory we don't have to kill when the page was
305 	 * munmaped. But it could be also a mremap. Since that's
306 	 * likely very rare kill anyways just out of paranoia, but use
307 	 * a SIGKILL because the error is not contained anymore.
308 	 */
309 	if (tk->addr == -EFAULT) {
310 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
311 			page_to_pfn(p), tsk->comm);
312 		tk->addr_valid = 0;
313 	}
314 	get_task_struct(tsk);
315 	tk->tsk = tsk;
316 	list_add_tail(&tk->nd, to_kill);
317 }
318 
319 /*
320  * Kill the processes that have been collected earlier.
321  *
322  * Only do anything when DOIT is set, otherwise just free the list
323  * (this is used for clean pages which do not need killing)
324  * Also when FAIL is set do a force kill because something went
325  * wrong earlier.
326  */
327 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
328 			  bool fail, struct page *page, unsigned long pfn,
329 			  int flags)
330 {
331 	struct to_kill *tk, *next;
332 
333 	list_for_each_entry_safe (tk, next, to_kill, nd) {
334 		if (forcekill) {
335 			/*
336 			 * In case something went wrong with munmapping
337 			 * make sure the process doesn't catch the
338 			 * signal and then access the memory. Just kill it.
339 			 */
340 			if (fail || tk->addr_valid == 0) {
341 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
342 				       pfn, tk->tsk->comm, tk->tsk->pid);
343 				force_sig(SIGKILL, tk->tsk);
344 			}
345 
346 			/*
347 			 * In theory the process could have mapped
348 			 * something else on the address in-between. We could
349 			 * check for that, but we need to tell the
350 			 * process anyways.
351 			 */
352 			else if (kill_proc(tk->tsk, tk->addr, trapno,
353 					      pfn, page, flags) < 0)
354 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 				       pfn, tk->tsk->comm, tk->tsk->pid);
356 		}
357 		put_task_struct(tk->tsk);
358 		kfree(tk);
359 	}
360 }
361 
362 /*
363  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364  * on behalf of the thread group. Return task_struct of the (first found)
365  * dedicated thread if found, and return NULL otherwise.
366  *
367  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368  * have to call rcu_read_lock/unlock() in this function.
369  */
370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 	struct task_struct *t;
373 
374 	for_each_thread(tsk, t)
375 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 			return t;
377 	return NULL;
378 }
379 
380 /*
381  * Determine whether a given process is "early kill" process which expects
382  * to be signaled when some page under the process is hwpoisoned.
383  * Return task_struct of the dedicated thread (main thread unless explicitly
384  * specified) if the process is "early kill," and otherwise returns NULL.
385  */
386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 					   int force_early)
388 {
389 	struct task_struct *t;
390 	if (!tsk->mm)
391 		return NULL;
392 	if (force_early)
393 		return tsk;
394 	t = find_early_kill_thread(tsk);
395 	if (t)
396 		return t;
397 	if (sysctl_memory_failure_early_kill)
398 		return tsk;
399 	return NULL;
400 }
401 
402 /*
403  * Collect processes when the error hit an anonymous page.
404  */
405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 			      struct to_kill **tkc, int force_early)
407 {
408 	struct vm_area_struct *vma;
409 	struct task_struct *tsk;
410 	struct anon_vma *av;
411 	pgoff_t pgoff;
412 
413 	av = page_lock_anon_vma_read(page);
414 	if (av == NULL)	/* Not actually mapped anymore */
415 		return;
416 
417 	pgoff = page_to_pgoff(page);
418 	read_lock(&tasklist_lock);
419 	for_each_process (tsk) {
420 		struct anon_vma_chain *vmac;
421 		struct task_struct *t = task_early_kill(tsk, force_early);
422 
423 		if (!t)
424 			continue;
425 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 					       pgoff, pgoff) {
427 			vma = vmac->vma;
428 			if (!page_mapped_in_vma(page, vma))
429 				continue;
430 			if (vma->vm_mm == t->mm)
431 				add_to_kill(t, page, vma, to_kill, tkc);
432 		}
433 	}
434 	read_unlock(&tasklist_lock);
435 	page_unlock_anon_vma_read(av);
436 }
437 
438 /*
439  * Collect processes when the error hit a file mapped page.
440  */
441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 			      struct to_kill **tkc, int force_early)
443 {
444 	struct vm_area_struct *vma;
445 	struct task_struct *tsk;
446 	struct address_space *mapping = page->mapping;
447 
448 	i_mmap_lock_read(mapping);
449 	read_lock(&tasklist_lock);
450 	for_each_process(tsk) {
451 		pgoff_t pgoff = page_to_pgoff(page);
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 				      pgoff) {
458 			/*
459 			 * Send early kill signal to tasks where a vma covers
460 			 * the page but the corrupted page is not necessarily
461 			 * mapped it in its pte.
462 			 * Assume applications who requested early kill want
463 			 * to be informed of all such data corruptions.
464 			 */
465 			if (vma->vm_mm == t->mm)
466 				add_to_kill(t, page, vma, to_kill, tkc);
467 		}
468 	}
469 	read_unlock(&tasklist_lock);
470 	i_mmap_unlock_read(mapping);
471 }
472 
473 /*
474  * Collect the processes who have the corrupted page mapped to kill.
475  * This is done in two steps for locking reasons.
476  * First preallocate one tokill structure outside the spin locks,
477  * so that we can kill at least one process reasonably reliable.
478  */
479 static void collect_procs(struct page *page, struct list_head *tokill,
480 				int force_early)
481 {
482 	struct to_kill *tk;
483 
484 	if (!page->mapping)
485 		return;
486 
487 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 	if (!tk)
489 		return;
490 	if (PageAnon(page))
491 		collect_procs_anon(page, tokill, &tk, force_early);
492 	else
493 		collect_procs_file(page, tokill, &tk, force_early);
494 	kfree(tk);
495 }
496 
497 static const char *action_name[] = {
498 	[MF_IGNORED] = "Ignored",
499 	[MF_FAILED] = "Failed",
500 	[MF_DELAYED] = "Delayed",
501 	[MF_RECOVERED] = "Recovered",
502 };
503 
504 static const char * const action_page_types[] = {
505 	[MF_MSG_KERNEL]			= "reserved kernel page",
506 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
507 	[MF_MSG_SLAB]			= "kernel slab page",
508 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
509 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
510 	[MF_MSG_HUGE]			= "huge page",
511 	[MF_MSG_FREE_HUGE]		= "free huge page",
512 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
513 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
514 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
515 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
516 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
517 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
518 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
519 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
520 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
521 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
522 	[MF_MSG_BUDDY]			= "free buddy page",
523 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
524 	[MF_MSG_UNKNOWN]		= "unknown page",
525 };
526 
527 /*
528  * XXX: It is possible that a page is isolated from LRU cache,
529  * and then kept in swap cache or failed to remove from page cache.
530  * The page count will stop it from being freed by unpoison.
531  * Stress tests should be aware of this memory leak problem.
532  */
533 static int delete_from_lru_cache(struct page *p)
534 {
535 	if (!isolate_lru_page(p)) {
536 		/*
537 		 * Clear sensible page flags, so that the buddy system won't
538 		 * complain when the page is unpoison-and-freed.
539 		 */
540 		ClearPageActive(p);
541 		ClearPageUnevictable(p);
542 
543 		/*
544 		 * Poisoned page might never drop its ref count to 0 so we have
545 		 * to uncharge it manually from its memcg.
546 		 */
547 		mem_cgroup_uncharge(p);
548 
549 		/*
550 		 * drop the page count elevated by isolate_lru_page()
551 		 */
552 		put_page(p);
553 		return 0;
554 	}
555 	return -EIO;
556 }
557 
558 /*
559  * Error hit kernel page.
560  * Do nothing, try to be lucky and not touch this instead. For a few cases we
561  * could be more sophisticated.
562  */
563 static int me_kernel(struct page *p, unsigned long pfn)
564 {
565 	return MF_IGNORED;
566 }
567 
568 /*
569  * Page in unknown state. Do nothing.
570  */
571 static int me_unknown(struct page *p, unsigned long pfn)
572 {
573 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
574 	return MF_FAILED;
575 }
576 
577 /*
578  * Clean (or cleaned) page cache page.
579  */
580 static int me_pagecache_clean(struct page *p, unsigned long pfn)
581 {
582 	int err;
583 	int ret = MF_FAILED;
584 	struct address_space *mapping;
585 
586 	delete_from_lru_cache(p);
587 
588 	/*
589 	 * For anonymous pages we're done the only reference left
590 	 * should be the one m_f() holds.
591 	 */
592 	if (PageAnon(p))
593 		return MF_RECOVERED;
594 
595 	/*
596 	 * Now truncate the page in the page cache. This is really
597 	 * more like a "temporary hole punch"
598 	 * Don't do this for block devices when someone else
599 	 * has a reference, because it could be file system metadata
600 	 * and that's not safe to truncate.
601 	 */
602 	mapping = page_mapping(p);
603 	if (!mapping) {
604 		/*
605 		 * Page has been teared down in the meanwhile
606 		 */
607 		return MF_FAILED;
608 	}
609 
610 	/*
611 	 * Truncation is a bit tricky. Enable it per file system for now.
612 	 *
613 	 * Open: to take i_mutex or not for this? Right now we don't.
614 	 */
615 	if (mapping->a_ops->error_remove_page) {
616 		err = mapping->a_ops->error_remove_page(mapping, p);
617 		if (err != 0) {
618 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
619 				pfn, err);
620 		} else if (page_has_private(p) &&
621 				!try_to_release_page(p, GFP_NOIO)) {
622 			pr_info("Memory failure: %#lx: failed to release buffers\n",
623 				pfn);
624 		} else {
625 			ret = MF_RECOVERED;
626 		}
627 	} else {
628 		/*
629 		 * If the file system doesn't support it just invalidate
630 		 * This fails on dirty or anything with private pages
631 		 */
632 		if (invalidate_inode_page(p))
633 			ret = MF_RECOVERED;
634 		else
635 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
636 				pfn);
637 	}
638 	return ret;
639 }
640 
641 /*
642  * Dirty pagecache page
643  * Issues: when the error hit a hole page the error is not properly
644  * propagated.
645  */
646 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
647 {
648 	struct address_space *mapping = page_mapping(p);
649 
650 	SetPageError(p);
651 	/* TBD: print more information about the file. */
652 	if (mapping) {
653 		/*
654 		 * IO error will be reported by write(), fsync(), etc.
655 		 * who check the mapping.
656 		 * This way the application knows that something went
657 		 * wrong with its dirty file data.
658 		 *
659 		 * There's one open issue:
660 		 *
661 		 * The EIO will be only reported on the next IO
662 		 * operation and then cleared through the IO map.
663 		 * Normally Linux has two mechanisms to pass IO error
664 		 * first through the AS_EIO flag in the address space
665 		 * and then through the PageError flag in the page.
666 		 * Since we drop pages on memory failure handling the
667 		 * only mechanism open to use is through AS_AIO.
668 		 *
669 		 * This has the disadvantage that it gets cleared on
670 		 * the first operation that returns an error, while
671 		 * the PageError bit is more sticky and only cleared
672 		 * when the page is reread or dropped.  If an
673 		 * application assumes it will always get error on
674 		 * fsync, but does other operations on the fd before
675 		 * and the page is dropped between then the error
676 		 * will not be properly reported.
677 		 *
678 		 * This can already happen even without hwpoisoned
679 		 * pages: first on metadata IO errors (which only
680 		 * report through AS_EIO) or when the page is dropped
681 		 * at the wrong time.
682 		 *
683 		 * So right now we assume that the application DTRT on
684 		 * the first EIO, but we're not worse than other parts
685 		 * of the kernel.
686 		 */
687 		mapping_set_error(mapping, EIO);
688 	}
689 
690 	return me_pagecache_clean(p, pfn);
691 }
692 
693 /*
694  * Clean and dirty swap cache.
695  *
696  * Dirty swap cache page is tricky to handle. The page could live both in page
697  * cache and swap cache(ie. page is freshly swapped in). So it could be
698  * referenced concurrently by 2 types of PTEs:
699  * normal PTEs and swap PTEs. We try to handle them consistently by calling
700  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
701  * and then
702  *      - clear dirty bit to prevent IO
703  *      - remove from LRU
704  *      - but keep in the swap cache, so that when we return to it on
705  *        a later page fault, we know the application is accessing
706  *        corrupted data and shall be killed (we installed simple
707  *        interception code in do_swap_page to catch it).
708  *
709  * Clean swap cache pages can be directly isolated. A later page fault will
710  * bring in the known good data from disk.
711  */
712 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
713 {
714 	ClearPageDirty(p);
715 	/* Trigger EIO in shmem: */
716 	ClearPageUptodate(p);
717 
718 	if (!delete_from_lru_cache(p))
719 		return MF_DELAYED;
720 	else
721 		return MF_FAILED;
722 }
723 
724 static int me_swapcache_clean(struct page *p, unsigned long pfn)
725 {
726 	delete_from_swap_cache(p);
727 
728 	if (!delete_from_lru_cache(p))
729 		return MF_RECOVERED;
730 	else
731 		return MF_FAILED;
732 }
733 
734 /*
735  * Huge pages. Needs work.
736  * Issues:
737  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
738  *   To narrow down kill region to one page, we need to break up pmd.
739  */
740 static int me_huge_page(struct page *p, unsigned long pfn)
741 {
742 	int res = 0;
743 	struct page *hpage = compound_head(p);
744 
745 	if (!PageHuge(hpage))
746 		return MF_DELAYED;
747 
748 	/*
749 	 * We can safely recover from error on free or reserved (i.e.
750 	 * not in-use) hugepage by dequeuing it from freelist.
751 	 * To check whether a hugepage is in-use or not, we can't use
752 	 * page->lru because it can be used in other hugepage operations,
753 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
754 	 * So instead we use page_mapping() and PageAnon().
755 	 */
756 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
757 		res = dequeue_hwpoisoned_huge_page(hpage);
758 		if (!res)
759 			return MF_RECOVERED;
760 	}
761 	return MF_DELAYED;
762 }
763 
764 /*
765  * Various page states we can handle.
766  *
767  * A page state is defined by its current page->flags bits.
768  * The table matches them in order and calls the right handler.
769  *
770  * This is quite tricky because we can access page at any time
771  * in its live cycle, so all accesses have to be extremely careful.
772  *
773  * This is not complete. More states could be added.
774  * For any missing state don't attempt recovery.
775  */
776 
777 #define dirty		(1UL << PG_dirty)
778 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
779 #define unevict		(1UL << PG_unevictable)
780 #define mlock		(1UL << PG_mlocked)
781 #define writeback	(1UL << PG_writeback)
782 #define lru		(1UL << PG_lru)
783 #define head		(1UL << PG_head)
784 #define slab		(1UL << PG_slab)
785 #define reserved	(1UL << PG_reserved)
786 
787 static struct page_state {
788 	unsigned long mask;
789 	unsigned long res;
790 	enum mf_action_page_type type;
791 	int (*action)(struct page *p, unsigned long pfn);
792 } error_states[] = {
793 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
794 	/*
795 	 * free pages are specially detected outside this table:
796 	 * PG_buddy pages only make a small fraction of all free pages.
797 	 */
798 
799 	/*
800 	 * Could in theory check if slab page is free or if we can drop
801 	 * currently unused objects without touching them. But just
802 	 * treat it as standard kernel for now.
803 	 */
804 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
805 
806 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
807 
808 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
809 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
810 
811 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
812 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
813 
814 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
815 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
816 
817 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
818 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
819 
820 	/*
821 	 * Catchall entry: must be at end.
822 	 */
823 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
824 };
825 
826 #undef dirty
827 #undef sc
828 #undef unevict
829 #undef mlock
830 #undef writeback
831 #undef lru
832 #undef head
833 #undef slab
834 #undef reserved
835 
836 /*
837  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
838  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
839  */
840 static void action_result(unsigned long pfn, enum mf_action_page_type type,
841 			  enum mf_result result)
842 {
843 	trace_memory_failure_event(pfn, type, result);
844 
845 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
846 		pfn, action_page_types[type], action_name[result]);
847 }
848 
849 static int page_action(struct page_state *ps, struct page *p,
850 			unsigned long pfn)
851 {
852 	int result;
853 	int count;
854 
855 	result = ps->action(p, pfn);
856 
857 	count = page_count(p) - 1;
858 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
859 		count--;
860 	if (count != 0) {
861 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
862 		       pfn, action_page_types[ps->type], count);
863 		result = MF_FAILED;
864 	}
865 	action_result(pfn, ps->type, result);
866 
867 	/* Could do more checks here if page looks ok */
868 	/*
869 	 * Could adjust zone counters here to correct for the missing page.
870 	 */
871 
872 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
873 }
874 
875 /**
876  * get_hwpoison_page() - Get refcount for memory error handling:
877  * @page:	raw error page (hit by memory error)
878  *
879  * Return: return 0 if failed to grab the refcount, otherwise true (some
880  * non-zero value.)
881  */
882 int get_hwpoison_page(struct page *page)
883 {
884 	struct page *head = compound_head(page);
885 
886 	if (!PageHuge(head) && PageTransHuge(head)) {
887 		/*
888 		 * Non anonymous thp exists only in allocation/free time. We
889 		 * can't handle such a case correctly, so let's give it up.
890 		 * This should be better than triggering BUG_ON when kernel
891 		 * tries to touch the "partially handled" page.
892 		 */
893 		if (!PageAnon(head)) {
894 			pr_err("Memory failure: %#lx: non anonymous thp\n",
895 				page_to_pfn(page));
896 			return 0;
897 		}
898 	}
899 
900 	if (get_page_unless_zero(head)) {
901 		if (head == compound_head(page))
902 			return 1;
903 
904 		pr_info("Memory failure: %#lx cannot catch tail\n",
905 			page_to_pfn(page));
906 		put_page(head);
907 	}
908 
909 	return 0;
910 }
911 EXPORT_SYMBOL_GPL(get_hwpoison_page);
912 
913 /*
914  * Do all that is necessary to remove user space mappings. Unmap
915  * the pages and send SIGBUS to the processes if the data was dirty.
916  */
917 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
918 				  int trapno, int flags, struct page **hpagep)
919 {
920 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
921 	struct address_space *mapping;
922 	LIST_HEAD(tokill);
923 	bool unmap_success;
924 	int kill = 1, forcekill;
925 	struct page *hpage = *hpagep;
926 	bool mlocked = PageMlocked(hpage);
927 
928 	/*
929 	 * Here we are interested only in user-mapped pages, so skip any
930 	 * other types of pages.
931 	 */
932 	if (PageReserved(p) || PageSlab(p))
933 		return true;
934 	if (!(PageLRU(hpage) || PageHuge(p)))
935 		return true;
936 
937 	/*
938 	 * This check implies we don't kill processes if their pages
939 	 * are in the swap cache early. Those are always late kills.
940 	 */
941 	if (!page_mapped(hpage))
942 		return true;
943 
944 	if (PageKsm(p)) {
945 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
946 		return false;
947 	}
948 
949 	if (PageSwapCache(p)) {
950 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
951 			pfn);
952 		ttu |= TTU_IGNORE_HWPOISON;
953 	}
954 
955 	/*
956 	 * Propagate the dirty bit from PTEs to struct page first, because we
957 	 * need this to decide if we should kill or just drop the page.
958 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
959 	 * be called inside page lock (it's recommended but not enforced).
960 	 */
961 	mapping = page_mapping(hpage);
962 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
963 	    mapping_cap_writeback_dirty(mapping)) {
964 		if (page_mkclean(hpage)) {
965 			SetPageDirty(hpage);
966 		} else {
967 			kill = 0;
968 			ttu |= TTU_IGNORE_HWPOISON;
969 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
970 				pfn);
971 		}
972 	}
973 
974 	/*
975 	 * First collect all the processes that have the page
976 	 * mapped in dirty form.  This has to be done before try_to_unmap,
977 	 * because ttu takes the rmap data structures down.
978 	 *
979 	 * Error handling: We ignore errors here because
980 	 * there's nothing that can be done.
981 	 */
982 	if (kill)
983 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
984 
985 	unmap_success = try_to_unmap(hpage, ttu);
986 	if (!unmap_success)
987 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
988 		       pfn, page_mapcount(hpage));
989 
990 	/*
991 	 * try_to_unmap() might put mlocked page in lru cache, so call
992 	 * shake_page() again to ensure that it's flushed.
993 	 */
994 	if (mlocked)
995 		shake_page(hpage, 0);
996 
997 	/*
998 	 * Now that the dirty bit has been propagated to the
999 	 * struct page and all unmaps done we can decide if
1000 	 * killing is needed or not.  Only kill when the page
1001 	 * was dirty or the process is not restartable,
1002 	 * otherwise the tokill list is merely
1003 	 * freed.  When there was a problem unmapping earlier
1004 	 * use a more force-full uncatchable kill to prevent
1005 	 * any accesses to the poisoned memory.
1006 	 */
1007 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1008 	kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1009 
1010 	return unmap_success;
1011 }
1012 
1013 static void set_page_hwpoison_huge_page(struct page *hpage)
1014 {
1015 	int i;
1016 	int nr_pages = 1 << compound_order(hpage);
1017 	for (i = 0; i < nr_pages; i++)
1018 		SetPageHWPoison(hpage + i);
1019 }
1020 
1021 static void clear_page_hwpoison_huge_page(struct page *hpage)
1022 {
1023 	int i;
1024 	int nr_pages = 1 << compound_order(hpage);
1025 	for (i = 0; i < nr_pages; i++)
1026 		ClearPageHWPoison(hpage + i);
1027 }
1028 
1029 /**
1030  * memory_failure - Handle memory failure of a page.
1031  * @pfn: Page Number of the corrupted page
1032  * @trapno: Trap number reported in the signal to user space.
1033  * @flags: fine tune action taken
1034  *
1035  * This function is called by the low level machine check code
1036  * of an architecture when it detects hardware memory corruption
1037  * of a page. It tries its best to recover, which includes
1038  * dropping pages, killing processes etc.
1039  *
1040  * The function is primarily of use for corruptions that
1041  * happen outside the current execution context (e.g. when
1042  * detected by a background scrubber)
1043  *
1044  * Must run in process context (e.g. a work queue) with interrupts
1045  * enabled and no spinlocks hold.
1046  */
1047 int memory_failure(unsigned long pfn, int trapno, int flags)
1048 {
1049 	struct page_state *ps;
1050 	struct page *p;
1051 	struct page *hpage;
1052 	struct page *orig_head;
1053 	int res;
1054 	unsigned int nr_pages;
1055 	unsigned long page_flags;
1056 
1057 	if (!sysctl_memory_failure_recovery)
1058 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1059 
1060 	if (!pfn_valid(pfn)) {
1061 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1062 			pfn);
1063 		return -ENXIO;
1064 	}
1065 
1066 	p = pfn_to_page(pfn);
1067 	orig_head = hpage = compound_head(p);
1068 	if (TestSetPageHWPoison(p)) {
1069 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1070 			pfn);
1071 		return 0;
1072 	}
1073 
1074 	/*
1075 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1076 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1077 	 * transparent hugepages, they are supposed to be split and error
1078 	 * measurement is done in normal page units.  So nr_pages should be one
1079 	 * in this case.
1080 	 */
1081 	if (PageHuge(p))
1082 		nr_pages = 1 << compound_order(hpage);
1083 	else /* normal page or thp */
1084 		nr_pages = 1;
1085 	num_poisoned_pages_add(nr_pages);
1086 
1087 	/*
1088 	 * We need/can do nothing about count=0 pages.
1089 	 * 1) it's a free page, and therefore in safe hand:
1090 	 *    prep_new_page() will be the gate keeper.
1091 	 * 2) it's a free hugepage, which is also safe:
1092 	 *    an affected hugepage will be dequeued from hugepage freelist,
1093 	 *    so there's no concern about reusing it ever after.
1094 	 * 3) it's part of a non-compound high order page.
1095 	 *    Implies some kernel user: cannot stop them from
1096 	 *    R/W the page; let's pray that the page has been
1097 	 *    used and will be freed some time later.
1098 	 * In fact it's dangerous to directly bump up page count from 0,
1099 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1100 	 */
1101 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1102 		if (is_free_buddy_page(p)) {
1103 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1104 			return 0;
1105 		} else if (PageHuge(hpage)) {
1106 			/*
1107 			 * Check "filter hit" and "race with other subpage."
1108 			 */
1109 			lock_page(hpage);
1110 			if (PageHWPoison(hpage)) {
1111 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1112 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1113 					num_poisoned_pages_sub(nr_pages);
1114 					unlock_page(hpage);
1115 					return 0;
1116 				}
1117 			}
1118 			set_page_hwpoison_huge_page(hpage);
1119 			res = dequeue_hwpoisoned_huge_page(hpage);
1120 			action_result(pfn, MF_MSG_FREE_HUGE,
1121 				      res ? MF_IGNORED : MF_DELAYED);
1122 			unlock_page(hpage);
1123 			return res;
1124 		} else {
1125 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1126 			return -EBUSY;
1127 		}
1128 	}
1129 
1130 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1131 		lock_page(p);
1132 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1133 			unlock_page(p);
1134 			if (!PageAnon(p))
1135 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1136 					pfn);
1137 			else
1138 				pr_err("Memory failure: %#lx: thp split failed\n",
1139 					pfn);
1140 			if (TestClearPageHWPoison(p))
1141 				num_poisoned_pages_sub(nr_pages);
1142 			put_hwpoison_page(p);
1143 			return -EBUSY;
1144 		}
1145 		unlock_page(p);
1146 		VM_BUG_ON_PAGE(!page_count(p), p);
1147 		hpage = compound_head(p);
1148 	}
1149 
1150 	/*
1151 	 * We ignore non-LRU pages for good reasons.
1152 	 * - PG_locked is only well defined for LRU pages and a few others
1153 	 * - to avoid races with __SetPageLocked()
1154 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1155 	 * The check (unnecessarily) ignores LRU pages being isolated and
1156 	 * walked by the page reclaim code, however that's not a big loss.
1157 	 */
1158 	shake_page(p, 0);
1159 	/* shake_page could have turned it free. */
1160 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1161 		if (flags & MF_COUNT_INCREASED)
1162 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1163 		else
1164 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1165 		return 0;
1166 	}
1167 
1168 	lock_page(hpage);
1169 
1170 	/*
1171 	 * The page could have changed compound pages during the locking.
1172 	 * If this happens just bail out.
1173 	 */
1174 	if (PageCompound(p) && compound_head(p) != orig_head) {
1175 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1176 		res = -EBUSY;
1177 		goto out;
1178 	}
1179 
1180 	/*
1181 	 * We use page flags to determine what action should be taken, but
1182 	 * the flags can be modified by the error containment action.  One
1183 	 * example is an mlocked page, where PG_mlocked is cleared by
1184 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185 	 * correctly, we save a copy of the page flags at this time.
1186 	 */
1187 	page_flags = p->flags;
1188 
1189 	/*
1190 	 * unpoison always clear PG_hwpoison inside page lock
1191 	 */
1192 	if (!PageHWPoison(p)) {
1193 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1194 		num_poisoned_pages_sub(nr_pages);
1195 		unlock_page(hpage);
1196 		put_hwpoison_page(hpage);
1197 		return 0;
1198 	}
1199 	if (hwpoison_filter(p)) {
1200 		if (TestClearPageHWPoison(p))
1201 			num_poisoned_pages_sub(nr_pages);
1202 		unlock_page(hpage);
1203 		put_hwpoison_page(hpage);
1204 		return 0;
1205 	}
1206 
1207 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1208 		goto identify_page_state;
1209 
1210 	/*
1211 	 * For error on the tail page, we should set PG_hwpoison
1212 	 * on the head page to show that the hugepage is hwpoisoned
1213 	 */
1214 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1215 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1216 		unlock_page(hpage);
1217 		put_hwpoison_page(hpage);
1218 		return 0;
1219 	}
1220 	/*
1221 	 * Set PG_hwpoison on all pages in an error hugepage,
1222 	 * because containment is done in hugepage unit for now.
1223 	 * Since we have done TestSetPageHWPoison() for the head page with
1224 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1225 	 */
1226 	if (PageHuge(p))
1227 		set_page_hwpoison_huge_page(hpage);
1228 
1229 	/*
1230 	 * It's very difficult to mess with pages currently under IO
1231 	 * and in many cases impossible, so we just avoid it here.
1232 	 */
1233 	wait_on_page_writeback(p);
1234 
1235 	/*
1236 	 * Now take care of user space mappings.
1237 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1238 	 *
1239 	 * When the raw error page is thp tail page, hpage points to the raw
1240 	 * page after thp split.
1241 	 */
1242 	if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1243 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1244 		res = -EBUSY;
1245 		goto out;
1246 	}
1247 
1248 	/*
1249 	 * Torn down by someone else?
1250 	 */
1251 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1252 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1253 		res = -EBUSY;
1254 		goto out;
1255 	}
1256 
1257 identify_page_state:
1258 	res = -EBUSY;
1259 	/*
1260 	 * The first check uses the current page flags which may not have any
1261 	 * relevant information. The second check with the saved page flagss is
1262 	 * carried out only if the first check can't determine the page status.
1263 	 */
1264 	for (ps = error_states;; ps++)
1265 		if ((p->flags & ps->mask) == ps->res)
1266 			break;
1267 
1268 	page_flags |= (p->flags & (1UL << PG_dirty));
1269 
1270 	if (!ps->mask)
1271 		for (ps = error_states;; ps++)
1272 			if ((page_flags & ps->mask) == ps->res)
1273 				break;
1274 	res = page_action(ps, p, pfn);
1275 out:
1276 	unlock_page(hpage);
1277 	return res;
1278 }
1279 EXPORT_SYMBOL_GPL(memory_failure);
1280 
1281 #define MEMORY_FAILURE_FIFO_ORDER	4
1282 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1283 
1284 struct memory_failure_entry {
1285 	unsigned long pfn;
1286 	int trapno;
1287 	int flags;
1288 };
1289 
1290 struct memory_failure_cpu {
1291 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1292 		      MEMORY_FAILURE_FIFO_SIZE);
1293 	spinlock_t lock;
1294 	struct work_struct work;
1295 };
1296 
1297 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1298 
1299 /**
1300  * memory_failure_queue - Schedule handling memory failure of a page.
1301  * @pfn: Page Number of the corrupted page
1302  * @trapno: Trap number reported in the signal to user space.
1303  * @flags: Flags for memory failure handling
1304  *
1305  * This function is called by the low level hardware error handler
1306  * when it detects hardware memory corruption of a page. It schedules
1307  * the recovering of error page, including dropping pages, killing
1308  * processes etc.
1309  *
1310  * The function is primarily of use for corruptions that
1311  * happen outside the current execution context (e.g. when
1312  * detected by a background scrubber)
1313  *
1314  * Can run in IRQ context.
1315  */
1316 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1317 {
1318 	struct memory_failure_cpu *mf_cpu;
1319 	unsigned long proc_flags;
1320 	struct memory_failure_entry entry = {
1321 		.pfn =		pfn,
1322 		.trapno =	trapno,
1323 		.flags =	flags,
1324 	};
1325 
1326 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1327 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1328 	if (kfifo_put(&mf_cpu->fifo, entry))
1329 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1330 	else
1331 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1332 		       pfn);
1333 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1334 	put_cpu_var(memory_failure_cpu);
1335 }
1336 EXPORT_SYMBOL_GPL(memory_failure_queue);
1337 
1338 static void memory_failure_work_func(struct work_struct *work)
1339 {
1340 	struct memory_failure_cpu *mf_cpu;
1341 	struct memory_failure_entry entry = { 0, };
1342 	unsigned long proc_flags;
1343 	int gotten;
1344 
1345 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1346 	for (;;) {
1347 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1348 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1349 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1350 		if (!gotten)
1351 			break;
1352 		if (entry.flags & MF_SOFT_OFFLINE)
1353 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1354 		else
1355 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1356 	}
1357 }
1358 
1359 static int __init memory_failure_init(void)
1360 {
1361 	struct memory_failure_cpu *mf_cpu;
1362 	int cpu;
1363 
1364 	for_each_possible_cpu(cpu) {
1365 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1366 		spin_lock_init(&mf_cpu->lock);
1367 		INIT_KFIFO(mf_cpu->fifo);
1368 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1369 	}
1370 
1371 	return 0;
1372 }
1373 core_initcall(memory_failure_init);
1374 
1375 #define unpoison_pr_info(fmt, pfn, rs)			\
1376 ({							\
1377 	if (__ratelimit(rs))				\
1378 		pr_info(fmt, pfn);			\
1379 })
1380 
1381 /**
1382  * unpoison_memory - Unpoison a previously poisoned page
1383  * @pfn: Page number of the to be unpoisoned page
1384  *
1385  * Software-unpoison a page that has been poisoned by
1386  * memory_failure() earlier.
1387  *
1388  * This is only done on the software-level, so it only works
1389  * for linux injected failures, not real hardware failures
1390  *
1391  * Returns 0 for success, otherwise -errno.
1392  */
1393 int unpoison_memory(unsigned long pfn)
1394 {
1395 	struct page *page;
1396 	struct page *p;
1397 	int freeit = 0;
1398 	unsigned int nr_pages;
1399 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1400 					DEFAULT_RATELIMIT_BURST);
1401 
1402 	if (!pfn_valid(pfn))
1403 		return -ENXIO;
1404 
1405 	p = pfn_to_page(pfn);
1406 	page = compound_head(p);
1407 
1408 	if (!PageHWPoison(p)) {
1409 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1410 				 pfn, &unpoison_rs);
1411 		return 0;
1412 	}
1413 
1414 	if (page_count(page) > 1) {
1415 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1416 				 pfn, &unpoison_rs);
1417 		return 0;
1418 	}
1419 
1420 	if (page_mapped(page)) {
1421 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1422 				 pfn, &unpoison_rs);
1423 		return 0;
1424 	}
1425 
1426 	if (page_mapping(page)) {
1427 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1428 				 pfn, &unpoison_rs);
1429 		return 0;
1430 	}
1431 
1432 	/*
1433 	 * unpoison_memory() can encounter thp only when the thp is being
1434 	 * worked by memory_failure() and the page lock is not held yet.
1435 	 * In such case, we yield to memory_failure() and make unpoison fail.
1436 	 */
1437 	if (!PageHuge(page) && PageTransHuge(page)) {
1438 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1439 				 pfn, &unpoison_rs);
1440 		return 0;
1441 	}
1442 
1443 	nr_pages = 1 << compound_order(page);
1444 
1445 	if (!get_hwpoison_page(p)) {
1446 		/*
1447 		 * Since HWPoisoned hugepage should have non-zero refcount,
1448 		 * race between memory failure and unpoison seems to happen.
1449 		 * In such case unpoison fails and memory failure runs
1450 		 * to the end.
1451 		 */
1452 		if (PageHuge(page)) {
1453 			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1454 					 pfn, &unpoison_rs);
1455 			return 0;
1456 		}
1457 		if (TestClearPageHWPoison(p))
1458 			num_poisoned_pages_dec();
1459 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1460 				 pfn, &unpoison_rs);
1461 		return 0;
1462 	}
1463 
1464 	lock_page(page);
1465 	/*
1466 	 * This test is racy because PG_hwpoison is set outside of page lock.
1467 	 * That's acceptable because that won't trigger kernel panic. Instead,
1468 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1469 	 * the free buddy page pool.
1470 	 */
1471 	if (TestClearPageHWPoison(page)) {
1472 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1473 				 pfn, &unpoison_rs);
1474 		num_poisoned_pages_sub(nr_pages);
1475 		freeit = 1;
1476 		if (PageHuge(page))
1477 			clear_page_hwpoison_huge_page(page);
1478 	}
1479 	unlock_page(page);
1480 
1481 	put_hwpoison_page(page);
1482 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1483 		put_hwpoison_page(page);
1484 
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(unpoison_memory);
1488 
1489 static struct page *new_page(struct page *p, unsigned long private, int **x)
1490 {
1491 	int nid = page_to_nid(p);
1492 	if (PageHuge(p))
1493 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1494 						   nid);
1495 	else
1496 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1497 }
1498 
1499 /*
1500  * Safely get reference count of an arbitrary page.
1501  * Returns 0 for a free page, -EIO for a zero refcount page
1502  * that is not free, and 1 for any other page type.
1503  * For 1 the page is returned with increased page count, otherwise not.
1504  */
1505 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1506 {
1507 	int ret;
1508 
1509 	if (flags & MF_COUNT_INCREASED)
1510 		return 1;
1511 
1512 	/*
1513 	 * When the target page is a free hugepage, just remove it
1514 	 * from free hugepage list.
1515 	 */
1516 	if (!get_hwpoison_page(p)) {
1517 		if (PageHuge(p)) {
1518 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1519 			ret = 0;
1520 		} else if (is_free_buddy_page(p)) {
1521 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1522 			ret = 0;
1523 		} else {
1524 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1525 				__func__, pfn, p->flags);
1526 			ret = -EIO;
1527 		}
1528 	} else {
1529 		/* Not a free page */
1530 		ret = 1;
1531 	}
1532 	return ret;
1533 }
1534 
1535 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1536 {
1537 	int ret = __get_any_page(page, pfn, flags);
1538 
1539 	if (ret == 1 && !PageHuge(page) &&
1540 	    !PageLRU(page) && !__PageMovable(page)) {
1541 		/*
1542 		 * Try to free it.
1543 		 */
1544 		put_hwpoison_page(page);
1545 		shake_page(page, 1);
1546 
1547 		/*
1548 		 * Did it turn free?
1549 		 */
1550 		ret = __get_any_page(page, pfn, 0);
1551 		if (ret == 1 && !PageLRU(page)) {
1552 			/* Drop page reference which is from __get_any_page() */
1553 			put_hwpoison_page(page);
1554 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1555 				pfn, page->flags, &page->flags);
1556 			return -EIO;
1557 		}
1558 	}
1559 	return ret;
1560 }
1561 
1562 static int soft_offline_huge_page(struct page *page, int flags)
1563 {
1564 	int ret;
1565 	unsigned long pfn = page_to_pfn(page);
1566 	struct page *hpage = compound_head(page);
1567 	LIST_HEAD(pagelist);
1568 
1569 	/*
1570 	 * This double-check of PageHWPoison is to avoid the race with
1571 	 * memory_failure(). See also comment in __soft_offline_page().
1572 	 */
1573 	lock_page(hpage);
1574 	if (PageHWPoison(hpage)) {
1575 		unlock_page(hpage);
1576 		put_hwpoison_page(hpage);
1577 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1578 		return -EBUSY;
1579 	}
1580 	unlock_page(hpage);
1581 
1582 	ret = isolate_huge_page(hpage, &pagelist);
1583 	/*
1584 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1585 	 * so need to drop one here.
1586 	 */
1587 	put_hwpoison_page(hpage);
1588 	if (!ret) {
1589 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1590 		return -EBUSY;
1591 	}
1592 
1593 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1594 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1595 	if (ret) {
1596 		pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1597 			pfn, ret, page->flags, &page->flags);
1598 		/*
1599 		 * We know that soft_offline_huge_page() tries to migrate
1600 		 * only one hugepage pointed to by hpage, so we need not
1601 		 * run through the pagelist here.
1602 		 */
1603 		putback_active_hugepage(hpage);
1604 		if (ret > 0)
1605 			ret = -EIO;
1606 	} else {
1607 		/* overcommit hugetlb page will be freed to buddy */
1608 		if (PageHuge(page)) {
1609 			set_page_hwpoison_huge_page(hpage);
1610 			dequeue_hwpoisoned_huge_page(hpage);
1611 			num_poisoned_pages_add(1 << compound_order(hpage));
1612 		} else {
1613 			SetPageHWPoison(page);
1614 			num_poisoned_pages_inc();
1615 		}
1616 	}
1617 	return ret;
1618 }
1619 
1620 static int __soft_offline_page(struct page *page, int flags)
1621 {
1622 	int ret;
1623 	unsigned long pfn = page_to_pfn(page);
1624 
1625 	/*
1626 	 * Check PageHWPoison again inside page lock because PageHWPoison
1627 	 * is set by memory_failure() outside page lock. Note that
1628 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1629 	 * so there's no race between soft_offline_page() and memory_failure().
1630 	 */
1631 	lock_page(page);
1632 	wait_on_page_writeback(page);
1633 	if (PageHWPoison(page)) {
1634 		unlock_page(page);
1635 		put_hwpoison_page(page);
1636 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1637 		return -EBUSY;
1638 	}
1639 	/*
1640 	 * Try to invalidate first. This should work for
1641 	 * non dirty unmapped page cache pages.
1642 	 */
1643 	ret = invalidate_inode_page(page);
1644 	unlock_page(page);
1645 	/*
1646 	 * RED-PEN would be better to keep it isolated here, but we
1647 	 * would need to fix isolation locking first.
1648 	 */
1649 	if (ret == 1) {
1650 		put_hwpoison_page(page);
1651 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1652 		SetPageHWPoison(page);
1653 		num_poisoned_pages_inc();
1654 		return 0;
1655 	}
1656 
1657 	/*
1658 	 * Simple invalidation didn't work.
1659 	 * Try to migrate to a new page instead. migrate.c
1660 	 * handles a large number of cases for us.
1661 	 */
1662 	if (PageLRU(page))
1663 		ret = isolate_lru_page(page);
1664 	else
1665 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1666 	/*
1667 	 * Drop page reference which is came from get_any_page()
1668 	 * successful isolate_lru_page() already took another one.
1669 	 */
1670 	put_hwpoison_page(page);
1671 	if (!ret) {
1672 		LIST_HEAD(pagelist);
1673 		/*
1674 		 * After isolated lru page, the PageLRU will be cleared,
1675 		 * so use !__PageMovable instead for LRU page's mapping
1676 		 * cannot have PAGE_MAPPING_MOVABLE.
1677 		 */
1678 		if (!__PageMovable(page))
1679 			inc_node_page_state(page, NR_ISOLATED_ANON +
1680 						page_is_file_cache(page));
1681 		list_add(&page->lru, &pagelist);
1682 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1683 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1684 		if (ret) {
1685 			if (!list_empty(&pagelist))
1686 				putback_movable_pages(&pagelist);
1687 
1688 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1689 				pfn, ret, page->flags, &page->flags);
1690 			if (ret > 0)
1691 				ret = -EIO;
1692 		}
1693 	} else {
1694 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1695 			pfn, ret, page_count(page), page->flags, &page->flags);
1696 	}
1697 	return ret;
1698 }
1699 
1700 static int soft_offline_in_use_page(struct page *page, int flags)
1701 {
1702 	int ret;
1703 	struct page *hpage = compound_head(page);
1704 
1705 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1706 		lock_page(hpage);
1707 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1708 			unlock_page(hpage);
1709 			if (!PageAnon(hpage))
1710 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1711 			else
1712 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1713 			put_hwpoison_page(hpage);
1714 			return -EBUSY;
1715 		}
1716 		unlock_page(hpage);
1717 		get_hwpoison_page(page);
1718 		put_hwpoison_page(hpage);
1719 	}
1720 
1721 	if (PageHuge(page))
1722 		ret = soft_offline_huge_page(page, flags);
1723 	else
1724 		ret = __soft_offline_page(page, flags);
1725 
1726 	return ret;
1727 }
1728 
1729 static void soft_offline_free_page(struct page *page)
1730 {
1731 	if (PageHuge(page)) {
1732 		struct page *hpage = compound_head(page);
1733 
1734 		set_page_hwpoison_huge_page(hpage);
1735 		if (!dequeue_hwpoisoned_huge_page(hpage))
1736 			num_poisoned_pages_add(1 << compound_order(hpage));
1737 	} else {
1738 		if (!TestSetPageHWPoison(page))
1739 			num_poisoned_pages_inc();
1740 	}
1741 }
1742 
1743 /**
1744  * soft_offline_page - Soft offline a page.
1745  * @page: page to offline
1746  * @flags: flags. Same as memory_failure().
1747  *
1748  * Returns 0 on success, otherwise negated errno.
1749  *
1750  * Soft offline a page, by migration or invalidation,
1751  * without killing anything. This is for the case when
1752  * a page is not corrupted yet (so it's still valid to access),
1753  * but has had a number of corrected errors and is better taken
1754  * out.
1755  *
1756  * The actual policy on when to do that is maintained by
1757  * user space.
1758  *
1759  * This should never impact any application or cause data loss,
1760  * however it might take some time.
1761  *
1762  * This is not a 100% solution for all memory, but tries to be
1763  * ``good enough'' for the majority of memory.
1764  */
1765 int soft_offline_page(struct page *page, int flags)
1766 {
1767 	int ret;
1768 	unsigned long pfn = page_to_pfn(page);
1769 
1770 	if (PageHWPoison(page)) {
1771 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1772 		if (flags & MF_COUNT_INCREASED)
1773 			put_hwpoison_page(page);
1774 		return -EBUSY;
1775 	}
1776 
1777 	get_online_mems();
1778 	ret = get_any_page(page, pfn, flags);
1779 	put_online_mems();
1780 
1781 	if (ret > 0)
1782 		ret = soft_offline_in_use_page(page, flags);
1783 	else if (ret == 0)
1784 		soft_offline_free_page(page);
1785 
1786 	return ret;
1787 }
1788