1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/memremap.h> 59 #include <linux/kfifo.h> 60 #include <linux/ratelimit.h> 61 #include <linux/page-isolation.h> 62 #include "internal.h" 63 #include "ras/ras_event.h" 64 65 int sysctl_memory_failure_early_kill __read_mostly = 0; 66 67 int sysctl_memory_failure_recovery __read_mostly = 1; 68 69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 70 71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 72 73 u32 hwpoison_filter_enable = 0; 74 u32 hwpoison_filter_dev_major = ~0U; 75 u32 hwpoison_filter_dev_minor = ~0U; 76 u64 hwpoison_filter_flags_mask; 77 u64 hwpoison_filter_flags_value; 78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 83 84 static int hwpoison_filter_dev(struct page *p) 85 { 86 struct address_space *mapping; 87 dev_t dev; 88 89 if (hwpoison_filter_dev_major == ~0U && 90 hwpoison_filter_dev_minor == ~0U) 91 return 0; 92 93 /* 94 * page_mapping() does not accept slab pages. 95 */ 96 if (PageSlab(p)) 97 return -EINVAL; 98 99 mapping = page_mapping(p); 100 if (mapping == NULL || mapping->host == NULL) 101 return -EINVAL; 102 103 dev = mapping->host->i_sb->s_dev; 104 if (hwpoison_filter_dev_major != ~0U && 105 hwpoison_filter_dev_major != MAJOR(dev)) 106 return -EINVAL; 107 if (hwpoison_filter_dev_minor != ~0U && 108 hwpoison_filter_dev_minor != MINOR(dev)) 109 return -EINVAL; 110 111 return 0; 112 } 113 114 static int hwpoison_filter_flags(struct page *p) 115 { 116 if (!hwpoison_filter_flags_mask) 117 return 0; 118 119 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 120 hwpoison_filter_flags_value) 121 return 0; 122 else 123 return -EINVAL; 124 } 125 126 /* 127 * This allows stress tests to limit test scope to a collection of tasks 128 * by putting them under some memcg. This prevents killing unrelated/important 129 * processes such as /sbin/init. Note that the target task may share clean 130 * pages with init (eg. libc text), which is harmless. If the target task 131 * share _dirty_ pages with another task B, the test scheme must make sure B 132 * is also included in the memcg. At last, due to race conditions this filter 133 * can only guarantee that the page either belongs to the memcg tasks, or is 134 * a freed page. 135 */ 136 #ifdef CONFIG_MEMCG 137 u64 hwpoison_filter_memcg; 138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 139 static int hwpoison_filter_task(struct page *p) 140 { 141 if (!hwpoison_filter_memcg) 142 return 0; 143 144 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 145 return -EINVAL; 146 147 return 0; 148 } 149 #else 150 static int hwpoison_filter_task(struct page *p) { return 0; } 151 #endif 152 153 int hwpoison_filter(struct page *p) 154 { 155 if (!hwpoison_filter_enable) 156 return 0; 157 158 if (hwpoison_filter_dev(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_flags(p)) 162 return -EINVAL; 163 164 if (hwpoison_filter_task(p)) 165 return -EINVAL; 166 167 return 0; 168 } 169 #else 170 int hwpoison_filter(struct page *p) 171 { 172 return 0; 173 } 174 #endif 175 176 EXPORT_SYMBOL_GPL(hwpoison_filter); 177 178 /* 179 * Kill all processes that have a poisoned page mapped and then isolate 180 * the page. 181 * 182 * General strategy: 183 * Find all processes having the page mapped and kill them. 184 * But we keep a page reference around so that the page is not 185 * actually freed yet. 186 * Then stash the page away 187 * 188 * There's no convenient way to get back to mapped processes 189 * from the VMAs. So do a brute-force search over all 190 * running processes. 191 * 192 * Remember that machine checks are not common (or rather 193 * if they are common you have other problems), so this shouldn't 194 * be a performance issue. 195 * 196 * Also there are some races possible while we get from the 197 * error detection to actually handle it. 198 */ 199 200 struct to_kill { 201 struct list_head nd; 202 struct task_struct *tsk; 203 unsigned long addr; 204 short size_shift; 205 char addr_valid; 206 }; 207 208 /* 209 * Send all the processes who have the page mapped a signal. 210 * ``action optional'' if they are not immediately affected by the error 211 * ``action required'' if error happened in current execution context 212 */ 213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 214 { 215 struct task_struct *t = tk->tsk; 216 short addr_lsb = tk->size_shift; 217 int ret; 218 219 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 220 pfn, t->comm, t->pid); 221 222 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 223 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, 224 addr_lsb, current); 225 } else { 226 /* 227 * Don't use force here, it's convenient if the signal 228 * can be temporarily blocked. 229 * This could cause a loop when the user sets SIGBUS 230 * to SIG_IGN, but hopefully no one will do that? 231 */ 232 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 233 addr_lsb, t); /* synchronous? */ 234 } 235 if (ret < 0) 236 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 237 t->comm, t->pid, ret); 238 return ret; 239 } 240 241 /* 242 * When a unknown page type is encountered drain as many buffers as possible 243 * in the hope to turn the page into a LRU or free page, which we can handle. 244 */ 245 void shake_page(struct page *p, int access) 246 { 247 if (PageHuge(p)) 248 return; 249 250 if (!PageSlab(p)) { 251 lru_add_drain_all(); 252 if (PageLRU(p)) 253 return; 254 drain_all_pages(page_zone(p)); 255 if (PageLRU(p) || is_free_buddy_page(p)) 256 return; 257 } 258 259 /* 260 * Only call shrink_node_slabs here (which would also shrink 261 * other caches) if access is not potentially fatal. 262 */ 263 if (access) 264 drop_slab_node(page_to_nid(p)); 265 } 266 EXPORT_SYMBOL_GPL(shake_page); 267 268 static unsigned long dev_pagemap_mapping_shift(struct page *page, 269 struct vm_area_struct *vma) 270 { 271 unsigned long address = vma_address(page, vma); 272 pgd_t *pgd; 273 p4d_t *p4d; 274 pud_t *pud; 275 pmd_t *pmd; 276 pte_t *pte; 277 278 pgd = pgd_offset(vma->vm_mm, address); 279 if (!pgd_present(*pgd)) 280 return 0; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 return 0; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 return 0; 287 if (pud_devmap(*pud)) 288 return PUD_SHIFT; 289 pmd = pmd_offset(pud, address); 290 if (!pmd_present(*pmd)) 291 return 0; 292 if (pmd_devmap(*pmd)) 293 return PMD_SHIFT; 294 pte = pte_offset_map(pmd, address); 295 if (!pte_present(*pte)) 296 return 0; 297 if (pte_devmap(*pte)) 298 return PAGE_SHIFT; 299 return 0; 300 } 301 302 /* 303 * Failure handling: if we can't find or can't kill a process there's 304 * not much we can do. We just print a message and ignore otherwise. 305 */ 306 307 /* 308 * Schedule a process for later kill. 309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 310 * TBD would GFP_NOIO be enough? 311 */ 312 static void add_to_kill(struct task_struct *tsk, struct page *p, 313 struct vm_area_struct *vma, 314 struct list_head *to_kill, 315 struct to_kill **tkc) 316 { 317 struct to_kill *tk; 318 319 if (*tkc) { 320 tk = *tkc; 321 *tkc = NULL; 322 } else { 323 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 324 if (!tk) { 325 pr_err("Memory failure: Out of memory while machine check handling\n"); 326 return; 327 } 328 } 329 tk->addr = page_address_in_vma(p, vma); 330 tk->addr_valid = 1; 331 if (is_zone_device_page(p)) 332 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 333 else 334 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; 335 336 /* 337 * In theory we don't have to kill when the page was 338 * munmaped. But it could be also a mremap. Since that's 339 * likely very rare kill anyways just out of paranoia, but use 340 * a SIGKILL because the error is not contained anymore. 341 */ 342 if (tk->addr == -EFAULT || tk->size_shift == 0) { 343 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 344 page_to_pfn(p), tsk->comm); 345 tk->addr_valid = 0; 346 } 347 get_task_struct(tsk); 348 tk->tsk = tsk; 349 list_add_tail(&tk->nd, to_kill); 350 } 351 352 /* 353 * Kill the processes that have been collected earlier. 354 * 355 * Only do anything when DOIT is set, otherwise just free the list 356 * (this is used for clean pages which do not need killing) 357 * Also when FAIL is set do a force kill because something went 358 * wrong earlier. 359 */ 360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 361 unsigned long pfn, int flags) 362 { 363 struct to_kill *tk, *next; 364 365 list_for_each_entry_safe (tk, next, to_kill, nd) { 366 if (forcekill) { 367 /* 368 * In case something went wrong with munmapping 369 * make sure the process doesn't catch the 370 * signal and then access the memory. Just kill it. 371 */ 372 if (fail || tk->addr_valid == 0) { 373 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 374 pfn, tk->tsk->comm, tk->tsk->pid); 375 force_sig(SIGKILL, tk->tsk); 376 } 377 378 /* 379 * In theory the process could have mapped 380 * something else on the address in-between. We could 381 * check for that, but we need to tell the 382 * process anyways. 383 */ 384 else if (kill_proc(tk, pfn, flags) < 0) 385 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 386 pfn, tk->tsk->comm, tk->tsk->pid); 387 } 388 put_task_struct(tk->tsk); 389 kfree(tk); 390 } 391 } 392 393 /* 394 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 395 * on behalf of the thread group. Return task_struct of the (first found) 396 * dedicated thread if found, and return NULL otherwise. 397 * 398 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 399 * have to call rcu_read_lock/unlock() in this function. 400 */ 401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 402 { 403 struct task_struct *t; 404 405 for_each_thread(tsk, t) 406 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 407 return t; 408 return NULL; 409 } 410 411 /* 412 * Determine whether a given process is "early kill" process which expects 413 * to be signaled when some page under the process is hwpoisoned. 414 * Return task_struct of the dedicated thread (main thread unless explicitly 415 * specified) if the process is "early kill," and otherwise returns NULL. 416 */ 417 static struct task_struct *task_early_kill(struct task_struct *tsk, 418 int force_early) 419 { 420 struct task_struct *t; 421 if (!tsk->mm) 422 return NULL; 423 if (force_early) 424 return tsk; 425 t = find_early_kill_thread(tsk); 426 if (t) 427 return t; 428 if (sysctl_memory_failure_early_kill) 429 return tsk; 430 return NULL; 431 } 432 433 /* 434 * Collect processes when the error hit an anonymous page. 435 */ 436 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 437 struct to_kill **tkc, int force_early) 438 { 439 struct vm_area_struct *vma; 440 struct task_struct *tsk; 441 struct anon_vma *av; 442 pgoff_t pgoff; 443 444 av = page_lock_anon_vma_read(page); 445 if (av == NULL) /* Not actually mapped anymore */ 446 return; 447 448 pgoff = page_to_pgoff(page); 449 read_lock(&tasklist_lock); 450 for_each_process (tsk) { 451 struct anon_vma_chain *vmac; 452 struct task_struct *t = task_early_kill(tsk, force_early); 453 454 if (!t) 455 continue; 456 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 457 pgoff, pgoff) { 458 vma = vmac->vma; 459 if (!page_mapped_in_vma(page, vma)) 460 continue; 461 if (vma->vm_mm == t->mm) 462 add_to_kill(t, page, vma, to_kill, tkc); 463 } 464 } 465 read_unlock(&tasklist_lock); 466 page_unlock_anon_vma_read(av); 467 } 468 469 /* 470 * Collect processes when the error hit a file mapped page. 471 */ 472 static void collect_procs_file(struct page *page, struct list_head *to_kill, 473 struct to_kill **tkc, int force_early) 474 { 475 struct vm_area_struct *vma; 476 struct task_struct *tsk; 477 struct address_space *mapping = page->mapping; 478 479 i_mmap_lock_read(mapping); 480 read_lock(&tasklist_lock); 481 for_each_process(tsk) { 482 pgoff_t pgoff = page_to_pgoff(page); 483 struct task_struct *t = task_early_kill(tsk, force_early); 484 485 if (!t) 486 continue; 487 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 488 pgoff) { 489 /* 490 * Send early kill signal to tasks where a vma covers 491 * the page but the corrupted page is not necessarily 492 * mapped it in its pte. 493 * Assume applications who requested early kill want 494 * to be informed of all such data corruptions. 495 */ 496 if (vma->vm_mm == t->mm) 497 add_to_kill(t, page, vma, to_kill, tkc); 498 } 499 } 500 read_unlock(&tasklist_lock); 501 i_mmap_unlock_read(mapping); 502 } 503 504 /* 505 * Collect the processes who have the corrupted page mapped to kill. 506 * This is done in two steps for locking reasons. 507 * First preallocate one tokill structure outside the spin locks, 508 * so that we can kill at least one process reasonably reliable. 509 */ 510 static void collect_procs(struct page *page, struct list_head *tokill, 511 int force_early) 512 { 513 struct to_kill *tk; 514 515 if (!page->mapping) 516 return; 517 518 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 519 if (!tk) 520 return; 521 if (PageAnon(page)) 522 collect_procs_anon(page, tokill, &tk, force_early); 523 else 524 collect_procs_file(page, tokill, &tk, force_early); 525 kfree(tk); 526 } 527 528 static const char *action_name[] = { 529 [MF_IGNORED] = "Ignored", 530 [MF_FAILED] = "Failed", 531 [MF_DELAYED] = "Delayed", 532 [MF_RECOVERED] = "Recovered", 533 }; 534 535 static const char * const action_page_types[] = { 536 [MF_MSG_KERNEL] = "reserved kernel page", 537 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 538 [MF_MSG_SLAB] = "kernel slab page", 539 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 540 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 541 [MF_MSG_HUGE] = "huge page", 542 [MF_MSG_FREE_HUGE] = "free huge page", 543 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 544 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 545 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 546 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 547 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 548 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 549 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 550 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 551 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 552 [MF_MSG_CLEAN_LRU] = "clean LRU page", 553 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 554 [MF_MSG_BUDDY] = "free buddy page", 555 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 556 [MF_MSG_DAX] = "dax page", 557 [MF_MSG_UNKNOWN] = "unknown page", 558 }; 559 560 /* 561 * XXX: It is possible that a page is isolated from LRU cache, 562 * and then kept in swap cache or failed to remove from page cache. 563 * The page count will stop it from being freed by unpoison. 564 * Stress tests should be aware of this memory leak problem. 565 */ 566 static int delete_from_lru_cache(struct page *p) 567 { 568 if (!isolate_lru_page(p)) { 569 /* 570 * Clear sensible page flags, so that the buddy system won't 571 * complain when the page is unpoison-and-freed. 572 */ 573 ClearPageActive(p); 574 ClearPageUnevictable(p); 575 576 /* 577 * Poisoned page might never drop its ref count to 0 so we have 578 * to uncharge it manually from its memcg. 579 */ 580 mem_cgroup_uncharge(p); 581 582 /* 583 * drop the page count elevated by isolate_lru_page() 584 */ 585 put_page(p); 586 return 0; 587 } 588 return -EIO; 589 } 590 591 static int truncate_error_page(struct page *p, unsigned long pfn, 592 struct address_space *mapping) 593 { 594 int ret = MF_FAILED; 595 596 if (mapping->a_ops->error_remove_page) { 597 int err = mapping->a_ops->error_remove_page(mapping, p); 598 599 if (err != 0) { 600 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 601 pfn, err); 602 } else if (page_has_private(p) && 603 !try_to_release_page(p, GFP_NOIO)) { 604 pr_info("Memory failure: %#lx: failed to release buffers\n", 605 pfn); 606 } else { 607 ret = MF_RECOVERED; 608 } 609 } else { 610 /* 611 * If the file system doesn't support it just invalidate 612 * This fails on dirty or anything with private pages 613 */ 614 if (invalidate_inode_page(p)) 615 ret = MF_RECOVERED; 616 else 617 pr_info("Memory failure: %#lx: Failed to invalidate\n", 618 pfn); 619 } 620 621 return ret; 622 } 623 624 /* 625 * Error hit kernel page. 626 * Do nothing, try to be lucky and not touch this instead. For a few cases we 627 * could be more sophisticated. 628 */ 629 static int me_kernel(struct page *p, unsigned long pfn) 630 { 631 return MF_IGNORED; 632 } 633 634 /* 635 * Page in unknown state. Do nothing. 636 */ 637 static int me_unknown(struct page *p, unsigned long pfn) 638 { 639 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 640 return MF_FAILED; 641 } 642 643 /* 644 * Clean (or cleaned) page cache page. 645 */ 646 static int me_pagecache_clean(struct page *p, unsigned long pfn) 647 { 648 struct address_space *mapping; 649 650 delete_from_lru_cache(p); 651 652 /* 653 * For anonymous pages we're done the only reference left 654 * should be the one m_f() holds. 655 */ 656 if (PageAnon(p)) 657 return MF_RECOVERED; 658 659 /* 660 * Now truncate the page in the page cache. This is really 661 * more like a "temporary hole punch" 662 * Don't do this for block devices when someone else 663 * has a reference, because it could be file system metadata 664 * and that's not safe to truncate. 665 */ 666 mapping = page_mapping(p); 667 if (!mapping) { 668 /* 669 * Page has been teared down in the meanwhile 670 */ 671 return MF_FAILED; 672 } 673 674 /* 675 * Truncation is a bit tricky. Enable it per file system for now. 676 * 677 * Open: to take i_mutex or not for this? Right now we don't. 678 */ 679 return truncate_error_page(p, pfn, mapping); 680 } 681 682 /* 683 * Dirty pagecache page 684 * Issues: when the error hit a hole page the error is not properly 685 * propagated. 686 */ 687 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 688 { 689 struct address_space *mapping = page_mapping(p); 690 691 SetPageError(p); 692 /* TBD: print more information about the file. */ 693 if (mapping) { 694 /* 695 * IO error will be reported by write(), fsync(), etc. 696 * who check the mapping. 697 * This way the application knows that something went 698 * wrong with its dirty file data. 699 * 700 * There's one open issue: 701 * 702 * The EIO will be only reported on the next IO 703 * operation and then cleared through the IO map. 704 * Normally Linux has two mechanisms to pass IO error 705 * first through the AS_EIO flag in the address space 706 * and then through the PageError flag in the page. 707 * Since we drop pages on memory failure handling the 708 * only mechanism open to use is through AS_AIO. 709 * 710 * This has the disadvantage that it gets cleared on 711 * the first operation that returns an error, while 712 * the PageError bit is more sticky and only cleared 713 * when the page is reread or dropped. If an 714 * application assumes it will always get error on 715 * fsync, but does other operations on the fd before 716 * and the page is dropped between then the error 717 * will not be properly reported. 718 * 719 * This can already happen even without hwpoisoned 720 * pages: first on metadata IO errors (which only 721 * report through AS_EIO) or when the page is dropped 722 * at the wrong time. 723 * 724 * So right now we assume that the application DTRT on 725 * the first EIO, but we're not worse than other parts 726 * of the kernel. 727 */ 728 mapping_set_error(mapping, -EIO); 729 } 730 731 return me_pagecache_clean(p, pfn); 732 } 733 734 /* 735 * Clean and dirty swap cache. 736 * 737 * Dirty swap cache page is tricky to handle. The page could live both in page 738 * cache and swap cache(ie. page is freshly swapped in). So it could be 739 * referenced concurrently by 2 types of PTEs: 740 * normal PTEs and swap PTEs. We try to handle them consistently by calling 741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 742 * and then 743 * - clear dirty bit to prevent IO 744 * - remove from LRU 745 * - but keep in the swap cache, so that when we return to it on 746 * a later page fault, we know the application is accessing 747 * corrupted data and shall be killed (we installed simple 748 * interception code in do_swap_page to catch it). 749 * 750 * Clean swap cache pages can be directly isolated. A later page fault will 751 * bring in the known good data from disk. 752 */ 753 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 754 { 755 ClearPageDirty(p); 756 /* Trigger EIO in shmem: */ 757 ClearPageUptodate(p); 758 759 if (!delete_from_lru_cache(p)) 760 return MF_DELAYED; 761 else 762 return MF_FAILED; 763 } 764 765 static int me_swapcache_clean(struct page *p, unsigned long pfn) 766 { 767 delete_from_swap_cache(p); 768 769 if (!delete_from_lru_cache(p)) 770 return MF_RECOVERED; 771 else 772 return MF_FAILED; 773 } 774 775 /* 776 * Huge pages. Needs work. 777 * Issues: 778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 779 * To narrow down kill region to one page, we need to break up pmd. 780 */ 781 static int me_huge_page(struct page *p, unsigned long pfn) 782 { 783 int res = 0; 784 struct page *hpage = compound_head(p); 785 struct address_space *mapping; 786 787 if (!PageHuge(hpage)) 788 return MF_DELAYED; 789 790 mapping = page_mapping(hpage); 791 if (mapping) { 792 res = truncate_error_page(hpage, pfn, mapping); 793 } else { 794 unlock_page(hpage); 795 /* 796 * migration entry prevents later access on error anonymous 797 * hugepage, so we can free and dissolve it into buddy to 798 * save healthy subpages. 799 */ 800 if (PageAnon(hpage)) 801 put_page(hpage); 802 dissolve_free_huge_page(p); 803 res = MF_RECOVERED; 804 lock_page(hpage); 805 } 806 807 return res; 808 } 809 810 /* 811 * Various page states we can handle. 812 * 813 * A page state is defined by its current page->flags bits. 814 * The table matches them in order and calls the right handler. 815 * 816 * This is quite tricky because we can access page at any time 817 * in its live cycle, so all accesses have to be extremely careful. 818 * 819 * This is not complete. More states could be added. 820 * For any missing state don't attempt recovery. 821 */ 822 823 #define dirty (1UL << PG_dirty) 824 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 825 #define unevict (1UL << PG_unevictable) 826 #define mlock (1UL << PG_mlocked) 827 #define writeback (1UL << PG_writeback) 828 #define lru (1UL << PG_lru) 829 #define head (1UL << PG_head) 830 #define slab (1UL << PG_slab) 831 #define reserved (1UL << PG_reserved) 832 833 static struct page_state { 834 unsigned long mask; 835 unsigned long res; 836 enum mf_action_page_type type; 837 int (*action)(struct page *p, unsigned long pfn); 838 } error_states[] = { 839 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 840 /* 841 * free pages are specially detected outside this table: 842 * PG_buddy pages only make a small fraction of all free pages. 843 */ 844 845 /* 846 * Could in theory check if slab page is free or if we can drop 847 * currently unused objects without touching them. But just 848 * treat it as standard kernel for now. 849 */ 850 { slab, slab, MF_MSG_SLAB, me_kernel }, 851 852 { head, head, MF_MSG_HUGE, me_huge_page }, 853 854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 856 857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 859 860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 862 863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 865 866 /* 867 * Catchall entry: must be at end. 868 */ 869 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 870 }; 871 872 #undef dirty 873 #undef sc 874 #undef unevict 875 #undef mlock 876 #undef writeback 877 #undef lru 878 #undef head 879 #undef slab 880 #undef reserved 881 882 /* 883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 884 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 885 */ 886 static void action_result(unsigned long pfn, enum mf_action_page_type type, 887 enum mf_result result) 888 { 889 trace_memory_failure_event(pfn, type, result); 890 891 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 892 pfn, action_page_types[type], action_name[result]); 893 } 894 895 static int page_action(struct page_state *ps, struct page *p, 896 unsigned long pfn) 897 { 898 int result; 899 int count; 900 901 result = ps->action(p, pfn); 902 903 count = page_count(p) - 1; 904 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 905 count--; 906 if (count > 0) { 907 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 908 pfn, action_page_types[ps->type], count); 909 result = MF_FAILED; 910 } 911 action_result(pfn, ps->type, result); 912 913 /* Could do more checks here if page looks ok */ 914 /* 915 * Could adjust zone counters here to correct for the missing page. 916 */ 917 918 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 919 } 920 921 /** 922 * get_hwpoison_page() - Get refcount for memory error handling: 923 * @page: raw error page (hit by memory error) 924 * 925 * Return: return 0 if failed to grab the refcount, otherwise true (some 926 * non-zero value.) 927 */ 928 int get_hwpoison_page(struct page *page) 929 { 930 struct page *head = compound_head(page); 931 932 if (!PageHuge(head) && PageTransHuge(head)) { 933 /* 934 * Non anonymous thp exists only in allocation/free time. We 935 * can't handle such a case correctly, so let's give it up. 936 * This should be better than triggering BUG_ON when kernel 937 * tries to touch the "partially handled" page. 938 */ 939 if (!PageAnon(head)) { 940 pr_err("Memory failure: %#lx: non anonymous thp\n", 941 page_to_pfn(page)); 942 return 0; 943 } 944 } 945 946 if (get_page_unless_zero(head)) { 947 if (head == compound_head(page)) 948 return 1; 949 950 pr_info("Memory failure: %#lx cannot catch tail\n", 951 page_to_pfn(page)); 952 put_page(head); 953 } 954 955 return 0; 956 } 957 EXPORT_SYMBOL_GPL(get_hwpoison_page); 958 959 /* 960 * Do all that is necessary to remove user space mappings. Unmap 961 * the pages and send SIGBUS to the processes if the data was dirty. 962 */ 963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 964 int flags, struct page **hpagep) 965 { 966 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 967 struct address_space *mapping; 968 LIST_HEAD(tokill); 969 bool unmap_success; 970 int kill = 1, forcekill; 971 struct page *hpage = *hpagep; 972 bool mlocked = PageMlocked(hpage); 973 974 /* 975 * Here we are interested only in user-mapped pages, so skip any 976 * other types of pages. 977 */ 978 if (PageReserved(p) || PageSlab(p)) 979 return true; 980 if (!(PageLRU(hpage) || PageHuge(p))) 981 return true; 982 983 /* 984 * This check implies we don't kill processes if their pages 985 * are in the swap cache early. Those are always late kills. 986 */ 987 if (!page_mapped(hpage)) 988 return true; 989 990 if (PageKsm(p)) { 991 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 992 return false; 993 } 994 995 if (PageSwapCache(p)) { 996 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 997 pfn); 998 ttu |= TTU_IGNORE_HWPOISON; 999 } 1000 1001 /* 1002 * Propagate the dirty bit from PTEs to struct page first, because we 1003 * need this to decide if we should kill or just drop the page. 1004 * XXX: the dirty test could be racy: set_page_dirty() may not always 1005 * be called inside page lock (it's recommended but not enforced). 1006 */ 1007 mapping = page_mapping(hpage); 1008 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1009 mapping_cap_writeback_dirty(mapping)) { 1010 if (page_mkclean(hpage)) { 1011 SetPageDirty(hpage); 1012 } else { 1013 kill = 0; 1014 ttu |= TTU_IGNORE_HWPOISON; 1015 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1016 pfn); 1017 } 1018 } 1019 1020 /* 1021 * First collect all the processes that have the page 1022 * mapped in dirty form. This has to be done before try_to_unmap, 1023 * because ttu takes the rmap data structures down. 1024 * 1025 * Error handling: We ignore errors here because 1026 * there's nothing that can be done. 1027 */ 1028 if (kill) 1029 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1030 1031 unmap_success = try_to_unmap(hpage, ttu); 1032 if (!unmap_success) 1033 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1034 pfn, page_mapcount(hpage)); 1035 1036 /* 1037 * try_to_unmap() might put mlocked page in lru cache, so call 1038 * shake_page() again to ensure that it's flushed. 1039 */ 1040 if (mlocked) 1041 shake_page(hpage, 0); 1042 1043 /* 1044 * Now that the dirty bit has been propagated to the 1045 * struct page and all unmaps done we can decide if 1046 * killing is needed or not. Only kill when the page 1047 * was dirty or the process is not restartable, 1048 * otherwise the tokill list is merely 1049 * freed. When there was a problem unmapping earlier 1050 * use a more force-full uncatchable kill to prevent 1051 * any accesses to the poisoned memory. 1052 */ 1053 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1054 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1055 1056 return unmap_success; 1057 } 1058 1059 static int identify_page_state(unsigned long pfn, struct page *p, 1060 unsigned long page_flags) 1061 { 1062 struct page_state *ps; 1063 1064 /* 1065 * The first check uses the current page flags which may not have any 1066 * relevant information. The second check with the saved page flags is 1067 * carried out only if the first check can't determine the page status. 1068 */ 1069 for (ps = error_states;; ps++) 1070 if ((p->flags & ps->mask) == ps->res) 1071 break; 1072 1073 page_flags |= (p->flags & (1UL << PG_dirty)); 1074 1075 if (!ps->mask) 1076 for (ps = error_states;; ps++) 1077 if ((page_flags & ps->mask) == ps->res) 1078 break; 1079 return page_action(ps, p, pfn); 1080 } 1081 1082 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1083 { 1084 struct page *p = pfn_to_page(pfn); 1085 struct page *head = compound_head(p); 1086 int res; 1087 unsigned long page_flags; 1088 1089 if (TestSetPageHWPoison(head)) { 1090 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1091 pfn); 1092 return 0; 1093 } 1094 1095 num_poisoned_pages_inc(); 1096 1097 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1098 /* 1099 * Check "filter hit" and "race with other subpage." 1100 */ 1101 lock_page(head); 1102 if (PageHWPoison(head)) { 1103 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1104 || (p != head && TestSetPageHWPoison(head))) { 1105 num_poisoned_pages_dec(); 1106 unlock_page(head); 1107 return 0; 1108 } 1109 } 1110 unlock_page(head); 1111 dissolve_free_huge_page(p); 1112 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1113 return 0; 1114 } 1115 1116 lock_page(head); 1117 page_flags = head->flags; 1118 1119 if (!PageHWPoison(head)) { 1120 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1121 num_poisoned_pages_dec(); 1122 unlock_page(head); 1123 put_hwpoison_page(head); 1124 return 0; 1125 } 1126 1127 /* 1128 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1129 * simply disable it. In order to make it work properly, we need 1130 * make sure that: 1131 * - conversion of a pud that maps an error hugetlb into hwpoison 1132 * entry properly works, and 1133 * - other mm code walking over page table is aware of pud-aligned 1134 * hwpoison entries. 1135 */ 1136 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1137 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1138 res = -EBUSY; 1139 goto out; 1140 } 1141 1142 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1143 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1144 res = -EBUSY; 1145 goto out; 1146 } 1147 1148 res = identify_page_state(pfn, p, page_flags); 1149 out: 1150 unlock_page(head); 1151 return res; 1152 } 1153 1154 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1155 struct dev_pagemap *pgmap) 1156 { 1157 struct page *page = pfn_to_page(pfn); 1158 const bool unmap_success = true; 1159 unsigned long size = 0; 1160 struct to_kill *tk; 1161 LIST_HEAD(tokill); 1162 int rc = -EBUSY; 1163 loff_t start; 1164 dax_entry_t cookie; 1165 1166 /* 1167 * Prevent the inode from being freed while we are interrogating 1168 * the address_space, typically this would be handled by 1169 * lock_page(), but dax pages do not use the page lock. This 1170 * also prevents changes to the mapping of this pfn until 1171 * poison signaling is complete. 1172 */ 1173 cookie = dax_lock_page(page); 1174 if (!cookie) 1175 goto out; 1176 1177 if (hwpoison_filter(page)) { 1178 rc = 0; 1179 goto unlock; 1180 } 1181 1182 switch (pgmap->type) { 1183 case MEMORY_DEVICE_PRIVATE: 1184 case MEMORY_DEVICE_PUBLIC: 1185 /* 1186 * TODO: Handle HMM pages which may need coordination 1187 * with device-side memory. 1188 */ 1189 goto unlock; 1190 default: 1191 break; 1192 } 1193 1194 /* 1195 * Use this flag as an indication that the dax page has been 1196 * remapped UC to prevent speculative consumption of poison. 1197 */ 1198 SetPageHWPoison(page); 1199 1200 /* 1201 * Unlike System-RAM there is no possibility to swap in a 1202 * different physical page at a given virtual address, so all 1203 * userspace consumption of ZONE_DEVICE memory necessitates 1204 * SIGBUS (i.e. MF_MUST_KILL) 1205 */ 1206 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1207 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1208 1209 list_for_each_entry(tk, &tokill, nd) 1210 if (tk->size_shift) 1211 size = max(size, 1UL << tk->size_shift); 1212 if (size) { 1213 /* 1214 * Unmap the largest mapping to avoid breaking up 1215 * device-dax mappings which are constant size. The 1216 * actual size of the mapping being torn down is 1217 * communicated in siginfo, see kill_proc() 1218 */ 1219 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1220 unmap_mapping_range(page->mapping, start, start + size, 0); 1221 } 1222 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1223 rc = 0; 1224 unlock: 1225 dax_unlock_page(page, cookie); 1226 out: 1227 /* drop pgmap ref acquired in caller */ 1228 put_dev_pagemap(pgmap); 1229 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1230 return rc; 1231 } 1232 1233 /** 1234 * memory_failure - Handle memory failure of a page. 1235 * @pfn: Page Number of the corrupted page 1236 * @flags: fine tune action taken 1237 * 1238 * This function is called by the low level machine check code 1239 * of an architecture when it detects hardware memory corruption 1240 * of a page. It tries its best to recover, which includes 1241 * dropping pages, killing processes etc. 1242 * 1243 * The function is primarily of use for corruptions that 1244 * happen outside the current execution context (e.g. when 1245 * detected by a background scrubber) 1246 * 1247 * Must run in process context (e.g. a work queue) with interrupts 1248 * enabled and no spinlocks hold. 1249 */ 1250 int memory_failure(unsigned long pfn, int flags) 1251 { 1252 struct page *p; 1253 struct page *hpage; 1254 struct page *orig_head; 1255 struct dev_pagemap *pgmap; 1256 int res; 1257 unsigned long page_flags; 1258 1259 if (!sysctl_memory_failure_recovery) 1260 panic("Memory failure on page %lx", pfn); 1261 1262 if (!pfn_valid(pfn)) { 1263 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1264 pfn); 1265 return -ENXIO; 1266 } 1267 1268 pgmap = get_dev_pagemap(pfn, NULL); 1269 if (pgmap) 1270 return memory_failure_dev_pagemap(pfn, flags, pgmap); 1271 1272 p = pfn_to_page(pfn); 1273 if (PageHuge(p)) 1274 return memory_failure_hugetlb(pfn, flags); 1275 if (TestSetPageHWPoison(p)) { 1276 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1277 pfn); 1278 return 0; 1279 } 1280 1281 orig_head = hpage = compound_head(p); 1282 num_poisoned_pages_inc(); 1283 1284 /* 1285 * We need/can do nothing about count=0 pages. 1286 * 1) it's a free page, and therefore in safe hand: 1287 * prep_new_page() will be the gate keeper. 1288 * 2) it's part of a non-compound high order page. 1289 * Implies some kernel user: cannot stop them from 1290 * R/W the page; let's pray that the page has been 1291 * used and will be freed some time later. 1292 * In fact it's dangerous to directly bump up page count from 0, 1293 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1294 */ 1295 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1296 if (is_free_buddy_page(p)) { 1297 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1298 return 0; 1299 } else { 1300 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1301 return -EBUSY; 1302 } 1303 } 1304 1305 if (PageTransHuge(hpage)) { 1306 lock_page(p); 1307 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1308 unlock_page(p); 1309 if (!PageAnon(p)) 1310 pr_err("Memory failure: %#lx: non anonymous thp\n", 1311 pfn); 1312 else 1313 pr_err("Memory failure: %#lx: thp split failed\n", 1314 pfn); 1315 if (TestClearPageHWPoison(p)) 1316 num_poisoned_pages_dec(); 1317 put_hwpoison_page(p); 1318 return -EBUSY; 1319 } 1320 unlock_page(p); 1321 VM_BUG_ON_PAGE(!page_count(p), p); 1322 hpage = compound_head(p); 1323 } 1324 1325 /* 1326 * We ignore non-LRU pages for good reasons. 1327 * - PG_locked is only well defined for LRU pages and a few others 1328 * - to avoid races with __SetPageLocked() 1329 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1330 * The check (unnecessarily) ignores LRU pages being isolated and 1331 * walked by the page reclaim code, however that's not a big loss. 1332 */ 1333 shake_page(p, 0); 1334 /* shake_page could have turned it free. */ 1335 if (!PageLRU(p) && is_free_buddy_page(p)) { 1336 if (flags & MF_COUNT_INCREASED) 1337 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1338 else 1339 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1340 return 0; 1341 } 1342 1343 lock_page(p); 1344 1345 /* 1346 * The page could have changed compound pages during the locking. 1347 * If this happens just bail out. 1348 */ 1349 if (PageCompound(p) && compound_head(p) != orig_head) { 1350 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1351 res = -EBUSY; 1352 goto out; 1353 } 1354 1355 /* 1356 * We use page flags to determine what action should be taken, but 1357 * the flags can be modified by the error containment action. One 1358 * example is an mlocked page, where PG_mlocked is cleared by 1359 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1360 * correctly, we save a copy of the page flags at this time. 1361 */ 1362 if (PageHuge(p)) 1363 page_flags = hpage->flags; 1364 else 1365 page_flags = p->flags; 1366 1367 /* 1368 * unpoison always clear PG_hwpoison inside page lock 1369 */ 1370 if (!PageHWPoison(p)) { 1371 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1372 num_poisoned_pages_dec(); 1373 unlock_page(p); 1374 put_hwpoison_page(p); 1375 return 0; 1376 } 1377 if (hwpoison_filter(p)) { 1378 if (TestClearPageHWPoison(p)) 1379 num_poisoned_pages_dec(); 1380 unlock_page(p); 1381 put_hwpoison_page(p); 1382 return 0; 1383 } 1384 1385 if (!PageTransTail(p) && !PageLRU(p)) 1386 goto identify_page_state; 1387 1388 /* 1389 * It's very difficult to mess with pages currently under IO 1390 * and in many cases impossible, so we just avoid it here. 1391 */ 1392 wait_on_page_writeback(p); 1393 1394 /* 1395 * Now take care of user space mappings. 1396 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1397 * 1398 * When the raw error page is thp tail page, hpage points to the raw 1399 * page after thp split. 1400 */ 1401 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1402 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1403 res = -EBUSY; 1404 goto out; 1405 } 1406 1407 /* 1408 * Torn down by someone else? 1409 */ 1410 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1411 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1412 res = -EBUSY; 1413 goto out; 1414 } 1415 1416 identify_page_state: 1417 res = identify_page_state(pfn, p, page_flags); 1418 out: 1419 unlock_page(p); 1420 return res; 1421 } 1422 EXPORT_SYMBOL_GPL(memory_failure); 1423 1424 #define MEMORY_FAILURE_FIFO_ORDER 4 1425 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1426 1427 struct memory_failure_entry { 1428 unsigned long pfn; 1429 int flags; 1430 }; 1431 1432 struct memory_failure_cpu { 1433 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1434 MEMORY_FAILURE_FIFO_SIZE); 1435 spinlock_t lock; 1436 struct work_struct work; 1437 }; 1438 1439 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1440 1441 /** 1442 * memory_failure_queue - Schedule handling memory failure of a page. 1443 * @pfn: Page Number of the corrupted page 1444 * @flags: Flags for memory failure handling 1445 * 1446 * This function is called by the low level hardware error handler 1447 * when it detects hardware memory corruption of a page. It schedules 1448 * the recovering of error page, including dropping pages, killing 1449 * processes etc. 1450 * 1451 * The function is primarily of use for corruptions that 1452 * happen outside the current execution context (e.g. when 1453 * detected by a background scrubber) 1454 * 1455 * Can run in IRQ context. 1456 */ 1457 void memory_failure_queue(unsigned long pfn, int flags) 1458 { 1459 struct memory_failure_cpu *mf_cpu; 1460 unsigned long proc_flags; 1461 struct memory_failure_entry entry = { 1462 .pfn = pfn, 1463 .flags = flags, 1464 }; 1465 1466 mf_cpu = &get_cpu_var(memory_failure_cpu); 1467 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1468 if (kfifo_put(&mf_cpu->fifo, entry)) 1469 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1470 else 1471 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1472 pfn); 1473 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1474 put_cpu_var(memory_failure_cpu); 1475 } 1476 EXPORT_SYMBOL_GPL(memory_failure_queue); 1477 1478 static void memory_failure_work_func(struct work_struct *work) 1479 { 1480 struct memory_failure_cpu *mf_cpu; 1481 struct memory_failure_entry entry = { 0, }; 1482 unsigned long proc_flags; 1483 int gotten; 1484 1485 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1486 for (;;) { 1487 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1488 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1489 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1490 if (!gotten) 1491 break; 1492 if (entry.flags & MF_SOFT_OFFLINE) 1493 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1494 else 1495 memory_failure(entry.pfn, entry.flags); 1496 } 1497 } 1498 1499 static int __init memory_failure_init(void) 1500 { 1501 struct memory_failure_cpu *mf_cpu; 1502 int cpu; 1503 1504 for_each_possible_cpu(cpu) { 1505 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1506 spin_lock_init(&mf_cpu->lock); 1507 INIT_KFIFO(mf_cpu->fifo); 1508 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1509 } 1510 1511 return 0; 1512 } 1513 core_initcall(memory_failure_init); 1514 1515 #define unpoison_pr_info(fmt, pfn, rs) \ 1516 ({ \ 1517 if (__ratelimit(rs)) \ 1518 pr_info(fmt, pfn); \ 1519 }) 1520 1521 /** 1522 * unpoison_memory - Unpoison a previously poisoned page 1523 * @pfn: Page number of the to be unpoisoned page 1524 * 1525 * Software-unpoison a page that has been poisoned by 1526 * memory_failure() earlier. 1527 * 1528 * This is only done on the software-level, so it only works 1529 * for linux injected failures, not real hardware failures 1530 * 1531 * Returns 0 for success, otherwise -errno. 1532 */ 1533 int unpoison_memory(unsigned long pfn) 1534 { 1535 struct page *page; 1536 struct page *p; 1537 int freeit = 0; 1538 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1539 DEFAULT_RATELIMIT_BURST); 1540 1541 if (!pfn_valid(pfn)) 1542 return -ENXIO; 1543 1544 p = pfn_to_page(pfn); 1545 page = compound_head(p); 1546 1547 if (!PageHWPoison(p)) { 1548 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1549 pfn, &unpoison_rs); 1550 return 0; 1551 } 1552 1553 if (page_count(page) > 1) { 1554 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1555 pfn, &unpoison_rs); 1556 return 0; 1557 } 1558 1559 if (page_mapped(page)) { 1560 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1561 pfn, &unpoison_rs); 1562 return 0; 1563 } 1564 1565 if (page_mapping(page)) { 1566 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1567 pfn, &unpoison_rs); 1568 return 0; 1569 } 1570 1571 /* 1572 * unpoison_memory() can encounter thp only when the thp is being 1573 * worked by memory_failure() and the page lock is not held yet. 1574 * In such case, we yield to memory_failure() and make unpoison fail. 1575 */ 1576 if (!PageHuge(page) && PageTransHuge(page)) { 1577 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1578 pfn, &unpoison_rs); 1579 return 0; 1580 } 1581 1582 if (!get_hwpoison_page(p)) { 1583 if (TestClearPageHWPoison(p)) 1584 num_poisoned_pages_dec(); 1585 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1586 pfn, &unpoison_rs); 1587 return 0; 1588 } 1589 1590 lock_page(page); 1591 /* 1592 * This test is racy because PG_hwpoison is set outside of page lock. 1593 * That's acceptable because that won't trigger kernel panic. Instead, 1594 * the PG_hwpoison page will be caught and isolated on the entrance to 1595 * the free buddy page pool. 1596 */ 1597 if (TestClearPageHWPoison(page)) { 1598 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1599 pfn, &unpoison_rs); 1600 num_poisoned_pages_dec(); 1601 freeit = 1; 1602 } 1603 unlock_page(page); 1604 1605 put_hwpoison_page(page); 1606 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1607 put_hwpoison_page(page); 1608 1609 return 0; 1610 } 1611 EXPORT_SYMBOL(unpoison_memory); 1612 1613 static struct page *new_page(struct page *p, unsigned long private) 1614 { 1615 int nid = page_to_nid(p); 1616 1617 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1618 } 1619 1620 /* 1621 * Safely get reference count of an arbitrary page. 1622 * Returns 0 for a free page, -EIO for a zero refcount page 1623 * that is not free, and 1 for any other page type. 1624 * For 1 the page is returned with increased page count, otherwise not. 1625 */ 1626 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1627 { 1628 int ret; 1629 1630 if (flags & MF_COUNT_INCREASED) 1631 return 1; 1632 1633 /* 1634 * When the target page is a free hugepage, just remove it 1635 * from free hugepage list. 1636 */ 1637 if (!get_hwpoison_page(p)) { 1638 if (PageHuge(p)) { 1639 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1640 ret = 0; 1641 } else if (is_free_buddy_page(p)) { 1642 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1643 ret = 0; 1644 } else { 1645 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1646 __func__, pfn, p->flags); 1647 ret = -EIO; 1648 } 1649 } else { 1650 /* Not a free page */ 1651 ret = 1; 1652 } 1653 return ret; 1654 } 1655 1656 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1657 { 1658 int ret = __get_any_page(page, pfn, flags); 1659 1660 if (ret == 1 && !PageHuge(page) && 1661 !PageLRU(page) && !__PageMovable(page)) { 1662 /* 1663 * Try to free it. 1664 */ 1665 put_hwpoison_page(page); 1666 shake_page(page, 1); 1667 1668 /* 1669 * Did it turn free? 1670 */ 1671 ret = __get_any_page(page, pfn, 0); 1672 if (ret == 1 && !PageLRU(page)) { 1673 /* Drop page reference which is from __get_any_page() */ 1674 put_hwpoison_page(page); 1675 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1676 pfn, page->flags, &page->flags); 1677 return -EIO; 1678 } 1679 } 1680 return ret; 1681 } 1682 1683 static int soft_offline_huge_page(struct page *page, int flags) 1684 { 1685 int ret; 1686 unsigned long pfn = page_to_pfn(page); 1687 struct page *hpage = compound_head(page); 1688 LIST_HEAD(pagelist); 1689 1690 /* 1691 * This double-check of PageHWPoison is to avoid the race with 1692 * memory_failure(). See also comment in __soft_offline_page(). 1693 */ 1694 lock_page(hpage); 1695 if (PageHWPoison(hpage)) { 1696 unlock_page(hpage); 1697 put_hwpoison_page(hpage); 1698 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1699 return -EBUSY; 1700 } 1701 unlock_page(hpage); 1702 1703 ret = isolate_huge_page(hpage, &pagelist); 1704 /* 1705 * get_any_page() and isolate_huge_page() takes a refcount each, 1706 * so need to drop one here. 1707 */ 1708 put_hwpoison_page(hpage); 1709 if (!ret) { 1710 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1711 return -EBUSY; 1712 } 1713 1714 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1715 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1716 if (ret) { 1717 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1718 pfn, ret, page->flags, &page->flags); 1719 if (!list_empty(&pagelist)) 1720 putback_movable_pages(&pagelist); 1721 if (ret > 0) 1722 ret = -EIO; 1723 } else { 1724 /* 1725 * We set PG_hwpoison only when the migration source hugepage 1726 * was successfully dissolved, because otherwise hwpoisoned 1727 * hugepage remains on free hugepage list, then userspace will 1728 * find it as SIGBUS by allocation failure. That's not expected 1729 * in soft-offlining. 1730 */ 1731 ret = dissolve_free_huge_page(page); 1732 if (!ret) { 1733 if (set_hwpoison_free_buddy_page(page)) 1734 num_poisoned_pages_inc(); 1735 } 1736 } 1737 return ret; 1738 } 1739 1740 static int __soft_offline_page(struct page *page, int flags) 1741 { 1742 int ret; 1743 unsigned long pfn = page_to_pfn(page); 1744 1745 /* 1746 * Check PageHWPoison again inside page lock because PageHWPoison 1747 * is set by memory_failure() outside page lock. Note that 1748 * memory_failure() also double-checks PageHWPoison inside page lock, 1749 * so there's no race between soft_offline_page() and memory_failure(). 1750 */ 1751 lock_page(page); 1752 wait_on_page_writeback(page); 1753 if (PageHWPoison(page)) { 1754 unlock_page(page); 1755 put_hwpoison_page(page); 1756 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1757 return -EBUSY; 1758 } 1759 /* 1760 * Try to invalidate first. This should work for 1761 * non dirty unmapped page cache pages. 1762 */ 1763 ret = invalidate_inode_page(page); 1764 unlock_page(page); 1765 /* 1766 * RED-PEN would be better to keep it isolated here, but we 1767 * would need to fix isolation locking first. 1768 */ 1769 if (ret == 1) { 1770 put_hwpoison_page(page); 1771 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1772 SetPageHWPoison(page); 1773 num_poisoned_pages_inc(); 1774 return 0; 1775 } 1776 1777 /* 1778 * Simple invalidation didn't work. 1779 * Try to migrate to a new page instead. migrate.c 1780 * handles a large number of cases for us. 1781 */ 1782 if (PageLRU(page)) 1783 ret = isolate_lru_page(page); 1784 else 1785 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1786 /* 1787 * Drop page reference which is came from get_any_page() 1788 * successful isolate_lru_page() already took another one. 1789 */ 1790 put_hwpoison_page(page); 1791 if (!ret) { 1792 LIST_HEAD(pagelist); 1793 /* 1794 * After isolated lru page, the PageLRU will be cleared, 1795 * so use !__PageMovable instead for LRU page's mapping 1796 * cannot have PAGE_MAPPING_MOVABLE. 1797 */ 1798 if (!__PageMovable(page)) 1799 inc_node_page_state(page, NR_ISOLATED_ANON + 1800 page_is_file_cache(page)); 1801 list_add(&page->lru, &pagelist); 1802 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1803 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1804 if (ret) { 1805 if (!list_empty(&pagelist)) 1806 putback_movable_pages(&pagelist); 1807 1808 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1809 pfn, ret, page->flags, &page->flags); 1810 if (ret > 0) 1811 ret = -EIO; 1812 } 1813 } else { 1814 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1815 pfn, ret, page_count(page), page->flags, &page->flags); 1816 } 1817 return ret; 1818 } 1819 1820 static int soft_offline_in_use_page(struct page *page, int flags) 1821 { 1822 int ret; 1823 int mt; 1824 struct page *hpage = compound_head(page); 1825 1826 if (!PageHuge(page) && PageTransHuge(hpage)) { 1827 lock_page(hpage); 1828 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1829 unlock_page(hpage); 1830 if (!PageAnon(hpage)) 1831 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1832 else 1833 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1834 put_hwpoison_page(hpage); 1835 return -EBUSY; 1836 } 1837 unlock_page(hpage); 1838 get_hwpoison_page(page); 1839 put_hwpoison_page(hpage); 1840 } 1841 1842 /* 1843 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1844 * to free list immediately (not via pcplist) when released after 1845 * successful page migration. Otherwise we can't guarantee that the 1846 * page is really free after put_page() returns, so 1847 * set_hwpoison_free_buddy_page() highly likely fails. 1848 */ 1849 mt = get_pageblock_migratetype(page); 1850 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1851 if (PageHuge(page)) 1852 ret = soft_offline_huge_page(page, flags); 1853 else 1854 ret = __soft_offline_page(page, flags); 1855 set_pageblock_migratetype(page, mt); 1856 return ret; 1857 } 1858 1859 static int soft_offline_free_page(struct page *page) 1860 { 1861 int rc = 0; 1862 struct page *head = compound_head(page); 1863 1864 if (PageHuge(head)) 1865 rc = dissolve_free_huge_page(page); 1866 if (!rc) { 1867 if (set_hwpoison_free_buddy_page(page)) 1868 num_poisoned_pages_inc(); 1869 else 1870 rc = -EBUSY; 1871 } 1872 return rc; 1873 } 1874 1875 /** 1876 * soft_offline_page - Soft offline a page. 1877 * @page: page to offline 1878 * @flags: flags. Same as memory_failure(). 1879 * 1880 * Returns 0 on success, otherwise negated errno. 1881 * 1882 * Soft offline a page, by migration or invalidation, 1883 * without killing anything. This is for the case when 1884 * a page is not corrupted yet (so it's still valid to access), 1885 * but has had a number of corrected errors and is better taken 1886 * out. 1887 * 1888 * The actual policy on when to do that is maintained by 1889 * user space. 1890 * 1891 * This should never impact any application or cause data loss, 1892 * however it might take some time. 1893 * 1894 * This is not a 100% solution for all memory, but tries to be 1895 * ``good enough'' for the majority of memory. 1896 */ 1897 int soft_offline_page(struct page *page, int flags) 1898 { 1899 int ret; 1900 unsigned long pfn = page_to_pfn(page); 1901 1902 if (is_zone_device_page(page)) { 1903 pr_debug_ratelimited("soft_offline: %#lx page is device page\n", 1904 pfn); 1905 if (flags & MF_COUNT_INCREASED) 1906 put_page(page); 1907 return -EIO; 1908 } 1909 1910 if (PageHWPoison(page)) { 1911 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1912 if (flags & MF_COUNT_INCREASED) 1913 put_hwpoison_page(page); 1914 return -EBUSY; 1915 } 1916 1917 get_online_mems(); 1918 ret = get_any_page(page, pfn, flags); 1919 put_online_mems(); 1920 1921 if (ret > 0) 1922 ret = soft_offline_in_use_page(page, flags); 1923 else if (ret == 0) 1924 ret = soft_offline_free_page(page); 1925 1926 return ret; 1927 } 1928