xref: /openbmc/linux/mm/memory-failure.c (revision 2010776f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include <linux/pagewalk.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 static bool __page_handle_poison(struct page *page)
70 {
71 	int ret;
72 
73 	zone_pcp_disable(page_zone(page));
74 	ret = dissolve_free_huge_page(page);
75 	if (!ret)
76 		ret = take_page_off_buddy(page);
77 	zone_pcp_enable(page_zone(page));
78 
79 	return ret > 0;
80 }
81 
82 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83 {
84 	if (hugepage_or_freepage) {
85 		/*
86 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 		 * returns 0 for non-hugetlb pages as well.
88 		 */
89 		if (!__page_handle_poison(page))
90 			/*
91 			 * We could fail to take off the target page from buddy
92 			 * for example due to racy page allocation, but that's
93 			 * acceptable because soft-offlined page is not broken
94 			 * and if someone really want to use it, they should
95 			 * take it.
96 			 */
97 			return false;
98 	}
99 
100 	SetPageHWPoison(page);
101 	if (release)
102 		put_page(page);
103 	page_ref_inc(page);
104 	num_poisoned_pages_inc();
105 
106 	return true;
107 }
108 
109 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110 
111 u32 hwpoison_filter_enable = 0;
112 u32 hwpoison_filter_dev_major = ~0U;
113 u32 hwpoison_filter_dev_minor = ~0U;
114 u64 hwpoison_filter_flags_mask;
115 u64 hwpoison_filter_flags_value;
116 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121 
122 static int hwpoison_filter_dev(struct page *p)
123 {
124 	struct address_space *mapping;
125 	dev_t dev;
126 
127 	if (hwpoison_filter_dev_major == ~0U &&
128 	    hwpoison_filter_dev_minor == ~0U)
129 		return 0;
130 
131 	/*
132 	 * page_mapping() does not accept slab pages.
133 	 */
134 	if (PageSlab(p))
135 		return -EINVAL;
136 
137 	mapping = page_mapping(p);
138 	if (mapping == NULL || mapping->host == NULL)
139 		return -EINVAL;
140 
141 	dev = mapping->host->i_sb->s_dev;
142 	if (hwpoison_filter_dev_major != ~0U &&
143 	    hwpoison_filter_dev_major != MAJOR(dev))
144 		return -EINVAL;
145 	if (hwpoison_filter_dev_minor != ~0U &&
146 	    hwpoison_filter_dev_minor != MINOR(dev))
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 
152 static int hwpoison_filter_flags(struct page *p)
153 {
154 	if (!hwpoison_filter_flags_mask)
155 		return 0;
156 
157 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 				    hwpoison_filter_flags_value)
159 		return 0;
160 	else
161 		return -EINVAL;
162 }
163 
164 /*
165  * This allows stress tests to limit test scope to a collection of tasks
166  * by putting them under some memcg. This prevents killing unrelated/important
167  * processes such as /sbin/init. Note that the target task may share clean
168  * pages with init (eg. libc text), which is harmless. If the target task
169  * share _dirty_ pages with another task B, the test scheme must make sure B
170  * is also included in the memcg. At last, due to race conditions this filter
171  * can only guarantee that the page either belongs to the memcg tasks, or is
172  * a freed page.
173  */
174 #ifdef CONFIG_MEMCG
175 u64 hwpoison_filter_memcg;
176 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177 static int hwpoison_filter_task(struct page *p)
178 {
179 	if (!hwpoison_filter_memcg)
180 		return 0;
181 
182 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 #else
188 static int hwpoison_filter_task(struct page *p) { return 0; }
189 #endif
190 
191 int hwpoison_filter(struct page *p)
192 {
193 	if (!hwpoison_filter_enable)
194 		return 0;
195 
196 	if (hwpoison_filter_dev(p))
197 		return -EINVAL;
198 
199 	if (hwpoison_filter_flags(p))
200 		return -EINVAL;
201 
202 	if (hwpoison_filter_task(p))
203 		return -EINVAL;
204 
205 	return 0;
206 }
207 #else
208 int hwpoison_filter(struct page *p)
209 {
210 	return 0;
211 }
212 #endif
213 
214 EXPORT_SYMBOL_GPL(hwpoison_filter);
215 
216 /*
217  * Kill all processes that have a poisoned page mapped and then isolate
218  * the page.
219  *
220  * General strategy:
221  * Find all processes having the page mapped and kill them.
222  * But we keep a page reference around so that the page is not
223  * actually freed yet.
224  * Then stash the page away
225  *
226  * There's no convenient way to get back to mapped processes
227  * from the VMAs. So do a brute-force search over all
228  * running processes.
229  *
230  * Remember that machine checks are not common (or rather
231  * if they are common you have other problems), so this shouldn't
232  * be a performance issue.
233  *
234  * Also there are some races possible while we get from the
235  * error detection to actually handle it.
236  */
237 
238 struct to_kill {
239 	struct list_head nd;
240 	struct task_struct *tsk;
241 	unsigned long addr;
242 	short size_shift;
243 };
244 
245 /*
246  * Send all the processes who have the page mapped a signal.
247  * ``action optional'' if they are not immediately affected by the error
248  * ``action required'' if error happened in current execution context
249  */
250 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251 {
252 	struct task_struct *t = tk->tsk;
253 	short addr_lsb = tk->size_shift;
254 	int ret = 0;
255 
256 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 			pfn, t->comm, t->pid);
258 
259 	if (flags & MF_ACTION_REQUIRED) {
260 		if (t == current)
261 			ret = force_sig_mceerr(BUS_MCEERR_AR,
262 					 (void __user *)tk->addr, addr_lsb);
263 		else
264 			/* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 			ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 				addr_lsb, t);
267 	} else {
268 		/*
269 		 * Don't use force here, it's convenient if the signal
270 		 * can be temporarily blocked.
271 		 * This could cause a loop when the user sets SIGBUS
272 		 * to SIG_IGN, but hopefully no one will do that?
273 		 */
274 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 				      addr_lsb, t);  /* synchronous? */
276 	}
277 	if (ret < 0)
278 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 			t->comm, t->pid, ret);
280 	return ret;
281 }
282 
283 /*
284  * Unknown page type encountered. Try to check whether it can turn PageLRU by
285  * lru_add_drain_all.
286  */
287 void shake_page(struct page *p)
288 {
289 	if (PageHuge(p))
290 		return;
291 
292 	if (!PageSlab(p)) {
293 		lru_add_drain_all();
294 		if (PageLRU(p) || is_free_buddy_page(p))
295 			return;
296 	}
297 
298 	/*
299 	 * TODO: Could shrink slab caches here if a lightweight range-based
300 	 * shrinker will be available.
301 	 */
302 }
303 EXPORT_SYMBOL_GPL(shake_page);
304 
305 static unsigned long dev_pagemap_mapping_shift(struct page *page,
306 		struct vm_area_struct *vma)
307 {
308 	unsigned long address = vma_address(page, vma);
309 	pgd_t *pgd;
310 	p4d_t *p4d;
311 	pud_t *pud;
312 	pmd_t *pmd;
313 	pte_t *pte;
314 
315 	pgd = pgd_offset(vma->vm_mm, address);
316 	if (!pgd_present(*pgd))
317 		return 0;
318 	p4d = p4d_offset(pgd, address);
319 	if (!p4d_present(*p4d))
320 		return 0;
321 	pud = pud_offset(p4d, address);
322 	if (!pud_present(*pud))
323 		return 0;
324 	if (pud_devmap(*pud))
325 		return PUD_SHIFT;
326 	pmd = pmd_offset(pud, address);
327 	if (!pmd_present(*pmd))
328 		return 0;
329 	if (pmd_devmap(*pmd))
330 		return PMD_SHIFT;
331 	pte = pte_offset_map(pmd, address);
332 	if (!pte_present(*pte))
333 		return 0;
334 	if (pte_devmap(*pte))
335 		return PAGE_SHIFT;
336 	return 0;
337 }
338 
339 /*
340  * Failure handling: if we can't find or can't kill a process there's
341  * not much we can do.	We just print a message and ignore otherwise.
342  */
343 
344 /*
345  * Schedule a process for later kill.
346  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
347  */
348 static void add_to_kill(struct task_struct *tsk, struct page *p,
349 		       struct vm_area_struct *vma,
350 		       struct list_head *to_kill)
351 {
352 	struct to_kill *tk;
353 
354 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
355 	if (!tk) {
356 		pr_err("Memory failure: Out of memory while machine check handling\n");
357 		return;
358 	}
359 
360 	tk->addr = page_address_in_vma(p, vma);
361 	if (is_zone_device_page(p))
362 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
363 	else
364 		tk->size_shift = page_shift(compound_head(p));
365 
366 	/*
367 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
368 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
369 	 * so "tk->size_shift == 0" effectively checks no mapping on
370 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
371 	 * to a process' address space, it's possible not all N VMAs
372 	 * contain mappings for the page, but at least one VMA does.
373 	 * Only deliver SIGBUS with payload derived from the VMA that
374 	 * has a mapping for the page.
375 	 */
376 	if (tk->addr == -EFAULT) {
377 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
378 			page_to_pfn(p), tsk->comm);
379 	} else if (tk->size_shift == 0) {
380 		kfree(tk);
381 		return;
382 	}
383 
384 	get_task_struct(tsk);
385 	tk->tsk = tsk;
386 	list_add_tail(&tk->nd, to_kill);
387 }
388 
389 /*
390  * Kill the processes that have been collected earlier.
391  *
392  * Only do anything when FORCEKILL is set, otherwise just free the
393  * list (this is used for clean pages which do not need killing)
394  * Also when FAIL is set do a force kill because something went
395  * wrong earlier.
396  */
397 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
398 		unsigned long pfn, int flags)
399 {
400 	struct to_kill *tk, *next;
401 
402 	list_for_each_entry_safe (tk, next, to_kill, nd) {
403 		if (forcekill) {
404 			/*
405 			 * In case something went wrong with munmapping
406 			 * make sure the process doesn't catch the
407 			 * signal and then access the memory. Just kill it.
408 			 */
409 			if (fail || tk->addr == -EFAULT) {
410 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
411 				       pfn, tk->tsk->comm, tk->tsk->pid);
412 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
413 						 tk->tsk, PIDTYPE_PID);
414 			}
415 
416 			/*
417 			 * In theory the process could have mapped
418 			 * something else on the address in-between. We could
419 			 * check for that, but we need to tell the
420 			 * process anyways.
421 			 */
422 			else if (kill_proc(tk, pfn, flags) < 0)
423 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
424 				       pfn, tk->tsk->comm, tk->tsk->pid);
425 		}
426 		put_task_struct(tk->tsk);
427 		kfree(tk);
428 	}
429 }
430 
431 /*
432  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
433  * on behalf of the thread group. Return task_struct of the (first found)
434  * dedicated thread if found, and return NULL otherwise.
435  *
436  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
437  * have to call rcu_read_lock/unlock() in this function.
438  */
439 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
440 {
441 	struct task_struct *t;
442 
443 	for_each_thread(tsk, t) {
444 		if (t->flags & PF_MCE_PROCESS) {
445 			if (t->flags & PF_MCE_EARLY)
446 				return t;
447 		} else {
448 			if (sysctl_memory_failure_early_kill)
449 				return t;
450 		}
451 	}
452 	return NULL;
453 }
454 
455 /*
456  * Determine whether a given process is "early kill" process which expects
457  * to be signaled when some page under the process is hwpoisoned.
458  * Return task_struct of the dedicated thread (main thread unless explicitly
459  * specified) if the process is "early kill" and otherwise returns NULL.
460  *
461  * Note that the above is true for Action Optional case. For Action Required
462  * case, it's only meaningful to the current thread which need to be signaled
463  * with SIGBUS, this error is Action Optional for other non current
464  * processes sharing the same error page,if the process is "early kill", the
465  * task_struct of the dedicated thread will also be returned.
466  */
467 static struct task_struct *task_early_kill(struct task_struct *tsk,
468 					   int force_early)
469 {
470 	if (!tsk->mm)
471 		return NULL;
472 	/*
473 	 * Comparing ->mm here because current task might represent
474 	 * a subthread, while tsk always points to the main thread.
475 	 */
476 	if (force_early && tsk->mm == current->mm)
477 		return current;
478 
479 	return find_early_kill_thread(tsk);
480 }
481 
482 /*
483  * Collect processes when the error hit an anonymous page.
484  */
485 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
486 				int force_early)
487 {
488 	struct vm_area_struct *vma;
489 	struct task_struct *tsk;
490 	struct anon_vma *av;
491 	pgoff_t pgoff;
492 
493 	av = page_lock_anon_vma_read(page);
494 	if (av == NULL)	/* Not actually mapped anymore */
495 		return;
496 
497 	pgoff = page_to_pgoff(page);
498 	read_lock(&tasklist_lock);
499 	for_each_process (tsk) {
500 		struct anon_vma_chain *vmac;
501 		struct task_struct *t = task_early_kill(tsk, force_early);
502 
503 		if (!t)
504 			continue;
505 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
506 					       pgoff, pgoff) {
507 			vma = vmac->vma;
508 			if (!page_mapped_in_vma(page, vma))
509 				continue;
510 			if (vma->vm_mm == t->mm)
511 				add_to_kill(t, page, vma, to_kill);
512 		}
513 	}
514 	read_unlock(&tasklist_lock);
515 	page_unlock_anon_vma_read(av);
516 }
517 
518 /*
519  * Collect processes when the error hit a file mapped page.
520  */
521 static void collect_procs_file(struct page *page, struct list_head *to_kill,
522 				int force_early)
523 {
524 	struct vm_area_struct *vma;
525 	struct task_struct *tsk;
526 	struct address_space *mapping = page->mapping;
527 	pgoff_t pgoff;
528 
529 	i_mmap_lock_read(mapping);
530 	read_lock(&tasklist_lock);
531 	pgoff = page_to_pgoff(page);
532 	for_each_process(tsk) {
533 		struct task_struct *t = task_early_kill(tsk, force_early);
534 
535 		if (!t)
536 			continue;
537 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
538 				      pgoff) {
539 			/*
540 			 * Send early kill signal to tasks where a vma covers
541 			 * the page but the corrupted page is not necessarily
542 			 * mapped it in its pte.
543 			 * Assume applications who requested early kill want
544 			 * to be informed of all such data corruptions.
545 			 */
546 			if (vma->vm_mm == t->mm)
547 				add_to_kill(t, page, vma, to_kill);
548 		}
549 	}
550 	read_unlock(&tasklist_lock);
551 	i_mmap_unlock_read(mapping);
552 }
553 
554 /*
555  * Collect the processes who have the corrupted page mapped to kill.
556  */
557 static void collect_procs(struct page *page, struct list_head *tokill,
558 				int force_early)
559 {
560 	if (!page->mapping)
561 		return;
562 
563 	if (PageAnon(page))
564 		collect_procs_anon(page, tokill, force_early);
565 	else
566 		collect_procs_file(page, tokill, force_early);
567 }
568 
569 struct hwp_walk {
570 	struct to_kill tk;
571 	unsigned long pfn;
572 	int flags;
573 };
574 
575 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
576 {
577 	tk->addr = addr;
578 	tk->size_shift = shift;
579 }
580 
581 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
582 				unsigned long poisoned_pfn, struct to_kill *tk)
583 {
584 	unsigned long pfn = 0;
585 
586 	if (pte_present(pte)) {
587 		pfn = pte_pfn(pte);
588 	} else {
589 		swp_entry_t swp = pte_to_swp_entry(pte);
590 
591 		if (is_hwpoison_entry(swp))
592 			pfn = hwpoison_entry_to_pfn(swp);
593 	}
594 
595 	if (!pfn || pfn != poisoned_pfn)
596 		return 0;
597 
598 	set_to_kill(tk, addr, shift);
599 	return 1;
600 }
601 
602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
603 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
604 				      struct hwp_walk *hwp)
605 {
606 	pmd_t pmd = *pmdp;
607 	unsigned long pfn;
608 	unsigned long hwpoison_vaddr;
609 
610 	if (!pmd_present(pmd))
611 		return 0;
612 	pfn = pmd_pfn(pmd);
613 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
614 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
615 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
616 		return 1;
617 	}
618 	return 0;
619 }
620 #else
621 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
622 				      struct hwp_walk *hwp)
623 {
624 	return 0;
625 }
626 #endif
627 
628 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
629 			      unsigned long end, struct mm_walk *walk)
630 {
631 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
632 	int ret = 0;
633 	pte_t *ptep, *mapped_pte;
634 	spinlock_t *ptl;
635 
636 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
637 	if (ptl) {
638 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
639 		spin_unlock(ptl);
640 		goto out;
641 	}
642 
643 	if (pmd_trans_unstable(pmdp))
644 		goto out;
645 
646 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
647 						addr, &ptl);
648 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
649 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
650 					     hwp->pfn, &hwp->tk);
651 		if (ret == 1)
652 			break;
653 	}
654 	pte_unmap_unlock(mapped_pte, ptl);
655 out:
656 	cond_resched();
657 	return ret;
658 }
659 
660 #ifdef CONFIG_HUGETLB_PAGE
661 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
662 			    unsigned long addr, unsigned long end,
663 			    struct mm_walk *walk)
664 {
665 	struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
666 	pte_t pte = huge_ptep_get(ptep);
667 	struct hstate *h = hstate_vma(walk->vma);
668 
669 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
670 				      hwp->pfn, &hwp->tk);
671 }
672 #else
673 #define hwpoison_hugetlb_range	NULL
674 #endif
675 
676 static struct mm_walk_ops hwp_walk_ops = {
677 	.pmd_entry = hwpoison_pte_range,
678 	.hugetlb_entry = hwpoison_hugetlb_range,
679 };
680 
681 /*
682  * Sends SIGBUS to the current process with error info.
683  *
684  * This function is intended to handle "Action Required" MCEs on already
685  * hardware poisoned pages. They could happen, for example, when
686  * memory_failure() failed to unmap the error page at the first call, or
687  * when multiple local machine checks happened on different CPUs.
688  *
689  * MCE handler currently has no easy access to the error virtual address,
690  * so this function walks page table to find it. The returned virtual address
691  * is proper in most cases, but it could be wrong when the application
692  * process has multiple entries mapping the error page.
693  */
694 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
695 				  int flags)
696 {
697 	int ret;
698 	struct hwp_walk priv = {
699 		.pfn = pfn,
700 	};
701 	priv.tk.tsk = p;
702 
703 	mmap_read_lock(p->mm);
704 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
705 			      (void *)&priv);
706 	if (ret == 1 && priv.tk.addr)
707 		kill_proc(&priv.tk, pfn, flags);
708 	mmap_read_unlock(p->mm);
709 	return ret ? -EFAULT : -EHWPOISON;
710 }
711 
712 static const char *action_name[] = {
713 	[MF_IGNORED] = "Ignored",
714 	[MF_FAILED] = "Failed",
715 	[MF_DELAYED] = "Delayed",
716 	[MF_RECOVERED] = "Recovered",
717 };
718 
719 static const char * const action_page_types[] = {
720 	[MF_MSG_KERNEL]			= "reserved kernel page",
721 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
722 	[MF_MSG_SLAB]			= "kernel slab page",
723 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
724 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
725 	[MF_MSG_HUGE]			= "huge page",
726 	[MF_MSG_FREE_HUGE]		= "free huge page",
727 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
728 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
729 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
730 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
731 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
732 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
733 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
734 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
735 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
736 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
737 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
738 	[MF_MSG_BUDDY]			= "free buddy page",
739 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
740 	[MF_MSG_DAX]			= "dax page",
741 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
742 	[MF_MSG_UNKNOWN]		= "unknown page",
743 };
744 
745 /*
746  * XXX: It is possible that a page is isolated from LRU cache,
747  * and then kept in swap cache or failed to remove from page cache.
748  * The page count will stop it from being freed by unpoison.
749  * Stress tests should be aware of this memory leak problem.
750  */
751 static int delete_from_lru_cache(struct page *p)
752 {
753 	if (!isolate_lru_page(p)) {
754 		/*
755 		 * Clear sensible page flags, so that the buddy system won't
756 		 * complain when the page is unpoison-and-freed.
757 		 */
758 		ClearPageActive(p);
759 		ClearPageUnevictable(p);
760 
761 		/*
762 		 * Poisoned page might never drop its ref count to 0 so we have
763 		 * to uncharge it manually from its memcg.
764 		 */
765 		mem_cgroup_uncharge(p);
766 
767 		/*
768 		 * drop the page count elevated by isolate_lru_page()
769 		 */
770 		put_page(p);
771 		return 0;
772 	}
773 	return -EIO;
774 }
775 
776 static int truncate_error_page(struct page *p, unsigned long pfn,
777 				struct address_space *mapping)
778 {
779 	int ret = MF_FAILED;
780 
781 	if (mapping->a_ops->error_remove_page) {
782 		int err = mapping->a_ops->error_remove_page(mapping, p);
783 
784 		if (err != 0) {
785 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
786 				pfn, err);
787 		} else if (page_has_private(p) &&
788 			   !try_to_release_page(p, GFP_NOIO)) {
789 			pr_info("Memory failure: %#lx: failed to release buffers\n",
790 				pfn);
791 		} else {
792 			ret = MF_RECOVERED;
793 		}
794 	} else {
795 		/*
796 		 * If the file system doesn't support it just invalidate
797 		 * This fails on dirty or anything with private pages
798 		 */
799 		if (invalidate_inode_page(p))
800 			ret = MF_RECOVERED;
801 		else
802 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
803 				pfn);
804 	}
805 
806 	return ret;
807 }
808 
809 /*
810  * Error hit kernel page.
811  * Do nothing, try to be lucky and not touch this instead. For a few cases we
812  * could be more sophisticated.
813  */
814 static int me_kernel(struct page *p, unsigned long pfn)
815 {
816 	unlock_page(p);
817 	return MF_IGNORED;
818 }
819 
820 /*
821  * Page in unknown state. Do nothing.
822  */
823 static int me_unknown(struct page *p, unsigned long pfn)
824 {
825 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
826 	unlock_page(p);
827 	return MF_FAILED;
828 }
829 
830 /*
831  * Clean (or cleaned) page cache page.
832  */
833 static int me_pagecache_clean(struct page *p, unsigned long pfn)
834 {
835 	int ret;
836 	struct address_space *mapping;
837 
838 	delete_from_lru_cache(p);
839 
840 	/*
841 	 * For anonymous pages we're done the only reference left
842 	 * should be the one m_f() holds.
843 	 */
844 	if (PageAnon(p)) {
845 		ret = MF_RECOVERED;
846 		goto out;
847 	}
848 
849 	/*
850 	 * Now truncate the page in the page cache. This is really
851 	 * more like a "temporary hole punch"
852 	 * Don't do this for block devices when someone else
853 	 * has a reference, because it could be file system metadata
854 	 * and that's not safe to truncate.
855 	 */
856 	mapping = page_mapping(p);
857 	if (!mapping) {
858 		/*
859 		 * Page has been teared down in the meanwhile
860 		 */
861 		ret = MF_FAILED;
862 		goto out;
863 	}
864 
865 	/*
866 	 * Truncation is a bit tricky. Enable it per file system for now.
867 	 *
868 	 * Open: to take i_rwsem or not for this? Right now we don't.
869 	 */
870 	ret = truncate_error_page(p, pfn, mapping);
871 out:
872 	unlock_page(p);
873 	return ret;
874 }
875 
876 /*
877  * Dirty pagecache page
878  * Issues: when the error hit a hole page the error is not properly
879  * propagated.
880  */
881 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
882 {
883 	struct address_space *mapping = page_mapping(p);
884 
885 	SetPageError(p);
886 	/* TBD: print more information about the file. */
887 	if (mapping) {
888 		/*
889 		 * IO error will be reported by write(), fsync(), etc.
890 		 * who check the mapping.
891 		 * This way the application knows that something went
892 		 * wrong with its dirty file data.
893 		 *
894 		 * There's one open issue:
895 		 *
896 		 * The EIO will be only reported on the next IO
897 		 * operation and then cleared through the IO map.
898 		 * Normally Linux has two mechanisms to pass IO error
899 		 * first through the AS_EIO flag in the address space
900 		 * and then through the PageError flag in the page.
901 		 * Since we drop pages on memory failure handling the
902 		 * only mechanism open to use is through AS_AIO.
903 		 *
904 		 * This has the disadvantage that it gets cleared on
905 		 * the first operation that returns an error, while
906 		 * the PageError bit is more sticky and only cleared
907 		 * when the page is reread or dropped.  If an
908 		 * application assumes it will always get error on
909 		 * fsync, but does other operations on the fd before
910 		 * and the page is dropped between then the error
911 		 * will not be properly reported.
912 		 *
913 		 * This can already happen even without hwpoisoned
914 		 * pages: first on metadata IO errors (which only
915 		 * report through AS_EIO) or when the page is dropped
916 		 * at the wrong time.
917 		 *
918 		 * So right now we assume that the application DTRT on
919 		 * the first EIO, but we're not worse than other parts
920 		 * of the kernel.
921 		 */
922 		mapping_set_error(mapping, -EIO);
923 	}
924 
925 	return me_pagecache_clean(p, pfn);
926 }
927 
928 /*
929  * Clean and dirty swap cache.
930  *
931  * Dirty swap cache page is tricky to handle. The page could live both in page
932  * cache and swap cache(ie. page is freshly swapped in). So it could be
933  * referenced concurrently by 2 types of PTEs:
934  * normal PTEs and swap PTEs. We try to handle them consistently by calling
935  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
936  * and then
937  *      - clear dirty bit to prevent IO
938  *      - remove from LRU
939  *      - but keep in the swap cache, so that when we return to it on
940  *        a later page fault, we know the application is accessing
941  *        corrupted data and shall be killed (we installed simple
942  *        interception code in do_swap_page to catch it).
943  *
944  * Clean swap cache pages can be directly isolated. A later page fault will
945  * bring in the known good data from disk.
946  */
947 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
948 {
949 	int ret;
950 
951 	ClearPageDirty(p);
952 	/* Trigger EIO in shmem: */
953 	ClearPageUptodate(p);
954 
955 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
956 	unlock_page(p);
957 	return ret;
958 }
959 
960 static int me_swapcache_clean(struct page *p, unsigned long pfn)
961 {
962 	int ret;
963 
964 	delete_from_swap_cache(p);
965 
966 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
967 	unlock_page(p);
968 	return ret;
969 }
970 
971 /*
972  * Huge pages. Needs work.
973  * Issues:
974  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
975  *   To narrow down kill region to one page, we need to break up pmd.
976  */
977 static int me_huge_page(struct page *p, unsigned long pfn)
978 {
979 	int res;
980 	struct page *hpage = compound_head(p);
981 	struct address_space *mapping;
982 
983 	if (!PageHuge(hpage))
984 		return MF_DELAYED;
985 
986 	mapping = page_mapping(hpage);
987 	if (mapping) {
988 		res = truncate_error_page(hpage, pfn, mapping);
989 		unlock_page(hpage);
990 	} else {
991 		res = MF_FAILED;
992 		unlock_page(hpage);
993 		/*
994 		 * migration entry prevents later access on error anonymous
995 		 * hugepage, so we can free and dissolve it into buddy to
996 		 * save healthy subpages.
997 		 */
998 		if (PageAnon(hpage))
999 			put_page(hpage);
1000 		if (__page_handle_poison(p)) {
1001 			page_ref_inc(p);
1002 			res = MF_RECOVERED;
1003 		}
1004 	}
1005 
1006 	return res;
1007 }
1008 
1009 /*
1010  * Various page states we can handle.
1011  *
1012  * A page state is defined by its current page->flags bits.
1013  * The table matches them in order and calls the right handler.
1014  *
1015  * This is quite tricky because we can access page at any time
1016  * in its live cycle, so all accesses have to be extremely careful.
1017  *
1018  * This is not complete. More states could be added.
1019  * For any missing state don't attempt recovery.
1020  */
1021 
1022 #define dirty		(1UL << PG_dirty)
1023 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1024 #define unevict		(1UL << PG_unevictable)
1025 #define mlock		(1UL << PG_mlocked)
1026 #define lru		(1UL << PG_lru)
1027 #define head		(1UL << PG_head)
1028 #define slab		(1UL << PG_slab)
1029 #define reserved	(1UL << PG_reserved)
1030 
1031 static struct page_state {
1032 	unsigned long mask;
1033 	unsigned long res;
1034 	enum mf_action_page_type type;
1035 
1036 	/* Callback ->action() has to unlock the relevant page inside it. */
1037 	int (*action)(struct page *p, unsigned long pfn);
1038 } error_states[] = {
1039 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1040 	/*
1041 	 * free pages are specially detected outside this table:
1042 	 * PG_buddy pages only make a small fraction of all free pages.
1043 	 */
1044 
1045 	/*
1046 	 * Could in theory check if slab page is free or if we can drop
1047 	 * currently unused objects without touching them. But just
1048 	 * treat it as standard kernel for now.
1049 	 */
1050 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1051 
1052 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1053 
1054 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1055 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1056 
1057 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1058 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1059 
1060 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1061 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1062 
1063 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1064 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1065 
1066 	/*
1067 	 * Catchall entry: must be at end.
1068 	 */
1069 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1070 };
1071 
1072 #undef dirty
1073 #undef sc
1074 #undef unevict
1075 #undef mlock
1076 #undef lru
1077 #undef head
1078 #undef slab
1079 #undef reserved
1080 
1081 /*
1082  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1083  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1084  */
1085 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1086 			  enum mf_result result)
1087 {
1088 	trace_memory_failure_event(pfn, type, result);
1089 
1090 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1091 		pfn, action_page_types[type], action_name[result]);
1092 }
1093 
1094 static int page_action(struct page_state *ps, struct page *p,
1095 			unsigned long pfn)
1096 {
1097 	int result;
1098 	int count;
1099 
1100 	/* page p should be unlocked after returning from ps->action().  */
1101 	result = ps->action(p, pfn);
1102 
1103 	count = page_count(p) - 1;
1104 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1105 		count--;
1106 	if (count > 0) {
1107 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1108 		       pfn, action_page_types[ps->type], count);
1109 		result = MF_FAILED;
1110 	}
1111 	action_result(pfn, ps->type, result);
1112 
1113 	/* Could do more checks here if page looks ok */
1114 	/*
1115 	 * Could adjust zone counters here to correct for the missing page.
1116 	 */
1117 
1118 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1119 }
1120 
1121 /*
1122  * Return true if a page type of a given page is supported by hwpoison
1123  * mechanism (while handling could fail), otherwise false.  This function
1124  * does not return true for hugetlb or device memory pages, so it's assumed
1125  * to be called only in the context where we never have such pages.
1126  */
1127 static inline bool HWPoisonHandlable(struct page *page)
1128 {
1129 	return PageLRU(page) || __PageMovable(page);
1130 }
1131 
1132 static int __get_hwpoison_page(struct page *page)
1133 {
1134 	struct page *head = compound_head(page);
1135 	int ret = 0;
1136 	bool hugetlb = false;
1137 
1138 	ret = get_hwpoison_huge_page(head, &hugetlb);
1139 	if (hugetlb)
1140 		return ret;
1141 
1142 	/*
1143 	 * This check prevents from calling get_hwpoison_unless_zero()
1144 	 * for any unsupported type of page in order to reduce the risk of
1145 	 * unexpected races caused by taking a page refcount.
1146 	 */
1147 	if (!HWPoisonHandlable(head))
1148 		return -EBUSY;
1149 
1150 	if (PageTransHuge(head)) {
1151 		/*
1152 		 * Non anonymous thp exists only in allocation/free time. We
1153 		 * can't handle such a case correctly, so let's give it up.
1154 		 * This should be better than triggering BUG_ON when kernel
1155 		 * tries to touch the "partially handled" page.
1156 		 */
1157 		if (!PageAnon(head)) {
1158 			pr_err("Memory failure: %#lx: non anonymous thp\n",
1159 				page_to_pfn(page));
1160 			return 0;
1161 		}
1162 	}
1163 
1164 	if (get_page_unless_zero(head)) {
1165 		if (head == compound_head(page))
1166 			return 1;
1167 
1168 		pr_info("Memory failure: %#lx cannot catch tail\n",
1169 			page_to_pfn(page));
1170 		put_page(head);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static int get_any_page(struct page *p, unsigned long flags)
1177 {
1178 	int ret = 0, pass = 0;
1179 	bool count_increased = false;
1180 
1181 	if (flags & MF_COUNT_INCREASED)
1182 		count_increased = true;
1183 
1184 try_again:
1185 	if (!count_increased) {
1186 		ret = __get_hwpoison_page(p);
1187 		if (!ret) {
1188 			if (page_count(p)) {
1189 				/* We raced with an allocation, retry. */
1190 				if (pass++ < 3)
1191 					goto try_again;
1192 				ret = -EBUSY;
1193 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1194 				/* We raced with put_page, retry. */
1195 				if (pass++ < 3)
1196 					goto try_again;
1197 				ret = -EIO;
1198 			}
1199 			goto out;
1200 		} else if (ret == -EBUSY) {
1201 			/*
1202 			 * We raced with (possibly temporary) unhandlable
1203 			 * page, retry.
1204 			 */
1205 			if (pass++ < 3) {
1206 				shake_page(p);
1207 				goto try_again;
1208 			}
1209 			ret = -EIO;
1210 			goto out;
1211 		}
1212 	}
1213 
1214 	if (PageHuge(p) || HWPoisonHandlable(p)) {
1215 		ret = 1;
1216 	} else {
1217 		/*
1218 		 * A page we cannot handle. Check whether we can turn
1219 		 * it into something we can handle.
1220 		 */
1221 		if (pass++ < 3) {
1222 			put_page(p);
1223 			shake_page(p);
1224 			count_increased = false;
1225 			goto try_again;
1226 		}
1227 		put_page(p);
1228 		ret = -EIO;
1229 	}
1230 out:
1231 	if (ret == -EIO)
1232 		dump_page(p, "hwpoison: unhandlable page");
1233 
1234 	return ret;
1235 }
1236 
1237 /**
1238  * get_hwpoison_page() - Get refcount for memory error handling
1239  * @p:		Raw error page (hit by memory error)
1240  * @flags:	Flags controlling behavior of error handling
1241  *
1242  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1243  * error on it, after checking that the error page is in a well-defined state
1244  * (defined as a page-type we can successfully handle the memor error on it,
1245  * such as LRU page and hugetlb page).
1246  *
1247  * Memory error handling could be triggered at any time on any type of page,
1248  * so it's prone to race with typical memory management lifecycle (like
1249  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1250  * extra care for the error page's state (as done in __get_hwpoison_page()),
1251  * and has some retry logic in get_any_page().
1252  *
1253  * Return: 0 on failure,
1254  *         1 on success for in-use pages in a well-defined state,
1255  *         -EIO for pages on which we can not handle memory errors,
1256  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1257  *         operations like allocation and free.
1258  */
1259 static int get_hwpoison_page(struct page *p, unsigned long flags)
1260 {
1261 	int ret;
1262 
1263 	zone_pcp_disable(page_zone(p));
1264 	ret = get_any_page(p, flags);
1265 	zone_pcp_enable(page_zone(p));
1266 
1267 	return ret;
1268 }
1269 
1270 /*
1271  * Do all that is necessary to remove user space mappings. Unmap
1272  * the pages and send SIGBUS to the processes if the data was dirty.
1273  */
1274 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1275 				  int flags, struct page *hpage)
1276 {
1277 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1278 	struct address_space *mapping;
1279 	LIST_HEAD(tokill);
1280 	bool unmap_success;
1281 	int kill = 1, forcekill;
1282 	bool mlocked = PageMlocked(hpage);
1283 
1284 	/*
1285 	 * Here we are interested only in user-mapped pages, so skip any
1286 	 * other types of pages.
1287 	 */
1288 	if (PageReserved(p) || PageSlab(p))
1289 		return true;
1290 	if (!(PageLRU(hpage) || PageHuge(p)))
1291 		return true;
1292 
1293 	/*
1294 	 * This check implies we don't kill processes if their pages
1295 	 * are in the swap cache early. Those are always late kills.
1296 	 */
1297 	if (!page_mapped(hpage))
1298 		return true;
1299 
1300 	if (PageKsm(p)) {
1301 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1302 		return false;
1303 	}
1304 
1305 	if (PageSwapCache(p)) {
1306 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1307 			pfn);
1308 		ttu |= TTU_IGNORE_HWPOISON;
1309 	}
1310 
1311 	/*
1312 	 * Propagate the dirty bit from PTEs to struct page first, because we
1313 	 * need this to decide if we should kill or just drop the page.
1314 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1315 	 * be called inside page lock (it's recommended but not enforced).
1316 	 */
1317 	mapping = page_mapping(hpage);
1318 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1319 	    mapping_can_writeback(mapping)) {
1320 		if (page_mkclean(hpage)) {
1321 			SetPageDirty(hpage);
1322 		} else {
1323 			kill = 0;
1324 			ttu |= TTU_IGNORE_HWPOISON;
1325 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1326 				pfn);
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * First collect all the processes that have the page
1332 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1333 	 * because ttu takes the rmap data structures down.
1334 	 *
1335 	 * Error handling: We ignore errors here because
1336 	 * there's nothing that can be done.
1337 	 */
1338 	if (kill)
1339 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1340 
1341 	if (!PageHuge(hpage)) {
1342 		try_to_unmap(hpage, ttu);
1343 	} else {
1344 		if (!PageAnon(hpage)) {
1345 			/*
1346 			 * For hugetlb pages in shared mappings, try_to_unmap
1347 			 * could potentially call huge_pmd_unshare.  Because of
1348 			 * this, take semaphore in write mode here and set
1349 			 * TTU_RMAP_LOCKED to indicate we have taken the lock
1350 			 * at this higher level.
1351 			 */
1352 			mapping = hugetlb_page_mapping_lock_write(hpage);
1353 			if (mapping) {
1354 				try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1355 				i_mmap_unlock_write(mapping);
1356 			} else
1357 				pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1358 		} else {
1359 			try_to_unmap(hpage, ttu);
1360 		}
1361 	}
1362 
1363 	unmap_success = !page_mapped(hpage);
1364 	if (!unmap_success)
1365 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1366 		       pfn, page_mapcount(hpage));
1367 
1368 	/*
1369 	 * try_to_unmap() might put mlocked page in lru cache, so call
1370 	 * shake_page() again to ensure that it's flushed.
1371 	 */
1372 	if (mlocked)
1373 		shake_page(hpage);
1374 
1375 	/*
1376 	 * Now that the dirty bit has been propagated to the
1377 	 * struct page and all unmaps done we can decide if
1378 	 * killing is needed or not.  Only kill when the page
1379 	 * was dirty or the process is not restartable,
1380 	 * otherwise the tokill list is merely
1381 	 * freed.  When there was a problem unmapping earlier
1382 	 * use a more force-full uncatchable kill to prevent
1383 	 * any accesses to the poisoned memory.
1384 	 */
1385 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1386 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1387 
1388 	return unmap_success;
1389 }
1390 
1391 static int identify_page_state(unsigned long pfn, struct page *p,
1392 				unsigned long page_flags)
1393 {
1394 	struct page_state *ps;
1395 
1396 	/*
1397 	 * The first check uses the current page flags which may not have any
1398 	 * relevant information. The second check with the saved page flags is
1399 	 * carried out only if the first check can't determine the page status.
1400 	 */
1401 	for (ps = error_states;; ps++)
1402 		if ((p->flags & ps->mask) == ps->res)
1403 			break;
1404 
1405 	page_flags |= (p->flags & (1UL << PG_dirty));
1406 
1407 	if (!ps->mask)
1408 		for (ps = error_states;; ps++)
1409 			if ((page_flags & ps->mask) == ps->res)
1410 				break;
1411 	return page_action(ps, p, pfn);
1412 }
1413 
1414 static int try_to_split_thp_page(struct page *page, const char *msg)
1415 {
1416 	lock_page(page);
1417 	if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1418 		unsigned long pfn = page_to_pfn(page);
1419 
1420 		unlock_page(page);
1421 		if (!PageAnon(page))
1422 			pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1423 		else
1424 			pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1425 		put_page(page);
1426 		return -EBUSY;
1427 	}
1428 	unlock_page(page);
1429 
1430 	return 0;
1431 }
1432 
1433 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1434 {
1435 	struct page *p = pfn_to_page(pfn);
1436 	struct page *head = compound_head(p);
1437 	int res;
1438 	unsigned long page_flags;
1439 
1440 	if (TestSetPageHWPoison(head)) {
1441 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1442 		       pfn);
1443 		res = -EHWPOISON;
1444 		if (flags & MF_ACTION_REQUIRED)
1445 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1446 		return res;
1447 	}
1448 
1449 	num_poisoned_pages_inc();
1450 
1451 	if (!(flags & MF_COUNT_INCREASED)) {
1452 		res = get_hwpoison_page(p, flags);
1453 		if (!res) {
1454 			/*
1455 			 * Check "filter hit" and "race with other subpage."
1456 			 */
1457 			lock_page(head);
1458 			if (PageHWPoison(head)) {
1459 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1460 				    || (p != head && TestSetPageHWPoison(head))) {
1461 					num_poisoned_pages_dec();
1462 					unlock_page(head);
1463 					return 0;
1464 				}
1465 			}
1466 			unlock_page(head);
1467 			res = MF_FAILED;
1468 			if (__page_handle_poison(p)) {
1469 				page_ref_inc(p);
1470 				res = MF_RECOVERED;
1471 			}
1472 			action_result(pfn, MF_MSG_FREE_HUGE, res);
1473 			return res == MF_RECOVERED ? 0 : -EBUSY;
1474 		} else if (res < 0) {
1475 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1476 			return -EBUSY;
1477 		}
1478 	}
1479 
1480 	lock_page(head);
1481 	page_flags = head->flags;
1482 
1483 	if (!PageHWPoison(head)) {
1484 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1485 		num_poisoned_pages_dec();
1486 		unlock_page(head);
1487 		put_page(head);
1488 		return 0;
1489 	}
1490 
1491 	/*
1492 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1493 	 * simply disable it. In order to make it work properly, we need
1494 	 * make sure that:
1495 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1496 	 *    entry properly works, and
1497 	 *  - other mm code walking over page table is aware of pud-aligned
1498 	 *    hwpoison entries.
1499 	 */
1500 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1501 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1502 		res = -EBUSY;
1503 		goto out;
1504 	}
1505 
1506 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1507 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1508 		res = -EBUSY;
1509 		goto out;
1510 	}
1511 
1512 	return identify_page_state(pfn, p, page_flags);
1513 out:
1514 	unlock_page(head);
1515 	return res;
1516 }
1517 
1518 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1519 		struct dev_pagemap *pgmap)
1520 {
1521 	struct page *page = pfn_to_page(pfn);
1522 	unsigned long size = 0;
1523 	struct to_kill *tk;
1524 	LIST_HEAD(tokill);
1525 	int rc = -EBUSY;
1526 	loff_t start;
1527 	dax_entry_t cookie;
1528 
1529 	if (flags & MF_COUNT_INCREASED)
1530 		/*
1531 		 * Drop the extra refcount in case we come from madvise().
1532 		 */
1533 		put_page(page);
1534 
1535 	/* device metadata space is not recoverable */
1536 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 		rc = -ENXIO;
1538 		goto out;
1539 	}
1540 
1541 	/*
1542 	 * Prevent the inode from being freed while we are interrogating
1543 	 * the address_space, typically this would be handled by
1544 	 * lock_page(), but dax pages do not use the page lock. This
1545 	 * also prevents changes to the mapping of this pfn until
1546 	 * poison signaling is complete.
1547 	 */
1548 	cookie = dax_lock_page(page);
1549 	if (!cookie)
1550 		goto out;
1551 
1552 	if (hwpoison_filter(page)) {
1553 		rc = 0;
1554 		goto unlock;
1555 	}
1556 
1557 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 		/*
1559 		 * TODO: Handle HMM pages which may need coordination
1560 		 * with device-side memory.
1561 		 */
1562 		goto unlock;
1563 	}
1564 
1565 	/*
1566 	 * Use this flag as an indication that the dax page has been
1567 	 * remapped UC to prevent speculative consumption of poison.
1568 	 */
1569 	SetPageHWPoison(page);
1570 
1571 	/*
1572 	 * Unlike System-RAM there is no possibility to swap in a
1573 	 * different physical page at a given virtual address, so all
1574 	 * userspace consumption of ZONE_DEVICE memory necessitates
1575 	 * SIGBUS (i.e. MF_MUST_KILL)
1576 	 */
1577 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579 
1580 	list_for_each_entry(tk, &tokill, nd)
1581 		if (tk->size_shift)
1582 			size = max(size, 1UL << tk->size_shift);
1583 	if (size) {
1584 		/*
1585 		 * Unmap the largest mapping to avoid breaking up
1586 		 * device-dax mappings which are constant size. The
1587 		 * actual size of the mapping being torn down is
1588 		 * communicated in siginfo, see kill_proc()
1589 		 */
1590 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 		unmap_mapping_range(page->mapping, start, size, 0);
1592 	}
1593 	kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
1594 	rc = 0;
1595 unlock:
1596 	dax_unlock_page(page, cookie);
1597 out:
1598 	/* drop pgmap ref acquired in caller */
1599 	put_dev_pagemap(pgmap);
1600 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 	return rc;
1602 }
1603 
1604 /**
1605  * memory_failure - Handle memory failure of a page.
1606  * @pfn: Page Number of the corrupted page
1607  * @flags: fine tune action taken
1608  *
1609  * This function is called by the low level machine check code
1610  * of an architecture when it detects hardware memory corruption
1611  * of a page. It tries its best to recover, which includes
1612  * dropping pages, killing processes etc.
1613  *
1614  * The function is primarily of use for corruptions that
1615  * happen outside the current execution context (e.g. when
1616  * detected by a background scrubber)
1617  *
1618  * Must run in process context (e.g. a work queue) with interrupts
1619  * enabled and no spinlocks hold.
1620  */
1621 int memory_failure(unsigned long pfn, int flags)
1622 {
1623 	struct page *p;
1624 	struct page *hpage;
1625 	struct page *orig_head;
1626 	struct dev_pagemap *pgmap;
1627 	int res = 0;
1628 	unsigned long page_flags;
1629 	bool retry = true;
1630 	static DEFINE_MUTEX(mf_mutex);
1631 
1632 	if (!sysctl_memory_failure_recovery)
1633 		panic("Memory failure on page %lx", pfn);
1634 
1635 	p = pfn_to_online_page(pfn);
1636 	if (!p) {
1637 		if (pfn_valid(pfn)) {
1638 			pgmap = get_dev_pagemap(pfn, NULL);
1639 			if (pgmap)
1640 				return memory_failure_dev_pagemap(pfn, flags,
1641 								  pgmap);
1642 		}
1643 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 			pfn);
1645 		return -ENXIO;
1646 	}
1647 
1648 	mutex_lock(&mf_mutex);
1649 
1650 try_again:
1651 	if (PageHuge(p)) {
1652 		res = memory_failure_hugetlb(pfn, flags);
1653 		goto unlock_mutex;
1654 	}
1655 
1656 	if (TestSetPageHWPoison(p)) {
1657 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 			pfn);
1659 		res = -EHWPOISON;
1660 		if (flags & MF_ACTION_REQUIRED)
1661 			res = kill_accessing_process(current, pfn, flags);
1662 		goto unlock_mutex;
1663 	}
1664 
1665 	orig_head = hpage = compound_head(p);
1666 	num_poisoned_pages_inc();
1667 
1668 	/*
1669 	 * We need/can do nothing about count=0 pages.
1670 	 * 1) it's a free page, and therefore in safe hand:
1671 	 *    prep_new_page() will be the gate keeper.
1672 	 * 2) it's part of a non-compound high order page.
1673 	 *    Implies some kernel user: cannot stop them from
1674 	 *    R/W the page; let's pray that the page has been
1675 	 *    used and will be freed some time later.
1676 	 * In fact it's dangerous to directly bump up page count from 0,
1677 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 	 */
1679 	if (!(flags & MF_COUNT_INCREASED)) {
1680 		res = get_hwpoison_page(p, flags);
1681 		if (!res) {
1682 			if (is_free_buddy_page(p)) {
1683 				if (take_page_off_buddy(p)) {
1684 					page_ref_inc(p);
1685 					res = MF_RECOVERED;
1686 				} else {
1687 					/* We lost the race, try again */
1688 					if (retry) {
1689 						ClearPageHWPoison(p);
1690 						num_poisoned_pages_dec();
1691 						retry = false;
1692 						goto try_again;
1693 					}
1694 					res = MF_FAILED;
1695 				}
1696 				action_result(pfn, MF_MSG_BUDDY, res);
1697 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 			} else {
1699 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 				res = -EBUSY;
1701 			}
1702 			goto unlock_mutex;
1703 		} else if (res < 0) {
1704 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 			res = -EBUSY;
1706 			goto unlock_mutex;
1707 		}
1708 	}
1709 
1710 	if (PageTransHuge(hpage)) {
1711 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 			res = -EBUSY;
1714 			goto unlock_mutex;
1715 		}
1716 		VM_BUG_ON_PAGE(!page_count(p), p);
1717 	}
1718 
1719 	/*
1720 	 * We ignore non-LRU pages for good reasons.
1721 	 * - PG_locked is only well defined for LRU pages and a few others
1722 	 * - to avoid races with __SetPageLocked()
1723 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 	 * The check (unnecessarily) ignores LRU pages being isolated and
1725 	 * walked by the page reclaim code, however that's not a big loss.
1726 	 */
1727 	shake_page(p);
1728 
1729 	lock_page(p);
1730 
1731 	/*
1732 	 * The page could have changed compound pages during the locking.
1733 	 * If this happens just bail out.
1734 	 */
1735 	if (PageCompound(p) && compound_head(p) != orig_head) {
1736 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 		res = -EBUSY;
1738 		goto unlock_page;
1739 	}
1740 
1741 	/*
1742 	 * We use page flags to determine what action should be taken, but
1743 	 * the flags can be modified by the error containment action.  One
1744 	 * example is an mlocked page, where PG_mlocked is cleared by
1745 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 	 * correctly, we save a copy of the page flags at this time.
1747 	 */
1748 	page_flags = p->flags;
1749 
1750 	/*
1751 	 * unpoison always clear PG_hwpoison inside page lock
1752 	 */
1753 	if (!PageHWPoison(p)) {
1754 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 		num_poisoned_pages_dec();
1756 		unlock_page(p);
1757 		put_page(p);
1758 		goto unlock_mutex;
1759 	}
1760 	if (hwpoison_filter(p)) {
1761 		if (TestClearPageHWPoison(p))
1762 			num_poisoned_pages_dec();
1763 		unlock_page(p);
1764 		put_page(p);
1765 		goto unlock_mutex;
1766 	}
1767 
1768 	/*
1769 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 	 * page_lock. We need wait writeback completion for this page or it
1771 	 * may trigger vfs BUG while evict inode.
1772 	 */
1773 	if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 		goto identify_page_state;
1775 
1776 	/*
1777 	 * It's very difficult to mess with pages currently under IO
1778 	 * and in many cases impossible, so we just avoid it here.
1779 	 */
1780 	wait_on_page_writeback(p);
1781 
1782 	/*
1783 	 * Now take care of user space mappings.
1784 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 	 */
1786 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1787 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 		res = -EBUSY;
1789 		goto unlock_page;
1790 	}
1791 
1792 	/*
1793 	 * Torn down by someone else?
1794 	 */
1795 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 		res = -EBUSY;
1798 		goto unlock_page;
1799 	}
1800 
1801 identify_page_state:
1802 	res = identify_page_state(pfn, p, page_flags);
1803 	mutex_unlock(&mf_mutex);
1804 	return res;
1805 unlock_page:
1806 	unlock_page(p);
1807 unlock_mutex:
1808 	mutex_unlock(&mf_mutex);
1809 	return res;
1810 }
1811 EXPORT_SYMBOL_GPL(memory_failure);
1812 
1813 #define MEMORY_FAILURE_FIFO_ORDER	4
1814 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1815 
1816 struct memory_failure_entry {
1817 	unsigned long pfn;
1818 	int flags;
1819 };
1820 
1821 struct memory_failure_cpu {
1822 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 		      MEMORY_FAILURE_FIFO_SIZE);
1824 	spinlock_t lock;
1825 	struct work_struct work;
1826 };
1827 
1828 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829 
1830 /**
1831  * memory_failure_queue - Schedule handling memory failure of a page.
1832  * @pfn: Page Number of the corrupted page
1833  * @flags: Flags for memory failure handling
1834  *
1835  * This function is called by the low level hardware error handler
1836  * when it detects hardware memory corruption of a page. It schedules
1837  * the recovering of error page, including dropping pages, killing
1838  * processes etc.
1839  *
1840  * The function is primarily of use for corruptions that
1841  * happen outside the current execution context (e.g. when
1842  * detected by a background scrubber)
1843  *
1844  * Can run in IRQ context.
1845  */
1846 void memory_failure_queue(unsigned long pfn, int flags)
1847 {
1848 	struct memory_failure_cpu *mf_cpu;
1849 	unsigned long proc_flags;
1850 	struct memory_failure_entry entry = {
1851 		.pfn =		pfn,
1852 		.flags =	flags,
1853 	};
1854 
1855 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 	if (kfifo_put(&mf_cpu->fifo, entry))
1858 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 	else
1860 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 		       pfn);
1862 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 	put_cpu_var(memory_failure_cpu);
1864 }
1865 EXPORT_SYMBOL_GPL(memory_failure_queue);
1866 
1867 static void memory_failure_work_func(struct work_struct *work)
1868 {
1869 	struct memory_failure_cpu *mf_cpu;
1870 	struct memory_failure_entry entry = { 0, };
1871 	unsigned long proc_flags;
1872 	int gotten;
1873 
1874 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 	for (;;) {
1876 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 		if (!gotten)
1880 			break;
1881 		if (entry.flags & MF_SOFT_OFFLINE)
1882 			soft_offline_page(entry.pfn, entry.flags);
1883 		else
1884 			memory_failure(entry.pfn, entry.flags);
1885 	}
1886 }
1887 
1888 /*
1889  * Process memory_failure work queued on the specified CPU.
1890  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891  */
1892 void memory_failure_queue_kick(int cpu)
1893 {
1894 	struct memory_failure_cpu *mf_cpu;
1895 
1896 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 	cancel_work_sync(&mf_cpu->work);
1898 	memory_failure_work_func(&mf_cpu->work);
1899 }
1900 
1901 static int __init memory_failure_init(void)
1902 {
1903 	struct memory_failure_cpu *mf_cpu;
1904 	int cpu;
1905 
1906 	for_each_possible_cpu(cpu) {
1907 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 		spin_lock_init(&mf_cpu->lock);
1909 		INIT_KFIFO(mf_cpu->fifo);
1910 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 	}
1912 
1913 	return 0;
1914 }
1915 core_initcall(memory_failure_init);
1916 
1917 #define unpoison_pr_info(fmt, pfn, rs)			\
1918 ({							\
1919 	if (__ratelimit(rs))				\
1920 		pr_info(fmt, pfn);			\
1921 })
1922 
1923 /**
1924  * unpoison_memory - Unpoison a previously poisoned page
1925  * @pfn: Page number of the to be unpoisoned page
1926  *
1927  * Software-unpoison a page that has been poisoned by
1928  * memory_failure() earlier.
1929  *
1930  * This is only done on the software-level, so it only works
1931  * for linux injected failures, not real hardware failures
1932  *
1933  * Returns 0 for success, otherwise -errno.
1934  */
1935 int unpoison_memory(unsigned long pfn)
1936 {
1937 	struct page *page;
1938 	struct page *p;
1939 	int freeit = 0;
1940 	unsigned long flags = 0;
1941 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 					DEFAULT_RATELIMIT_BURST);
1943 
1944 	if (!pfn_valid(pfn))
1945 		return -ENXIO;
1946 
1947 	p = pfn_to_page(pfn);
1948 	page = compound_head(p);
1949 
1950 	if (!PageHWPoison(p)) {
1951 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 				 pfn, &unpoison_rs);
1953 		return 0;
1954 	}
1955 
1956 	if (page_count(page) > 1) {
1957 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 				 pfn, &unpoison_rs);
1959 		return 0;
1960 	}
1961 
1962 	if (page_mapped(page)) {
1963 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 				 pfn, &unpoison_rs);
1965 		return 0;
1966 	}
1967 
1968 	if (page_mapping(page)) {
1969 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 				 pfn, &unpoison_rs);
1971 		return 0;
1972 	}
1973 
1974 	/*
1975 	 * unpoison_memory() can encounter thp only when the thp is being
1976 	 * worked by memory_failure() and the page lock is not held yet.
1977 	 * In such case, we yield to memory_failure() and make unpoison fail.
1978 	 */
1979 	if (!PageHuge(page) && PageTransHuge(page)) {
1980 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 				 pfn, &unpoison_rs);
1982 		return 0;
1983 	}
1984 
1985 	if (!get_hwpoison_page(p, flags)) {
1986 		if (TestClearPageHWPoison(p))
1987 			num_poisoned_pages_dec();
1988 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 				 pfn, &unpoison_rs);
1990 		return 0;
1991 	}
1992 
1993 	lock_page(page);
1994 	/*
1995 	 * This test is racy because PG_hwpoison is set outside of page lock.
1996 	 * That's acceptable because that won't trigger kernel panic. Instead,
1997 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 	 * the free buddy page pool.
1999 	 */
2000 	if (TestClearPageHWPoison(page)) {
2001 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 				 pfn, &unpoison_rs);
2003 		num_poisoned_pages_dec();
2004 		freeit = 1;
2005 	}
2006 	unlock_page(page);
2007 
2008 	put_page(page);
2009 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 		put_page(page);
2011 
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL(unpoison_memory);
2015 
2016 static bool isolate_page(struct page *page, struct list_head *pagelist)
2017 {
2018 	bool isolated = false;
2019 	bool lru = PageLRU(page);
2020 
2021 	if (PageHuge(page)) {
2022 		isolated = isolate_huge_page(page, pagelist);
2023 	} else {
2024 		if (lru)
2025 			isolated = !isolate_lru_page(page);
2026 		else
2027 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028 
2029 		if (isolated)
2030 			list_add(&page->lru, pagelist);
2031 	}
2032 
2033 	if (isolated && lru)
2034 		inc_node_page_state(page, NR_ISOLATED_ANON +
2035 				    page_is_file_lru(page));
2036 
2037 	/*
2038 	 * If we succeed to isolate the page, we grabbed another refcount on
2039 	 * the page, so we can safely drop the one we got from get_any_pages().
2040 	 * If we failed to isolate the page, it means that we cannot go further
2041 	 * and we will return an error, so drop the reference we got from
2042 	 * get_any_pages() as well.
2043 	 */
2044 	put_page(page);
2045 	return isolated;
2046 }
2047 
2048 /*
2049  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051  * If the page is mapped, it migrates the contents over.
2052  */
2053 static int __soft_offline_page(struct page *page)
2054 {
2055 	int ret = 0;
2056 	unsigned long pfn = page_to_pfn(page);
2057 	struct page *hpage = compound_head(page);
2058 	char const *msg_page[] = {"page", "hugepage"};
2059 	bool huge = PageHuge(page);
2060 	LIST_HEAD(pagelist);
2061 	struct migration_target_control mtc = {
2062 		.nid = NUMA_NO_NODE,
2063 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 	};
2065 
2066 	/*
2067 	 * Check PageHWPoison again inside page lock because PageHWPoison
2068 	 * is set by memory_failure() outside page lock. Note that
2069 	 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 	 * so there's no race between soft_offline_page() and memory_failure().
2071 	 */
2072 	lock_page(page);
2073 	if (!PageHuge(page))
2074 		wait_on_page_writeback(page);
2075 	if (PageHWPoison(page)) {
2076 		unlock_page(page);
2077 		put_page(page);
2078 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 		return 0;
2080 	}
2081 
2082 	if (!PageHuge(page))
2083 		/*
2084 		 * Try to invalidate first. This should work for
2085 		 * non dirty unmapped page cache pages.
2086 		 */
2087 		ret = invalidate_inode_page(page);
2088 	unlock_page(page);
2089 
2090 	/*
2091 	 * RED-PEN would be better to keep it isolated here, but we
2092 	 * would need to fix isolation locking first.
2093 	 */
2094 	if (ret) {
2095 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 		page_handle_poison(page, false, true);
2097 		return 0;
2098 	}
2099 
2100 	if (isolate_page(hpage, &pagelist)) {
2101 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2103 		if (!ret) {
2104 			bool release = !huge;
2105 
2106 			if (!page_handle_poison(page, huge, release))
2107 				ret = -EBUSY;
2108 		} else {
2109 			if (!list_empty(&pagelist))
2110 				putback_movable_pages(&pagelist);
2111 
2112 			pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 				pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 			if (ret > 0)
2115 				ret = -EBUSY;
2116 		}
2117 	} else {
2118 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 			pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 		ret = -EBUSY;
2121 	}
2122 	return ret;
2123 }
2124 
2125 static int soft_offline_in_use_page(struct page *page)
2126 {
2127 	struct page *hpage = compound_head(page);
2128 
2129 	if (!PageHuge(page) && PageTransHuge(hpage))
2130 		if (try_to_split_thp_page(page, "soft offline") < 0)
2131 			return -EBUSY;
2132 	return __soft_offline_page(page);
2133 }
2134 
2135 static int soft_offline_free_page(struct page *page)
2136 {
2137 	int rc = 0;
2138 
2139 	if (!page_handle_poison(page, true, false))
2140 		rc = -EBUSY;
2141 
2142 	return rc;
2143 }
2144 
2145 static void put_ref_page(struct page *page)
2146 {
2147 	if (page)
2148 		put_page(page);
2149 }
2150 
2151 /**
2152  * soft_offline_page - Soft offline a page.
2153  * @pfn: pfn to soft-offline
2154  * @flags: flags. Same as memory_failure().
2155  *
2156  * Returns 0 on success, otherwise negated errno.
2157  *
2158  * Soft offline a page, by migration or invalidation,
2159  * without killing anything. This is for the case when
2160  * a page is not corrupted yet (so it's still valid to access),
2161  * but has had a number of corrected errors and is better taken
2162  * out.
2163  *
2164  * The actual policy on when to do that is maintained by
2165  * user space.
2166  *
2167  * This should never impact any application or cause data loss,
2168  * however it might take some time.
2169  *
2170  * This is not a 100% solution for all memory, but tries to be
2171  * ``good enough'' for the majority of memory.
2172  */
2173 int soft_offline_page(unsigned long pfn, int flags)
2174 {
2175 	int ret;
2176 	bool try_again = true;
2177 	struct page *page, *ref_page = NULL;
2178 
2179 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180 
2181 	if (!pfn_valid(pfn))
2182 		return -ENXIO;
2183 	if (flags & MF_COUNT_INCREASED)
2184 		ref_page = pfn_to_page(pfn);
2185 
2186 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 	page = pfn_to_online_page(pfn);
2188 	if (!page) {
2189 		put_ref_page(ref_page);
2190 		return -EIO;
2191 	}
2192 
2193 	if (PageHWPoison(page)) {
2194 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 		put_ref_page(ref_page);
2196 		return 0;
2197 	}
2198 
2199 retry:
2200 	get_online_mems();
2201 	ret = get_hwpoison_page(page, flags);
2202 	put_online_mems();
2203 
2204 	if (ret > 0) {
2205 		ret = soft_offline_in_use_page(page);
2206 	} else if (ret == 0) {
2207 		if (soft_offline_free_page(page) && try_again) {
2208 			try_again = false;
2209 			goto retry;
2210 		}
2211 	}
2212 
2213 	return ret;
2214 }
2215